CN114728994B - 芳基磷氧类化合物及其用途 - Google Patents

芳基磷氧类化合物及其用途 Download PDF

Info

Publication number
CN114728994B
CN114728994B CN202180004570.6A CN202180004570A CN114728994B CN 114728994 B CN114728994 B CN 114728994B CN 202180004570 A CN202180004570 A CN 202180004570A CN 114728994 B CN114728994 B CN 114728994B
Authority
CN
China
Prior art keywords
compound
mmol
cancer
egfr
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202180004570.6A
Other languages
English (en)
Other versions
CN114728994A (zh
Inventor
何鹏
董光新
赵海
王学超
陈爽
黄沛
邓塔
张锐
李海燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHENGDU DI'AO JIUHONG PHARMACEUTICAL FACTORY
Original Assignee
CHENGDU DI'AO JIUHONG PHARMACEUTICAL FACTORY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHENGDU DI'AO JIUHONG PHARMACEUTICAL FACTORY filed Critical CHENGDU DI'AO JIUHONG PHARMACEUTICAL FACTORY
Priority to CN202211290351.1A priority Critical patent/CN115677773A/zh
Publication of CN114728994A publication Critical patent/CN114728994A/zh
Application granted granted Critical
Publication of CN114728994B publication Critical patent/CN114728994B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6558Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system
    • C07F9/65583Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system each of the hetero rings containing nitrogen as ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/675Phosphorus compounds having nitrogen as a ring hetero atom, e.g. pyridoxal phosphate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6558Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system
    • C07F9/65586Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system at least one of the hetero rings does not contain nitrogen as ring hetero atom

Abstract

本发明提供了具有激酶抑制活性的芳基磷氧化合物,该类化合物可以有效抑制各种类型EGFR耐药突变体(如EGFRdel19、EGFRdel19/T790M、EGFRdel19/C797S、EGFRT790M/L858R、EGFRL858R/C797S、EGFRdel19/T790M/C797S、EGFRL858R/T790M/C797S)的活性,并对ALK融合基因及突变体(如L1196M)同样具有显著抑制作用,可用于多种癌症的治疗、联合治疗或预防。

Description

芳基磷氧类化合物及其用途
技术领域
本发明涉及药物领域。具体而言,涉及作为蛋白激酶抑制剂的芳基磷氧类化合物。
背景技术
蛋白激酶代表一大家族蛋白质,其在多种细胞过程的调控中以及细胞功能的维持控制中起着重要作用。它们包括增殖,凋亡,细胞骨架重排,分化,发育,免疫反应,神经***功能和传导。另外,许多疾病和(或)机能紊乱与一种或多种激酶的活性失常,异常或失调相关。
肺癌是最常见的恶性肿瘤之一,一般分为小细胞肺癌(Small Cell Lung Cancer,SCLC)和非小细胞肺癌(Non-Small Cell Lung Cancer,NSCLC)两大类,但无论从地域区分中国还是全球,肺癌都是排在第一位。其中非小细胞肺癌(NSCLC)约占肺癌总数的80%以上,严重威胁着人类健康(中国肺癌杂志[J],2012 Feb 20;15(2):106-111)。
EGFR(epidermal growth factor receptor,EGFR)全名为表皮生长因子受体,是一种广泛分布于人体各种组织细胞膜上的具有酪氨酸激酶活性的跨膜糖蛋白。EGFR的突变和异常激活与多种肿瘤如非小细胞肺癌、乳腺癌、食管癌等肿瘤的发生发展、恶性程度、转移等密切相关。大部分的非小细胞肺癌(Non-small-celllung cancer,NSCLC)患者存在EGFR过量表达,在亚洲非小细胞肺癌人群中(尤其是中国人群),大概有40~50%属于EGFR突变,因此对EGFR的抑制能显著提高NSCLC患者的生存期。EGFR的常见突变可以分为两大类,一类是药物敏感突变,即突变后可以使用抗肿瘤靶向药物,例如19外显子缺失、21外显子L858R突变;另一类是耐药突变,即突变后对某种抗肿瘤靶向药物耐药,例如T790M突变、C797S突变。第一代EGFR小分子抑制剂药物吉非替尼(Gefitinib)、厄洛替尼(Erlotinib)和埃克替尼(Icotinib)在携带EGFR敏感突变的患者中获得了显著的临床疗效,延长了生存期。但获益患者在使用药物几个月后,大部分患者会产生耐药。其中,超过50%的耐药患者是由于EGFR发生了T790M突变产生耐药。第二代EGFR不可逆抑制剂药物阿法替尼(Afatinib)和来那替尼(Neratinib)虽然在临床前研究获得较好的结果,但对野生型EGFR(EGFRWT)缺乏选择性,具有较大皮肤毒性等副作用。第三代克服EGFR T790M耐药的不可逆抑制剂Osimertinib(AZD9291),在临床上能够有效治疗表皮生长因子受体T790M突变或对其它EGFR抑制剂耐药的晚期非小细胞肺癌患者。尽管Osimertinib在临床上治疗EGFRT790M突变的非小细胞肺癌取得了较大的成功,但是部分受益患者在经过9~14个月治疗后又出现了耐药的现象(Nature Medicine 2015,21(6),560-562)。经研究发现,高达40%的耐药患者由于(EGFR)C797S点突变导致了Osimertinib耐药。进一步的机制研究表明,(EGFR)C797S的点突变使797位的半胱氨酸转变为丝氨酸,导致Osimertinib无法与靶蛋白形成共价结合,最终引起耐药。目前临床上尚没有一款药物可针对新突变(C797S)有效的EGFR抑制剂。因此,迫切需要新类型,高选择性的EGFR抑制剂来解决(EGFR)C797S点突变导致的药物耐药性等问题。
间变性淋巴瘤激酶(Anaplastic lymphoma kinase,ALK),又称为ALK酪氨酸激酶受体或CD246,它是人体中由ALK基因编码的活性酶。ALK参与形成的融合基因与非小细胞肺癌等多种肿瘤的发生发展密切相关。在非小细胞肺癌患者中,EML4-ALK(棘皮动物微管相关类蛋白4与间变性淋巴瘤激酶融合基因)等融合型癌基因约占3-7%。因此,开发针对ALK融合基因阳性的蛋白激酶抑制剂具有重要的临床价值另一方面,近年来随着非小细胞肺癌病人的增加和二代测序技术(深度测序)的应用普及,不断有研究者们发现,在有些非小细胞肺癌患者中能同时出现EGFR突变体和ALK基因融合的现象。因此,迫切需要新类型、高选择性的蛋白激酶抑制剂来解决(EGFR)C797S点突变导致的药物耐药性等问题,同时又能解决ALK基因融合和突变。
发明内容
本申请的一个或多个实施方式提供了如下式(I)所示的用作激酶抑制剂的芳基磷氧类化合物或其药学上可接受的盐,该类化合物可以有效抑制各种类型EGFR耐药突变体(如EGFRdel19、EGFRdel19/T790M、EGFRdel19/C797S、EGFRT790M/L858R、EGFRL858R/C797S、EGFRdel19/T790M/C797S、EGFRL858R/T790M/C797S)的活性,并对ALK融合基因及突变体(如L1196M)同样具有显著抑制作用,可用于多种癌症的治疗,联合治疗,或预防。
Figure GPA0000316018460000031
其中,R1选自C1-C6烷基和C3-C6环烷基,所述C1-C6烷基、C3-C6环烷基任选地被0-6个R′取代;
R2选自氢、氨基、C1-C6烷基、C3-C6环烷基、C3-C6环烯基、苯基、5-6元杂芳基、
Figure GPA0000316018460000032
所述氨基、C1-C6烷基、C3-C6环烷基、苯基、5-6元杂芳基任选地被0-3个Ra基团取代;
X选自CH、S、N或O;
n=0、1或2;
当X为O时,不含Ra;
-----键表示C-C饱和键或C=C烯键;
R3选自C1-C6烷基、C3-C6环烷基、-NRbRc和卤素;所述C1-C6烷基、C3-C6环烷基和-NRbRc任选地被0-3个R′取代;
R4、R6各自独立地选自氢、C1-C6烷基、C3-C6环烷基和卤素,所述C1-C6烷基和C3-C6环烷基任选地被0-3个R′取代;
R5选自C1-C6烷基和卤素,所述C1-C6烷基任选地被0-3个R′取代;
Ra、Raa各自独立地选自氢、C1-C6烷基、C3-C6环烷基、苯基、5-6元杂芳基、卤素、氨基、羟基、氰基、硝基、-NRbC(O)Rc、-NRbRc
Figure GPA0000316018460000041
其中,所述C1-C6烷基、C3-C6环烷基、苯基、5-6元杂芳基、氨基和羟基任选地被0-3个R′取代;
Y选自N或O,Z选自CH或N;当Y为O时,R′不存在;
Rb、Rc各自独立地选自氢、C1-C6烷基、C3-C6环烷基、C2-C6烯基、C2-C6炔基、羟基和氨基;所述C1-C6烷基、C3-C6环烷基、C2-C6烯基和C2-C6炔基任选地被0-3个R′取代;
R′选自氢、F、Cl、Br、I、羟基、酰基、羧基、氨基、硝基、氰基、C1-C6烷基、C3-C6环烷基、C2-C6烯基和C2-C6炔基;所述C1-C6烷基、C3-C6环烷基、C2-C6烯基、C2-C6炔基、氨基和羟基任选地被0-3个氢、羟基、羧基、羰基、F、Cl、Br、I、氨基、硝基、氰基,甲基、三氟乙基、二氟甲基、一氟甲基取代;
在本申请的一个或多个实施方式中,
R1选自C1-C6烷基;所述C1-C6烷基任选地被0-3个R′取代;
R2选自氢、C1-C6烷基、氨基、
Figure GPA0000316018460000042
其中所述氨基、C1-C6烷基被1-3个Ra取代;
Ra、Raa各自独立地选自氢、NRbRc、C1-C6烷基或
Figure GPA0000316018460000043
R3选自C1-C6烷基、C3-C6环烷基、卤素和-NRbRc;所述C1-C6烷基、C3-C6环烷基任选地被0-3个R′取代;
R4选自卤素、C1-C6烷基和C3-C6环烷基;所述C1-C6烷基和C3-C6环烷基任选的被0-3个R′取代;
R5选自C1-C6烷基和卤素;所述C1-C6烷基任选的被0-3个R′取代;
R6选自氢或甲基;
Rb、Rc各自独立地选自氢、C1-C6烷基和C2-C6烯基;所述C1-C6烷基和C2-C6烯基任选地被0-3个R′取代;
本申请的一个或多个实施方式,所述的化合物或其药学上可接受的盐,其中
R3选自C1-C6烷基和C3-C6环烷基;所述C1-C6烷基,C3-C6环烷基任选地被0-3个R′取代;
R4选自卤素和C1-C6烷基;其中C1-C6烷基任选地被0-3个R′取代;
R5选自C1-C6烷基;其中C1-C6烷基任选地被0-3个R′取代;
R6为氢。
在本申请的一个或多个实施方式中,所述的化合物或其药学上可接受的盐,其中
R2选自氨基和
Figure GPA0000316018460000051
所述氨基任选地被0-3个Ra取代;其中,X选自CH、N或O;
Ra选自
Figure GPA0000316018460000052
C1-C3烷基或NRbRc;其中Y选自N或O,Z选自CH或N;
Rb、Rc各自独立地选自氢、C1-C3烷基;
R3选自C1-C6烷基;所述C1-C6烷基任选地被0-3个R′取代;
R4选自Cl,Br,C1-C6烷基,所述C1-C6烷基任选地被0-3个R′取代;
R5选自C1-C6烷基,所述C1-C6烷基任选地被0-3个R′取代;
R′选自氢、C1-C6烷基、F、Cl、Br、I、羟基和氨基。
在本申请的一个或多个实施方式中,R2选自氨基和
Figure GPA0000316018460000053
所述氨基任选被0-3个Ra取代;其中,X选自CH、N或O;
Ra选自
Figure GPA0000316018460000054
C1-C3烷基或NRbRc
其中Y选自N或O,Z选自CH或N;
Rb、Rc各自独立的选自氢、C1-C3烷基;
R3选自C1-C6烷基;所述C1-C6烷基任选被0-3个R′取代;
R4选自Cl,Br,C1-C6烷基,所述C1-C6烷基任选被0-3个R′取代;
R5选自C1-C6烷基,所述C1-C6烷基任选被0-3个R′取代
R′选自F、Cl、Br、I、羟基和氨基。
在本申请的一个或多个实施方式中,R1选自甲基、乙基、异丙基、CF2H、CH2CF3
R2选自
Figure GPA0000316018460000055
R3选自甲基、乙基和异丙基;
R4选自Cl、Br、CH3、CF3和CH2CF3
R5选自甲基、乙基和异丙基。
在本申请的一个或多个实施方式中,R1选自甲基、乙基、异丙基、CF2H、CH2CF3
R2选自
Figure GPA0000316018460000061
R3选自甲基和乙基;
R4选自Cl、Br、CF3和CH2CF3
R5选自甲基和乙基。
本申请的一个或多个实施方式,所述化合物或其药学上可接受的盐,其中
R3为卤素;
R4选自卤素、C1-C6烷基;其中C1-C6烷基任选的被0-3个R′取代;
R5选自C1-C6烷基;所述C1-C6烷基任选的被0-3个R′取代;
R6为氢;
R′选自氢、C1-C6烷基、F、Cl、Br、I、羟基和氨基。
在本申请的一个或多个实施方式中,R3为卤素;
R4选自卤素、C1-C6烷基;其中C1-C6烷基任选的被0-3个R′取代;
R5选自C1-C6烷基;所述C1-C6烷基任选的被0-3个R′取代;
R6为氢
R′选自F、Cl、Br、I、羟基和氨基。
在本申请的一个或多个实施方式中,
R1选自甲基、乙基和异丙基;
R2选自
Figure GPA0000316018460000062
R3选自Cl和Br;
R4选自Cl、Br、CF3和CH2CF3
R5选自甲基、乙基和异丙基。
在本申请的一个或多个实施方式中,R1选自甲基、乙基和异丙基;
R2选自
Figure GPA0000316018460000071
R3选自Cl和Br;
R4选自Cl、Br、CF3和CH2CF3
R5选自甲基和乙基。
在本申请的一个或多个实施方式中,
R3选自C1-C6烷基;所述C1-C6烷基任选地被0-3个R′取代
R4选自卤素、C1-C6烷基;其中C1-C6烷基任选的被0-3个R′取代;
R5选自卤素;
R6为氢;
R′选自氢、C1-C6烷基、F、Cl、Br、I、羟基和氨基。
在本申请的一个或多个实施方式中,R3选自C1-C6烷基;所述C1-C6烷基任选被0-3个R′取代
R4选自卤素、C1-C6烷基;其中C1-C6烷基任选的被0-3个R′取代;
R5选自卤素;
R6为氢;
R′选自F、Cl、Br、I、羟基和氨基。
在本申请的一个或多个实施方式中,
R1选自甲基、乙基、异丙基;
R2选自
Figure GPA0000316018460000072
R3选自甲基、乙基和异丙基;
R4选自Cl、Br、CF3和CH2CF3
R5选自F和Cl。
在本申请的一个或多个实施方式中,R1选自甲基、乙基、异丙基;
R2选自
Figure GPA0000316018460000081
R3选自甲基和乙基;
R4选自Cl、Br、CF3和CH2CF3
R5选自F和Cl。
在本申请的一个或多个实施方式中,
R3为-NRbRc
R4选自卤素、C1-C6烷基;其中C1-C6烷基任选的被0-3个R′取代;
R5选自C1-C6烷基;所述C1-C6烷基任选的被0-3个R′取代;
R6为氢;
Rb、Rc各自独立地选自氢、C1-C6烷基和和C2-C6烯基;所述C1-C6烷基和C2-C6烯基任选地被0-3个R′取代;
R′选自氢、C1-C6烷基、F、Cl、Br、I、羟基和氨基。
在本申请的一个或多个实施方式中,R3为-NRbRc
R4选自卤素、C1-C6烷基;其中C1-C6烷基任选的被0-3个R′取代;
R5选自C1-C6烷基;所述C1-C6烷基任选的被0-3个R′取代;
R6为氢;
Rb、Rc各自独立的选自氢、C1-C6烷基和和C2-C6烯基;所述C1-C6烷基和C2-C6烯基任选被0-3个R′取代;
R′选自F、Cl、Br、I、羟基和氨基。
在本申请的一个或多个实施方式中,
R1选自甲基、乙基和异丙基;
R2选自
Figure GPA0000316018460000082
R3为NHCH3
R4选自Cl、Br、CF3和CH2CF3
R5选自甲基和乙基。
在本申请的一个或多个实施方式中,
R1选自甲基、乙基、异丙基、-CF2H;
R2选自
Figure GPA0000316018460000091
R3选自甲基、乙基和异丙基;
R4选自Br;
R5选自甲基、乙基和异丙基。
在本申请的一个或多个实施方式中,
R1选自甲基、乙基、异丙基;
R2选自
Figure GPA0000316018460000092
R3选自甲基、乙基和异丙基;
R4选自Br;
R5选自F、Cl。
本发明提供下述化合物或其药学上可接受的盐:
Figure GPA0000316018460000093
Figure GPA0000316018460000101
Figure GPA0000316018460000111
Figure GPA0000316018460000121
本申请的一个或多个实施方式提供了药物组合物,含有本申请的化合物或其药学上可接受的盐和药学上可接受的载体。
本申请的一个或多个实施方式提供了药物制剂,其包含本申请的化合物或其药学上可接受的盐以及药学上可接受的辅料。
本申请的一个或多个实施方式提供了本申请的化合物及其药物可接受的盐、或者上述药物制剂或药物组合物在制备用于预防和/或治疗与EFGR或ALK或者EFGR及ALK相关的疾病的药物中的用途。
在一个或多个实施方式中,所述与EFGR或ALK或者EFGR及ALK相关的疾病为癌症。
本申请的一个或多个实施方式提供了本申请的化合物或其药学上可接受的盐、或者本申请的药物制剂或药物组合物在制备预防和/或治疗癌症的药物中的用途。
本申请的一个或多个实施方式提供了本申请的化合物或其药学上可接受的盐、或者上述药物制剂或药物组合物,其作为药品应用。
本申请的一个或多个实施方式提供了本申请的化合物或其药学上可接受的盐、或者上述药物制剂或药物组合物,其用于预防和/或治疗癌症的方法。
本申请的一个或多个实施方式提供了本申请的化合物或其药学上可接受的盐、或者上述药物制剂或药物组合物,其用于预防和/或治疗与EFGR或ALK或者EFGR及ALK相关的疾病。
本申请的一个或多个实施方式提供了本申请的化合物或其药学上可接受的盐、或者上述药物制剂或药物组合物,其用作EFGR抑制剂或ALK抑制剂或EFGR及ALK抑制剂或者蛋白激酶抑制剂。本申请的一个或多个实施方式提供了本申请的化合物或其药学上可接受的盐或者上述药物制剂或药物组合物在制备EFGR抑制剂中的应用。
本申请的一个或多个实施方式提供了本申请的化合物或其药学上可接受的盐或者上述药物制剂或药物组合物在制备ALK抑制剂中的应用。
本申请的一个或多个实施方式提供了本申请的化合物及其药物可接受的盐、或者上述药物制剂或药物组合物在制备EFGR及ALK抑制剂中的应用。
在本申请的一个或多个实施方式中,所述治疗癌症的药物为具有蛋白激酶抑制剂活性的芳基磷氧类化合物,包括:预防和/或治疗肺癌的药物,如预防和/或治疗多发性骨髓瘤的药物;以及预防和/或治疗淋巴瘤的药物,如预防和/或治疗非霍奇金淋巴瘤、套细胞淋巴瘤和/或滤泡性淋巴瘤的药物;预防和/或治疗白血病的药物;以及预防和治疗套细胞瘤、乳腺癌、肝癌、结肠癌、***、肺癌、浆细胞瘤、淋巴瘤、卵巢癌、肾癌、胃癌、鼻咽癌、白血病、黑色素瘤、甲状腺癌、胰腺癌、腺癌或鳞状细胞癌的药物。
在本申请的一个或多个实施方式中,本申请的化合物能够用于治疗肺癌、浆细胞瘤、套细胞瘤、多发性骨髓瘤、黑色素瘤、乳腺癌、肝癌、***、淋巴瘤、白血病、卵巢癌、肾癌、胃癌、鼻咽癌、甲状腺癌、胰腺癌、***癌、腺癌、口腔癌、食道癌、鳞状细胞癌或结肠癌。
本申请的一个或多个实施方式还提供了治疗和/或预防与EFGR或ALK或者EFGR及ALK相关的疾病的方法,所述方法包括向有此需要的对象施用本申请的化合物或其药学上可接受的盐,或者本申请的药物制剂或药物组合物。
本申请的一个或多个实施方式还提供了治疗和/或预防癌症或肿瘤的方法,所述方法包括向有此需要的对象施用本申请的化合物或其药学上可接受的盐,或者本申请的药物制剂或药物组合物。
本申请的一个或多个实施方式还提供了本申请的化合物或其药学上可接受的盐、或者上述药物制剂或药物组合物在制备蛋白激酶抑制剂中的用途。
本申请的一个或多个实施方式还提供了在体内或体外抑制EFGR抑制剂和/或ALK抑制剂或者蛋白激酶的方法,所述方法包括向对象或有此需要的对象施用本申请的化合物或其药学上可接受的盐,或者上述药物制剂或药物组合物。
以下对本申请的技术方案中使用的术语进行说明。如在说明书和所附的权利要求书中所使用的,除非有相反的特定说明,否则本申请的术语具有如下表示的意义:
术语“化合物”,包括所有立体异构体,几何异构体,互变异构体。本文中所述的“化合物”,可以是不对称的,例如,具有一个或多个立体异构体。除非另有说明,所有立体异构体都包括,如单独的对映异构体和非对映异构体或其他立体异构体形式或它们的混合物。本文中含有不对称碳原子的化合物,可以以光学活性纯的形式或外消旋体形式被分离出来。光学活性纯的形式可以从外消旋混合物拆分,或通过使用手性原料或手性试剂合成。本文所述的“化合物”,还包括几何异构形式,几何异构形式指化合物在双键或环上的取代基有不同的顺反异构而不具手性的形式。本文所述的“化合物”,还包括互变异构体形式。互变异构体形式可来源于一个单键与相邻的双键交换并一起伴随一个质子的迁移。
本文的化合物,无论是中间体或式(I)化合物,均还可以通过使其中的一个或多个原子被具有不同的原子质量或质量数的原子替代而被同位素标记。此类经同位素标记的(即,放射性标记的)化合物被视为处于在本文的范围内。本文的化合物中的同位素的实例包括碳、氮、氧、硫、氟、氯和碘的同位素,各同位素间分别具有相同的质子数,但质量数不同。
术语“卤素”是指氟、氯、溴或碘。
术语“氨基”指-NH2
术语“氰基”,是指-CN。
术语“硝基”指-NO2
术语“羟基”是指-OH。
术语“羧基”是指-COOH。
术语“烷基”指饱和脂肪族烃基基团,该术语包括直链和支链烃基。例如,C1-C20烷基,优选为C1-C6烷基。C1-C20烷基指具有1至20个碳原子的烷基,例如具有1个碳原子、2个碳原子、3个碳原子、4个碳原子、5个碳原子、6个碳原子、7个碳原子、8个碳原子、9个碳原子、10个碳原子、11个碳原子、12个碳原子、13个碳原子、14个碳原子、15个碳原子、16个碳原子、17个碳原子、18个碳原子、19个碳原子或20个碳原子的烷基。烷基的非限制性实例包括甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、新戊基、正己基等。所述烷基可以是非取代的或被一个或多个取代基所取代,所述取代基包括但不限于烷基、烷氧基、氰基、羟基、羰基、羧基、芳基、杂芳基、胺基、卤素、磺酰基、亚磺酰基、膦酰基等。
术语“环烷基”是指具有单环或多环(包括稠环、桥环及螺环***)的环状烷基,包括3至8个碳原子(例如,3个、4个、5个、6个、7个、或8个碳原子)和氢原子组成的环状烷基。环烷基的非限制性实例包括环丙基、环丁基、环戊基、环己基、螺[3.4]辛烷基、二环[1.1.1]戊烷基、二环[3.1.0]己烷基等。
术语“环烯基”,指含有一个或多个双键的3-13个碳原子,优选5-8个碳原子的环状或多环状烃基。环烯基基团可以是取代或未取代。环烯基基团包括但不限制于,环戊烯基、环己烯基和环辛烯基。
术语“烯基”是指在直链或支链烃链中包含一个或多个双键的烃基。烯基可为未取代的或取代的。烯基可具有1至20个碳原子,诸如“1至20”的数值范围是指给定范围中的各个整数;例如,“1至20个碳原子”是指可包含1个碳原子、2个碳原子、3个碳原子、4个碳原子、5个碳原子、6个碳原子、7个碳原子、8个碳原子、9个碳原子、10个碳原子、11个碳原子、12个碳原子、13个碳原子、14个碳原子、15个碳原子、16个碳原子、17个碳原子、18个碳原子、19个碳原子或20个碳原子的烯基。
术语“炔基”是指在直链或支链烃链中包含一个或多个叁键的烃基。炔基可为未取代的或取代的。炔基可具有1至20个碳原子,诸如“1至20”的数值范围是指给定范围中的各个整数;例如,“1至20个碳原子”是指可包含1个碳原子、2个碳原子、3个碳原子、4个碳原子、5个碳原子、6个碳原子、7个碳原子、8个碳原子、9个碳原子、10个碳原子、11个碳原子、12个碳原子、13个碳原子、14个碳原子、15个碳原子、16个碳原子、17个碳原子、18个碳原子、19个碳原子或20个碳原子的炔基。
术语“杂芳基”,是指具有5-12个环原子(例如,5个、6个、10个、12个、14个环原子)的单环或稠合环,其中含有1-4个(例如,1个、2个、3个或4个)选自N、O、S的杂原子,其余环原子为C,且具有完全共轭π-电子体系,包括但不限于吡咯基、呋喃基、噻吩基、咪唑基、噁唑基,异噁唑基、吡唑基、吡啶基、嘧啶基、吡嗪基、哒嗪基、喹啉基、异喹啉基、***基、苯并咪唑、苯并***等。杂芳基可以是非取代的或取代的,所述取代基包括但不限于烷基、烷氧基、氰基、羟基、羰基、羧基、芳基、芳烷基、胺基、卤素、磺酰基、亚磺酰基、膦酰基。术语“取代”在本文中是指任何基团由指定取代基单取代或多取代至这种单取代或多取代(包括在相同部分的多重取代)在化学上允许的程度,每个取代基可以位于该基团上任何可利用的位置,且可以通过所述取代基上任何可利用的原子连接。“任何可利用的位置”是指通过本领域已知的方法或本文教导的方法可化学得到,并且不产生过度不稳定的分子的所述基团上的任何位置。当在任何基团上有两个或多个取代基时,每个取代基独立于任何其它取代基而定义,因此可以是相同或不同的。
术语“酰基”是指通过羰基连接的作为取代基的氢、烷基、烯基、炔基或芳基。实例包括甲酰基、乙酰基、丙酰基、苯甲酰基和丙烯酰基。酰基可为取代的或未取代的。
术语“取代”在本文中是指任何基团由指定取代基单取代或多取代至这种单取代或多取代(包括在相同部分的多重取代)在化学上允许的程度,每个取代基可以位于该基团上任何可利用的位置,且可以通过所述取代基上任何可利用的原子连接。“任何可利用的位置”是指通过本领域已知的方法或本文教导的方法可化学得到,并且不产生过度不稳定的分子的所述基团上的任何位置。当在任何基团上有两个或多个取代基时,每个取代基独立于任何其它取代基而定义,因此可以是相同或不同的。
当基团被描述为“任选地被0-6个R′”取代时,指可以任意的被1个、2个、3个、4个、5个或6个R′所取代,或者不被R′所取代,即对应指0个R′。当基团被描述为“任选地被0-3个R′”取代时,指可以任意的被1个、2个或3个R′所取代,或者不被R′所取代,即对应指0个R′。当基团被描述为“任选地被0-3个Ra”取代时,指可以任意的被1个、2个或3个Ra所取代,或者不被Ra所取代,即对应指0个Ra
当基团被描述为“任选取代的”时,则基团可为未取代的或被一个或多个以下的取代基取代:氢、氟、氯、溴、碘、硝基、三氟甲基、二氟甲基、三氟甲氧基、二氟甲氧基、甲氧基、酰基、烷氧基、杂环烷基、烷基、烯基、炔基、环烷基、环烯基、环炔基、芳基、杂芳基、杂脂环基、芳烷基、杂芳烷基、(杂脂环基)烷基、羟基、芳氧基、巯基、烷硫基、芳硫基、氰基、卤素、硫代羰基、O-氨基甲酰基、N-氨基甲酰基、O-硫代氨基甲酰基、N-硫代氨基甲酰基、C-酰氨基、N-酰氨基、S-磺酰氨基、N-磺酰氨基、羧基、异氰酸基、硫氰酸基、异硫氰酸基、甲硅烷基、烃硫基、亚磺酰基、磺酰基、卤代烷基、卤代烷氧基和氨基。
术语“药学上可接受”表示物质或组合物在化学上和/或毒理学上必须与构成制剂的其它成分和/或用其治疗的哺乳动物相容。
本申请所称的“药物制剂”,可以是申请所述药物组合物直接,或加上其他活性成分组合一起,与可药用辅料或载体组合而成。所述制剂包括:片剂、药丸、胶囊、颗粒剂和悬浮液和乳状液剂等。所述可药用辅料或载体包括:粘合剂如微晶纤维素、黄蓍胶或明胶;赋形剂如淀粉或乳糖;分散剂如褐藻酸、Primogel或玉米淀粉;润滑剂如硬脂酸镁;助流剂如胶状二氧化硅;甜味剂如蔗糖或糖精;或调味剂如薄荷油、水杨酸甲酯或橙味剂;非水溶剂如二甲基亚砜、醇、丙二醇、聚乙二醇、植物油如橄榄油和可注射的有机酯如油酸乙酯;水性载体如醇和水的混合物,缓冲的介质和盐水;以及防腐剂、抗菌剂、抗氧化剂、螯合剂、染料、色素或香料等。
本申请的一个或多个实施方式中所述癌症具体为浆细胞瘤、套细胞瘤、多发性骨髓瘤、黑色素瘤、乳腺癌、肝癌、***、肺癌、淋巴瘤、白血病、卵巢癌、肾癌、胃癌、鼻咽癌、甲状腺癌、胰腺癌、***癌、腺癌、口腔癌、食道癌、鳞状细胞癌或结肠癌中的任一种或多种。
所述可与本申请的化合物一起构成药物组合物的其他抗肿瘤药物包括:细胞毒类药物、激素类药物、抗代谢类药物、肿瘤靶向药物,以及辅助治疗药物等。细胞毒类药物,如卡铂、顺铂、伊立替康、紫杉醇、氟脲嘧啶、阿糖胞苷、来那度胺、维甲酸;激素类药物,如***、氟维司群、他莫昔芬等;抗代谢类药物,氟尿嘧啶、甲氨蝶呤、呋喃氟尿嘧啶、阿糖胞苷;分子靶向药物,如替尼类药物的伊马替尼、厄洛替尼、拉帕替尼等,以及PARP抑制剂类药物,如Olaparib、Rubraca、Zejula等;辅助治疗类药物,如重组人粒细胞集落刺激因子、***、帕米膦酸二钠、唑来膦酸等。此外,还包括抗肿瘤生物药,如Keytruda、Opdiv、Tecentriq、Imfinzi、Bavencio等。
技术效果
本发明的一种或多种实施方式中的化合物可以有效抑制各种类型EGFR耐药突变(如EGFRdel19、EGFRdel19/T790M、EGFRdel19/C797S、EGFRT790M/L858R、EGFRL858R/C797S、EGFRdel19/T790M/C797S、EGFRL858R/T790M/C797S)的活性,并且本发明的一种或多种实施方案中的化合物对ALK融合基因及其突变具有良好的抑制作用。本发明的一种或多种实施方案中的化合物对EGFR耐药突变以及ALK融合基因及其突变同时具有抑制活性。
在一种或多种实施方式中,对于具有T790M突变特征的多种EGFR耐药突变,本发明化合物较现有技术公开的化合物的IC50值和/或GI50值显著降低,表现出更好的抑制活性;具有T790M突变特征的多种EGFR耐药突变,包括EGFR-T790M/Del19、EGFR-T790M/L858R、EGFR-C797S/T790M/L858R、EGFR-C797S/T790M/Del19,等。
在一种或多种实施方式中,对于具有C797S突变特征的多种EGFR耐药突变,本发明化合物较现有技术公开的化合物的IC50值和/或GI50值显著降低,表现出更好的抑制活性;具有C797S突变特征的多种EGFR耐药突变,包括EGFR-C797S/Del19、EGFR-C797S/L858R、EGFR-C797S/T790M/L858R、EGFR-C797S/T790M/Del19等。
在一种或多种实施方式中,对于具有L858R突变特征的多种EGFR耐药突变,本发明化合物较现有技术公开的化合物的IC50值和/或GI50值显著降低,表现出更好的抑制活性。对于具有Del19突变特征的多种EGFR耐药突变,本发明化合物较现有技术公开的化合物的IC50值和/或GI50值显著降低,表现出更好的抑制活性。
在一种或多种实施方式中,对于突变EGFR和野生型EGFR,本发明的一种或多种实施方式中的化合物较现有技术公开的化合物,也表现出了更高的选择性。
在一种或多种实施方式中,对于ALK突变基因,例如EML4-ALK、EML4-ALK-L1196M等,本发明的一种或多种实施方式中的化合物较现有技术公开的化合物的IC50值和/或GI50值显著降低,表现出更好的抑制活性。
在一种或多种实施方式中,本申请的化合物相对于对比实施例的化合物在抑制EGFR耐药突变活性测试中表现出了预料不到的活性作用,同时对ALK融合基因及突变体也表现出了显著的、出乎意料的抑制活性。
在一种或多种实施方式中,本申请的化合物相对于对比实施例的化合物,体现出更高的安全性,并具有显著提高的耐受剂量。
本申请的一个或多个实施方案的化合物具有良好的理化性质、稳定性高。
具体实施方式
下面结合实施例对本申请进一步说明,给出本申请的实施细节,但需要指出的是下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。对于本领域技术人员根据现有技术对其进行修改或替代仍属于本申请的保护范围。本申请实施例中使用的试剂均可通过商购获得。
实施例1
化合物1A:
Figure GPA0000316018460000171
500mL三口瓶内,加入2-碘-4-甲基苯胺(10g,42.9mmol)、K3PO4(10.9g,51.5mmol)、Xantphos(2.48g,4.3mmol)、Pd(OAc)2(0.96g,4.3mmol)、二甲基氧磷(5g,64.4mmol)、100mLDMF,升温至120℃反应约3h至TLC检测反应完毕。反应液冷却至室温,抽滤,加入600mL H2O,析出大量黄色固体,抽滤,滤液用500mL×3乙酸乙酯萃取,合并有机相,用250mL×2饱和氯化钠水溶液洗涤,无水硫酸钠干燥,过滤,滤液浓缩得化合物1A,未经纯化继续投下一步反应。1H NMR(400MHz,DMSO-d6)δ=9.21(brs,2H),7.57(d,J=13.6,1H),7.43(d,J=8.4,1H),7.26-7.23(m,1H),2.33(s,3H),1.85(s,3H),1.82(s,3H)。
化合物1B:
Figure GPA0000316018460000181
500mL三口瓶内,加入上步所得的化合物1A,2,4,5-三氯嘧啶(11.80g,64.3mmol)、K2CO3(7.76g,128.73mmol)、nBu4NHSO4(1.45g,4.29mmol)、100mLDMF,升温至65℃反应约4.5小时至TLC检测反应完毕。反应冷却至室温,加入200mL H2O,析出大量黄色固体,继续搅拌约0.5h后抽滤,滤饼用100mL H2O洗涤,干燥得化合物1B(8.57g,两步总收率60.5%)。1H NMR(400MHz,DMSO)δ=11.62(s,1H),8.40(s,1H),8.27(dd,J=8.4,4.4Hz,1H),7.44(m,2H),2.33(s,3H),1.81(s,3H),1.77(s,3H)。
化合物1C:
Figure GPA0000316018460000182
250mL三口瓶内,称入3-氟-4-甲基苯酚(10g,79.28mmol)、苄基三乙基氯化铵(1.77g,7.93mmol),加入80mL二氯甲烷搅拌溶解。在0-10℃条件下向上述反应液中缓慢滴加硝酸(14.7g,158.57mmol),滴加完毕后反应混合液继续搅拌约0.5小时,TLC检测反应完毕。随后缓慢加入120mL饱和碳酸氢钠水溶液,分液,有机相再依次用40mL H2O、40mL饱和氯化钠。
水溶液洗涤,有机相浓缩后柱层析分离(PE/EA=8/1)纯化得到化合物1C(8g,收率59.2%)。1H NMR(400MHz,CDCl3)δ=10.66(d,J=0.8Hz,1H),8.02(d,J=7.6Hz,1H),6.83(d,J=10.0Hz,1H),2.28(d,J=0.8Hz,3H)。
化合物1D:
Figure GPA0000316018460000183
100mL三口瓶内,称入化合物1C(2g,11.68mmol)、K2CO3(2.42g,17.54mmol)、碘甲烷(1.08mL,17.54mmol)、30mL DMF,室温搅拌过夜,TLC检测至反应完毕。随后向反应液中加入60mL水,析出大量类白色固体,继续搅拌约0.5小时后抽滤,滤饼用水洗涤,干燥得到化合物1D(1.59g,收率73.6%)。1H NMR(400MHz,CDCl3)δ=7.85(d,J=7.6Hz,1H),6.79(d,J=11.2Hz,1H),3.05(s,3H),2.27(d,J=1.6Hz,3H)。
化合物1E:
Figure GPA0000316018460000191
250mL三口瓶内,称入化合物1D(4.5g,24.3mmol)、K2CO3(6.71g,48.6mmol)、1-甲基-4-(4-哌啶基)哌嗪(6.67g,36.4mmol)、67.5mL DMF,升温至120℃搅拌反应约4小时至TLC检测反应完毕。随后冷却至室温,向反应液中加入130mL H2O,析出大量固体,继续搅拌约0.5小时后抽滤,滤饼用水洗涤,干燥得到化合物1E(4.82g,收率56.8%)。MS-ESI(m/z):349.2248(M+H)+
化合物1F:
Figure GPA0000316018460000192
250mL单口瓶内,称入化合物1E(4.5g,12.91mmol)、0.45g 5%Pd/C,90mL甲醇,氢气置换2-3次,在氢气氛围下(常压)室温搅拌过夜至TLC检测反应完毕,随后硅藻土过滤后,滤液真空浓缩,柱层析分离(DCM/MeOH=8/1)纯化得到化合物1F(4.02g,收率97.8%)。MS-ESI(m/z):319.2509(M+H)+1H NMR(400MHz,CDCl3)δ=6.57(d,J=4.2Hz,2H),3.83(s,3H),3.08(d,J=8.4Hz,2H),2.81-2.45(m,10H),2.32(s,4H),2.17(s,3H),2.01-1.87(m,2H),1.70-1.68(m,2H)。MS-ESI(m/z):319.2509(M+H)+
化合物1:
Figure GPA0000316018460000201
将化合物1B(500mg,1.51mmol),化合物1F(667mg,2.12mmol)、15%氯化氢的乙醇溶液(960mg,3.64mmol)、7.5mL乙二醇单甲醚加入到反应瓶中,随后于120℃条件下封管反应5-6h,TLC检测反应完毕后,将反应液冷却至室温,随后加入15mL饱和NaHCO3水溶液,析出大量固体,继续搅拌0.5小时后抽滤,滤饼用水洗涤,将滤饼用9mL EtOH/H2O=1/2混合溶剂打浆纯化后得化合物1(707mg,收率76.3%)。1H NMR(400MHz,CDCl3)δ=10.57(s,1H),8.45(dd,J=8.4,4.8Hz,1H),8.05(m,2H),7.33(m,2H),7.08(dd,J=14.4,1.2Hz,1H),6.62(s,1H),3.86(s,3H),3.15(d,J=11.6Hz,2H),2.81-2.59(m,6H),2.51(m,2H),2.37(s,3H),2.31(s,3H),2.18(s,3H),2.12(s,3H),1.96(m,2H),1.85(s,3H),1.82(s,3H),1.72(m,2H)。MS-ESI(m/z):612.3098(M+H)+
实施例2
化合物2B:
Figure GPA0000316018460000202
250mL三口瓶内,加入化合物1A(3.00g,16.38mmol)、5-溴-2,4-二氯嘧啶(5.6g,24.57mmol)、K2CO3(6.79g,49.14mmol)、nRu4NHSO4(0.56g,1.638mmol),60mLDMF,升温至65℃反应约4.5小时至TLC检测反应完毕。随后反应液冷却至室温,加入200mL H2O,析出大量黄色固体,继续搅拌约0.5h后抽滤,滤饼用100mL H2O洗涤,干燥得化合物2B(4.5g,收率73.4%)。1H NMR(400MHz,CDCl3)δ=11.19(s,1H),8.43(dd,J=8.4,4.8Hz,1H),8.32(s,1H),7.41(d,J=8.8Hz,1H),7.08(m,1H),2.38(s,3H),1.86(s,3H),1.83(s,3H)。MS-ESI(m/z):395.9642(M+Na)+
化合物2:
Figure GPA0000316018460000211
将化合物2B(375mg,1.00mmol),化合物1F(414mg,1.30mmol)、15%氯化氢的乙醇溶液(730mg,3.00mmol)、4.0mL乙二醇单甲醚加入到反应瓶中,随后于120℃条件下封管反应5-6h,TLC检测反应完毕后,将反应液冷却至室温,随后加入50mL 3%K2CO3水溶液及50mL二氯甲烷,搅拌10分钟后静置分液,上层水相继续用50mL二氯甲烷洗涤一次,合并两次的二氯甲烷相,随后二氯甲烷相用50mL饱和食盐水洗涤后,无水硫酸钠干燥,过滤,滤液浓缩,柱层析纯化后得化合物2(360mg,收率54.83%)。1H NMR(400MHz,CDCl3)δ=10.29(s,1H),8.32(dd,J=8.8,4.8Hz,1H),8.18(s,1H),8.01(s,1H),7.44-7.30(m,2H),7.11(d,J=14.0Hz,1H),6.61(s,1H),3.85(s,3H),3.15(d,J=11.6 Hz,2H),2.80-2.52(m,11H),2.38(s,3H),2.35(s,3H),2.14(s,3H),1.96(d,J=11.0Hz,2H),1.85(s,3H),1.82(s,3H),1.78-1.68(m,2H)。MS-ESI(m/z):656.2459(M+H)+
实施例3
化合物3B:
Figure GPA0000316018460000212
50mL三口瓶内,加入化合物1A(420mg,2.29mmol)、5-三氟甲基-2,4-二氯嘧啶(745mg,3.43mmol)、K2CO3(949mg,6.87mmol)、nBu4NHSO4(78mg,0.23mmol)、8.5mL DMF,升温至65℃反应约4.5小时至TLC检测反应完毕。反应冷却至室温,加入18.5mL H2O、析出大量黄色固体,继续搅拌约0.5h后抽滤,滤饼用20mLH2O洗涤,干燥得化合物3B(466mg,收率56.0%)。1H NMR(400MHz,CDCl3)δ=11.49(s,1H),8.58(s,1H),8.50-8.47(dd,J=8.4Hz,4.4Hz,1H),7.39(d,J=8.4Hz,1H),7.08-7.04(dd,J=14.4Hz,1.2Hz,1H),2.37(s,3H),1.87(s,3H),1.84(s,3H)。MS-ESI(m/z):364.0593(M+H)+;386.0413(M+Na)+
化合物3:
Figure GPA0000316018460000221
将化合物3B(181mg,0.50mmol),化合物1F(207mg,0.65mmol)、15%氯化氢的乙醇溶液(365mg,1.50mmol)、3.0mL乙二醇单甲醚加入到反应瓶中,随后于120℃条件下封管反应5-6h,TLC检测反应完毕后,将反应液冷却至室温,随后加入50mL 3%K2CO3水溶液及50mL二氯甲烷,搅拌10分钟后静置分液,上层水相继续用50mL二氯甲烷洗涤一次,合并两次的二氯甲烷相,随后二氯甲烷相用50mL饱和食盐水洗涤后,无水硫酸钠干燥,过滤,滤液浓缩,柱层析纯化后得化合物3(70mg,收率21.68%)。1H NMR(400MHz,CDCl3)δ=10.51(s,1H),8.30(s,2H),8.10(s,1H),7.50(s,1H),7.22(d,J=8.4Hz,1H),7.07(d,J=14.0 Hz,1H),6.64(s,1H),3.87(s,3H),3.19(d,J=10.4Hz,2H),3.08-2.12(m,20H),1.99(d,J=10.8Hz,2H),1.79(m,8H)。MS-ESI(m/z):646.3213(M+H)+
实施例4
化合物4B:
Figure GPA0000316018460000222
50mL单口瓶内加入DMF/DMSO(15ml/1.5ml)混合溶剂,置于冰浴下冷却,将NaH(0.66g,16.38mmol)分批次加入上述混合溶剂中,搅拌5-10min后,滴加实施例1中化合物1A(1.0g,5.46mmol)的DMF/DMSO(9ml/1ml)混合液,滴加完毕后保持低温搅拌30min,再滴加5-甲基-2,4-二氯嘧啶(1.33g,8.16mmol)的DMF/DMSO(9ml/1ml)混合液、滴毕后缓慢升至室温过夜反应。TLC检测反应完毕后,加入90mL H2O、加入25ml乙酸乙酯萃取,水相再用25ml乙酸乙酯萃取2次,合并有机相,随后用50mL水洗涤2次,饱和食盐水50ml洗涤2次,无水硫酸钠干燥,过滤,滤液浓缩,柱层析纯化后得化合物4B(1.2g,收率70.59%)。1H NMR(400 MHz,CDCl3)δ=10.85(s,1H),8.62(dd,J=8.8,4.8 Hz,1H),7.99(s,1H),7.39(d,J=8.8Hz,1H),7.03(m,1H),2.36(s,3H),2.24(s,3H),1.85(s,3H),1.82(s,3H)。MS-ESI(m/z):310.0874(M+H)+
化合物4:
Figure GPA0000316018460000231
将化合物4B(500mg,1.61mmol),化合物1F(461mg,1.45mmol)、15%氯化氢的乙醇溶液(1.18g,4.83mmol)、7.5mL乙二醇单甲醚加入到反应瓶中,随后于100℃条件下封管反应5h,TLC检测反应完毕后,将反应液冷却至室温,随后加入15mL饱和NaHCO3水溶液以及10ml水,加入10ml二氯甲烷搅拌萃取,水相再用二氯甲烷萃取2次,合并有机相,15ml水洗2次,15ml饱和氯化钠洗2次,无水硫酸钠干燥,过滤,减压浓缩得油状物,用EA/PE=3/2混合溶剂打浆纯化后得化合物4(120mg,收率14.0%)。1H NMR(400MHz,CDCl3)δ=10.17(s,1H),8.59(dd,J=8.4,4.8Hz,1H),8.14(s,1H),7.91(s,1H),7.32(d,J=8.8Hz,1H),7.26(s,1H),7.04(d,J=13.4Hz,1H),6.63(s,1H),3.86(s,3H),3.16(d,J=12.0 Hz,2H),2.67(m,9H),2.36(m,8H),2.20(d,J=6.4Hz,6H),1.97(m,2H),1.84(s,3H),1.81(s,3H),1.79-1.69(m,2H)。MS-ESI(m/z):592.3526(M+H)+
实施例5
化合物5E:
Figure GPA0000316018460000232
100mL单口瓶内,称入化合物1D(1.5g,8.10mmol)、K2CO3(2.24g,16.20mmol)、4-二甲氨基哌啶(1.56g,12.15mmol)、30mL DMF,升温至120℃搅拌反应约4小时至TLC检测反应完毕。随后反应液冷却至室温,加入60mL H2O,析出大量固体,继续搅拌约0.5小时后抽滤,滤饼用水洗涤,干燥得到化合物5E(1.46g,收率61.3%)。MS-ESI(m/z):294.1825(M+H)+
化合物5F:
Figure GPA0000316018460000241
250mL单口瓶内,称入化合物5E(1.4g,4.77mmol)、0.52g 5%Pd/C、28mL甲醇,氢气置换2-3次,在氢气氛围下(常压)室温搅拌过夜至TLC检测反应完毕,硅藻土过滤后,滤液真空浓缩,柱层析分离(DCM/MeOH=8/1)纯化得到化合物5F(918mg,收率73.0%)。MS-ESI(m/z):264.2065(M+H)+
化合物5:
Figure GPA0000316018460000242
将化合物1B(400mg,1.21mmol),化合物5F(383mg,1.45mmol)、15%氯化氢的乙醇溶液(884mg,3.63mmol)、6.0mL乙二醇单甲醚加入到反应瓶中,于120℃条件下封管反应5-6h至TLC检测反应完毕。随后反应液冷却至室温,加入15mL饱和NaHCO3水溶液和10mL H2O,析出大量固体,继续搅拌0.5小时后抽滤,滤饼用水洗涤,6mL PE/EA=5/1混合溶剂打浆纯化后得化合物5(410mg,收率61.5%)。1H NMR(400 MHz,CDCl3)δ=10.58(s,1H),8.45(dd,J=8.4,4.8Hz,1H),8.06(m,2H),7.33(m,2H),7.09(d,J=14.4Hz,1H),6.64(s,1H),3.86(s,3H),3.15(d,J=12.0Hz,2H),2.65(m,2H),2.37(m,9H),2.27(m,1H),2.19(s,3H),1.93(m,2H),1.85(s,3H),1.82(s,3H),1.70(m,2H)。MS-ESI(m/z):557.2571(M+H)+
实施例6
化合物6:
Figure GPA0000316018460000243
将化合物2B(400mg,1.07mmol),化合物5F(422mg,1.60mmol)、15%氯化氢的乙醇溶液(779mg,3.20mmol)、6.0mL乙二醇单甲醚加入到反应瓶中,于120℃条件下封管反应5-6h至TLC检测反应完毕。随后反应液冷却至室温,加入15mL饱和NaHCO3水溶液和10mL H2O,析出大量固体,继续搅拌0.5小时后抽滤,滤饼用水洗涤,干燥后柱层析分离(DCM/MeOH=8/1),纯化后再用5mL PE/EA=4/1混合溶剂打浆,得化合物6(276mg,收率43.0%)。1H NMR(400MHz,CDCl3)δ=10.30(s,1H),8.33(dd,J=8.4,4.4Hz,1H),8.18(s,1H),8.03(s,1H),7.43-7.30(m,2H),7.11(d,J=14.0Hz,1H),6.62(s,1H),3.86(s,3H),3.16(d,J=11.8Hz,2H),2.65(m,2H),2.40(m,10H),2.14(s,3H),2.03-1.94(m,2H),1.85(s,3H),1.82(s,3H),1.73(m,2H)。MS-ESI(m/z):601.2015(M+H)+
实施例7
化合物7:
Figure GPA0000316018460000251
参考化合物5的合成方法,仅仅是将其中的化合物1B替换为化合物3B,得到化合物7。MS-ESI(m/z)591.2856(M+H)+1H NMR(400MHz,CDCl3)δ=10.55(s,1H),8.36(s,2H),8.12(s,1H),7.52(s,1H),7.25(d,J=8.4Hz,1H),7.10(d,J=14.0Hz,1H),6.65(s,1H),3.82(s,3H),3.13(d,J=12.0Hz,2H),2.65(m,2H),2.38(m,10H),2.17(s,3H),1.95(m,2H),1.86(s,3H),1.83(s,3H),1.71(m,2H)。
实施例8
化合物8:
Figure GPA0000316018460000252
参考化合物5的合成方法,仅仅是将其中的化合物1B替换为化合物4B,得到化合物8。MS-ESI(m/z):537.3169(M+H)+1H NMR(400MHz,CDCl3)δ=10.25(s,1H),8.45(dd,J=8.4,4.8Hz,1H),8.12(s,1H),7.89(s,1H),7.35(m,2H),7.04(d,J=14.0Hz,1H),6.60(s,1H),3.83(s,3H),3.15(d,J=12.0Hz,2H),2.68(m,2H),2.40(m,10H),2.18(m,6H),1.93(m,2H),1.85(s,3H),1.82(s,3H),1.74(m,2H)。
实施例9
化合物9A:
Figure GPA0000316018460000261
100mL单口瓶内,加入2-碘-5-甲基苯胺(2.0g,8.58mmol)、K3PO4(2.91g,13.73mmol)、Xantphos(0.546g,0.944mmol)、Pd(OAc)2(0.212g,0.944mmol)、二甲基氧磷(1.34g,17.16mmol)、36mL DMF以及4.8ml水,氮气置换3-4次,置于120℃反应约4h-5h,TLC检测反应完毕。随后反应液冷却至室温,过滤,向滤液中加入72mL H2O,析出大量固体,过滤,滤液用50mL×3二氯甲烷萃取,合并有机相,有机相用50mL×2饱和氯化钠水溶液洗涤,无水硫酸钠干燥,过滤,滤液浓缩得化合物9A(1.0g,收率64.0%)。1H NMR(400MHz,CDCl3)δ=6.96(dd,J=13.6,8.0Hz,1H),6.52(d,J=8.0Hz,1H),6.47(d,J=4.0Hz,1H),5.29(s,2H),2.26(s,3H),1.76(s,3H),1.73(s,3H)。
化合物9B:
Figure GPA0000316018460000262
50mL三口瓶内,加入化合物9A(500mg,2.73mmol)、5-溴-2,4-二氯嘧啶(808mg,3.55mmol)、K2CO3(1.5g,10.92mmol)、nBu4NHSO4(92.69mg,0.273mmol)、10mLDMF,升温至65℃反应约4.5小时至TLC检测反应完毕。随后反应液冷却至室温,加入50mL H2O,用20mL乙酸乙酯萃取,水相再用10ml乙酸乙酯萃取2次,合并有机相,有机相依次用20ml水洗2次,饱和氯化钠溶液20ml洗2次,无水硫酸钠干燥,过滤,滤液减压浓缩得化合物9B(466mg,收率45.7%)。
化合物9:
Figure GPA0000316018460000263
将化合物9B(500mg,1.33mmol),化合物1F(383mg,1.2mmol)、15%氯化氢的乙醇溶液(974mg,4.0mmol)、7.5mL乙二醇单甲醚加入到反应瓶中,于100℃条件下封管反应5h至TLC检测反应完毕。随后反应液冷却至室温,加入15mL饱和NaHCO3水溶液和10mL H2O,析出大量固体,继续搅拌0.5小时后抽滤,滤饼用水洗涤,随后用5mL PE/EA=2/3混合溶剂打浆纯化后得化合物9(340mg,收率43.15%)。1H NMR(400MHz,CDCl3)δ=10.38(s,1H),8.25(d,J=4.0Hz,1H),8.20(s,1H),7.99(s,1H),7.32(s,1H),7.21(dd,J=14.0,8.0Hz,1H),6.95(d,J=7.8Hz,1H),6.62(s,1H),3.86(s,3H),3.13(d,J=12.0Hz,2H),2.81-2.42(m,9H),2.34(s,3H),2.30(s,3H),2.07(s,3H),1.95(d,J=12.0Hz,2H),1.86(m,2H),1.84(s,3H),1.81(s,3H),1.77-1.66(m,2H)。MS-ESI(m/z):656.2456(M+H)+
实施例10
化合物10A:
Figure GPA0000316018460000271
250mL三口瓶内,加入2-碘-3-甲基苯胺(1.0g,4.29mmol)、K3PO4(1.09g,5.15mmol)、Xantphos(0.25g,0.429mmol)、Pd(OAc)2(0.096g,0.429mmol)、二甲基氧磷(0.5g,6.44mmol),10mL DMF,升温至120℃反应,TLC检测反应完毕。随后反应液冷却至室温,抽滤,滤液加入30mL H2O,用30mL×3二氯甲烷萃取,合并有机相,有机相用50mL饱和氯化钠水溶液洗涤1次,无水硫酸钠干燥,过滤,滤液浓缩得到化合物10A(440.0mg,收率56.0%)。MS-ESI(m/z):184.0921(M+H)+
化合物10B:
Figure GPA0000316018460000272
250mL三口瓶内,加入化合物10A(3.93g,21.45mmol)、5-溴-2,4-二氯嘧啶(7.33g,32.2mmol)、K2CO3(8.89g,64.35mmol)、nBu4NHSO4(0.73g,2.15mmol),20mLDMF,升温至65℃反应,TLC检测反应完毕。反应冷却至室温,加入50mL H2O,析出黄色固体,继续搅拌约0.5h后抽滤,滤饼用100mL H2O洗涤,干燥后得化合物10B(3.88g,两步总收率48.5%)。MS-ESI(m/z):373.9770(M+H)+
化合物10:
Figure GPA0000316018460000273
向反应瓶内加入化合物1F(500mg,1.57mmol),化合物10B(588.12mg,1.57mmol)、15%氯化氢的乙醇溶液(917mg,3.77mmol)、7.5mL乙二醇单甲醚、120℃条件下封管反应,TLC检测反应完毕。随后反应液冷却至室温后,加入50mL 3%K2CO3水溶液及30mL二氯甲烷搅拌10分钟后,合并有机相,无水硫酸钠干燥,过滤,滤液浓缩后柱层析分离纯化得化合物10(551mg,收率53.5%)。MS-ESI(m/z):656.2486(M+H)+
实施例11
化合物11A:
Figure GPA0000316018460000281
100mL三口瓶内,加入2-碘-4-氟苯胺(5.0g,21.1mmol)、K3PO4(5.37g,25.32mmol)、Xantphos(1.22g,2.11mmol)、Pd(OAc)2(0.474g,2.11mmol)、二甲基氧磷(2.47g,31.65mmol)、50mL DMF,升温至120℃反应约4h至TLC检测反应完毕。随后反应液冷却至室温,抽滤,滤液加入100mL H2O,析出大量黄色固体,抽滤,滤液用50mL×4二氯甲烷萃取,合并有机相,有机相用100mL×2饱和氯化钠水溶液洗涤,无水硫酸钠干燥,过滤,滤液浓缩得油状化合物11A,随后加入4ml乙酸乙酯以及8ml石油醚,析出固体11A(1.2g,收率30%)。1HNMR(400 MHz,CDCl3)δ=6.98(m,1H),6.78(m,1H),6.61(m,1H),5.23(s,2H),1.79(s,3H),1.75(s,3H)。MS-ESI(m/z):188.0639(M+H)+
化合物11B:
Figure GPA0000316018460000282
50mL三口瓶内,加入化合物11A(500mg,2.67mmol)、5-溴-2,4-二氯嘧啶(790.94mg,3.47mmol)、K2CO3(1.11g,8.01mmol)、nBu4NHSO4(0.09g,0.267mmol)、10mL DMF,升温至65℃反应,TLC检测反应完毕。随后反应液冷却至室温,加入50mL H2O,用20mL乙酸乙酯萃取,水相再用10ml乙酸乙酯萃取2次,合并有机相,有机相依次用水洗2次,饱和氯化钠溶液洗2次,无水硫酸钠干燥,过滤,滤液减压浓缩得化合物11B(700mg,收率69.3%)。
化合物11:
Figure GPA0000316018460000283
将化合物11B(300mg,0.79mmol),化合物1F(303mg,0.95mmol)、15%氯化氢的乙醇溶液(578mg,2.38mmol)、4.5mL乙二醇单甲醚加入到反应瓶中,于120℃条件下封管反应5-6h至TLC检测反应完毕。随后反应液冷却至室温,加入4.5mL饱和NaHCO3水溶液和13.5mLH2O,析出大量固体,继续搅拌0.5小时后抽滤,滤饼用水洗涤,干燥后柱层析分离(DCM/MeOH=15/1至10/1)纯化,再用6mL PE/EA=5/1混合溶剂打浆,得化合物11(90mg,收率17.2%)。1H NMR(400MHz,CDCl3)δ=10.25(s,1H),8.46(m,1H),8.20(s,1H),7.95(s,1H),7.34(s,1H),7.21(m,1H),7.10-6.92(m,1H),6.62(s,1H),3.86(s,3H),3.16(d,J=11.2Hz,2H),2.84-2.47(m,9H),2.37(m,5H),2.16(s,3H),1.97(d,J=11.4Hz,2H),1.87(s,3H),1.84(s,3H),1.79-1.67(m,2H)。MS-ESI(m/z):660.2227(M+H)+
实施例12
化合物12B:
Figure GPA0000316018460000291
250mL三口瓶内,加入1-溴-2-氟-4-甲氧基-5-硝基苯(2.0g,8.0mmol)、Pd(dppf)Cl2(0.59g,0.8mmol)、三苯基膦(0.63g,2.4mmol)、溴化亚铜(0.34g,2.4mmol)、三乙基乙烯基锡(3.8g,12.0mmol)、80mL甲苯,氮气保护下升温至110℃反应约4h至TLC检测反应完毕。随后反应液冷却至室温,加入80mL饱和氟化钾水溶液猝灭反应,加入80mL×3乙酸乙酯萃取,合并有机相,80mL饱和氯化钠水溶液洗涤后无水硫酸钠干燥、过滤、浓缩后硅胶柱层析分离纯化(石油醚/乙酸乙酯=10/1)得到产品12B(1.41g,收率89.2%)。1H NMR(400MHz,DMSO-d6)δ=8.24(d,J=7.9Hz,1H),7.33(d,J=12.6Hz,1H),6.75(dd,J=17.7,11.3Hz,1H),5.95(d,J=17.7Hz,1H),5.44(d,J=11.3Hz,1H),3.94(s,3H)。
化合物12C:
Figure GPA0000316018460000292
50mL圆底烧瓶中加入12B(1.20g,6.09mmol)、1-甲基-4-(4-哌啶基)哌嗪(1.34g,7.30mmol)、碳酸钾(1.69g,12.17mmol)、6mL DMF,升温至120℃反应4h,TLC检测反应完毕后,反应液冷却至室温,加入20mL水,析出大量黄色固体,继续搅拌1小时后抽滤,滤饼用水洗涤,干燥后得到化合物12C(1.87g,收率85.3%)。
化合物12A:
Figure GPA0000316018460000301
150mL单口瓶内,称入化合物12C(1.8g,5.0mmol)、0.36g 5%Pd/C,36mL甲醇,氢气置换2-3次,在氢气氛围下(常压)室温搅拌过夜至TLC检测反应完毕,随后硅藻土过滤后,滤液真空浓缩,柱层析分离(DCM/MeOH=20/1)纯化得到化合物12A(780mg,收率47.0%)。1HNMR(400MHz,CDCl3)δ=6.62(s,1H),6.58(s,1H),3.82(s,3H),3.04-2.99(m,2H),2.78-2.42(m,12H),2.31(s,4H),1.97-1.85(m,2H),1.69-1.64(m 2H),1.16(t,J=7.5Hz,3H)。
化合物12:
Figure GPA0000316018460000302
将化合物2B(565mg,1.51mmol),化合物12A(705mg,2.12mmol)、15%氯化氢的乙醇溶液(960mg,3.64mmol)、7.5mL乙二醇单甲醚加入到反应瓶中,随后于120℃条件下封管反应5-6h,TLC检测反应完毕后,将反应液冷却至室温,随后加入15mL饱和NaHCO3水溶液,析出大量固体,继续搅拌0.5小时后抽滤,滤饼用水洗涤,打浆纯化后得化合物12(673mg,收率66.5%)。MS-ESI(m/z):670.2642(M+H)+1H NMR(400MHz,CDCl3)δ=10.23(s,1H),8.25(dd,J=8.4,4.8 Hz,1H),8.19(s,1H),8.06(s,1H),7.44-7.29(m,2H),7.11(d,J=14.0Hz,1H),6.66(s,1H),3.85(s,3H),3.08(d,J=11.6Hz,2H),2.93-2.21(m,19H),1.95(d,J=12.0Hz,2H),1.82(d,J=13.2Hz,6H),1.78-1.66(m,2H),1.00(t,J=7.6Hz,3H)。
实施例13
化合物13A:
Figure GPA0000316018460000311
参考化合物12A的合成方法,仅仅是将其中的化合物三乙基乙烯基锡替换为化合物2-(三丁基锡烷基)丙烯,得到化合物13A。
化合物13:
Figure GPA0000316018460000312
将化合物2B(565mg,1.51mmol),化合物13A(735mg,2.12mmol)、15%氯化氢的乙醇溶液(960mg,3.64mmol)、7.5mL乙二醇单甲醚加入到反应瓶中,随后于120℃条件下封管反应5-6h,TLC检测反应完毕后,将反应液冷却至室温,随后加入15mL饱和NaHCO3水溶液,析出大量固体,继续搅拌0.5小时后抽滤,滤饼用水洗涤,打浆纯化后得化合物13(622mg,收率60.2%)。MS-ESI(m/z):684.2756(M+H)+
实施例14
化合物14A:
Figure GPA0000316018460000313
100mL圆底烧瓶中加入1-氯-2-氟-4-甲氧基-5-硝基苯(500mg,2.43mmol)、1-甲基-4-(4-哌啶基)哌嗪(490mg,2.68mmol)、碳酸钾(507mg,3.65mmol)、10mL DMF,升温至80℃反应2.5h,TLC检测反应完毕后,反应液冷却至室温,加入30mL水,析出大量黄色固体,继续搅拌1小时后抽滤,滤饼用水洗涤,干燥后得到化合物14A(740mg,收率82.5%)。
化合物14B:
Figure GPA0000316018460000321
250mL圆底烧瓶中加入化合物14A(740mg,2.01mmol)、还原铁粉(672mg,12.04mmol)、氯化铵(75mg,1.40mmol)、67mL乙醇/水=3/1混合溶液,升温至回流反应6.5小时左右,至TLC检测反应完毕。反应液冷却至室温,用2mol/L氢氧化钠水溶液调节反应液pH至8左右,浓缩至干后加入110mL二氯甲烷/甲醇=10/1混合溶液室温搅拌约0.5小时后,抽滤,滤液浓缩后柱层析分离(二氯甲烷/甲醇=8/1)得到化合物14B(647mg,收率95.2%)。MS-ESI(m/z):339.1928(M+H)+
化合物14:
Figure GPA0000316018460000322
将化合物2B(253mg,0.67mmol)、化合物14B(243mg,1.01mmol)、15%氯化氢的乙醇溶液(493mg,2.02mmol)、4mL乙二醇单甲醚加入到反应瓶中,于120℃条件下封管反应5-6h至TLC检测反应完毕。随后反应液冷却至室温,加入4mL饱和NaHCO3水溶液和12mL H2O,析出大量固体,继续搅拌0.5小时后抽滤,滤饼用水洗涤,干燥后柱层析分离(DCM/MeOH=15/1至10/1)纯化,再用6mL PE/EA=5/1混合溶剂打浆,得化合物14(120mg,收率26.3%)。1H NMR(400MHz,CDCl3)δ=10.38(s,1H),8.39-8.24(m,2H),8.19(s,1H),7.47(d,J=8.8 Hz,1H),7.41(s,1H),7.10(d,J=14.4Hz,1H),6.61(s,1H),3.88(s,3H),3.40(d,J=11.2Hz,2H),2.83-2.46(m,9H),2.38(s,3H),2.33(s,3H),2.16(s,2H),1.95(d,J=11.4Hz,2H),1.81(m,8H)。MS-ESI(m/z):676.1902(M+H)+
实施例15
化合物15A:
Figure GPA0000316018460000331
向250mL单口瓶内加入2-氯-4-氟-5-硝基甲苯(10.0g,52.4mmol)、碳酸铯(83.2g,262mmol)、异丙醇100mL,置于60℃反应4h,TLC检测原料消失。随后反应液冷却至室温,加入100mL乙酸乙酯,搅拌10min后过滤,滤饼再用乙酸乙酯50ml洗涤,减压浓缩至干,残留物加入100ml水以及150ml乙酸乙酯,静置分层,水相用100ml乙酸乙酯萃取1次,合并乙酸乙酯相,随后乙酸乙酯相依次用100mL×2水,100mL×2饱和氯化钠水溶液洗涤,无水硫酸钠干燥,过滤,滤液浓缩得化合物15A(11.45g,收率95.4%)。
化合物15B:
Figure GPA0000316018460000332
向250mL单口瓶内加入化合物15A(9.0g,39.2mmol)、N-Boc-1,2,5,6-四氢吡啶-4-硼酸频哪醇酯(13.33g,43.12mmol)、K2CO3(16.25g,117.6mmol),DME82ml,水8ml。氮气置换3次,然后加入Pd(dppf)Cl2(2.86g,3.92mmol),再用氮气置换3次,随后于120℃反应5h,TLC检测原料消失。反应液冷却至室温,过滤,滤饼用乙酸乙酯50ml洗涤,滤液减压浓缩至干,残留物柱层析纯化(PE∶EA=20∶1-10∶1),得到淡黄色油状物化合物15B(8.8g,收率60.0%)。1H NMR(400MHz,CDCl3)δ=7.62(s,1H),6.79(s,1H),5.62(s,1H),4.63(m,1H),4.06(d,J=2.0Hz,2H),3.64(t,J=5.6Hz,2H),2.33(s,2H),2.24(s,3H),1.51(s,9H),1.37(d,J=6.0Hz,6H)。MS-ESI(m/z):399.1882(M+Na)+
化合物15C:
Figure GPA0000316018460000333
向150mL单口瓶内加入化合物15B(8.8g,23.4mmol)、乙酸乙酯20ml搅拌溶解,然后加入氯化氢乙酸乙酯溶液(15%)25ml,室温搅拌过夜。TLC检测原料消失。向反应液中加入100ml水,搅拌10min,静置分层,乙酸乙酯层再用40ml水洗,合并水相,然后用饱和碳酸氢钠溶液调节pH=8,加入100ml乙酸乙酯萃取,水相再用50ml乙酸乙酯萃取2次,合并乙酸乙酯相,随后乙酸乙酯相再用饱和氯化钠溶液洗涤2次,无水硫酸钠干燥,过滤滤液浓缩得化合物15C(4.2g,收率65.01%)。1H NMR(400MHz,CDCl3)δ=7.63(s,1H),6.84(s,1H),5.68(s,1H),4.64(m,1H),3.89(d,J=2.4 Hz,2H),3.48(t,J=6.0Hz,2H),2.71(m,2H),2.29(s,3H),1.38(d,J=6.0Hz,6H)。MS-ESI(m/z):277.1547(M+H)+
化合物15D:
Figure GPA0000316018460000341
150mL单口瓶内加入化合物15C(1.60g,5.79mmol)、64ml二氯甲烷溶解,然后加入四氢-4H-吡喃-4-酮(1.65g,17.37mmol),乙酸(1.32g,23.16mmol),三乙酰氧基硼氢化钠(4.66g,23.16mmol),室温下搅拌过夜。TLC检测原料消失。随后向反应液中加入120ml水,搅拌10min,静置分层,水相再用二氯甲烷20ml萃取,合并两次二氯甲烷相,然后二氯甲烷相依次用40ml水,40ml饱和氯化钠溶液洗涤,无水硫酸钠干燥,过滤,滤液浓缩得油状化合物15D(2.00g,收率95.80%)。
化合物15E:
Figure GPA0000316018460000342
50mL单口瓶内加入化合物15D(0.99g,2.77mmol)、20ml乙醇溶解,然后加入氯化氢溶液2.5ml(2N),铁粉(0.994g,17.76mmol),置于60℃下反应3h。TLC检测原料消失。反应结束后将反应液冷却至室温,过滤,滤液减压浓缩后柱层析纯化得到油状物15E(779mg,收率85.0%)。MS-ESI(m/z):331.2381(M+H)+
化合物15:
Figure GPA0000316018460000343
将化合物2B(315mg,0.84mmol)、化合物15E(417mg,1.26mmol)、15%氯化氢的乙醇溶液(613mg,2.52mmol)、5.0mL乙二醇单甲醚加入到反应瓶中,随后于120℃条件下封管反应5-6h,TLC检测反应完毕后,将反应液冷却至室温,随后加入50mL 3%K2CO3水溶液及50mL二氯甲烷,搅拌10分钟后静置分液,上层水相继续用50mL二氯甲烷洗涤一次,合并两次的二氯甲烷相,随后二氯甲烷相用50mL饱和食盐水洗涤后,无水硫酸钠干燥,过滤,滤液浓缩,柱层析纯化后得化合物15(310mg,收率55.20%)。MS-ESI(m/z):668.2334(M+H)+
实施例16
化合物16D:
Figure GPA0000316018460000351
参照化合物15D的合成方法,250mL单口瓶内加入化合物15C(4.20g,15.20mmol)、160ml二氯甲烷溶解,然后加入N-甲基-4-哌啶酮(5.16g,45.60mmol),乙酸(3.66g,60.80mmol),三乙酰氧基硼氢化钠(12.88g,60.80mmol),室温下搅拌过夜。TLC检测原料消失。随后向反应液中加入60ml水,搅拌10min,静置分层,水相再用60ml二氯甲烷萃取,合并两次二氯甲烷相,然后二氯甲烷相依次用40ml水,40ml饱和氯化钠溶液洗涤,无水硫酸钠干燥,过滤,滤液浓缩得油状化合物16D(4.51g,收率79.4%)。MS-ESI(m/z):374.2443(M+H)+
化合物16E:
Figure GPA0000316018460000352
参照化合物15E的合成方法,向50mL单口瓶内加入化合物16D(1.0g,2.68mmol)、20ml乙醇溶解,然后加入氯化氢溶液2.5ml(2N),铁粉(0.960g,17.15mmol),置于60℃下反应3h。TLC检测原料消失。反应结束后将反应液冷却至室温,过滤,滤液减压浓缩后柱层析纯化得到油状物16E(736mg,收率80.0%)。
化合物16:
Figure GPA0000316018460000361
将化合物2B(400mg,1.07mmol)、化合物16E(333mg,0.97mmol)、15%氯化氢的乙醇溶液(708mg,2.91mmol)、6mL乙二醇单甲醚加入到反应瓶中,于120℃条件下封管反应5-6h至TLC检测反应完毕。随后反应液冷却至室温,加入6mL饱和NaHCO3水溶液和6mL H2O,用30mL×3二氯甲烷萃取,合并有机相后用30mL饱和氯化钠水溶液洗涤,无水硫酸钠干燥,过滤,浓缩后柱层析分离(DCM/MeOH=10/1)纯化,得化合物16(120mg,收率16.5%)。MS-ESI(m/z):681.2644(M+H)+
实施例17
化合物17A:
Figure GPA0000316018460000362
100mL单口瓶内,加入化合物15D(1.80g,5.00mmol)、0.27g 5%Pd/C、30mL甲醇,氢气置换2-3次,在氢气氛围下室温搅拌过夜至TLC检测反应完毕,随后硅藻土过滤后,滤液真空浓缩,柱层析分离纯化得到化合物17A(1.51g,收率90.8%)。MS-ESI(m/z):333.2572(M+H)+
化合物17:
Figure GPA0000316018460000363
将化合物2B(566mg,1.51mmol)、化合物17A(706mg,2.12mmol)、15%氯化氢的乙醇溶液(960mg,3.64mmol),4.5mL乙二醇单甲醚加入到反应瓶中,随后于120℃条件下封管反应5-6h,TLC检测反应完毕后,将反应液冷却至室温,随后加入15mL饱和NaHCO3水溶液,析出固体,继续搅拌0.5小时后抽滤,滤饼用水洗涤,将滤饼用20mL EA/PET=1/5混合溶剂打浆纯化后得化合物17(558mg,收率55.2%)。MS-ESI(m/z):670.2554(M+H)+
实施例18
化合物18A:
Figure GPA0000316018460000371
100mL单口瓶内,加入化合物16D(1.60g,4.28mmol)、1.0g 5%Pd/C、10mL甲醇、氢气置换2-3次,在氢气氛围下室温搅拌48h,TLC检测反应完毕,随后硅藻土过滤后,滤液真空浓缩,柱层析分离纯化得到化合物18A(1.3g,收率87.8%)。
化合物18:
Figure GPA0000316018460000372
将化合物2B(570mg,1.52mmol)、化合物18A(500mg,1.45mmol)、15%氯化氢的乙醇溶液(1.06g,4.35mmol)、7.5mL乙二醇单甲醚加入到反应瓶中,随后于120℃条件下封管反应4h,TLC检测反应完毕后,将反应液冷却至室温,随后加入15mL饱和NaHCO3水溶液,析出固体,继续搅拌0.5小时后抽滤,滤饼用甲醇溶解,减压浓缩,得到油状物,加入3ml乙酸乙酯溶解后,滴加2ml石油醚打浆纯化后得化合物18(241mg,收率23.21%)。1H NMR(400MHz,CDCl3)δ=10.30(s,1H),8.35(dd,J=8.4,4.4Hz,1H),8.19(s,1H),8.05(s,1H),7.51(s,1H),7.33(d,J=8.4Hz,1H),7.12(d,J=14.0Hz,1H),6.82(s,1H),4.52(m,1H),3.06(d,J=11.2Hz,2H),2.96(d,J=11.2Hz,2H),2.71-2.60(m,1H),2.38(s,3H),2.34(m,2H),2.29(s,3H),2.16(s,3H),2.01-1.91(m,4H),1.84(m,8H),1.72(m,5H),1.37(s,3H),1.35(s,3H)。MS-ESI(m/z):683.2800(M+H)+
实施例19
化合物19B:
Figure GPA0000316018460000381
250mL单口瓶内加入化合物2-硝基-4-甲基-5-溴苯甲醚(9.65g,39.2mmol),N-Boc-1,2,5,6-四氢吡啶-4-硼酸频哪醇酯(13.33g,43.12mmol)、K2CO3(16.25g,117.6mmol)、DME82ml、水8ml。氮气置换3次,然后加入Pd(dppf)Cl2(2.86g,3.92mmol),再用氮气置换3次,随后于120℃反应5h,TLC检测原料消失。反应液冷却至室温,过滤,滤饼用乙酸乙酯50ml洗涤,滤液减压浓缩至干,残留物柱层析纯化,得到淡黄色油状物化合物19B(7.65g,收率56.0%)。MS-ESI(m/z):349.1801(M+H)+
化合物19C:
Figure GPA0000316018460000382
参考化合物15C的合成方法,仅仅是将其中的化合物15B替换为化合物19B,得到化合物19C。
化合物19D:
Figure GPA0000316018460000383
参考化合物15D的合成方法,仅仅是将其中的化合物15C替换为化合物19C,得到化合物19D。MS-ESI(m/z):333.1875(M+H)+
化合物19E:
Figure GPA0000316018460000391
参考化合物17A的合成方法,仅仅是将其中的化合物15D替换为化合物19D,得到化合物19E。MS-ESI(m/z):305.2285(M+H)+
化合物19:
Figure GPA0000316018460000392
参考化合物17的合成方法,仅仅是将其中的化合物17A替换为化合物19E,得到化合物19。MS-ESI(m/z):642.2173(M+H)+
实施例20
化合物20D:
Figure GPA0000316018460000393
参考化合物16D的合成方法,仅仅是将其中的化合物15C替换为化合物19C,得到化合物20D。
化合物20E:
Figure GPA0000316018460000401
参考化合物17A的合成方法,仅仅是将其中的化合物15D替换为化合物20D,得到化合物20E。MS-ESI(m/z):318.2512(M+H)+
化合物20:
Figure GPA0000316018460000402
参考化合物17的合成方法,仅仅是将其中的化合物17A替换为化合物20E,得到化合物20。MS-ESI(m/z):655.2553(M+H)+
实施例21
化合物21A:
Figure GPA0000316018460000403
250mL单口瓶内加入化合物15C(4.20g,15.20mmol)、160ml二氯甲烷溶解,然后加入多聚甲醛(1.37g,45.60mmol)、乙酸(3.66g,60.80mmol)、三乙酰氧基硼氢化钠(12.88g,60.80mmol),室温下搅拌过夜。TLC检测原料消失。随后向反应液中加入60ml水,搅拌10min,静置分层,水相再用60ml二氯甲烷萃取,合并两次二氯甲烷相,然后二氯甲烷相依次用40ml水,40ml饱和氯化钠溶液洗涤,无水硫酸钠干燥,过滤,滤液浓缩得油状化合物21A(3.58g,收率81.2%)。
化合物21B:
Figure GPA0000316018460000411
参考化合物17A的合成方法,仅仅是将其中的化合物15D替换为化合物21A,得到化合物21B。MS-ESI(m/z):263.2182(M+H)+
化合物21:
Figure GPA0000316018460000412
参考化合物17的合成方法,仅仅是将其中的化合物17A替换为化合物21B,得到化合物21。MS-ESI(m/z):600.2165(M+H)+
实施例22
化合物22A:
Figure GPA0000316018460000413
100mL单口瓶内,加入化合物15C(1.38g,5.00mmol)、0.21g 5%Pd/C、30mL甲醇,氢气置换2-3次,在氢气氛围下室温搅拌过夜至TLC检测反应完毕,随后硅藻土过滤后,滤液真空浓缩,柱层析分离纯化得到化合物22A(1.07g,收率85.8%)。MS-ESI(m/z):249.1987(M+H)+
化合物22:
Figure GPA0000316018460000414
参考化合物17的合成方法,仅仅是将其中的化合物17A替换为化合物22A,得到化合物22。MS-ESI(m/z):586.1975(M+H)+
实施例23
化合物23A:
Figure GPA0000316018460000421
100mL三口瓶内,加入化合物5-氟-4-甲基-2-硝基苯酚(2.57g,15.00mmol)、60%氢化钠(2.40g,60.00mmol)、30mL DMF,在0℃条件下搅拌30分钟后,分批加入2-碘-1,1,1-三氟乙烷(4.73,22.50mmol),随后恢复至室温搅拌过夜,TLC检测至反应完毕。随后向反应液中加入60mL水及100mL乙酸乙酯,搅拌10分钟后,静置分液,水相继续用50mL乙酸乙酯洗涤一次,合并两次的乙酸乙酯相,随后将有机相用饱和食盐水洗涤一次后,无水硫酸钠干燥,过滤,滤液浓缩,柱层析后到化合物23A(2.68g,收率70.5%)。
化合物23B:
Figure GPA0000316018460000422
250mL三口瓶内,加入化合物23A(2.53g,10.00mmol)、K2CO3(4.14g,30.00mmol)、1-甲基-4-(4-哌啶基)哌嗪(2.75g,15.00mmol)、30mL DMF,升温至120℃搅拌反应约4小时至TLC检测反应完毕。随后反应液冷却至室温,加入60mL水及100mL乙酸乙酯,搅拌10分钟后,静置分液,水相继续用50mL乙酸乙酯洗涤一次,合并两次的乙酸乙酯相,随后将有机相用饱和食盐水洗涤一次后,无水硫酸钠干燥,过滤,滤液浓缩,柱层析后到化合物23B(2.47g,收率59.2%)。MS-ESI(m/z):417.2175(M+H)+
化合物23C:
Figure GPA0000316018460000423
100mL单口瓶内,加入化合物23B(2.47g,5.92mmol)、0.25g 5%Pd/C、30mL甲醇,氢气置换2-3次,在氢气氛围下室温搅拌过夜至TLC检测反应完毕,随后硅藻土过滤后,滤液真空浓缩,柱层析分离纯化得到化合物23C(1.93g,收率84.5%)。
化合物23:
Figure GPA0000316018460000431
参考化合物17的合成方法,仅仅是将其中的化合物17A替换为化合物23C,得到化合物23。MS-ESI(m/z):724.2315(M+H)+1H NMR(400MHz,CDCl3)δ=10.56(s,1H),842(dd,J=8.8,4.8Hz,1H),8.23(s,1H),8.10(s,1H),7.42(m,2H),7.16(d,J=14.4Hz,1H),6.82(s,1H),4.85(m,2H),310(d,J=11.6Hz,2H),2.80-2.48(m,11H),2.36(s,3H),2.32(s,3H),2.15(s,3H),2.05(d,J=11.0Hz,2H),1.88(s,3H),1.84(s,3H),1.78-1.64(m,2H)。
实施例24
化合物24D:
Figure GPA0000316018460000432
于50mL单口瓶内,加入化合物1C(2.00g,11.69mmol)、碳酸铯(5.74g,17.52mmol)、14mL DMF,0.34mL H2O,室温搅拌均匀后,分批加入二氟氯乙酸钠(3.56g,23.38mmol),加入完毕后升温至100℃搅拌反应约2小时至TLC检测反应完毕。随后将反应液冷却至室温,加入56mL H2O,用28mL×2石油醚萃取,合并有机相,再用20mL饱和食盐水洗涤,无水硫酸钠干燥,过滤,滤液浓缩得化合物24D(1.49g,收率57.64%)。
化合物24E:
Figure GPA0000316018460000433
于50mL单口瓶内,加入化合物24D(1.21g,5.45mmol),加入22.35mL DMF搅拌溶解,随后加入K2CO3(1.51g,10.91mmol)、1-甲基-4(4-哌啶基)-哌嗪(1.30g,7.09mmol),升温至120℃反应约2h至TLC检测反应完毕。随后反应液冷却至室温,加入40mL水,并用120mL×2EA萃取,合并有机相,有机相依次用30mL×3H2O,30mL饱和氯化钠水溶液洗涤,无水硫酸钠干燥,过滤,滤液浓缩得化合物24E(1.91g,收率91.3%)。
化合物24F:
Figure GPA0000316018460000441
于100mL单口瓶内,加入化合物24E(1.91g,4.97mmol)、0.24g 5%Pd/C、48mL甲醇、氢气置换2-3次,在氢气氛围下(常压)室温搅拌过夜至TLC检测反应完毕,硅藻土过滤后,滤液真空浓缩,柱层析分离纯化得到化合物24F(1.68g,收率95.5%)。MS-ESI(m/z):355.2302(M+H)+
化合物24:
Figure GPA0000316018460000442
参考化合物2的合成方法,仅仅是将其中的化合物1F替换为化合物24F,得到化合物24。MS-ESI(m/z):692.2234(M+H)+1H NMR(400MHz,CDCl3)δ=10.50(s,1H),8.42(m,1H),8.18(s,1H),8.06(s,1H),7.50-7.36(m,2H),7.12(d,J=14.0Hz,1H),6.80(s,1H),6.66(s,0.25H),6.52(s,0.5H),6.40(s,0.25H),3.16(d,J=11.6Hz,2H),2.82-2.42(m,11H),2.36(s,3H),2.34(s,3H),2.16(s,3H),1.96(d,J=11.0Hz,2H),2.12(s,3H),1.96(s,3H),1.78-1.66(m,2H)。
实施例25
化合物25A:
Figure GPA0000316018460000451
将化合物1B(2.13g,6.46mmol)、4-氟-2-甲氧基-5-硝基苯胺(1.44g,7.75mmol)、15%氯化氢的乙醇溶液(4.71g,19.37mmol)、30mL乙二醇单甲醚,加入反应瓶内,随后升温至120℃条件下封管反应约5小时,至TLC检测反应完毕。反应液冷却至室温,加入90mL约5%碳酸氢钠水溶液,析出大量棕黄色固体,继续搅拌约0.5小时后抽滤,水洗,滤饼打浆纯化后得到化合物25A(2.09g,收率67.4%)。
化合物25B:
Figure GPA0000316018460000452
150mL三口瓶内,加入化合物25A(1.57g,3.27mmol)、K2CO3(0.91g,6.53mmol)、1-甲基-4-(4-哌啶基)哌嗪(0.72g,3.92mmol)、30mL DMF,升温至120℃搅拌反应约3小时至TLC检测反应完毕。反应液冷却至室温,加入60mL H2O,析出大量固体,继续搅拌约0.5小时后抽滤,水洗,滤饼干燥得到化合物25B(1.69g,收率80.5%)。MS-ESI(m/z):643.2758(M+H)+
化合物25C:
Figure GPA0000316018460000453
100mL单口瓶内,加入化合物25B(1.03g,1.61mmol)、还原铁粉(0.54g,9.64mmol)、氯化铵(0.06g,1.12mmol),加入90mL EtOH/H2O=3/1混合溶剂搅拌均匀后,回流反应约2h至TLC检测反应完毕。反应液冷却至室温,反应液浓缩后加入330mL DCM/MeOH=10/1混合溶剂搅拌约15分钟后,过滤,滤液浓缩得到化合物25C(0.88g,收率89.7%)。MS-ESI(m/z):613.2968(M+H)+
化合物25:
Figure GPA0000316018460000461
50mL单口瓶内,加入化合物25C(514mg,0.84mmol)、DIPEA(120mg,0.93mmol)并用7.5mL二氯甲烷搅拌溶解并降温至0-10℃;称取丙烯酰氯(92mg,1.01mmol)并用2.5mL DCM稀释后缓慢滴加入上述反应液中,滴加完毕后,0-10℃继续反应约3小时至TLC检测反应完毕。随后向反应液中加入20mL二氯甲烷和20mL H2O,分液,二氯甲烷相再用20mL饱和氯化钠水溶液洗涤,无水硫酸钠干燥,过滤,滤液浓缩后柱层析分离纯化得到化合物25(189mg,收率33.9%)。MS-ESI(m/z):667.3085(M+H)+
实施例26
化合物26B:
Figure GPA0000316018460000462
参考化合物25B的合成方法,仅仅是将化合物1-甲基-4-(4-哌啶基)哌嗪替换为化合物4-二甲氨基哌啶,得到化合物26B。MS-ESI(m/z):588.2283(M+H)+
化合物26C:
Figure GPA0000316018460000471
参考化合物25C的合成方法,得到化合物26C。MS-ESI(m/z):558.2412(M+H)+
化合物26:
Figure GPA0000316018460000472
参考化合物25的合成方法,仅仅是将其中的化合物25C替换为化合物26C,得到化合物26。MS-ESI(m/z):612.2684(M+H)+
实施例27
化合物27B:
Figure GPA0000316018460000473
参考化合物25B的合成方法,仅仅是将化合物1-甲基-4-(4-哌啶基)哌嗪替换为化合物N,N,N′-三甲基乙二胺,得到化合物27B。MS-ESI(m/z):562.2127(M+H)+
化合物27C:
Figure GPA0000316018460000481
参考化合物25C的合成方法,得到化合物27C。MS-ESI(m/z):532.2322(M+H)+
化合物27:
Figure GPA0000316018460000482
参考化合物25的合成方法,仅仅是将其中的化合物25C替换为化合物27C,得到化合物27。MS-ESI(m/z):586.2465(M+H)+
实施例28
化合物28A:
Figure GPA0000316018460000483
250mL三口瓶内,称入化合物1D(4.5g,24.3mmol)、K2CO3(6.71g,48.6mmol)、吗啉(3.17g,36.4mmol)、67.5mL DMF,升温至120℃搅拌反应约4小时至TLC检测反应完毕。随后冷却至室温,向反应液中加入130mL H2O,析出大量固体,继续搅拌约0.5小时后抽滤,滤饼用水洗涤,干燥得到化合物28A(3.26g,收率53.1%)。MS-ESI(m/z):253.1148(M+H)+
化合物28B:
Figure GPA0000316018460000484
250mL单口瓶内,称入化合物28A(3.26g,12.94mmol)、0.49g 5%Pd/C、60mL甲醇、氢气置换2-3次,在氢气氛围下(常压)室温搅拌过夜至TLC检测反应完毕,随后硅藻土过滤后,滤液真空浓缩,柱层析分离纯化得到化合物28B(2.67g,收率92.8%)。MS-ESI(m/z):223.1475(M+H)+
化合物28:
Figure GPA0000316018460000491
将化合物2B(566mg,1.51mmol)、化合物28B(471mg,2.12mmol)、15%氯化氢的乙醇溶液(960mg,3.64mmol)、4.5mL乙二醇单甲醚加入到反应瓶中,随后于120℃条件下封管反应5-6h,TLC检测反应完毕后,将反应液冷却至室温,随后加入15mL饱和NaHCO3水溶液,析出大量固体,继续搅拌0.5小时后抽滤,滤饼用水洗涤,将滤饼用20mL EA/PET=1/5混合溶剂打浆纯化后得化合物28(387mg,收率45.7%)。MS-ESI(m/z):560.1402(M+H)+
实施例29
化合物29A:
Figure GPA0000316018460000492
250mL三口瓶内,称入化合物1D(4.5g,24.3mmol)、K2CO3(6.71g,48.6mmol)、N-甲基哌嗪(3.64g,36.4mmol)、67.5mL DMF,升温至120℃搅拌反应约4小时至TLC检测反应完毕。随后冷却至室温,向反应液中加入130mL H2O,析出大量固体,继续搅拌约0.5小时后抽滤,滤饼用水洗涤,干燥得到化合物29A(3.38g,收率52.5%)。MS-ESI(m/z):266.1547(M+H)+
化合物29B:
Figure GPA0000316018460000493
250mL单口瓶内,称入化合物29A(3.38g,12.71mmol)、0.51g 5%Pd/C、60mL甲醇,氢气置换2-3次,在氢气氛围下(常压)室温搅拌过夜至TLC检测反应完毕,随后硅藻土过滤后,滤液真空浓缩,柱层析分离纯化得到化合物29B(2.80g,收率93.4%)。MS-ESI(m/z):236.1791(M+H)+
化合物29:
Figure GPA0000316018460000501
将化合物2B(566mg,1.51mmol),化合物29B(500mg,2.12mmol)、15%氯化氢的乙醇溶液(960mg,3.64mmol)、4.5mL乙二醇单甲醚加入到反应瓶中,随后于120℃条件下封管反应5-6h,TLC检测反应完毕后,将反应液冷却至室温,随后加入15mL饱和NaHCO3水溶液,析出大量固体,继续搅拌0.5小时后抽滤,滤饼用水洗涤,将滤饼用20mL EA/PET=1/5混合溶剂打浆纯化后得化合物29(350mg,收率40.5%)。MS-ESI(m/z):573.1728(M+H)+1H NMR(400MHz,CDCl3)δ=10.31(s,1H),8.34(dd,J=8.6,4.6Hz,1H),8.19(s,1H),8.05(s,1H),7.39-7.32(m,2H),7.15-7.08(m,1H),6.67(s,1H),3.87(s,3H),2.95(t,J=4.8Hz,4H),2.63(s,4H),2.40(d,J=5.0Hz,6H),2.17(s,3H),1.84(d,J=13.1Hz,6H)。MS-ESI(m/z):573.1728(M+H)+
实施例30
化合物30A:
Figure GPA0000316018460000502
250mL三口瓶内,称入化合物1D(4.5g,24.3mmol)、K2CO3(6.71g,48.6mmol)、4-(4-哌啶基)吗啉(6.20g,36.4mmol)、67.5mL DMF,升温至120℃搅拌反应约4小时至TLC检测反应完毕。随后冷却至室温,向反应液中加入130mL H2O,析出大量固体,继续搅拌约0.5小时后抽滤,滤饼用水洗涤,干燥得到化合物30A(5.54g,收率67.8%)。MS-ESI(m/z):336.1944(M+H)+
化合物30B:
Figure GPA0000316018460000503
250mL单口瓶内,称入化合物30A(5.54g,16.48mmol)、0.83g 5%Pd/C、60mL甲醇,氢气置换2-3次,在氢气氛围下(常压)室温搅拌过夜至TLC检测反应完毕,随后硅藻土过滤后,滤液真空浓缩,柱层析分离纯化得到化合物30B(4.67g,收率92.7%)。MS-ESI(m/z):306.2152(M+H)+
化合物30:
Figure GPA0000316018460000511
将化合物2B(566mg,1.51mmol),化合物30B(648mg,2.12mmol)、15%氯化氢的乙醇溶液(960mg,3.64mmol)、4.5mL乙二醇单甲醚加入到反应瓶中,随后于120℃条件下封管反应5-6h,TLC检测反应完毕后,将反应液冷却至室温,随后加入15mL饱和NaHCO3水溶液,析出大量固体,继续搅拌0.5小时后抽滤,滤饼用水洗涤,将滤饼用20mL EA/PET=1/5混合溶剂打浆纯化后得化合物30(455mg,收率46.9%)。MS-ESI(m/z):643.2160(M+H)+1H NMR(400MHz,CDCl3)δ=10.38(s,1H),8.40(dd,J=8.8,4.8Hz,1H),8.22(s,1H),8.08(s,1H),7.48-7.32(m,2H),7.18(d,J=14.0Hz,1H),6.66(s,1H),3.95-3.78(m,7H),3.20(m,2H),2.88-2.49(m,7H),2.38(s,3H),2.35(s,3H),2.05(d,J=11.0Hz,2H),1.90(s,3H),1.86(s,3H),1.88-1.76(m,2H)。
实施例31
化合物31A:
Figure GPA0000316018460000512
向1.0L单口瓶中加入DMSO 260ml,搅拌条件下分批加入NaH(9.09g,226mmol,60%),随后搅拌10min,然后缓慢滴加丙二酸二甲酯(26ml,226mmol),滴加完毕后室温搅拌20min,随后置于100℃保温反应30min-60min,再分批加入5-氟-4-甲基-2-硝基苯甲醚(14.0g,75.4mmol),100℃保温反应60min,TLC监测反应情况。反应完毕后,将反应液冷却至室温。然后滴加550ml水,滴加完毕后室温下搅拌2h,过滤,收集滤饼,50℃下鼓风干燥得化合物31A(10.5g,收率46.8%)。MS-ESI(m/z):298.0956(M+H)+
化合物31B:
Figure GPA0000316018460000521
将化合物31A(10.5g,35.32mmol)溶于300ml混合溶剂(EtOH/THF=1/1)中,搅拌5min后,室温下滴加150ml NaOH溶液(2N),滴加完毕后保持室温反应1-2h,TLC监测至反应原料消失。然后减压浓缩反应液至剩余一半体积时,滴加6mol/L盐酸溶液,至反应溶液pH=2-3,搅拌10min后加入180ml乙酸乙酯萃取,水相再次用100ml乙酸乙酯萃取,合并两次乙酸乙酯相,用100ml水洗,再用100ml饱和氯化钠溶液洗涤2次,无水硫酸钠干燥,减压浓缩,随后打浆纯化,过滤,滤饼用石油醚∶乙酸乙酯=5∶1混合溶剂洗涤,烘干得化合物31B(6.4g,收率80.5%)。MS-ESI(m/z):226.0744(M+H)+
化合物31C:
Figure GPA0000316018460000522
将化合物31B(5.3g,23.71mmol)悬浮于100ml二氯甲烷中,然后置于冰浴下冷却至0℃后,加入HOBT(3.53g,26.1mmol)、EDCI(5.0g,26.1mmol),低温下搅拌60min,然后加入N-甲基哌嗪(2.61g,26.1mmol),再滴加DIPEA(3.67g,28.4mmol),滴加完毕后保持低温反应2h,随后室温下反应1h,TLC监测至反应原料消失。反应结束后向反应液中加入100ml水,搅拌10min后静置分层,水相再用50ml二氯甲烷萃取一次,合并两次的二氯甲烷相,然后二氯甲烷相依次用100ml水,100ml 3%的K2CO3水溶液,150ml饱和氯化钠溶液洗涤。有机相用无水硫酸钠干燥,过滤,滤液减压浓缩至油状物,随后柱层析纯化,得化合物31C(5.9g,收率80.57%)。MS-ESI(m/z):308.1637(M+H)+
化合物31D:
Figure GPA0000316018460000523
将化合物31C(4.7g,15.33mmol)溶解于45ml无水THF中,氮气保护。置于冰浴下冷却至0℃后,滴加BH3.THF溶液(45ml,46.02mmol),滴加完毕后撤去冰浴,室温搅拌过夜,TLC监测至反应原料消失,反应结束后滴加120ml甲醇淬灭,然后减压浓缩。向所得固体中加入120ml甲醇与100ml 2N HCl溶液,搅拌下置于70℃回流反应2h,然后减压浓缩至120ml左右,滴加2N NaOH溶液调节混合液pH=8-9,加入100ml乙酸乙酯萃取,水相再用50ml乙酸乙酯萃取一次,合并两次乙酸乙酯相,随后乙酸乙酯相依次用80ml水,80ml饱和氯化钠溶液洗涤。无水硫酸钠干燥,过滤,滤液减压浓缩至油状物,柱层析纯化,得化合物31D(3.22g,收率71.50%)。MS-ESI(m/z):294.1815(M+H)+
化合物31E:
Figure GPA0000316018460000531
将化合物31D(3.15g,10.74mol)溶于30ml甲醇,加入0.30gPd/C(5%),氢气置换2-3次,在氢气氛围下(常压)室温搅拌过夜。TLC检测至反应原料消失。反应完毕后,用硅藻土过滤,滤液浓缩,柱层析纯化后得化合物31E(2.55g,收率90.1%)。MS-ESI(m/z):264.2104(M+H)+
化合物31:
Figure GPA0000316018460000532
参考化合物2的合成方法,仅仅是将其中的化合物1F替换为化合物31E,得到化合物31。MS-ESI(m/z):601.2084(M+H)+
实施例32
化合物32A:
Figure GPA0000316018460000533
100mL圆底烧瓶中加入1-溴-2-氟-4-甲氧基-5-硝基苯(608mg,2.43mmol)、1-甲基-4-(4-哌啶基)哌嗪(490mg,2.68mmol)、碳酸钾(507mg,3.65mmol)、10mL DMF,升温至80℃反应2.5h,TLC检测反应完毕后,反应液冷却至室温,加入30mL水,析出大量黄色固体,继续搅拌1小时后抽滤,滤饼用水洗涤,干燥后得到化合物32A(743mg,收率74.0%)。
化合物32B:
Figure GPA0000316018460000541
250mL圆底烧瓶中加入化合物32A(740mg,1.79mmol)、还原铁粉(600mg,10.74mmol)、氯化铵(75mg,1.40mmol)、67mL乙醇/水=3/1混合溶液,升温至回流反应6.5小时左右,至TLC检测反应完毕。反应液冷却至室温,用2mol/L氢氧化钠水溶液调节反应液pH至8左右,浓缩至干后加入110mL二氯甲烷/甲醇=10/1混合溶液室温搅拌约0.5小时后,抽滤,滤液浓缩后柱层析分离(二氯甲烷/甲醇=8/1)得到化合物32B(622mg,收率90.7%)。MS-ESI(m/z):383.1427(M+H)+
化合物32:
Figure GPA0000316018460000542
将化合物2B(253mg,0.67mmol)、化合物32B(387mg,1.01mmol)、15%氯化氢的乙醇溶液(493mg,2.02mmol)、4mL乙二醇单甲醚加入到反应瓶中,于100℃条件下封管反应5-6h至TLC检测反应完毕。随后反应液冷却至室温,加入4mL饱和NaHCO3水溶液和12mL H2O,析出大量固体,继续搅拌0.5小时后抽滤,滤饼用水洗涤,干燥后柱层析分离(DCM/MeOH=15/1至10/1)纯化,再用6mL PE/EA=5/1混合溶剂打浆,得化合物32(173mg,收率35.7%)。1H NMR(400MHz,CDCl3)δ=10.47(s,1H),8.42-8.26(m,2H),8.21(s,1H),7.53(d,J=8.8Hz,1H),7.47(s,1H),7.15(m,1H),6.68(s,1H),3.95(s,3H),3.52(d,J=11.2Hz,2H),2.89-2.51(m,9H),2.41(s,3H),2.39(s,3H),2.21(s,2H),2.05(d,J=11.4Hz,2H),1.91(m,8H)。MS-ESI(m/z):722.1459(M+H)+
实施例33
化合物33A:
Figure GPA0000316018460000551
参考化合物11A的合成方法,仅仅是将其中的化合物2-碘-4-氟-苯胺替换为化合物2-碘-4-氯-苯胺,得到化合物33A。MS-ESI(m/z):204.0367(M+H)+
化合物33B:
Figure GPA0000316018460000552
参考化合物11B的合成方法,仅仅是将其中的化合物11A替换为化合物33A,得到化合物33B。MS-ESI(m/z):393.9295(M+H)+
化合物33:
Figure GPA0000316018460000553
参考化合物11的合成方法,仅仅是将其中的化合物11B替换为化合物33B,得到化合物33。1H NMR(400MHz,CDCl3)δ=10.38(s,1H),8.57-8.32(m,2H),8.05(s,1H),7.47(s,1H),7.32(m,1H),7.18-6.95(m,1H),6.69(s,1H),3.93(s,3H),3.25(m,2H),2.89-2.53(m,9H),2.42(m,5H),2.21(s,3H),2.05(d,J=11.4Hz,2H),1.92(s,3H),1.86(s,3H),1.81-1.69(m,2H)。MS-ESI(m/z):676.1964(M+H)+
实施例34
化合物34:
Figure GPA0000316018460000561
25mL圆底烧瓶内,称入化合物25C(305mg,0.50mmol)、K2CO3(138mg,1.00mmol)、碘甲烷(142mg,1.00mmol)、10mL DMF,室温搅拌过夜,反应结束后,柱层析提纯,得到化合物34(65mg,收率20.5%)。MS-ESI(m/z):627.3125(M+H)+
实施例35
化合物35:
Figure GPA0000316018460000562
将化合物14B(403.27mg,1.19mmol)、化合物11B(500mg,1.32mmol)、15%氯化氢的乙醇溶液(963mg,3.96mmol)、7.5mL乙二醇单甲醚加入到反应瓶中,随后于100℃条件下封管反应4h,TLC检测反应完毕后,将反应液冷却至室温,随后加入15mL水以及饱和NaHCO3水溶液调pH=8.0左右,析出大量固体,继续搅拌0.5小时后抽滤,滤饼用水洗涤,烘干。将粗品用6mLEA打浆纯化后得化合物35(380mg,收率38%)。1H NMR(400 MHz,CDCl3)δ=10.26(s,1H),8.38(m,1H),8.22(d,J=10.8Hz,2H),7.46-7.32(m,2H),7.03(m,1H),6.62(s,1H),3.88(s,3H),3.41(d,J=11.6Hz,2H),2.81-2.22(m,14H),1.95-1.79(m,10H)。MS-ESI(m/z):680.1686(M+H)+
实施例36
化合物36A:
Figure GPA0000316018460000563
50mL三口瓶内,加入2-碘-4-异丙基苯胺(3.0g,11.5mmol)、K2CO3(2.23g,16.1mmol)、Xantphos(0.174g,0.46mmol)、Pd(OAc)2(0.103g,0.46mmol)、二甲基氧磷(1.08g,13.8mmol)、18mL DMF,升温至100℃反应约3h至TLC检测原料反应完毕。反应液冷却至室温,抽滤,加入54mL H2O,析出大量黄色固体,抽滤,滤液用25mL×3二氯甲烷萃取,无水硫酸钠干燥,过滤,滤液浓缩得油状化合物36A(2.60g),不经纯化直接投下一步反应。
化合物36B:
Figure GPA0000316018460000571
50mL单口瓶内,加入化合物36A(2.60g)、5-溴-2,4-二氯嘧啶(2.88g,12.6mmol)、K2CO3(1.91g,13.8mmol)、15mL DMSO,升温至60℃反应约3小时,TLC检测化合物36A反应完毕。反应冷却至室温,加入45mL H2O,用50ml乙酸乙酯萃取2次,合并有机相,50ml水洗2次,50ml饱和氯化钠洗2次,无水硫酸钠干燥,减压浓缩得粉红色固体,加入PE∶EA=3∶1混合溶剂30ml打浆,过滤获得固体烘干得化合物36B(2.5g,54%)。
化合物36:
Figure GPA0000316018460000572
将化合物36B(500mg,1.24mmol)、化合物1F盐酸盐(484.11mg,1.36mmol)、4mL乙二醇单甲醚加入到反应瓶中,随后于100℃条件下反应5-6h,TLC检测化合物36B反应完毕后,将反应液冷却至室温,随后加入4mL水,用饱和NaHCO3水溶液调节pH=8.0左右,析出固体,继续搅拌0.5小时后抽滤,滤饼用水洗涤,柱层析纯化后得化合物36(400mg,收率47.11%)。1H NMR(400 MHz,CDCl3)δ=10.39(s,1H),8.40(dd,J=8.6,4.6Hz,1H),8.18(s,1H),8.05(s,1H),7.47-7.33(m,2H),7.12(dd,J=14.4,1.6Hz,1H),6.62(s,1H),3.86(s,3H),3.15(d,J=11.6Hz,2H),2.93(m,1H),2.78-2.13(m,17H),1.96(m,2H),1.85(d,J=13.2Hz,6H),1.73(m,2H),1.28(d,J=6.8Hz,6H)。MS-ESI(m/z):706.2601(M+Na)+
实施例37
化合物37:
Figure GPA0000316018460000581
将化合物36B(440mg,1.09mmol),化合物12A(400mg,1.20mmol),15%氯化氢的乙醇溶液(798mg,3.28mmol),6.0mL乙二醇单甲醚加入到反应瓶中,随后于100℃条件下封管反应5-6h,TLC检测反应完毕后,将反应液冷却至室温,随后加入6mL饱和NaHCO3水溶液及12mL H2O,析出大量固体,继续搅拌0.5小时后抽滤,滤饼用水洗涤,分离纯化后得化合物37(228mg,收率29.8%)。1H NMR(400MHz,CDCl3)δ=10.34(s,1H),8.35(dd,J=8.8,4.8Hz,1H),8.19(s,1H),8.08(s,1H),7.37(m,2H),7.12(d,J=14.4Hz,1H),6.67(s,1H),3.86(s,3H),3.08(m,2H),2.92(m,1H),2.80-2.44(m,11H),2.42-2.26(m,5H),1.95(d,J=11.2Hz,2H),1.84(d,J=13.2Hz,6H),1.72(m,2H),1.28(d,J=6.8Hz,6H),1.03(t,J=7.4Hz,3H)。MS-ESI(m/z):720.2757(M+Na)+
实施例38
化合物38:
Figure GPA0000316018460000582
将化合物14B(309mg,0.91mmol),化合物33B(300mg,0.76mmol),15%氯化氢的乙醇溶液(554mg,2.28mmol),4.5mL乙二醇单甲醚加入到反应瓶中,随后于100℃条件下封管反应5-6h,TLC检测反应完毕后,将反应液冷却至室温,随后加入5mL饱和NaHCO3水溶液及10mLH2O,用3×30mL二氯甲烷萃取,合并有机相,用30mL饱和NaCl水溶液洗涤,有机相浓缩至干,分离纯化后得化合物38(154mg,收率29.1%)。MS-ESI(m/z):696.1377(M+H)+1H NMR(400MHz,CDCl3)δ=10.30(s,1H),8.35(m,1H),8.26(m,2H),7.48-7.30(m,2H),7.05(m,1H),6.68(s,1H),3.89(s,3H),3.38(d,J=11.6Hz,2H),2.86-2.28(m,14H),2.05-1.72(m,10H)。
对比实施例1:对照化合物1的制备
对照化合物1B(中间体):
Figure GPA0000316018460000591
参考化合物10B的合成方法,仅仅是将其中的化合物5-溴-2,4-二氯嘧啶替换为化合物2,4,5-三氯嘧啶,得对照化合物1B。
对照化合物1:
Figure GPA0000316018460000592
参考化合物10的合成方法,仅仅是将其中的化合物10B替换为对照化合物1B,得对照化合物1。1H NMR(400MHz,甲醇-d4)δ=8.02(s,1H),7.93(dd,J=8.0,4.0Hz,1H),7.64(s,1H),7.42(t,J=8.0Hz,1H),7.15(dd,J=7.6,3.6Hz,1H),6.69(s,1H),3.84(s,3H),3.11(d,J=11.6Hz,2H),3.02-2.41(m,13H),2.32(m,4H),2.04(s,3H),2.00(d,J=12.6Hz,2H),1.94(s,3H),1.90(s,3H),1.68(m,2H).MS-ESI(m/z):612.2981(M+H)+。
对比实施例2:对照化合物2的制备
对照化合物2A(中间体):
Figure GPA0000316018460000593
100mL三口瓶内,加入(2-氨基苯基)-二甲基氧化膦(2.5g,15.00mmol)、2,4,5-三氯嘧啶(2.70g,15.00mmol)、K2CO3(2.45g,67.75mmol)、nBu4NHSO4(0.5g,1.50mmol)、50mLDMF,升温至65℃反应约4.5小时至TLC检测反应完毕。随后反应液冷却至室温,加入200mLH2O,析出大量黄色固体,继续搅拌约0.5h后抽滤,滤饼用100mL H2O洗涤,干燥得对照化合物2A(2.84g,收率60.0%)。MS-ESI(m/z):316.0178(M+H)+
对照化合物2:
Figure GPA0000316018460000601
将对照化合物2A(335mg,1.06mmol)、化合物1F(406mg,1.27mmol)、15%氯化氢的乙醇溶液(774mg,3.18mmol)、4.5mL乙二醇单甲醚加入到反应瓶中,随后于120℃条件下封管反应5-6h,TLC检测反应完毕后,将反应液冷却至室温,随后加入15mL饱和NaHCO3水溶液,析出大量固体,继续搅拌0.5小时后抽滤,滤饼用水洗涤,将滤饼用9mL EtOH/H2O=1/2混合溶剂打浆纯化后得对照化合物2(320mg,收率50.5%)。1H NMR(400MHz,CDCl3)δ=10.80(s,1H),8.63(dd,J=8.4,4.4Hz,1H),8.10(s,1H),8.04(s,1H),7.51(m,1H),7.38-7.26(m,2H),7.13(m,1H),6.63(s,1H),3.86(s,3H),3.16(d,J=12.0Hz,2H),2.61(m,9H),2.32(s,3H),2.18(s,3H),2.06(m,2H),1.96(m,2H),1.87(s,3H),1.83(s,3H),1.72(m,2H)。MS-ESI(m/z):598.2826(M+H)+
对比实施例3:对照化合物3的制备
对照化合物3A(中间体):
Figure GPA0000316018460000602
100mL圆底烧瓶中加入5-氟-2-硝基苯甲醚(2.0g,11.69mmol)、1-甲基-4-(4-哌啶基)哌嗪(2.57g,14.02mmol)、碳酸钾(3.25g,23.37mmol)、30mL DMF,升温至120℃反应约3小时至TLC检测反应完毕。反应液冷却至室温,加入30mL水,用30mL×3乙酸乙酯萃取,合并有机相,有机相用30mL饱和氯化钠水溶液洗涤,无水硫酸钠干燥,过滤,浓缩得到化合物对照化合物3A(3.57g,收率91.3%)。
对照化合物3B(中间体):
Figure GPA0000316018460000611
将对照化合物3A(3.57g,10.68mmol)、0.36g 5%Pd/C,72mL甲醇,氢气置换2-3次,在氢气氛围下(常压)室温搅拌过夜至TLC检测反应完毕,随后硅藻土过滤后,滤液真空浓缩,柱层析分离纯化得到对照化合物3B(2.17g,收率66.8%)。MS-ESI(m/z):305.2315(M+H)+
对照化合物3:
Figure GPA0000316018460000612
将化合物1B(400mg,1.21mmol)、对照化合物3B(443mg,1.45mmol)、15%氯化氢的乙醇溶液(884mg,3.63mmol)、6mL乙二醇单甲醚加入到反应瓶中,于120℃条件下封管反应5-6h至TLC检测反应完毕。随后反应液冷却至室温,加入6mL饱和NaHCO3水溶液和6mL H2O,用30mL×3二氯甲烷萃取,合并有机相后用20mL饱和氯化钠水溶液洗涤,无水硫酸钠干燥,过滤,浓缩后柱层析分离(DCM/MeOH=8/1)纯化,5mL PE/EA=4/1混合溶剂打浆后得对照化合物3(257mg,收率35.4%)。1H NMR(400MHz,CDCl3)δ=10.63(s,1H),8.49(dd,J=8.8,4.8Hz,1H),8.19-7.99(m,2H),7.31(d,J=8.8Hz,1H),7.25(s,1H),7.07(d,J=14.0Hz,1H),6.61-6.44(m,2H),3.87(s,3H),3.66(d,J=12.0Hz,2H),2.66(m,9H),2.38(s,3H),2.32(s,3H),2.21(s,2H),1.97(m,2H),1.85(s,3H),1.81(s,3H),1.73(m,2H)。MS-ESI(m/z):598.2804(M+H)+
对比实施例4:对照化合物4的制备
对照化合物4A(中间体):
Figure GPA0000316018460000613
向1L三口瓶内,加入2-碘-4-溴苯胺(30g,100.7mmol),K2CO3(22.27g,161.1mmol),Xantphos(5.83g,10.1mmol),Pd(OAc)2(1.12g,4.9mmol),二甲基氧磷(11.78g,150.9mmol),450mL DMF,N2保护下,升温至100℃反应约3h至TLC检测反应完毕。随后反应冷却至室温,滴加1350mL H2O,搅拌后抽滤,水洗滤饼,滤液使用二氯甲烷500mL×3萃取,合并有机相,有机相再用500mL×2饱和氯化钠水溶液洗涤,无水硫酸钠干燥,过滤浓缩得对照化合物4A(14g,收率56%)。
对照化合物4B(中间体):
Figure GPA0000316018460000621
向500mL三口瓶内,加入化合物4A(12g,48.4mmol),环丙基硼酸(8.31g,96.7mmol),K2CO3(13.36g,96.7mmol),Pd(dppf)Cl2(1.77g,2.42mmol),1,4-二氧六环(120mL),H2O(12mL),N2保护下,升温至100℃反应约8h至TLC检测反应完毕。随后反应冷却至室温,加入150mL H2O,搅拌后抽滤,二氯甲烷洗涤滤饼,静置分层,水相再用二氯甲烷150mL×3萃取,合并有机相,无水硫酸钠干燥,过滤浓缩后柱层析分离纯化得到对照化合物4B(7.5g,收率74%)。
对照化合物4C(中间体):
Figure GPA0000316018460000622
向100mL反应瓶内,加入化合物4B(7.5g,35.8mmol),K2CO3(5.95g,43.1mmol),5-溴-2,4-二氯嘧啶(8.99g,39.5mmol),DMSO(45mL),升温至60℃反应约2.5h至TLC检测反应完毕。随后反应冷却至室温,滴加135mL H2O,析出大量棕黄色固体,继续搅拌1h后过滤,滤饼用100mL H2O洗涤,滤饼干燥得对照化合物4C(7.4g,收率51.6%)。
对照化合物4:
Figure GPA0000316018460000623
向100mL反应瓶内,加入化合物4C(1.7g,4.24mmol),化合物12A(1.55g,4.66mmol),三氟乙酸(1.21g,10.6mmol),乙二醇单甲醚(27mL),升温至100℃反应约7h至TLC检测反应完毕。随后反应冷却至室温,滴加54mL H2O,然后再滴加27mL饱和NaHCO3水溶液,析出大量固体,继续搅拌1小时后抽滤,滤饼用水洗涤,将滤饼用15mL乙酸乙酯打浆纯化后,过滤干燥得对照化合物4(1.68g,收率56.8%)。1H NMR(400MHz,CD3OD)δ=8.13(s,1H),7.88(dd,J=8.8,4.8Hz,1H),7.66(s,1H),7.43(dd,J=14.0,2.2Hz,1H),7.19(m,1H),6.76(s,1H),3.85(s,3H),3.04(m,2H),2.32-2.75(m,16H),2.01(m,3H),1.83(m,6H),1.74-1.65(m,2H),1.06(m,2H),0.96(t,J=7.6Hz,3H),0.76(m,2H).MS-ESI(m/z):696.2711(M+H)+
实验例1酶活性实验1
1.实验目的:检测受试化合物对EGFR激酶活性的影响
2.实验信息:
为评估化合物对激酶EGFR野生型以及突变体活性的影响,利用ADP-Glo(promega公司)试剂盒测定酶学反应中ATP消耗来检测激酶活性。将待测样品溶于DMSO中,并梯度稀释。在微孔板中,每孔加入EGFR激酶、反应缓冲液(含Tris-HCl pH 7.5、MgCl2、DTT和BSA)、激酶底物Poly(Glu4,Tyrl)和样品(每孔总体积20μL),同时设立空白对照(不含酶和样品)和阴性对照(不含样品);23℃孵育15min;加入5ul ATP,23℃反应60min;加入ADP-GloReagent,在室温条件下继续反应40min使多余的ATP失活;然后加入激酶检测试剂(KinaseDetection Reagent),室温反应30min后,测定每孔的化学发光强度L。根据化学发光强度L值计算化合物的抑制率,抑制率=[1-(L样品-L空白)/(L阴性-L空白)]×100%。根据上述计算,应用XLfit软件中的4Parameter Logistic Model计算IC50值。
3.试验结果:本发明实施例的化合物及对比实施例的化合物对EGFR-Del19,EGFR-C797S/Del19,EGFR-T790M/Del19,EGFR-T790M/L858R,EGFR-C797S/T790M/L858R,EGFR-C797S/T790M/Del19和EGFR-WT的酶活性的IC50值在表1及表2中展示。
4.结论:从表1及表2中我们可以看出,本发明实施例的化合物对EGFR野生型(EGFR-WT)的酶活性有着较好的选择性,对EGFR单突变、双突变及三突变(例如EGFR-Del19,EGFR-C797S/Del19,EGFR-T790M/Del19,EGFR-T790M/L858R,EGFR-C797S/T790M/L858R,EGFR-C797S/T790M/Del19)的酶活性有着较好的抑制作用,均大大优于对比实施例的化合物。
表1
Figure GPA0000316018460000631
表2
Figure GPA0000316018460000641
实验例2酶活性实验2
1.实验目的:检测受试化合物对ALK激酶活性的影响
2.实验信息:
为评估化合物对激酶EML4-ALK活性的影响,利用ADP-Glo(promega公司)试剂盒测定酶学反应中ATP消耗来检测激酶活性。将待测样品溶于DMSO中,并梯度稀释。在微孔板中,每孔加入EML4-ALK激酶、反应缓冲液(含Tris-HCl pH 75、MgCl2、DTT和BSA)、激酶底物IGF1和样品(每孔总体积20μL),同时设立空白对照(不含酶和样品)和阴性对照(不含样品);加入5ul ATP,23℃反应60min;加入ADP-Glo Reagent,在室温条件下继续反应40min使多余的ATP失活;然后加入激酶检测试剂,室温反应30min后,测定每孔的化学发光强度L。根据化学发光强度L值计算化合物的抑制率,抑制率=[1-(L样品-L空白)/(L阴性-L空白)]×100%。根据上述计算,应用XLfit软件中的4Parameter Logistic Model计算IC50值。
3.试验结果:本发明实施例的化合物及对比实施例的化合物对ALK激酶活性的IC50值在表3中展示。
4.结论:从表3中我们可以看出,本发明实施例的化合物对ALK激酶的酶活性有着较好的抑制作用,均优于对比实施例的化合物。
表3
Figure GPA0000316018460000642
Figure GPA0000316018460000651
实验例3细胞抗增殖实验1
1.实验目的:检测受试化合物对BaF3细胞含EGFR突变的细胞株增殖的影响
2.实验信息:
2.1.细胞信息:BaF3含EGFR突变的细胞株来自于药明康德:
BaF3-表达EGFR突变的细胞株
EGFR-T790M/Del19
EGFR-C797S/Del19
EGFR-T790M/L858R
EGFR-C797S/L858R
EGFR-C797S/T790M/L858R
EGFR-C797S/T790M/Del19
EGFR-WT野生型细胞株
2.2.实验方法
第0天:种板
a.开启生物安全柜紫外灯,倒计时30min。
b. 37度水浴锅中,预热培养基。
c.紫外照射完毕,开启生物安全柜。将预热培养基,PBS等用酒精擦拭并放入生物安全柜中。
d.将细胞从培养箱中取出,在生物安全柜中吹打至均匀的细胞悬液后计数。
e.根据细胞计数结果,调整细胞悬液密度为3000细胞每孔,50微升每孔种于384孔板中。
f.种板后的细胞于37℃,5%CO2的培养箱中孵育3小时。
g.使用Tecan(液体工作站)将化合物加入细胞板中。
第3天:将加过化合物的细胞板和CTG(CellTiter-Glo化学发光细胞活性检测试剂)放到室温平衡,后加CTG 25ul至每孔,于1000转离心1min后震荡1-2min。再次1000转离心1min后静置10min后于Envision中检测信号值。采用XL-Fit分析软件通过计算机拟合计算各化合物的IC50(读取50%抑制率时对应的化合物的浓度即得化合物对细胞活性抑制的IC50)。抑制率%=(未加药对照组读值-样品读值)/未加药对照组读值×100
3.试验结果:本发明实施例的化合物、对比实施例的化合物及市场上治疗非小细胞肺癌的主要药物布加替尼和奥希替尼对表达EGFR-T790M/Del19,EGFR-C797S/Del19,EGFR-T790M/L858R,EGFR-C797S/L858R,EGFR-C797S/T790M/L858R,EGFR-C797S/T790M/Del19和EGFR-WT的Ba/F3细胞的活性抑制IC50值在表4和表5中展示。
4.结论:从表4及表5中我们可以看出,本发明实施例的化合物对表达EGFR野生型(EGFR-WT)的Ba/F3细胞活性有着较好的选择性,对表达EGFR双突变及三突变(例如EGFR-T790M/Del19,EGFR-C797S/Del19,EGFR-T790M/L858R,EGFR-C797S/L858R,EGFR-C797S/T790M/L858R,EGFR-C797S/T790M/Del19)的Ba/F3细胞的增殖有着较好的抑制作用,尤其是实施例的化合物1、2、4、5、6、9、11、12、14、23、24、25、28、29、30、32、33、35、36、37、38在表达EGFR双突变及三突变的Ba/F3细胞株上的抑制活性大大优于对照化合物1、2、3及已上市药物布加替尼和奥希替尼。
表4
Figure GPA0000316018460000661
表5
Figure GPA0000316018460000671
实验例4细胞抗增殖实验2
1.实验目的:检测受试化合物对PC9细胞含EGFR突变的细胞株增殖的影响
2.实验信息:
2.1.细胞信息:PC9细胞带有EGFRDel19突变,其余突变细胞根据通行的稳定细胞株构建方法由PC9细胞构建得到。
PC9-表达EGFR突变的细胞株
EGFR-Del19
EGFR-T790M/Del19
EGFR-C797S/T790M/Del19
2.2.实验方法:
将受试化合物以合适浓度为实验起始浓度,每次稀释5倍,共稀释成6个浓度梯度。布加替尼(购自Selleck)以5μM为实验起始浓度,每次稀释3倍,共稀释成6个浓度梯度。受试化合物及布加替尼分别加入到上述细胞中,37℃、5%CO2环境下孵育72小时,采用SRB(Sulforhodamine B)检测法,用酶标仪在490nm波长下读取各孔的光密度值。
将药物作用0时的细胞光密度值设为Tz值,代表药物加入时细胞的值。溶剂对照DMSO作用72小时的细胞光密度值设为C值;试验化合物作用72小时的细胞光密度值设为Ti值。根据美国NIH-NCI(美国国立卫生研究院-国立癌症研究所)提出的方法计算细胞对药物的响应:当Ti≥Tz时,为[(Ti-Tz)/(C-Tz)]×100;当Ti<Tz时,为[(Ti-Tz)/Tz]×100。根据上述计算,应用XLfit软件中的4 Parameter Logistic Model计算GI50值(细胞生长抑制率为50%时所需的试验化合物的浓度)。
3.试验结果:本发明实施例的化合物、对比实施例的化合物及市场上治疗非小细胞肺癌的主要药物布加替尼对表达EGFR-Del19,EGFR-T790M/Del19,EGFR-C797S/T790M/Del19的PC9细胞的GI50值在表6中展示。
4.结论:从表6中我们可以看出,本发明实施例的化合物对表达EGFR单突变、双突变及三突变(例如EGFR-Del19,EGFR-T790M/Del19,EGFR-C797S/T790M/Del19)的PC9细胞的增殖活性有着较好的抑制作用,抑制活性大大优于对照化合物1、2、3及已上市药物布加替尼。
表6
Figure GPA0000316018460000681
实验例5细胞抗增殖实验3
1.实验目的:检测受试化合物对BaF3细胞含ALK突变的细胞株增殖的影响
2.实验信息:
2.1.细胞信息:BaF3细胞含ALK突变的细胞株来自于药明康德
Ba/F3-表达ALK基因融合及突变的细胞株
Ba/F3-EML-4-ALK-WT
Ba/F3-EML-4-ALK-L1196M
2.2.实验方法
第0天:种板
a.开启生物安全柜紫外灯,倒计时30min。
b.37度水浴锅中,预热培养基。
c.紫外照射完毕,开启生物安全柜。将预热培养基,PBS等用酒精擦拭并放入生物安全柜中。
d.将细胞从培养箱中取出,在生物安全柜中吹打至均匀的细胞悬液后计数。
e.根据细胞计数结果,调整细胞悬液密度为3000细胞每孔,50微升每孔种于384孔板中。
f.种板后的细胞于37℃,5%CO2的培养箱中孵育3小时。
g.使用Tecan(液体工作站)将化合物加入细胞板中。
第3天:将加过化合物的细胞板和CTG放到室温平衡,后加CTG 25ul至每孔,于1000转离心1min后震荡1-2min。再次1000转离心1min后静置10min后于Envision中检测信号值。采用XL-Fit分析软件通过计算机拟合计算各化合物的IC50(读取50%抑制率时对应的化合物的浓度即得化合物对细胞活性抑制的IC50)。抑制率%=(未加药对照组读值-样品读值)/未加药对照组读值×100
3.试验结果:本发明实施例的化合物、对比实施例的化合物对EML-4-ALK-WT、EML-4-ALK-L1196M的BaF3细胞的IC50值在表7中展示。
4.结论:从表7中我们可以看出,本发明实施例的化合物对表达EML-4-ALK-WT,EML-4-ALK-L1196M的BaF3细胞增殖有着非常好的抑制作用,抑制活性优于对照化合物1、2、3。
表7
Figure GPA0000316018460000691
实验例6:对工程化的BaF3 EGFR-DTC(C797S/T790M/Del19)细胞裸小鼠移植瘤模型的体内药效学研究
本试验所用模型为工程化的BaF3 EGFR-DTC(C797S/T790M/Del19)细胞BALB/c裸小鼠皮下移植瘤模型。工程化的BaF3细胞,体外悬浮培养。BaF3 EGFR-DTC(C797S/T790M/Del19)培养条件为RPMI-化合物140Medium培养基中加10%胎牛血清,100U/ml青霉素和100μg/ml链霉素,10μg/ml Blastcidin,37℃5%CO2孵箱培养。一周两次处理传代。当细胞数量到达要求时,收取细胞,计数,接种。将0.2ml(106个)细胞(加基质胶,体积比为1∶1)皮下接种于每只小鼠的右后背,当肿瘤平均体积达到109mm3时开始分组给药,每组6只。
给药方式及频率:口服灌胃给药,给药体积10ml/kg,模型组给予等体积溶媒。每天给药1次,连续给药14天。化合物2和Brigatinib剂量为25mg/kg和50mg/kg,化合物33剂量为25mg/kg。
每天观测小鼠的精神、活动、进食等一般情况,每周测3次体重;每周3次用游标卡尺测量各小鼠肿瘤的短径(a)及长径(b),按(a2×b)/2公式计算肿瘤体积。根据测量计算的肿瘤体积计算出相对肿瘤体积(RTV),RTV=Vt/V0。其中V0为随机分组(即d0)时的肿瘤体积,Vt为每一次测量(即dn)时的肿瘤体积。按下列公式计算抗肿瘤活性评价指标相对肿瘤增殖率:相对肿瘤增殖率T/C(%):
Figure GPA0000316018460000701
(注:TRTV:治疗组RTV;CRTV:模型对照组RTV。根据中国国家药品管理监督局发布的《细胞毒类抗肿瘤药物非临床研究技术指导原则》中疗效的评价标准T/C%≤40%为有效)。
各受试样品对BaF3 EGFR-DTC(C797S/T790M/Del19)细胞裸小鼠移植瘤模型肿瘤情况的影响结果如表8-9所示;
表8:BaF3 EGFR-DTC(C797S/T790M/Del19)裸小鼠移植瘤模型各组不同时间点的平均肿瘤体积(mm3)
Figure GPA0000316018460000702
注:a.给药后天数;
:模型对照组给药后第10天死亡3只,第12天死亡2只,第13天死亡1只,尸体解剖显示死亡是由于肿瘤转移所致;
表9:BaF3 EGFR-DTC(C797S/T790M/Del19)裸小鼠移植瘤模型相对肿瘤增殖率T/C(%)
Figure GPA0000316018460000703
★★:与同期化合物2同剂量组RTV原始数据比较p<0.01;
☆☆:与同期化合物33(25mg/kg)剂量组RTV原始数据比较p<0.01;
:由于模型对照组动物给药后第13天时全部死亡,故T/C(%)的计算到给药后第12天为止。
以上试验结果表明:本试验中,化合物2在25mg/kg和50mg/kg剂量下,化合物33在25mg/kg剂量下,均能显著抑制BaF3 EGFR-DTC(C797S/T790M/Del19)裸小鼠移植瘤的肿瘤生长;给药12天后,化合物2(25mg/kg)和化合物2(50mg/kg)的T/C%分别为3.12%和1.91%,化合物33(25mg/kg)的T/C%为2.56%;而Brigatinib未见明显抑制BaF3 EGFR-DTC(C797S/T790M/Del19)裸小鼠移植瘤肿瘤生长的作用,,给药12天后,Brigatinib(25mg/kg)和Brigatinib(50mg/kg)的T/C%分别为84.64%、41.67%。
可见化合物2抑制肿瘤生长的作用显著强于Brigatinib,给药第12天时,化合物2和Brigatinib的T/C%(25mg/kg:3.12%vs.84.64%;50mg/kg:1.91%vs.41.67%),差异具有显著性(p<0.01)。此外,化合物33(25mg/kg)抑制肿瘤生长的作用也显著强于Brigatinib,给药第12天时,化合物33与Brigatinib的T/C%差异具有显著性(p<001)。
以上结果提示:化合物2和化合物33其抑制BaF3 EGFR-DTC(C797S/T790M/Del19)裸小鼠移植瘤肿瘤生长的作用显著强于Brigatinib。
实验例7:对工程化的BaF3 EML-4-ALK-L1196M细胞裸小鼠移植瘤模型的体内药效学研究
本试验所用模型为工程化的BaF3 EML-4-ALK-L1196M细胞BALB/c裸小鼠皮下移植瘤模型。工程化的BaF3细胞,体外悬浮培养。BaF3 EML-4-ALK-L1196M培养条件为RPMI-化合物140 Medium培养基中加10%胎牛血清,100U/ml青霉素和100μg/ml链霉素,10μg/mlBlastcidin,37℃5%CO2孵箱培养。一周两次处理传代。当细胞数量到达要求时,收取细胞,计数,接种。将0.2ml(106个)细胞(加基质胶,体积比为1∶1)皮下接种于每只小鼠的右后背,当肿瘤平均体积达到128mm3时开始分组给药,每组6只。
给药方式及频率:口服灌胃给药,给药体积10ml/kg,模型组给予等体积溶媒。每天给药1次,连续给药14天。化合物2剂量为50mg/kg,化合物6为60mg/kg,化合物14为80mg/kg。
每天观测小鼠的精神、活动、进食等一般情况,每周测3次体重;每周3次用游标卡尺测量各小鼠肿瘤的短径(a)及长径(b),按(a2×b)/2公式计算肿瘤体积。根据测量计算的肿瘤体积计算出相对肿瘤体积(RTV),RTV=Vt/V0。其中V0为随机分组(即d0)时的肿瘤体积,Vt为每一次测量(即dn)时的肿瘤体积。按下列公式计算抗肿瘤活性评价指标相对肿瘤增殖率:相对肿瘤增殖率T/C(%):
Figure GPA0000316018460000711
(注:TRTV:治疗组RTV;CRTV:模型对照组RTV。根据中国国家药品管理监督局发布的《细胞毒类抗肿瘤药物非临床研究技术指导原则》中疗效的评价标准T/C%≤40%为有效)。
各受试样品对BaF3 EML-4-ALK-L1196M细胞裸小鼠移植瘤模型肿瘤情况的影响结果如表10-11所示;
表10:BaF3 EML-4-ALK-L1196M裸小鼠移植瘤模型各组各时间点的平均肿瘤体积(mm3)
Figure GPA0000316018460000721
注:a给药后天数。
表11:BaF3 EML-4-ALK-L1196M裸小鼠移植瘤模型相对肿瘤增殖率T/C(%)
Figure GPA0000316018460000722
以上试验结果表明:本试验中,化合物2(50mg/kg)、化合物6(60mg/kg)和化合物14(80mg/kg)均能显著抑制BaF3 EML-4-ALK-L1196M裸小鼠移植瘤的肿瘤生长。
实验例8:SD大鼠经口灌胃给予化合物2和Brigatinib单次给药毒性试验研究
8周大SD大鼠,每组10只,雌雄各半。动物购自北京斯贝福。动物在本实验室适应性喂养3天后再进行试验。口服灌胃给药,给药体积10ml/kg。给药前禁食不禁水17h。对照组大鼠经口灌胃给予等体积的溶媒。给药结束后约2小时恢复给食。
给药后每天两次观察。首次给药当天定义为试验第1天,连续观察14天,第15天实验结束。
实验剂量及分组及给药后第15天动物死亡情况见表12:
表12:SD大鼠经口灌胃给予化合物2和Brigatinib单次给药毒性试验动物死亡情况
Figure GPA0000316018460000731
以上试验结果表明:在SD大鼠经口灌胃给予化合物2和Brigatinib单次给药毒性试验中,化合物2的最大耐受量(MTD)为125mg/kg,而Brigatinib的MTD<75mg/kg;提示在本试验条件下,化合物2在SD大鼠中的单次给药毒性远远低于Brigatinib,具有更好的安全性。
实验例9:对两侧分别皮下接种NCI-H3122和NCI-H1975 EGFR DTC(C797S/T790M/Del19)细胞皮下移植肿瘤BALB/c裸小鼠模型的体内药效学研究
本试验所用模型为同一BALB/c裸小鼠两侧皮下分别接种NCI-H3122和NCI-H1975EGFR DTC(C797S/T790M/Del19)细胞BALB/c裸小鼠皮下移植瘤模型(注:NCI-H3122为EML4-ALK融合基因阳性细胞株)。
NCI-H3122和NCI-H1975 EGFR DTC(C797S/T790M/Del19)培养条件均为RPMI-1640培养基中加10%胎牛血清、100U/ml青霉素和100μg/ml链霉素,在37℃下的5%CO2孵箱中培养。一周两次处理传代。当细胞数量到达要求时,收取细胞,计数,接种。
接种时将0.2ml(5x106个)NCI-H3122细胞(加基质胶,体积比为1∶1)皮下接种于每只小鼠的左侧下侧腹,将0.2ml(5×106个)NCI-H1975 EGFR DTC(C797S/T790M/Del19)细胞(加基质胶,体积比为1∶1)皮下接种于每只小鼠的右侧下侧腹。当NCI-H3122皮下移植瘤肿瘤平均体积达到约116mm3,NCI-H1975 EGFRDTC(C797S/T790M/Del19)皮下移植瘤肿瘤平均体积达到约110mm3时,开始分组给药,每组8只。
给药方式及频率:口服灌胃给药,给药体积10mL/kg,模型组给予等体积溶媒。每天给药1次,连续给药16天。化合物2剂量为20mg/kg和40mg/kg,Crizotinib(克唑替尼)剂量为50mg/kg。
每天观测小鼠的精神、活动、进食等一般情况,每周测3次体重;每周3次用游标卡尺测量各小鼠肿瘤的短径(a)及长径(b),按(a2×b)/2公式计算肿瘤体积。根据测量计算的肿瘤体积计算出相对肿瘤体积(RTV),RTV=Vt/V0。其中V0为随机分组(即d0)时的肿瘤体积,Vt为每一次测量(即dn)时的肿瘤体积。按下列公式计算抗肿瘤活性评价指标相对肿瘤增殖率:相对肿瘤增殖率T/C(%):
Figure GPA0000316018460000741
注:TRTV:治疗组RTV;CRTV:模型对照组RTV。根据中国国家药品管理监督局发布的《细胞毒类抗肿瘤药物非临床研究技术指导原则》中疗效的评价标准T/C%≤40%为有效。
各受试样品对同一BALB/c裸小鼠两侧分别皮下接种NCI-H3122和NCI-H1975 EGFRDTC(C797S/T790M/Del19)细胞皮下移植肿瘤BALB/c裸小鼠模型肿瘤情况的影响结果如表13和14所示。
表13:两侧分别皮下接种NCI-H3122和NCI-H1975 EGFR DTC(C797S/T790M/Del19)细胞皮下移植肿瘤BALB/c裸小鼠模型各组不同时间点的平均肿瘤体积
Figure GPA0000316018460000742
注:a给药后天数
表14:两侧分别皮下接种NCI-H3122和NCI-H1975 EGFR DTC(C797S/T790M/Del19)细胞皮下移植肿瘤BALB/c裸小鼠模型相对肿瘤增殖率T/C(%)
Figure GPA0000316018460000743
以上试验结果表明:本试验中,化合物2在20mg/kg和40mg/kg剂量下,能同时显著抑制NCI-H3122和NCI-H1975 EGFRDTC(C797S/T790M/Del19)细胞裸小鼠皮下移植瘤的肿瘤生长,且具有量效关系;给药16天后,化合物2(20mg/kg)对NCI-H3122和NCI-H1975 EGFRDTC(C797S/T790M/Del19)皮下移植瘤的T/C%分别为8.16%和37.95%,T/C%均<40%,达到中国国家药品管理监督局发布的《细胞毒类抗肿瘤药物非临床研究技术指导原则》中疗效的评价标准;而化合物2(40mg/kg)对NCI-H3122和NCI-H1975 EGFRDTC(C797S/T790M/Del19)皮下移植瘤的T/C%分别为3.6%和14.36%,抑制肿瘤生长作用更强,具有明确的量效关系;
而Crizotinib(50mg/kg)在本试验中未见明显抑制NCI-H3122和NCI-H1975 EGFRDTC(C797S/T790M/Del19)细胞裸小鼠皮下移植瘤肿瘤生长的作用,给药16天后,对NCI-H3122和NCI-H1975 EGFR DTC(C797S/T790M/Del19)皮下移植瘤的T/C%分别为49.35%和95.67%,均未达到有效标准。
以上结果提示:化合物2能同时显著抑制NCI-H3122和NCI-H1975 EGFR DTC(C797S/T790M/Del19)细胞裸小鼠皮下移植瘤的肿瘤生长,且具有明确的量效关系。
实验例10细胞抗增殖实验4
1.实验目的:检测受试化合物对BaF3细胞含ALK突变的细胞株增殖的影响
2.实验材料
BaF3 EML-4-ALK-L1196M细胞系,品牌:康源博创,货号:KC-0102
Cell Counting Kit-8(CCK-8),品牌:Targetmol,货号:C0005
多功能酶标仪POLARstar Omega,品牌:BMG LABTECH
3.实验方法
第0天:种板
a.将细胞从培养箱中取出,在超净工作台中吹打至均匀的细胞悬液后计数。
b.根据细胞计数结果,调整细胞悬液密度,110μL每孔(含8000细胞)接种于96孔板中。
c.将10μL梯度稀释好的化合物加入细胞板中,使化合物的终浓度为500、166.67、55.56、18.52、6.17、2.06、0.69、0.23、0.08nM。
d.将细胞板于37℃,5%CO2的培养箱中孵育72h。
第3天:将CCK8放到室温平衡后,向各孔加CCK810μL,将细胞板于37℃,5%CO2的培养箱中孵育2h后,于多功能酶标仪POLARstar Omega中检测信号值OD450。采用GraphPadprism分析软件通过计算机拟合计算各化合物的IC50(读取50%抑制率时对应的化合物的浓度即得化合物对细胞活性抑制的IC50)。抑制率%=(未加药对照组读值-样品读值)/(未加药对照组读值-只加培养基对照组读值)×100
4.试验结果:本发明实施例的化合物、对比实施例的化合物对表达EML-4-ALK-L1196M的BaF3细胞的IC50值在表15中展示。
结论:从表15中我们可以看出,本发明实施例的化合物对表达EML-4-ALK-L1196M的BaF3细胞增殖有着非常好的抑制作用,抑制活性优于对照化合物4。
表15:化合物2和对照例4对于BaF3 EML-4-ALK-L1196M细胞的抑制作用
化合物 <![CDATA[第一次试验IC<sub>50</sub>(nM)]]> <![CDATA[第二次试验IC<sub>50</sub>(nM)]]>
化合物2 15.14 10.38
对照化合物4 81.45 74.61
实验例11药代动力学实验
取SD大鼠6只,全雄性,约8-9周大,体重约430g/只,禁食不禁水18小时。
分为两组,每组3只,组1的大鼠用化合物2给药,组2的大鼠用对照化合物4给药,均口服灌胃给药,给药剂量20mg/kg。使用70mM柠檬酸缓冲液(pH3.0)配制灌胃液,给药体积5ml/kg。
分别在给药后0.5、1.5、3、4.5、8、12、24、36、48和72h自大鼠眼眶取血0.6ml(EDTA-2K抗凝),分离血浆,-70℃保存,使用液相色谱串联质谱(LC-MS/MS)分析血浆样品。使用DAS3.3.1软件的非房室模型分析模块个体动物的血浆浓度-时间数据,并计算测试化合物的药代动力学参数。大鼠中化合物的药代动力学特性如表16所示。
表16:化合物的药代动力学特性
Figure GPA0000316018460000761
从表16中可见,大鼠单次口服相同剂量下,化合物2的***暴露量高于对照化合物4。

Claims (10)

1.化合物或其药学上可接受的盐,该化合物为
Figure FDA0003900543090000011
2.药物组合物,包含权利要求1所述的化合物或其药学上可接受的盐,以及药学上可接受的载体。
3.药物组合物,包含权利要求1所述的化合物和其他抗癌药物或抗肿瘤药物。
4.如权利要求3所述的药物组合物,其中所述抗癌药物或抗肿瘤药物为细胞毒类药物、激素类药物、抗代谢类药物、肿瘤靶向药物、PARP抑制剂类药物、辅助治疗药物或抗肿瘤生物药中的一种或多种。
5.如权利要求4所述的药物组合物,其中所述细胞毒类药物为卡铂、顺铂、伊立替康、紫杉醇、氟脲嘧啶、阿糖胞苷、来那度胺、维甲酸中的一种或多种;所述激素类药物为***、氟维司群、他莫昔芬中的一种或多种;所述抗代谢类药物为氟尿嘧啶、甲氨蝶呤、呋喃氟尿嘧啶、阿糖胞苷中的一种或多种;所述肿瘤靶向药物为伊马替尼、厄洛替尼、拉帕替尼中的一种或多种;所述PARP抑制剂类药物为Olaparib、Rubraca、Zejula中的一种或多种;所述辅助治疗药物为重组人粒细胞集落刺激因子、***、帕米膦酸二钠、唑来膦酸中的一种或多种;所述抗肿瘤生物药为Keytruda、Opdiv、Tecentriq、Imfinzi、Bavencio中的一种或多种。
6.药物制剂,含有权利要求1所述的化合物或其药学上可接受的盐,以及药学上可接受的辅料。
7.根据权利要求1所述的化合物或其药学上可接受的盐或者权利要求2-5中任一项所述的药物组合物或权利要求6所述的药物制剂在制备预防和/或治疗癌症的药物中的应用。
8.如权利要求7所述的应用,其中所述癌症为浆细胞瘤、套细胞瘤、多发性骨髓瘤、黑色素瘤、乳腺癌、肝癌、***、肺癌、淋巴瘤、白血病、卵巢癌、肾癌、胃癌、鼻咽癌、甲状腺癌、胰腺癌、***癌、腺癌、口腔癌、食道癌、鳞状细胞癌或结肠癌。
9.根据权利要求1所述的化合物或其药学上可接受的盐或权利要求2-5中任一项所述的组合物或权利要求6所述的药物制剂在制备EFGR抑制剂或ALK抑制剂或EFGR及ALK抑制剂或者蛋白激酶抑制剂中的应用。
10.根据权利要求9所述的应用,其中所述EFGR抑制剂或ALK抑制剂或EFGR及ALK抑制剂或者蛋白激酶抑制剂应用于浆细胞瘤、套细胞瘤、多发性骨髓瘤、黑色素瘤、乳腺癌、肝癌、***、肺癌、淋巴瘤、白血病、卵巢癌、肾癌、胃癌、鼻咽癌、甲状腺癌、胰腺癌、***癌、腺癌、口腔癌、食道癌、鳞状细胞癌或结肠癌。
CN202180004570.6A 2020-07-03 2021-07-02 芳基磷氧类化合物及其用途 Active CN114728994B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211290351.1A CN115677773A (zh) 2020-07-03 2021-07-02 芳基磷氧类化合物及其用途

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
CN202010638649 2020-07-03
CN2020106386491 2020-07-03
CN202011464023 2020-12-11
CN202011464023X 2020-12-11
PCT/CN2021/104219 WO2022002241A1 (zh) 2020-07-03 2021-07-02 芳基磷氧类化合物及其用途

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202211290351.1A Division CN115677773A (zh) 2020-07-03 2021-07-02 芳基磷氧类化合物及其用途

Publications (2)

Publication Number Publication Date
CN114728994A CN114728994A (zh) 2022-07-08
CN114728994B true CN114728994B (zh) 2023-04-28

Family

ID=79317470

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202211290351.1A Pending CN115677773A (zh) 2020-07-03 2021-07-02 芳基磷氧类化合物及其用途
CN202180004570.6A Active CN114728994B (zh) 2020-07-03 2021-07-02 芳基磷氧类化合物及其用途

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202211290351.1A Pending CN115677773A (zh) 2020-07-03 2021-07-02 芳基磷氧类化合物及其用途

Country Status (8)

Country Link
US (1) US20230322822A1 (zh)
EP (1) EP4177258A1 (zh)
JP (1) JP2023532151A (zh)
KR (1) KR20230026445A (zh)
CN (2) CN115677773A (zh)
AU (1) AU2021300495B2 (zh)
CA (1) CA3184218A1 (zh)
WO (1) WO2022002241A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023025164A1 (zh) * 2021-08-27 2023-03-02 成都地奥九泓制药厂 芳基磷氧化合物的晶型、制备方法及用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102105150A (zh) * 2008-05-21 2011-06-22 阿里亚德医药股份有限公司 用作激酶抑制剂的磷衍生物
WO2012151561A1 (en) * 2011-05-04 2012-11-08 Ariad Pharmaceuticals, Inc. Compounds for inhibiting cell proliferation in egfr-driven cancers
WO2013169401A1 (en) * 2012-05-05 2013-11-14 Ariad Pharmaceuticals, Inc. Compounds for inhibiting cell proliferation in egfr-driven cancers
CN108689994A (zh) * 2017-07-01 2018-10-23 浙江同源康医药股份有限公司 用作alk激酶抑制剂的化合物及其应用
CN110467638A (zh) * 2018-05-09 2019-11-19 北京赛特明强医药科技有限公司 一种含有间氯苯胺类取代基的双氨基氯代嘧啶类化合物、制备方法及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220402948A1 (en) * 2019-09-26 2022-12-22 Betta Pharmaceuticals Co., Ltd. Egfr inhibitor, composition and preparation method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102105150A (zh) * 2008-05-21 2011-06-22 阿里亚德医药股份有限公司 用作激酶抑制剂的磷衍生物
WO2012151561A1 (en) * 2011-05-04 2012-11-08 Ariad Pharmaceuticals, Inc. Compounds for inhibiting cell proliferation in egfr-driven cancers
WO2013169401A1 (en) * 2012-05-05 2013-11-14 Ariad Pharmaceuticals, Inc. Compounds for inhibiting cell proliferation in egfr-driven cancers
CN108689994A (zh) * 2017-07-01 2018-10-23 浙江同源康医药股份有限公司 用作alk激酶抑制剂的化合物及其应用
CN110467638A (zh) * 2018-05-09 2019-11-19 北京赛特明强医药科技有限公司 一种含有间氯苯胺类取代基的双氨基氯代嘧啶类化合物、制备方法及其应用

Also Published As

Publication number Publication date
EP4177258A1 (en) 2023-05-10
US20230322822A1 (en) 2023-10-12
WO2022002241A1 (zh) 2022-01-06
CN115677773A (zh) 2023-02-03
JP2023532151A (ja) 2023-07-26
KR20230026445A (ko) 2023-02-24
CA3184218A1 (en) 2022-01-06
AU2021300495B2 (en) 2023-11-30
CN114728994A (zh) 2022-07-08
AU2021300495A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
KR102134204B1 (ko) 신규 화합물
TWI765908B (zh) 苯並咪唑類化合物激酶抑制劑及其製備方法和應用
KR101914720B1 (ko) 암 질환의 치료를 위한 fgfr 키나제 억제제로서의 치환된 벤조피라진 유도체
WO2021088945A1 (zh) 作为shp2抑制剂的化合物及其应用
EA019966B1 (ru) Соединения и композиции в качестве ингибиторов протеинкиназы
TW201305119A (zh) 芳基胺基雜環羧醯胺化合物
KR20140093665A (ko) Fgfr 키나제 조절제로서의 퀴놀린
TW200846344A (en) Chemical compounds
CA2990564A1 (en) Bicyclic heterocyclic amide derivative
WO2017071516A1 (zh) 一种蛋白激酶抑制剂及其制备方法和医药用途
TWI580679B (zh) 雜芳基並嘧啶類衍生物、其製備方法和用途
CN113677680A (zh) Egfr抑制剂及其组合物和应用
WO2023088408A1 (zh) 选择性parp1抑制剂及其应用
CA3174890A1 (en) Quinazoline compound and its use as a phosphatidylinositol 3-kinase (pi3k) inhibitor
CN114728994B (zh) 芳基磷氧类化合物及其用途
CN110831596A (zh) 作为蛋白激酶抑制剂的氨基噻唑化合物
WO2020224626A1 (zh) 用作激酶抑制剂的化合物及其应用
JP2018135268A (ja) 新規ヘテロアリールアミノ−3−ピラゾール誘導体およびその薬理学上許容される塩
CN106008503A (zh) 螺环芳基砜作为蛋白激酶抑制剂
CN114940674B (zh) 基于crbn配体诱导fgfr3-tacc3降解的化合物及其制备方法和应用
WO2023025164A1 (zh) 芳基磷氧化合物的晶型、制备方法及用途
CN108047231B (zh) [1,2,4]三嗪并[6,1-a]异吲哚化合物的盐酸盐及其应用
WO2021198188A1 (en) Quinazolinone derivatives and uses thereof for treating a cancer
EP4332106A1 (en) Novel compound as protein kinase inhibitor
TW202237101A (zh) Ctla-4小分子降解劑及其應用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant