CN113784776B - 气体处理方法和气体处理装置 - Google Patents

气体处理方法和气体处理装置 Download PDF

Info

Publication number
CN113784776B
CN113784776B CN202080032955.9A CN202080032955A CN113784776B CN 113784776 B CN113784776 B CN 113784776B CN 202080032955 A CN202080032955 A CN 202080032955A CN 113784776 B CN113784776 B CN 113784776B
Authority
CN
China
Prior art keywords
gas
bromofluoroethylene
bromo
adsorbent
fluoroethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080032955.9A
Other languages
English (en)
Other versions
CN113784776A (zh
Inventor
松井一真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Lishennoco Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lishennoco Co ltd filed Critical Lishennoco Co ltd
Publication of CN113784776A publication Critical patent/CN113784776A/zh
Application granted granted Critical
Publication of CN113784776B publication Critical patent/CN113784776B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0446Means for feeding or distributing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • B01D53/70Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/306Active carbon with molecular sieve properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/14Type A
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/22Type X
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/308Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/10Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/18Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2062Bromine compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2066Fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/704Solvents not covered by groups B01D2257/702 - B01D2257/7027
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Computer Hardware Design (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供一种能有效去除溴氟乙烯的气体处理方法和气体处理装置。通过使含有溴氟乙烯的气体,在0℃以上且低于120℃的温度环境下接触具有平均细孔径0.4nm以上4nm以下的细孔的吸附剂(7),使溴氟乙烯吸附于吸附剂(7),而从前述气体中分离溴氟乙烯。

Description

气体处理方法和气体处理装置
技术领域
本发明涉及一种气体处理方法和气体处理装置。
背景技术
在半导体的制造步骤中,作为干蚀刻装置的蚀刻气体或CVD装置的腔室清洁气体等,使用四氟化碳、六氟乙烷等全氟碳化物。这些全氟碳化物为极为稳定的化合物且对地球温室化的影响较大,所以释放至大气时有对环境造成不良影响的风险。因此,从半导体的制造步骤中排出的废气以将所含的全氟碳化物回收或分解后再释放至大气中为宜。
在专利文献1中,作为上述全氟碳化物的替代物的环境负荷较小的等离子体蚀刻气体,其公开了一种含有具有双键的溴氟碳化物(溴氟烯)的等离子体蚀刻气体。溴氟烯其与四氟化碳、六氟乙烷等不具有双键的全氟碳化物相比对地球温室化的影响较小,但并非小到可予以忽视。而且,溴氟烯其毒性较高,直接释放至大气时会对人体及环境造成不良影响,因此,由半导体的制造步骤中排出的废气必需将所含溴氟烯回收或分解后,再释放至大气中。
作为溴氟烯的处理方法,例如专利文献2中提出一种使碳原子数3或4的溴氟烯吸附于沸石的方法。
[现有技术文献]
[专利文献]
[专利文献1]国际公开第2012/124726号
[专利文献2]日本专利公开公报2017年第47338号
发明内容
[发明所要解决的课题]
然而,目前仍未发现能有效去除碳原子数2的溴氟烯(溴氟乙烯)的方法。
本发明以提供一种能有效去除溴氟乙烯的气体处理方法和气体处理装置为课题。
[解决课题的手段]
为解决前述课题,本发明一方案如以下[1]~[9]所述。
[1].一种气体处理方法,其通过使含有溴氟乙烯的气体在0℃以上且低于120℃的温度环境下接触具有平均细孔径为0.4nm以上且4nm以下的细孔的吸附剂,使所述溴氟乙烯吸附于所述吸附剂,而从所述气体中分离所述溴氟乙烯。
[2].如[1]所述的气体处理方法,所述溴氟乙烯为溴三氟乙烯、1-溴-2,2-二氟乙烯、(E)-1-溴-1,2-二氟乙烯、(Z)-1-溴-1,2-二氟乙烯、1-溴-1-氟乙烯、(E)-1-溴-2-氟乙烯、(Z)-1-溴-2-氟乙烯、1,1-二溴-2-氟乙烯、(E)-1,2-二溴-2-氟乙烯、(Z)-1,2-二溴-2-氟乙烯和三溴氟乙烯中的至少1种。
[3].如[1]或[2]所述的气体处理方法,所述含有溴氟乙烯的气体为所述溴氟乙烯与非活性气体的混合气体。
[4].如[3]所述的气体处理方法,所述非活性气体为氮气、氦气、氩气、氖气和氪气中的至少1种。
[5].如[1]~[4]中任一项所述的气体处理方法,所述含有溴氟乙烯的气体中的所述溴氟乙烯的含有率低于25体积%。
[6].如[1]~[5]中任一项所述的气体处理方法,所述吸附剂为沸石和活性碳中的至少一者。
[7].如[1]~[6]中任一项所述的气体处理方法,所述温度环境为0℃以上且100℃以下。
[8].如[1]~[6]中任一项所述的气体处理方法,所述温度环境为0℃以上且70℃以下。
[9].一种气体处理装置,其具备收纳有具有平均细孔径为0.4nm以上且4nm以下的细孔的吸附剂的吸附处理容器,
所述吸附处理容器具有供给口及排出口,
从所述供给口向所述吸附处理容器内供给含有溴氟乙烯的气体,
将对所述含有溴氟乙烯的气体实施采用所述吸附剂的吸附处理而得的处理过的气体从所述吸附处理容器内通过所述排出口排到外部。
[发明效果]
根据本发明,可有效去除溴氟乙烯。
附图说明
图1为说明本发明一实施方式的气体处理装置的结构的示意图。
具体实施方式
以下就本发明一实施方式加以说明。此外,本实施方式表示本发明的一例,本发明不受限于本实施方式。此外,对于本实施方式可施加各种变更或改良,且施加各种变更或改良的形态也可包含在本发明中。
本实施方式的气体处理装置1具备收纳有具有平均细孔径0.4nm以上4nm以下的细孔的吸附剂7的吸附塔6(相当于本发明的构成要件的“吸附处理容器”)。此吸附塔6具有供给口4及排出口5,从所述供给口4向吸附塔6内供给含有溴氟乙烯的气体,将对含有溴氟乙烯的气体实施采用吸附剂7的吸附处理而得的处理过的气体从吸附塔6内通过所述排出口5排到外部。
进而,本实施方式的气体处理装置1具备:供给溴氟乙烯气体的溴氟乙烯气体供给机构2、供给非活性气体的非活性气体供给机构3、及进行傅立叶变换红外线光谱分析的傅立叶变换红外线光谱仪8。
溴氟乙烯气体供给机构2与吸附塔6的供给口4通过配管连接,从溴氟乙烯气体供给机构2传送的溴氟乙烯气体由供给口4供给至吸附塔6的内部,在0℃以上且低于120℃的温度环境下实施采用吸附剂7的吸附处理。
由供给口4供给至吸附塔6的内部的气体可为仅由溴氟乙烯构成的溴氟乙烯气体,也可为溴氟乙烯气体与其他气体的混合气体。其他气体不特别限定,可举出例如非活性气体。也即,可如图1所示,使从溴氟乙烯气体供给机构2延伸的配管与从非活性气体供给机构3延伸的配管汇流,并使汇流的配管连接于吸附塔6的供给口4。
若为此种构成,则从溴氟乙烯气体供给机构2传送的溴氟乙烯气体与从非活性气体供给机构3传送的非活性气体在汇流的配管内混合而形成混合气体,混合气体便由供给口4供给至吸附塔6的内部。以下有时将仅由溴氟乙烯构成的溴氟乙烯气体、及溴氟乙烯气体与其他气体的混合气体记载为“含溴氟乙烯的气体”。
供给至吸附塔6的内部的含溴氟乙烯的气体,在0℃以上且低于120℃的温度环境下与吸附剂7接触,实施采用吸附剂7的吸附处理。也即,由于含溴氟乙烯的气体中的溴氟乙烯吸附于吸附剂7,含溴氟乙烯的气体即分离成溴氟乙烯与其他气体。
实施采用吸附剂7的吸附处理而得的处理过的气体,即经分离的其他气体经由排出口5从吸附塔6内向外部排出。由于排出口5与傅立叶变换红外线光谱仪8通过配管连接,处理过的气体便供给至傅立叶变换红外线光谱仪8。
在傅立叶变换红外线光谱仪8中,对处理过的气体进行傅立叶变换红外线光谱分析,且进行处理过的气体中所含有的溴氟乙烯的定量分析或定性分析。
傅立叶变换红外线光谱仪8连接有废弃用配管9,傅立叶变换红外线光谱分析完成后的处理过的气体经由废弃用配管9向***外排出。
若采用本实施方式的气体处理装置1,无需繁琐的操作即能以温和的条件有效去除溴氟乙烯。
以下就本实施方式的气体处理装置1与本实施方式的气体处理方法进一步详细加以说明。
[溴氟乙烯]
溴氟乙烯指分子内具有氟原子与溴原子的碳原子数2的不饱和烃。
溴氟乙烯的具体例可举出溴三氟乙烯、1-溴-2,2-二氟乙烯、(E)-1-溴-1,2-二氟乙烯、(Z)-1-溴-1,2-二氟乙烯、1-溴-1-氟乙烯、(E)-1-溴-2-氟乙烯、(Z)-1-溴-2-氟乙烯、1,1-二溴-2-氟乙烯、(E)-1,2-二溴-2-氟乙烯、(Z)-1,2-二溴-2-氟乙烯、三溴氟乙烯等。
这些之中,基于可在常温下容易地气化的观点,优选为溴三氟乙烯、1-溴-2,2-二氟乙烯、(E)-1-溴-1,2-二氟乙烯、(Z)-1-溴-1,2-二氟乙烯、1-溴-1-氟乙烯、(E)-1-溴-2-氟乙烯、(Z)-1-溴-2-氟乙烯。
溴氟乙烯可单独使用1种,也可并用2种以上。
[非活性气体]
非活性气体可举出氮气(N2)、氦(He)、氩(Ar)、氖(Ne)、氪(Kr)、氙(Xe)。这些之中,优选为氮气、氦气、氩气、氖气及氪气,更优选为氮气及氩气。这些非活性气体可单独使用1种,也可并用2种以上。
[吸附剂]
吸附剂的种类只要是具有平均细孔径0.4nm以上4nm以下的细孔则不特别限定,基于经济性或取得容易性观点,优选为活性碳、沸石、硅胶、氧化铝,更优选为沸石及活性碳。
沸石的结构可举出例如T型、毛沸石型、菱沸石型、4A型、5A型、ZSM-5型、LiLSX型、AlPO4-11型、镁碱沸石型、菱钾沸石(offretite)型、丝光沸石型、β型、AlPO4-5型、NaY型、NaX型、CaX型、AlPO4-8型、UTD-1型、VPI-5型、磷酸镓(Cloverite)型、MCM-41型、FSM-16型。沸石当中,基于取得容易性观点,特优选为分子筛4A(例如ユニオン昭和株式会社制)、分子筛5A(例如ユニオン昭和株式会社制)、分子筛13X(例如ユニオン昭和株式会社制)等。
吸附剂所具有的细孔的平均细孔径若为0.4nm以上4nm以下,能有效吸附溴氟乙烯,且吸附的溴氟乙烯不易发生脱附。
吸附剂的形状不特别限定,可为例如纤维状、蜂巢状、圆柱状、丸粒状、破碎状、粒状、粉末状。
[吸附处理的温度]
采用吸附剂7的吸附处理需在0℃以上且低于120℃的温度环境下进行,优选在0℃以上100℃以下的温度环境下,更优选在0℃以上70℃以下的温度环境下进行。
若在上述的温度环境下使含溴氟乙烯的气体与吸附剂7接触而进行吸附处理,则吸附的溴氟乙烯不易从吸附剂7脱附,因此溴氟乙烯的吸附量增加。再者,由于不需要用以控制温度的大型装置,可使气体处理装置1的结构更简单。而且,在吸附塔6内不易发生溴氟乙烯的液化。
[其他吸附条件]
含溴氟乙烯的气体中的溴氟乙烯的含有率(浓度)、含溴氟乙烯的气体的流量、吸附剂7的量、吸附塔6的大小等吸附条件不特别限定,可依据含溴氟乙烯的气体的种类、量等适宜设定。其中,含溴氟乙烯的气体中的溴氟乙烯的含有率(浓度)可定为50体积%以下,优选定为30体积%以下,更优选定为25体积%以下。
[实施例]
以下示出实施例及比较例更详细地说明本发明。
[实施例1]
利用具有与图1所示气体处理装置1同样结构的气体处理装置进行含溴氟乙烯的气体的吸附处理。此气体处理装置具备内径1英寸、长100mm的不锈钢制吸附塔,且此吸附塔中填充有作为吸附剂的28.7g的分子筛13X(ユニオン昭和株式会社制)。
分子筛13X所具有的细孔的平均细孔径为1.0nm。平均细孔径通过BET吸附法来测定。测定条件如下:
测定仪器:日机装株式会社制BELSORP-max
吸附物质:氮气
测定温度:-196℃
吸附剂的前处理:在真空条件下以300℃加热干燥6h
吸附剂的用量:0.10g。
以流量50mL/min将溴三氟乙烯与干燥氮气的混合气体(混合气体中的溴三氟乙烯的含有率为20体积%)供给至吸附塔,进行吸附处理。此外,吸附处理中将吸附塔内的温度(具体为吸附剂的表面温度)维持在30.0~40.0℃。
利用傅立叶变换红外线光谱仪测定从吸附塔的排出口排出的处理过的气体中的溴三氟乙烯的浓度。其结果,从混合气体刚开始供给时至供给30分钟时的溴三氟乙烯的浓度为206.35~273.81体积ppm(参照下述表1)。也即,吸附剂使用分子筛13X时,有99.86~99.90%的溴三氟乙烯被吸附剂吸附。
表1
[实施例2]
除吸附剂使用椰壳活性碳(大阪ガスケミカル株式会社制)来替代分子筛13X以外以与实施例1同样的方式进行溴三氟乙烯的吸附处理。椰壳活性碳所具有的细孔的平均细孔径为2.5nm。其结果,从刚开始供给混合气体时至供给30分钟时的溴三氟乙烯的浓度为27.78~436.51体积ppm(参照下述表2)。也即,吸附剂使用椰壳活性碳时,有99.78~99.99%的溴三氟乙烯被吸附剂吸附。
表2
[实施例3]
除吸附剂使用煤系活性碳(大阪ガスケミカル株式会社制)来替代分子筛13X以外以与实施例1同样的方式进行溴三氟乙烯的吸附处理。煤系活性碳所具有的细孔的平均细孔径为3.4nm。其结果,从刚开始供给混合气体时至供给30分钟时的溴三氟乙烯的浓度为23.81~369.05体积ppm(参照下述表3)。也即,吸附剂使用煤系活性碳时,有99.82~99.99%的溴三氟乙烯被吸附剂吸附。
表3
[实施例4]
除吸附剂使用分子筛5A(ユニオン昭和株式会社制)来替代分子筛13X以外以与实施例1同样的方式进行溴三氟乙烯的吸附处理。分子筛5A所具有的细孔的平均细孔径为0.5nm。
其结果,刚开始供给混合气体时的溴三氟乙烯的浓度为630.95体积ppm,混合气体供给开始5分钟时的溴三氟乙烯的浓度为5507.94体积ppm(参照下述表4)。分析吸附效率降低的原因为吸附剂发生吸附转效所致。也即,吸附剂使用分子筛5A时,与分子筛13X及上述活性碳相比吸附容量虽较差,但仍有97%以上的溴三氟乙烯被吸附。
表4
[实施例5]
除将吸附塔内的温度设为60~70℃以外以与实施例1同样的方式进行溴三氟乙烯的吸附处理。其结果,混合气体开始供给15分钟后的溴三氟乙烯的浓度为503.97体积ppm、20分钟后的溴三氟乙烯的浓度为2222.22体积ppm(参照下述表5)。
与实施例1相比吸附容量降低的原因,分析是因吸附剂被加温,而促进溴三氟乙烯的脱附的原因。然而,纵为本条件,仍有98%以上的溴三氟乙烯被吸附。
表5
[实施例6]
除将吸附塔内的温度设为0~5℃以外以与实施例1同样的方式进行溴三氟乙烯的吸附处理。其结果,从刚开始供给混合气体时至供给30分钟时的溴三氟乙烯的浓度为19.84~206.35体积ppm(参照下述表6)。与实施例1相比吸附容量提升的原因,分析是通过将吸附剂冷却,而抑制溴三氟乙烯的脱附的原因。
表6
[实施例7]
除含溴氟乙烯的气体使用1-溴-1-氟乙烯与干燥氮气的混合气体(混合气体中的1-溴-1-氟乙烯的含有率为20体积%)以外以与实施例1同样的方式进行1-溴-1-氟乙烯的吸附处理。其结果,从刚开始供给混合气体时至供给30分钟时的1-溴-1-氟乙烯的浓度为178.57~202.38体积ppm(参照下述表7)。也即,吸附剂使用分子筛13X时,有99.90~99.91%的1-溴-1-氟乙烯被吸附剂。
表7
[实施例8]
除吸附剂使用煤系活性碳(大阪ガスケミカル株式会社制)来替代分子筛13X以外以与实施例7同样的方式进行1-溴-1-氟乙烯的吸附处理。其结果,从刚开始供给混合气体时至供给30分钟时的1-溴-1-氟乙烯的浓度为23.81~206.35体积ppm(参照下述表8)。也即,吸附剂使用煤系活性碳时,有99.90~99.99%的1-溴-1-氟乙烯被吸附剂吸附。
表8
[实施例9]
除含溴氟乙烯的气体使用1-溴-2-氟乙烯((E)-1-溴-2-氟乙烯与(Z)-1-溴-2-氟乙烯以等摩尔量混合而成的)与干燥氮气的混合气体(混合气体中的1-溴-2-氟乙烯的含有率为20体积%)以外以与实施例1同样的方式进行1-溴-2-氟乙烯的吸附处理。其结果,从刚开始供给混合气体时至供给30分钟时的1-溴-2-氟乙烯的浓度为162.70~285.71ppm(参照下述表9)。也即,吸附剂使用分子筛13X时,有99.86~99.92%的1-溴-2-氟乙烯被吸附剂吸附。
表9
[实施例10]
除吸附剂使用煤系活性碳(大阪ガスケミカル株式会社制)来替代分子筛13X以外以与实施例9同样的方式进行1-溴-2-氟乙烯((E)-1-溴-2-氟乙烯与(Z)-1-溴-2-氟乙烯以等摩尔量混合而成的)的吸附处理。其结果,从刚开始供给混合气体时至供给30分钟时的1-溴-2-氟乙烯的浓度为19.84~166.67体积ppm(参照下述表10)。也即,吸附剂使用煤系活性碳时,有99.92~99.99%的1-溴-2-氟乙烯被吸附剂吸附。
表10
[实施例11]
除含溴氟乙烯的气体使用1-溴-2,2-二氟乙烯与干燥氮气的混合气体(混合气体中的1-溴-2,2-二氟乙烯的含有率为20体积%)以外以与实施例1同样的方式进行1-溴-2,2-二氟乙烯的吸附处理。其结果,从刚开始供给混合气体时至供给30分钟时的1-溴-2,2-二氟乙烯的浓度为150.79~246.03体积ppm(参照下述表11)。也即,吸附剂使用分子筛13X时,有99.88~99.92%的1-溴-2,2-二氟乙烯被吸附剂吸附。
表11
[实施例12]
除吸附剂使用煤系活性碳(大阪ガスケミカル株式会社制)来替代分子筛13X以外以与实施例11同样的方式进行1-溴-2,2-二氟乙烯的吸附处理。其结果,从刚开始供给混合气体时至供给30分钟时的1-溴-2,2-二氟乙烯的浓度为23.81~206.35体积ppm(参照下述表12)。也即,吸附剂使用煤系活性碳时,有99.90~99.99%%的1-溴-2,2-二氟乙烯被吸附剂吸附。
表12
[比较例1]
除吸附剂使用B型硅胶(丰田化工株式会社制)来替代分子筛13X以外以与实施例1同样的方式进行溴三氟乙烯的吸附处理。B型硅胶所具有的细孔的平均细孔径为6.0nm。其结果,在开始供给混合气体起2分钟以内,检测出浓度超过定量测定极限(8000ppm)的溴三氟乙烯。也即,吸附剂使用B型硅胶时,无法吸附溴三氟乙烯。
[比较例2]
除吸附剂使用分子筛3A(ユニオン昭和株式会社制)来替代分子筛13X以外以与实施例1同样的方式进行溴三氟乙烯的吸附处理。分子筛3A所具有的细孔的平均细孔径为0.3nm。其结果,从刚开始供给混合气体时,就检测出浓度超过定量测定极限(8000ppm)的溴三氟乙烯。也即,吸附剂使用分子筛3A时,无法吸附溴三氟乙烯。
[比较例3]
除吸附剂使用γ-氧化铝(高纯度化学研究所制)来替代分子筛13X以外以与实施例1同样的方式进行溴三氟乙烯的吸附处理。γ-氧化铝所具有的细孔的平均细孔径为8.5nm。其结果,从刚开始供给混合气体时,就检测出浓度超过定量测定极限(8000ppm)的溴三氟乙烯。也即,吸附剂使用γ-氧化铝时,无法吸附溴三氟乙烯。
[比较例4]
除将吸附塔内的温度设为120℃以外以与实施例1同样的方式进行溴三氟乙烯的吸附处理。其结果,从刚开始供给混合气体时,就检测出浓度超过定量测定极限(8000ppm)的溴三氟乙烯。也即,吸附塔内的温度为120℃以上的高温时,无法吸附溴三氟乙烯。
[比较例5]
除处理气体使用2-溴-1,1,3,3,3-五氟丙烯与干燥氮气的混合气体(混合气体中的2-溴-1,1,3,3,3-五氟丙烯的含有率为20体积%)以外以与实施例4同样的方式进行2-溴-1,1,3,3,3-五氟丙烯的吸附处理。其结果,从刚开始供给混合气体时,就检测出浓度超过定量测定极限(8000ppm)的2-溴-1,1,3,3,3-五氟丙烯。也即,吸附剂使用分子筛5A时,无法吸附2-溴-1,1,3,3,3-五氟丙烯。
[比较例6]
除处理气体使用2-溴-1,1,3,3,3-五氟丙烯与干燥氮气的混合气体(混合气体中的2-溴-1,1,3,3,3-五氟丙烯的含有率为20体积%)以外以与实施例1同样的方式进行2-溴-1,1,3,3,3-五氟丙烯的吸附处理。其结果,开始供给混合气体10分钟后,即检测出浓度超过定量测定极限(8000ppm)的2-溴-1,1,3,3,3-五氟丙烯。也即,吸附剂使用分子筛13X时,得到2-溴-1,1,3,3,3-五氟丙烯的吸附量比溴三氟乙烯的吸附量差的结果。
附图符号说明
1:气体处理装置
2:溴氟乙烯气体供给机构
3:非活性气体供给机构
4:供给口
5:排出口
6:吸附塔
7:吸附剂
8:傅立叶变换红外线光谱仪
9:废弃用配管

Claims (8)

1.一种气体处理方法,其通过使含有溴氟乙烯的气体在0℃以上且低于120℃的温度环境下接触具有平均细孔径为0.4nm以上且4nm以下的细孔的吸附剂,使所述溴氟乙烯吸附于所述吸附剂,而从所述气体中分离所述溴氟乙烯。
2.如权利要求1所述的气体处理方法,所述溴氟乙烯为溴三氟乙烯、1-溴-2,2-二氟乙烯、(E)-1-溴-1,2-二氟乙烯、(Z)-1-溴-1,2-二氟乙烯、1-溴-1-氟乙烯、(E)-1-溴-2-氟乙烯、(Z)-1-溴-2-氟乙烯、1,1-二溴-2-氟乙烯、(E)-1,2-二溴-2-氟乙烯、(Z)-1,2-二溴-2-氟乙烯和三溴氟乙烯中的至少1种。
3.如权利要求1或2所述的气体处理方法,所述含有溴氟乙烯的气体为所述溴氟乙烯与非活性气体的混合气体。
4.如权利要求3所述的气体处理方法,所述非活性气体为氮气、氦气、氩气、氖气和氪气中的至少1种。
5.如权利要求1或2所述的气体处理方法,所述含有溴氟乙烯的气体中的所述溴氟乙烯的含有率低于25体积%。
6.如权利要求1或2所述的气体处理方法,所述吸附剂为沸石和活性炭中的至少一者。
7.如权利要求1或2所述的气体处理方法,所述温度环境为0℃以上且100℃以下。
8.如权利要求1或2所述的气体处理方法,所述温度环境为0℃以上且70℃以下。
CN202080032955.9A 2019-08-06 2020-07-16 气体处理方法和气体处理装置 Active CN113784776B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019-144440 2019-08-06
JP2019144440 2019-08-06
PCT/JP2020/027717 WO2021024746A1 (ja) 2019-08-06 2020-07-16 ガス処理方法及びガス処理装置

Publications (2)

Publication Number Publication Date
CN113784776A CN113784776A (zh) 2021-12-10
CN113784776B true CN113784776B (zh) 2024-03-19

Family

ID=74503520

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080032955.9A Active CN113784776B (zh) 2019-08-06 2020-07-16 气体处理方法和气体处理装置

Country Status (9)

Country Link
US (1) US20220193597A1 (zh)
EP (1) EP4011833A4 (zh)
JP (1) JPWO2021024746A1 (zh)
KR (1) KR102644490B1 (zh)
CN (1) CN113784776B (zh)
IL (1) IL287766A (zh)
SG (1) SG11202112211VA (zh)
TW (1) TWI771722B (zh)
WO (1) WO2021024746A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0284227A2 (en) * 1987-03-04 1988-09-28 Praxair Canada Inc. Apparatus and process for the recovery of halogenated hydrocarbons in a gas stream
US4820318A (en) * 1987-12-24 1989-04-11 Allied-Signal Inc. Removal of organic compounds from gas streams using carbon molecular sieves
CN1561318A (zh) * 2000-04-28 2005-01-05 昭和电工株式会社 提纯四氟甲烷的方法及其应用
US20070028771A1 (en) * 2005-08-03 2007-02-08 Ji-Young Shin Adsorption apparatus, semiconductor device manufacturing facility comprising the same, and method of recycling perfulorocompounds
WO2009031467A1 (ja) * 2007-09-07 2009-03-12 Kuraray Chemical Co., Ltd. 吸着材及びその製造方法、並びにキャニスタ及びその使用方法
CN101479220A (zh) * 2006-06-30 2009-07-08 昭和电工株式会社 高纯度六氟丙烯的制造方法及清洗气
US20090249953A1 (en) * 2008-03-26 2009-10-08 Matheson Tri-Gas Purification of fluorine containing gases and systems and materials thereof
US20120222556A1 (en) * 2009-09-01 2012-09-06 Blue-Zone Technologies Ltd. Systems and methods for gas treatment
TW201416123A (zh) * 2012-10-31 2014-05-01 China Steel Corp 組合式除臭模組及其應用
CN105829659A (zh) * 2013-12-20 2016-08-03 3M创新有限公司 作为工作流体的氟化烯烃及其使用方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015365A (en) * 1988-04-20 1991-05-14 Vara International Inc. Process for removing halogenated hydrocarbons and other solvents from a solvent laden air (SLA) stream
US5425242A (en) * 1994-04-14 1995-06-20 Uop Process for recovery and purification of refrigerants with solid sorbents
US5904909A (en) * 1997-08-21 1999-05-18 The United States Of America As Represented By The Secretary Of Agriculture Methods for removing and decomposing methyl bromide from fumigation
JP4471448B2 (ja) * 2000-04-28 2010-06-02 昭和電工株式会社 テトラフルオロメタンの精製方法及びその用途
US9368363B2 (en) 2011-03-17 2016-06-14 Zeon Corporation Etching gas and etching method
EP3109225B1 (en) * 2014-02-20 2022-06-08 AGC Inc. Method for purifying fluid that includes trifluoroethylene, and method for producing trifluoroethylene
JP2017047338A (ja) * 2015-08-31 2017-03-09 宇部興産株式会社 ブロモフルオロアルケン含有ガスの処理方法及びブロモフルオロアルケン含有ガスの処理装置
JP2017047387A (ja) * 2015-09-03 2017-03-09 日新製鋼株式会社 硬化膜の製造方法
SG11202003151VA (en) * 2017-11-02 2020-05-28 Showa Denko Kk Etching method and semiconductor manufacturing method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0284227A2 (en) * 1987-03-04 1988-09-28 Praxair Canada Inc. Apparatus and process for the recovery of halogenated hydrocarbons in a gas stream
CN88101700A (zh) * 1987-03-04 1988-10-05 联合碳化加拿大公司 从气体流中回收卤代烃的方法
US4820318A (en) * 1987-12-24 1989-04-11 Allied-Signal Inc. Removal of organic compounds from gas streams using carbon molecular sieves
CN1561318A (zh) * 2000-04-28 2005-01-05 昭和电工株式会社 提纯四氟甲烷的方法及其应用
US20070028771A1 (en) * 2005-08-03 2007-02-08 Ji-Young Shin Adsorption apparatus, semiconductor device manufacturing facility comprising the same, and method of recycling perfulorocompounds
CN101479220A (zh) * 2006-06-30 2009-07-08 昭和电工株式会社 高纯度六氟丙烯的制造方法及清洗气
WO2009031467A1 (ja) * 2007-09-07 2009-03-12 Kuraray Chemical Co., Ltd. 吸着材及びその製造方法、並びにキャニスタ及びその使用方法
US20090249953A1 (en) * 2008-03-26 2009-10-08 Matheson Tri-Gas Purification of fluorine containing gases and systems and materials thereof
US20120222556A1 (en) * 2009-09-01 2012-09-06 Blue-Zone Technologies Ltd. Systems and methods for gas treatment
TW201416123A (zh) * 2012-10-31 2014-05-01 China Steel Corp 組合式除臭模組及其應用
CN105829659A (zh) * 2013-12-20 2016-08-03 3M创新有限公司 作为工作流体的氟化烯烃及其使用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
13X沸石分子筛的改性并用于脱除空气中微量乙烯的研究;赵莹;崔秉鸿;赵军;;山东化工(02);全文 *

Also Published As

Publication number Publication date
CN113784776A (zh) 2021-12-10
JPWO2021024746A1 (zh) 2021-02-11
WO2021024746A1 (ja) 2021-02-11
KR102644490B1 (ko) 2024-03-08
SG11202112211VA (en) 2021-12-30
TW202112430A (zh) 2021-04-01
EP4011833A4 (en) 2023-02-22
EP4011833A1 (en) 2022-06-15
KR20210148295A (ko) 2021-12-07
IL287766A (en) 2022-01-01
US20220193597A1 (en) 2022-06-23
TWI771722B (zh) 2022-07-21

Similar Documents

Publication Publication Date Title
US7160360B2 (en) Purification of hydride gases
TWI426047B (zh) 氙回收系統及回收裝置
JP4652860B2 (ja) クリプトン又はキセノンの回収方法
JP3693626B2 (ja) 吸着剤
EP2272815A1 (en) Processes for purification of acetylene
EP1062022B1 (fr) Decarbonatation de flux gazeux au moyen d'adsorbants zeolitiques
JP3899282B2 (ja) ガス分離方法
KR940001410B1 (ko) 기체상 염소의 농축방법
US5840099A (en) Process for the removal of water, CO2, ethane and C3 + hydrocarbons from a gas stream
JP2007105657A (ja) ガス処理装置
CN111566044A (zh) 在低温温度下从气体或液体流中回收氙的吸附性方法
JPH0698258B2 (ja) 分子篩炭素の圧力変換吸着により酸素および窒素含有ガス混合物から窒素を取得する方法
US20050229947A1 (en) Methods of inserting or removing a species from a substrate
KR20190039433A (ko) 제논 회수를 위한 극저온 흡착 공정
CN113784776B (zh) 气体处理方法和气体处理装置
JP4031293B2 (ja) 亜酸化窒素の回収精製法および回収精製装置
JP4538622B2 (ja) ガス分離装置
Menacherry et al. The effect of water on the infrared spectra of CO adsorbed on Pt/K L-zeolite
JP2005021891A (ja) ガス精製方法及び装置
JPH08309146A (ja) ガス流れからペルフルオロカーボン類を分離除去する方法
US20050183573A1 (en) Method for separating gas mixtures
JPH10249157A (ja) フロンの回収方法
JP2010235398A (ja) 超高純度窒素ガスの製造方法及び製造装置
JP2020006324A (ja) ガス分離装置及びガス分離方法
JP2902317B2 (ja) 不活性ガスの常温精製方法および装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Tokyo, Japan

Applicant after: Lishennoco Co.,Ltd.

Address before: Tokyo, Japan

Applicant before: Showa electrical materials Co.,Ltd.

CB02 Change of applicant information
TA01 Transfer of patent application right

Effective date of registration: 20230515

Address after: Tokyo, Japan

Applicant after: Showa electrical materials Co.,Ltd.

Address before: Tokyo, Japan

Applicant before: SHOWA DENKO Kabushiki Kaisha

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant