WO2021024746A1 - ガス処理方法及びガス処理装置 - Google Patents

ガス処理方法及びガス処理装置 Download PDF

Info

Publication number
WO2021024746A1
WO2021024746A1 PCT/JP2020/027717 JP2020027717W WO2021024746A1 WO 2021024746 A1 WO2021024746 A1 WO 2021024746A1 JP 2020027717 W JP2020027717 W JP 2020027717W WO 2021024746 A1 WO2021024746 A1 WO 2021024746A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
bromofluoroethylene
adsorbent
bromo
fluoroethylene
Prior art date
Application number
PCT/JP2020/027717
Other languages
English (en)
French (fr)
Inventor
一真 松井
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to EP20849694.3A priority Critical patent/EP4011833A4/en
Priority to KR1020217035901A priority patent/KR102644490B1/ko
Priority to SG11202112211VA priority patent/SG11202112211VA/en
Priority to JP2021537659A priority patent/JPWO2021024746A1/ja
Priority to CN202080032955.9A priority patent/CN113784776B/zh
Priority to US17/595,409 priority patent/US20220193597A1/en
Publication of WO2021024746A1 publication Critical patent/WO2021024746A1/ja
Priority to IL287766A priority patent/IL287766A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0446Means for feeding or distributing gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • B01D53/70Organic halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/306Active carbon with molecular sieve properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/14Type A
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/22Type X
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/308Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/10Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/18Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2062Bromine compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/206Organic halogen compounds
    • B01D2257/2066Fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/704Solvents not covered by groups B01D2257/702 - B01D2257/7027
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a gas treatment method and a gas treatment device.
  • perfluorocarbons such as carbon tetrafluoride and ethane hexafluoride are used as etching gas for dry etching equipment and chamber cleaning gas for CVD equipment. Since these perfluorocarbons are extremely stable compounds and have a large effect on global warming, there is concern that they will have an adverse effect on the environment when released into the atmosphere. Therefore, it is preferable that the exhaust gas discharged from the semiconductor manufacturing process is released into the atmosphere after recovering or decomposing the contained perfluorocarbon.
  • Patent Document 1 discloses a plasma etching gas containing a bromofluorocarbon (bromofluoroalkene) having a double bond as a plasma etching gas having a small environmental load as an alternative to the above-mentioned perfluorocarbon.
  • Bromofluoroalkene has a smaller effect on global warming than perfluorocarbons that do not have double bonds such as carbon tetrafluoride and ethane hexafluoride, but it is not negligibly small.
  • bromofluoroalkene is highly toxic, and if it is released into the atmosphere as it is, it adversely affects the human body and the environment.
  • Patent Document 2 proposes a method of adsorbing a bromofluoroalkene having 3 or 4 carbon atoms on a zeolite.
  • An object of the present invention is to provide a gas treatment method and a gas treatment apparatus capable of efficiently removing bromofluoroethylene.
  • one aspect of the present invention is as follows [1] to [9].
  • a gas containing bromofluoroethylene is brought into contact with an adsorbent having pores having an average pore diameter of 0.4 nm or more and 4 nm or less in a temperature environment of 0 ° C. or higher and lower than 120 ° C. to obtain the bromofluoroethylene.
  • the bromofluoroethylene is bromotrifluoroethylene, 1-bromo-2,2-difluoroethylene, (E) -1-bromo-1,2-difluoroethylene, (Z) -1-bromo-1, 2-Difluoroethylene, 1-bromo-1-fluoroethylene, (E) -1-bromo-2-fluoroethylene, (Z) -1-bromo-2-fluoroethylene, 1,1-dibromo-2-fluoroethylene , (E) -1,2-dibromo-2-fluoroethylene, (Z) -1,2-dibromo-2-fluoroethylene, and tribromofluoroethylene, which is at least one of [1]. Gas treatment method.
  • An adsorption processing container containing an adsorbent having pores having an average pore diameter of 0.4 nm or more and 4 nm or less is provided.
  • the adsorption treatment container comprises a supply port to which a gas containing bromofluoroethylene is supplied and a treated gas obtained by subjecting the gas containing bromofluoroethylene to an adsorption treatment with the adsorbent.
  • a gas treatment device having a discharge port for discharging from the inside to the outside.
  • bromofluoroethylene can be efficiently removed.
  • the gas treatment apparatus 1 of the present embodiment corresponds to an adsorption tower 6 (corresponding to the “adsorption treatment container” which is a constituent requirement of the present invention) in which an adsorbent 7 having pores having an average pore diameter of 0.4 nm or more and 4 nm or less is housed. ) Is provided.
  • the supply port 4 to which the gas containing bromofluoroethylene is supplied and the treated gas obtained by adsorbing the gas containing bromofluoroethylene with the adsorbent 7 are contained in the adsorption tower 6. It has a discharge port 5 for discharging from the outside.
  • the gas treatment apparatus 1 of the present embodiment performs Fourier transform infrared spectroscopic analysis with the bromofluoroethylene gas supply mechanism 2 for supplying the bromofluoroethylene gas, the inert gas supply mechanism 3 for supplying the inert gas, and the Fourier transform infrared spectroscopic analysis. It includes a Fourier transform infrared spectrophotometer 8.
  • the bromofluoroethylene gas supply mechanism 2 and the supply port 4 of the adsorption tower 6 are connected by a pipe, and the bromofluoroethylene gas supplied from the bromofluoroethylene gas supply mechanism 2 is sent from the supply port 4 to the inside of the adsorption tower 6. Is supplied to ethylene, and is subjected to an adsorption treatment with an adsorbent 7 in a temperature environment of 0 ° C. or higher and lower than 120 ° C.
  • the gas supplied from the supply port 4 to the inside of the adsorption tower 6 may be a bromofluoroethylene gas consisting only of bromofluoroethylene, or may be a mixed gas of bromofluoroethylene gas and another kind of gas. Good.
  • the other type of gas is not particularly limited, and examples thereof include an inert gas. That is, as shown in FIG. 1, the pipe extending from the bromofluoroethylene gas supply mechanism 2 and the pipe extending from the inert gas supply mechanism 3 are merged, and the merged pipe is connected to the supply port 4 of the adsorption tower 6. May be good.
  • bromofluoroethylene gas supplied from the bromofluoroethylene gas supply mechanism 2 and the inert gas supplied from the inert gas supply mechanism 3 are mixed in the merged pipe. It becomes a mixed gas, and the mixed gas is supplied to the inside of the adsorption tower 6 from the supply port 4.
  • a bromofluoroethylene gas composed of only bromofluoroethylene and a mixed gas of bromofluoroethylene gas and another kind of gas may be referred to as "bromofluoroethylene-containing gas".
  • the bromofluoroethylene-containing gas supplied to the inside of the adsorption tower 6 comes into contact with the adsorbent 7 in a temperature environment of 0 ° C. or higher and lower than 120 ° C., and is adsorbed by the adsorbent 7. That is, since bromofluoroethylene in the bromofluoroethylene-containing gas is adsorbed by the adsorbent 7, the bromofluoroethylene-containing gas is separated into bromofluoroethylene and other types of gas.
  • the treated gas that has been adsorbed by the adsorbent 7, that is, the separated gas of another kind is discharged from the inside of the adsorption tower 6 to the outside through the discharge port 5. Since the discharge port 5 and the Fourier transform infrared spectrophotometer 8 are connected by a pipe, the processed gas is supplied to the Fourier transform infrared spectrophotometer 8.
  • the Fourier transform infrared spectrophotometer 8 Fourier transform infrared spectroscopic analysis of the treated gas is performed, and quantitative analysis or qualitative analysis of bromofluoroethylene contained in the treated gas is performed.
  • a disposal pipe 9 is connected to the Fourier transform infrared spectrophotometer 8, and the processed gas for which the Fourier transform infrared spectroscopic analysis has been completed is discharged to the outside of the system via the disposal pipe 9.
  • Bromofluoroethylene refers to an unsaturated hydrocarbon having 2 carbon atoms and having a fluorine atom and a bromine atom in the molecule.
  • bromofluoroethylene examples include bromotrifluoroethylene, 1-bromo-2,2-difluoroethylene, (E) -1-bromo-1,2-difluoroethylene, (Z) -1-bromo-1, 2-Difluoroethylene, 1-bromo-1-fluoroethylene, (E) -1-bromo-2-fluoroethylene, (Z) -1-bromo-2-fluoroethylene, 1,1-dibromo-2-fluoroethylene , (E) -1,2-dibromo-2-fluoroethylene, (Z) -1,2-dibromo-2-fluoroethylene, tribromofluoroethylene and the like.
  • bromotrifluoroethylene 1-bromo-2,2-difluoroethylene
  • (E) -1-bromo-1,2-difluoroethylene (Z) -1 -Bromo-1,2-difluoroethylene
  • 1-bromo-1-fluoroethylene 1-bromo-1-fluoroethylene
  • (E) -1-bromo-2-fluoroethylene -1-bromo-2-fluoroethylene
  • Z -1-bromo-2-fluoroethylene
  • One type of bromofluoroethylene may be used alone, or two or more types may be used in combination.
  • inert gas examples include nitrogen gas (N 2 ), helium (He), argon (Ar), neon (Ne), krypton (Kr), and xenon (Xe).
  • nitrogen gas, helium, argon, neon, and krypton are preferable, and nitrogen gas and argon are more preferable.
  • nitrogen gas and argon are more preferable.
  • One of these inert gases may be used alone, or two or more thereof may be used in combination.
  • adsorbent The type of adsorbent is not particularly limited as long as it has pores having an average pore diameter of 0.4 nm or more and 4 nm or less, but from the viewpoint of economy and availability, activated carbon, zeolite, silica gel, and alumina. Is preferable, and zeolite and activated carbon are more preferable.
  • the structure of the zeolite eg, T-type, erionite type, chabazite-type, 4A type, 5A type, ZSM-5 type, LiLSX type, AlPO 4 -11 type, ferrierite type, offretite type, mordenite, beta , AlPO 4 -5 type, NaY type, NaX type, CaX type, AlPO 4 -8 type, UTD-1 type, VPI-5 type, arborvitae light type, MCM-41 type, FSM-16 type and the like.
  • molecular sieve 4A for example, manufactured by Union Showa Co., Ltd.
  • molecular sieve 5A for example, manufactured by Union Showa Co., Ltd.
  • molecular sieve 13X for example, manufactured by Union Showa Co., Ltd.
  • the shape of the adsorbent is not particularly limited, but may be, for example, fibrous, honeycomb, columnar, pellet, crushed, granular, or powdery.
  • the adsorption treatment with the adsorbent 7 needs to be performed in a temperature environment of 0 ° C. or higher and lower than 120 ° C., but is preferably performed in a temperature environment of 0 ° C. or higher and 100 ° C. or lower, and a temperature environment of 0 ° C. or higher and 70 ° C. or lower. It is more preferable to do it below.
  • the adsorbed bromofluoroethylene is less likely to be desorbed from the adsorbent 7, so that the amount of bromofluoroethylene adsorbed increases. More. Further, since a large-scale device for temperature control is not required, the configuration of the gas treatment device 1 can be simplified. Further, liquefaction of bromofluoroethylene in the adsorption tower 6 is unlikely to occur.
  • the adsorption conditions such as the content (concentration) of bromofluoroethylene in the bromofluoroethylene-containing gas, the flow rate of the bromofluoroethylene-containing gas, the amount of the adsorbent 7, and the size of the adsorption tower 6 are not particularly limited.
  • Bromofluoroethylene-containing gas can be appropriately set according to the type and amount of the gas.
  • the content (concentration) of bromofluoroethylene in the bromofluoroethylene-containing gas can be 50% by volume or less, preferably 30% by volume or less, and more preferably 25% by volume or less. ..
  • Example 1 The bromofluoroethylene-containing gas was adsorbed using a gas treatment device having the same configuration as the gas treatment device 1 shown in FIG.
  • This gas treatment device is equipped with a stainless steel adsorption tower having an inner diameter of 1 inch and a length of 100 mm, and the adsorption tower is filled with 28.7 g of molecular sieve 13X (manufactured by Union Showa Co., Ltd.) as an adsorbent. ing.
  • the average pore diameter of the pores of the molecular sieve 13X is 1.0 nm.
  • the average pore size was measured by the BET adsorption method.
  • the measurement conditions are as follows. Measuring equipment: BELSORP-max manufactured by Nikkiso Co., Ltd.
  • Adsorbent Nitrogen gas measurement temperature: -196 ° C
  • Pretreatment of adsorbent Drying by heating at 300 ° C. for 6 hours under vacuum conditions. Amount of adsorbent used: 0.10 g
  • a mixed gas of bromotrifluoroethylene and dry nitrogen (the content of bromotrifluoroethylene in the mixed gas is 20% by volume) was supplied to the adsorption tower at a flow rate of 50 mL / min to perform the adsorption treatment.
  • the temperature inside the adsorption tower (specifically, the surface temperature of the adsorbent) was maintained at 30.0 to 40.0 ° C.
  • the concentration of bromotrifluoroethylene in the treated gas discharged from the discharge port of the adsorption tower was measured using a Fourier transform infrared spectrophotometer.
  • the concentration of bromotrifluoroethylene for 30 minutes immediately after the start of supply of the mixed gas was 206.35 to 273.81 volume ppm (see Table 1 below). That is, when Molecular Sieve 13X was used as the adsorbent, 99.86 to 99.90% of bromotrifluoroethylene was adsorbed on the adsorbent.
  • Example 2 The adsorption treatment of bromotrifluoroethylene was carried out in the same manner as in Example 1 except that coconut shell activated carbon (manufactured by Osaka Gas Chemical Co., Ltd.) was used instead of the molecular sieve 13X as an adsorbent.
  • the average pore diameter of the pores of the coconut shell activated carbon is 2.5 nm.
  • the concentration of bromotrifluoroethylene for 30 minutes immediately after the start of supply of the mixed gas was 27.78 to 436.51 volume ppm (see Table 2 below). That is, when coconut shell-based activated carbon was used as the adsorbent, 99.78 to 99.99% of bromotrifluoroethylene was adsorbed on the adsorbent.
  • Example 3 The adsorption treatment of bromotrifluoroethylene was carried out in the same manner as in Example 1 except that a coal-based activated carbon (manufactured by Osaka Gas Chemical Co., Ltd.) was used instead of the molecular sieve 13X as an adsorbent.
  • the average pore diameter of the pores of the coal-based activated carbon is 3.4 nm.
  • the concentration of bromotrifluoroethylene for 30 minutes immediately after the start of supply of the mixed gas was 23.81 to 369.05 volume ppm (see Table 3 below). That is, when coal-based activated carbon was used as the adsorbent, 99.82 to 99.99% of bromotrifluoroethylene was adsorbed on the adsorbent.
  • Example 4 The adsorption treatment of bromotrifluoroethylene was carried out in the same manner as in Example 1 except that Molecular Sheave 5A (manufactured by Union Showa Co., Ltd.) was used instead of Molecular Sheave 13X as an adsorbent.
  • the average pore diameter of the pores of the molecular sieve 5A is 0.5 nm.
  • the concentration of bromotrifluoroethylene immediately after the start of supply of the mixed gas was 630.95 by volume ppm, and the concentration of bromotrifluoroethylene 5 minutes after the start of supply of the mixed gas was 5507.94 by volume ppm (see below). See Table 4 in.
  • the cause of the decrease in adsorption efficiency is considered to be the breakthrough of the adsorbent. That is, when Molecular Sheave 5A was used as the adsorbent, 97% or more of bromotrifluoroethylene was adsorbed, although the adsorption capacity was inferior to that of Molecular Sheave 13X and the above activated carbon.
  • Example 5 The adsorption treatment of bromotrifluoroethylene was carried out in the same manner as in Example 1 except that the temperature inside the adsorption tower was 60 to 70 ° C. As a result, the concentration of bromotrifluoroethylene 15 minutes after the start of supply of the mixed gas was 503.97 volume ppm, and the concentration of bromotrifluoroethylene 20 minutes later was 2222.22 volume ppm (Table 5 below). See). It is considered that the reason why the adsorption capacity was lowered as compared with Example 1 is that the desorption of bromotrifluoroethylene was promoted by heating the adsorbent. However, even under these conditions, 98% or more of bromotrifluoroethylene was adsorbed.
  • Example 6 The adsorption treatment of bromotrifluoroethylene was carried out in the same manner as in Example 1 except that the temperature inside the adsorption tower was set to 0 to 5 ° C. As a result, the concentration of bromotrifluoroethylene for 30 minutes immediately after the start of supply of the mixed gas was 19.84 to 206.35 volume ppm (see Table 6 below). It is considered that the reason why the adsorption capacity was improved as compared with Example 1 is that the desorption of bromotrifluoroethylene was suppressed by cooling the adsorbent.
  • Example 7 Example 1 except that a mixed gas of 1-bromo-1-fluoroethylene and dry nitrogen (the content of 1-bromo-1-fluoroethylene in the mixed gas is 20% by volume) was used as the bromofluoroethylene-containing gas.
  • the adsorption treatment of 1-bromo-1-fluoroethylene was carried out.
  • the concentration of 1-bromo-1-fluoroethylene for 30 minutes immediately after the start of supply of the mixed gas was 178.57 to 202.38 volume ppm (see Table 7 below). That is, when molecular sieve 13X was used as the adsorbent, 99.90 to 99.91% of 1-bromo-1-fluoroethylene was adsorbed on the adsorbent.
  • Example 8 The adsorption treatment of 1-bromo-1-fluoroethylene was carried out in the same manner as in Example 7 except that a coal-based activated carbon (manufactured by Osaka Gas Chemical Co., Ltd.) was used instead of the molecular sieve 13X as an adsorbent.
  • a coal-based activated carbon manufactured by Osaka Gas Chemical Co., Ltd.
  • the concentration of 1-bromo-1-fluoroethylene for 30 minutes immediately after the start of supply of the mixed gas was 23.81 to 206.35 volume ppm (see Table 8 below). That is, when coal-based activated carbon was used as the adsorbent, 99.90 to 99.99% of 1-bromo-1-fluoroethylene was adsorbed on the adsorbent.
  • Example 9 As a bromofluoroethylene-containing gas, 1-bromo-2-fluoroethylene (a mixture of (E) -1-bromo-2-fluoroethylene and (Z) -1-bromo-2-fluoroethylene in equal molar amounts) and Adsorption of 1-bromo-2-fluoroethylene in the same manner as in Example 1 except that a mixed gas of dry nitrogen (the content of 1-bromo-2-fluoroethylene in the mixed gas is 20% by volume) was used. Processing was performed. As a result, the concentration of 1-bromo-2-fluoroethylene for 30 minutes immediately after the start of supply of the mixed gas was 162.70 to 285.71 ppm (see Table 9 below). That is, when Molecular Sieve 13X was used as the adsorbent, 99.86 to 99.92% of 1-bromo-2-fluoroethylene was adsorbed on the adsorbent.
  • Example 10 1-Bromo-2-fluoroethylene ((E) -1-bromo) is the same as in Example 9 except that a coal-based activated carbon (manufactured by Osaka Gas Chemical Co., Ltd.) is used instead of the molecular sieve 13X as an adsorbent.
  • the adsorption treatment of -2-fluoroethylene and (Z) -1-bromo-2-fluoroethylene mixed in equal molar amounts) was carried out.
  • the concentration of 1-bromo-2-fluoroethylene for 30 minutes immediately after the start of supply of the mixed gas was 19.84 to 166.67 volume ppm (see Table 10 below). That is, when coal-based activated carbon was used as the adsorbent, 99.92 to 99.99% of 1-bromo-2-fluoroethylene was adsorbed on the adsorbent.
  • Example 11 Except for the fact that a mixed gas of 1-bromo-2,2-difluoroethylene and dry nitrogen (the content of 1-bromo-2,2-difluoroethylene in the mixed gas is 20% by volume) was used as the bromofluoroethylene-containing gas.
  • a mixed gas of 1-bromo-2,2-difluoroethylene and dry nitrogen (the content of 1-bromo-2,2-difluoroethylene in the mixed gas is 20% by volume) was used as the bromofluoroethylene-containing gas.
  • the concentration of 1-bromo-2,2-difluoroethylene for 30 minutes immediately after the start of supply of the mixed gas was 150.79 to 246.03 by volume ppm (see Table 11 below). That is, when Molecular Sieve 13X was used as the adsorbent, 99.88 to 99.92% of 1-bromo-2,2-difluoroethylene was adsorbed on the adsorbent.
  • Example 12 The adsorption treatment of 1-bromo-2,2-difluoroethylene was carried out in the same manner as in Example 11 except that a coal-based activated carbon (manufactured by Osaka Gas Chemical Co., Ltd.) was used instead of the molecular sieve 13X as an adsorbent. ..
  • the concentration of 1-bromo-2,2-difluoroethylene for 30 minutes immediately after the start of supply of the mixed gas was 23.81 to 206.35 volume ppm (see Table 12 below). That is, when coal-based activated carbon was used as the adsorbent, 99.90 to 99.99% of 1-bromo-2,2-difluoroethylene was adsorbed on the adsorbent.
  • Example 1 The adsorption treatment of bromotrifluoroethylene was carried out in the same manner as in Example 1 except that B-type silica gel (manufactured by Toyota Kako Co., Ltd.) was used instead of the molecular sieve 13X as an adsorbent.
  • the average pore diameter of the pores of B-type silica gel is 6.0 nm.
  • bromotrifluoroethylene having a concentration exceeding the quantitative measurement limit (8000 ppm) was detected within 2 minutes from the start of supply of the mixed gas. That is, when B-type silica gel was used as the adsorbent, bromotrifluoroethylene was not adsorbed.
  • Example 2 Bromotrifluoroethylene was adsorbed in the same manner as in Example 1 except that Molecular Sheave 3A (manufactured by Union Showa Co., Ltd.) was used instead of Molecular Sheave 13X as an adsorbent.
  • the average pore diameter of the pores of the molecular sieve 3A is 0.3 nm.
  • bromotrifluoroethylene having a concentration exceeding the quantitative measurement limit (8000 ppm) was detected immediately after the start of supply of the mixed gas. That is, when molecular sieve 3A was used as the adsorbent, bromotrifluoroethylene was not adsorbed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Computer Hardware Design (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

ブロモフルオロエチレンを効率良く除去することができるガス処理方法及びガス処理装置を提供する。ブロモフルオロエチレンを含有するガスを、0℃以上120℃未満の温度環境下で、平均細孔径0.4nm以上4nm以下の細孔を有する吸着剤(7)に接触させて、ブロモフルオロエチレンを吸着剤(7)に吸着させることにより、前記ガスからブロモフルオロエチレンを分離する。

Description

ガス処理方法及びガス処理装置
 本発明はガス処理方法及びガス処理装置に関する。
 半導体の製造工程においては、ドライエッチング装置のエッチングガスやCVD装置のチャンバークリーニングガス等として、四フッ化炭素、六フッ化エタン等のパーフルオロカーボンが使用されている。これらのパーフルオロカーボンは、非常に安定な化合物であり地球温暖化に対する影響が大きいため、大気に放出した場合の環境への悪影響が懸念されている。そのため、半導体の製造工程から排出される排ガスは、含有されているパーフルオロカーボンを回収又は分解した上で、大気に放出することが好ましい。
 特許文献1には、上記のパーフルオロカーボンの代替となる、環境負荷が小さいプラズマエッチングガスとして、二重結合を有するブロモフルオロカーボン(ブロモフルオロアルケン)を含有するプラズマエッチングガスが開示されている。ブロモフルオロアルケンは、四フッ化炭素、六フッ化エタン等の二重結合を有しないパーフルオロカーボンと比較して地球温暖化に対する影響が小さいが、無視できるほどに小さいものではない。また、ブロモフルオロアルケンは毒性が高く、大気にそのまま放出すると人体及び環境に悪影響を与えるので、半導体の製造工程から排出される排ガスは、含有されているブロモフルオロアルケンを回収又は分解した上で、大気に放出する必要がある。
 ブロモフルオロアルケンの処理方法としては、例えば特許文献2において、炭素数3又は4のブロモフルオロアルケンをゼオライトに吸着させる方法が提案されている。
国際公開第2012/124726号 日本国特許公開公報 2017年第47338号
 しかしながら、炭素数2のブロモフルオロアルケン(ブロモフルオロエチレン)を効率良く除去する方法は見出されていない。
 本発明は、ブロモフルオロエチレンを効率良く除去することができるガス処理方法及びガス処理装置を提供することを課題とする。
 前記課題を解決するため、本発明の一態様は以下の[1]~[9]の通りである。
[1] ブロモフルオロエチレンを含有するガスを、0℃以上120℃未満の温度環境下で、平均細孔径0.4nm以上4nm以下の細孔を有する吸着剤に接触させて、前記ブロモフルオロエチレンを前記吸着剤に吸着させることにより、前記ガスから前記ブロモフルオロエチレンを分離するガス処理方法。
[2] 前記ブロモフルオロエチレンは、ブロモトリフルオロエチレン、1-ブロモ-2,2-ジフルオロエチレン、(E)-1-ブロモ-1,2-ジフルオロエチレン、(Z)-1-ブロモ-1,2-ジフルオロエチレン、1-ブロモ-1-フルオロエチレン、(E)-1-ブロモ-2-フルオロエチレン、(Z)-1-ブロモ-2-フルオロエチレン、1,1-ジブロモ-2-フルオロエチレン、(E)-1,2-ジブロモ-2-フルオロエチレン、(Z)-1,2-ジブロモ-2-フルオロエチレン、及びトリブロモフルオロエチレンのうちの少なくとも1種である[1]に記載のガス処理方法。
[3] 前記ブロモフルオロエチレンを含有するガスは前記ブロモフルオロエチレンと不活性ガスとの混合ガスである[1]又は[2]に記載のガス処理方法。
[4] 前記不活性ガスは、窒素ガス、ヘリウム、アルゴン、ネオン、及びクリプトンのうちの少なくとも1種である[3]に記載のガス処理方法。
[5] 前記ブロモフルオロエチレンを含有するガス中の前記ブロモフルオロエチレンの含有率が25体積%未満である[1]~[4]のいずれか一項に記載のガス処理方法。
[6] 前記吸着剤がゼオライト及び活性炭の少なくとも一方である[1]~[5]のいずれか一項に記載のガス処理方法。
[7] 前記温度環境が0℃以上100℃以下である[1]~[6]のいずれか一項に記載のガス処理方法。
[8] 前記温度環境が0℃以上70℃以下である[1]~[6]のいずれか一項に記載のガス処理方法。
[9] 平均細孔径0.4nm以上4nm以下の細孔を有する吸着剤が収容された吸着処理容器を備え、
 前記吸着処理容器は、ブロモフルオロエチレンを含有するガスが供給される供給口と、前記ブロモフルオロエチレンを含有するガスに前記吸着剤による吸着処理が施されてなる処理済みガスを、前記吸着処理容器内から外部に排出する排出口と、を有するガス処理装置。
 本発明によれば、ブロモフルオロエチレンを効率良く除去することができる。
本発明の一実施形態に係るガス処理装置の構成を説明する模式図である。
 本発明の一実施形態について以下に説明する。なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。
 本実施形態のガス処理装置1は、平均細孔径0.4nm以上4nm以下の細孔を有する吸着剤7が収容された吸着塔6(本発明の構成要件である「吸着処理容器」に相当する)を備えている。この吸着塔6は、ブロモフルオロエチレンを含有するガスが供給される供給口4と、ブロモフルオロエチレンを含有するガスに吸着剤7による吸着処理が施されてなる処理済みガスを、吸着塔6内から外部に排出する排出口5と、を有する。
 さらに、本実施形態のガス処理装置1は、ブロモフルオロエチレンガスを供給するブロモフルオロエチレンガス供給機構2と、不活性ガスを供給する不活性ガス供給機構3と、フーリエ変換赤外分光分析を行うフーリエ変換赤外分光光度計8と、を備えている。
 ブロモフルオロエチレンガス供給機構2と吸着塔6の供給口4とが配管で接続されていて、ブロモフルオロエチレンガス供給機構2から送気されたブロモフルオロエチレンガスが供給口4から吸着塔6の内部に供給され、0℃以上120℃未満の温度環境下で吸着剤7による吸着処理が施されるようになっている。
 供給口4から吸着塔6の内部に供給されるガスは、ブロモフルオロエチレンのみからなるブロモフルオロエチレンガスであってもよいが、ブロモフルオロエチレンガスと他種のガスとの混合ガスであってもよい。他種のガスは特に限定されるものではないが、例えば不活性ガスが挙げられる。すなわち、図1に示すように、ブロモフルオロエチレンガス供給機構2から延びる配管と、不活性ガス供給機構3から延びる配管が合流し、合流した配管が吸着塔6の供給口4に接続されていてもよい。
 このような構成であれば、ブロモフルオロエチレンガス供給機構2から送気されたブロモフルオロエチレンガスと、不活性ガス供給機構3から送気された不活性ガスが、合流した配管内で混合されて混合ガスとなり、混合ガスが供給口4から吸着塔6の内部に供給されることとなる。以下、ブロモフルオロエチレンのみからなるブロモフルオロエチレンガス、及び、ブロモフルオロエチレンガスと他種のガスとの混合ガスを、「ブロモフルオロエチレン含有ガス」と記すこともある。
 吸着塔6の内部に供給されたブロモフルオロエチレン含有ガスは、0℃以上120℃未満の温度環境下で吸着剤7と接触し、吸着剤7による吸着処理が施される。すなわち、ブロモフルオロエチレン含有ガス中のブロモフルオロエチレンは吸着剤7に吸着されるため、ブロモフルオロエチレン含有ガスはブロモフルオロエチレンと他種のガスとに分離される。
 吸着剤7による吸着処理が施されてなる処理済みガス、すなわち分離された他種のガスは、排出口5を介して吸着塔6内から外部に排出される。排出口5とフーリエ変換赤外分光光度計8が配管により接続されているので、処理済みガスはフーリエ変換赤外分光光度計8に供給される。
 フーリエ変換赤外分光光度計8においては、処理済みガスのフーリエ変換赤外分光分析が行われ、処理済みガス中に含有されるブロモフルオロエチレンの定量分析又は定性分析が行われる。
 フーリエ変換赤外分光光度計8には廃棄用配管9が接続されており、フーリエ変換赤外分光分析が終了した処理済みガスは、廃棄用配管9を介して系外に排出される。
 本実施形態のガス処理装置1を用いれば、煩雑な操作を必要とせず穏和な条件にてブロモフルオロエチレンを効率良く除去することができる。
 以下に、本実施形態のガス処理装置1と本実施形態のガス処理方法について、さらに詳細に説明する。
〔ブロモフルオロエチレン〕
 ブロモフルオロエチレンとは、分子内にフッ素原子と臭素原子を有する炭素数2の不飽和炭化水素を指す。
 ブロモフルオロエチレンの具体例としては、ブロモトリフルオロエチレン、1-ブロモ-2,2-ジフルオロエチレン、(E)-1-ブロモ-1,2-ジフルオロエチレン、(Z)-1-ブロモ-1,2-ジフルオロエチレン、1-ブロモ-1-フルオロエチレン、(E)-1-ブロモ-2-フルオロエチレン、(Z)-1-ブロモ-2-フルオロエチレン、1,1-ジブロモ-2-フルオロエチレン、(E)-1,2-ジブロモ-2-フルオロエチレン、(Z)-1,2-ジブロモ-2-フルオロエチレン、トリブロモフルオロエチレン等が挙げられる。
 これらの中でも、常温で容易に気化できるという観点から、ブロモトリフルオロエチレン、1-ブロモ-2,2-ジフルオロエチレン、(E)-1-ブロモ-1,2-ジフルオロエチレン、(Z)-1-ブロモ-1,2-ジフルオロエチレン、1-ブロモ-1-フルオロエチレン、(E)-1-ブロモ-2-フルオロエチレン、(Z)-1-ブロモ-2-フルオロエチレンが好ましい。
 ブロモフルオロエチレンは、1種を単独で使用してもよいし、2種以上を併用してもよい。
〔不活性ガス〕
 不活性ガスとしては、窒素ガス(N)、ヘリウム(He)、アルゴン(Ar)、ネオン(Ne)、クリプトン(Kr)、キセノン(Xe)があげられる。これらの中では、窒素ガス、ヘリウム、アルゴン、ネオン、及びクリプトンが好ましく、窒素ガス及びアルゴンがより好ましい。これら不活性ガスは、1種を単独で使用してもよいし、2種以上を併用してもよい。
〔吸着剤〕
 吸着剤の種類は、平均細孔径0.4nm以上4nm以下の細孔を有するものであれば特に限定されるものではないが、経済性や入手容易性の観点から、活性炭、ゼオライト、シリカゲル、アルミナが好ましく、ゼオライト及び活性炭がより好ましい。
 ゼオライトの構造としては、例えば、T型、エリオナイト型、チャバザイト型、4A型、5A型、ZSM-5型、LiLSX型、AlPO4-11型、フェリエライト型、オフレタイト型、モルデナイト型、ベータ型、AlPO4-5型、NaY型、NaX型、CaX型、AlPO4-8型、UTD-1型、VPI-5型、クロベライト型、MCM-41型、FSM-16型が挙げられる。ゼオライトの中では、入手容易性の観点から、モレキュラーシーブ4A(例えばユニオン昭和株式会社製)、モレキュラーシーブ5A(例えばユニオン昭和株式会社製)、モレキュラーシーブ13X(例えばユニオン昭和株式会社製)などが特に好ましい。
 吸着剤が有する細孔の平均細孔径が0.4nm以上4nm以下であれば、ブロモフルオロエチレンが効率よく吸着されるとともに、吸着したブロモフルオロエチレンの脱着が生じにくい。
 吸着剤の形状は特に限定されるものではないが、例えば、繊維状、ハニカム状、円柱状、ペレット状、破砕状、粒状、粉末状であってもよい。
〔吸着処理の温度〕
 吸着剤7による吸着処理は、0℃以上120℃未満の温度環境下で行う必要があるが、0℃以上100℃以下の温度環境下で行うことが好ましく、0℃以上70℃以下の温度環境下で行うことがより好ましい。
 上記の温度環境下でブロモフルオロエチレン含有ガスと吸着剤7とを接触させて吸着処理を行えば、吸着されたブロモフルオロエチレンが吸着剤7から脱着しにくくなるため、ブロモフルオロエチレンの吸着量が多くなる。また、温度制御のための大掛かりな装置が不要であるため、ガス処理装置1の構成を簡易なものとすることができる。さらに、吸着塔6内でのブロモフルオロエチレンの液化が生じにくい。
〔その他の吸着条件〕
 ブロモフルオロエチレン含有ガス中のブロモフルオロエチレンの含有率(濃度)、ブロモフルオロエチレン含有ガスの流量、吸着剤7の量、吸着塔6の大きさ等の吸着条件は、特に限定されるものではなく、ブロモフルオロエチレン含有ガスの種類、量等に応じて適宜設定することができる。ただし、ブロモフルオロエチレン含有ガス中のブロモフルオロエチレンの含有率(濃度)は、50体積%以下とすることができ、30体積%以下とすることが好ましく、25体積%以下とすることがさらに好ましい。
 以下に実施例及び比較例を示して、本発明をより詳細に説明する。
〔実施例1〕
 図1に示すガス処理装置1と同様の構成を有するガス処理装置を用いて、ブロモフルオロエチレン含有ガスの吸着処理を行った。このガス処理装置は、内径1インチ、長さ100mmのステンレス製の吸着塔を備えており、この吸着塔には、吸着剤として28.7gのモレキュラーシーブ13X(ユニオン昭和株式会社製)が充填されている。
 モレキュラーシーブ13Xが有する細孔の平均細孔径は、1.0nmである。平均細孔径はBET吸着法により測定した。測定条件は下記の通りである。
  測定機器   :日機装株式会社製のBELSORP-max
  吸着質    :窒素ガス
  測定温度   :-196℃
  吸着剤の前処理:真空条件にて300℃、6h加熱乾燥した。
  吸着剤の使用量:0.10g
 ブロモトリフルオロエチレンと乾燥窒素の混合ガス(混合ガス中のブロモトリフルオロエチレンの含有率は20体積%)を、流量50mL/minで吸着塔に供給して、吸着処理を行った。なお、吸着処理中は、吸着塔内の温度(詳細には吸着剤の表面温度)を30.0~40.0℃に維持した。
 吸着塔の排出口から排出される処理済みガス中のブロモトリフルオロエチレンの濃度を、フーリエ変換赤外分光光度計を用いて測定した。その結果、混合ガスの供給開始直後から30分間のブロモトリフルオロエチレンの濃度は、206.35~273.81体積ppmであった(下記の表1を参照)。すなわち、吸着剤としてモレキュラーシーブ13Xを用いた場合は、99.86~99.90%のブロモトリフルオロエチレンが吸着剤に吸着されたことになる。
Figure JPOXMLDOC01-appb-T000001
〔実施例2〕
 吸着剤としてモレキュラーシーブ13Xの代わりにヤシ殻系活性炭(大阪ガスケミカル株式会社製)を用いた点以外は実施例1と同様にして、ブロモトリフルオロエチレンの吸着処理を行った。ヤシ殻系活性炭が有する細孔の平均細孔径は、2.5nmである。その結果、混合ガスの供給開始直後から30分間のブロモトリフルオロエチレンの濃度は、27.78~436.51体積ppmであった(下記の表2を参照)。すなわち、吸着剤としてヤシ殻系活性炭を用いた場合は、99.78~99.99%のブロモトリフルオロエチレンが吸着剤に吸着されたことになる。
Figure JPOXMLDOC01-appb-T000002
〔実施例3〕
 吸着剤としてモレキュラーシーブ13Xの代わりに石炭系活性炭(大阪ガスケミカル株式会社製)を用いた点以外は実施例1と同様にして、ブロモトリフルオロエチレンの吸着処理を行った。石炭系活性炭が有する細孔の平均細孔径は、3.4nmである。その結果、混合ガスの供給開始直後から30分間のブロモトリフルオロエチレンの濃度は、23.81~369.05体積ppmであった(下記の表3を参照)。すなわち、吸着剤として石炭系活性炭を用いた場合は、99.82~99.99%のブロモトリフルオロエチレンが吸着剤に吸着されたことになる。
Figure JPOXMLDOC01-appb-T000003
〔実施例4〕
 吸着剤としてモレキュラーシーブ13Xの代わりにモレキュラーシーブ5A(ユニオン昭和株式会社製)を用いた点以外は実施例1と同様にして、ブロモトリフルオロエチレンの吸着処理を行った。モレキュラーシーブ5Aが有する細孔の平均細孔径は、0.5nmである。
 その結果、混合ガスの供給開始直後のブロモトリフルオロエチレンの濃度は630.95体積ppm、混合ガスの供給開始から5分後のブロモトリフルオロエチレンの濃度は5507.94体積ppmであった(下記の表4を参照)。吸着効率が低下した原因は、吸着剤が破過したためと考えられる。すなわち、吸着剤としてモレキュラーシーブ5Aを用いた場合は、モレキュラーシーブ13X及び上記活性炭に比べて吸着容量は劣るものの、97%以上のブロモトリフルオロエチレンが吸着された。
Figure JPOXMLDOC01-appb-T000004
〔実施例5〕
 吸着塔内の温度を60~70℃とした点以外は実施例1と同様にして、ブロモトリフルオロエチレンの吸着処理を行った。その結果、混合ガスの供給開始から15分後のブロモトリフルオロエチレンの濃度は503.97体積ppm、20分後のブロモトリフルオロエチレンの濃度は2222.22体積ppmであった(下記の表5を参照)。
 実施例1に比べて吸着容量が低下した理由は、吸着剤が加温されることで、ブロモトリフルオロエチレンの脱着が促進されたためであると考えられる。しかしながら、本条件でも、98%以上のブロモトリフルオロエチレンが吸着された。
Figure JPOXMLDOC01-appb-T000005
〔実施例6〕
 吸着塔内の温度を0~5℃とした点以外は実施例1と同様にして、ブロモトリフルオロエチレンの吸着処理を行った。その結果、混合ガスの供給開始直後から30分間のブロモトリフルオロエチレンの濃度は、19.84~206.35体積ppmであった(下記の表6を参照)。実施例1に比べて吸着容量が向上した理由は、吸着剤を冷却することで、ブロモトリフルオロエチレンの脱着が抑制されたためであると考えられる。
Figure JPOXMLDOC01-appb-T000006
〔実施例7〕
 ブロモフルオロエチレン含有ガスとして1-ブロモ-1-フルオロエチレンと乾燥窒素の混合ガス(混合ガス中の1-ブロモ-1-フルオロエチレンの含有率は20体積%)を用いた点以外は実施例1と同様にして、1-ブロモ-1-フルオロエチレンの吸着処理を行った。その結果、混合ガスの供給開始直後から30分間の1-ブロモ-1-フルオロエチレンの濃度は、178.57~202.38体積ppmであった(下記の表7を参照)。すなわち、吸着剤としてモレキュラーシーブ13Xを用いた場合は、99.90~99.91%の1-ブロモ-1-フルオロエチレンが吸着剤に吸着されたことになる。
Figure JPOXMLDOC01-appb-T000007
〔実施例8〕
 吸着剤としてモレキュラーシーブ13Xの代わりに石炭系活性炭(大阪ガスケミカル株式会社製)を用いた点以外は実施例7と同様にして、1-ブロモ-1-フルオロエチレンの吸着処理を行った。その結果、混合ガスの供給開始直後から30分間の1-ブロモ-1-フルオロエチレンの濃度は、23.81~206.35体積ppmであった(下記の表8を参照)。すなわち、吸着剤として石炭系活性炭を用いた場合は、99.90~99.99%の1-ブロモ-1-フルオロエチレンが吸着剤に吸着されたことになる。
Figure JPOXMLDOC01-appb-T000008
〔実施例9〕
 ブロモフルオロエチレン含有ガスとして1-ブロモ-2-フルオロエチレン((E)-1-ブロモ-2-フルオロエチレンと(Z)-1-ブロモ-2-フルオロエチレンとを等モル量混合したもの)と乾燥窒素の混合ガス(混合ガス中の1-ブロモ-2-フルオロエチレンの含有率は20体積%)を用いた点以外は実施例1と同様にして、1-ブロモ-2-フルオロエチレンの吸着処理を行った。その結果、混合ガスの供給開始直後から30分間の1-ブロモ-2-フルオロエチレンの濃度は、162.70~285.71ppmであった(下記の表9を参照)。すなわち、吸着剤としてモレキュラーシーブ13Xを用いた場合は、99.86~99.92%の1-ブロモ-2-フルオロエチレンが吸着剤に吸着されたことになる。
Figure JPOXMLDOC01-appb-T000009
〔実施例10〕
 吸着剤としてモレキュラーシーブ13Xの代わりに石炭系活性炭(大阪ガスケミカル株式会社製)を用いた点以外は実施例9と同様にして、1-ブロモ-2-フルオロエチレン((E)-1-ブロモ-2-フルオロエチレンと(Z)-1-ブロモ-2-フルオロエチレンとを等モル量混合したもの)の吸着処理を行った。その結果、混合ガスの供給開始直後から30分間の1-ブロモ-2-フルオロエチレンの濃度は、19.84~166.67体積ppmであった(下記の表10を参照)。すなわち、吸着剤として石炭系活性炭を用いた場合は、99.92~99.99%の1-ブロモ-2-フルオロエチレンが吸着剤に吸着されたことになる。
Figure JPOXMLDOC01-appb-T000010
〔実施例11〕
 ブロモフルオロエチレン含有ガスとして1-ブロモ-2,2-ジフルオロエチレンと乾燥窒素の混合ガス(混合ガス中の1-ブロモ-2,2-ジフルオロエチレンの含有率は20体積%)を用いた点以外は実施例1と同様にして、1-ブロモ-2,2-ジフルオロエチレンの吸着処理を行った。その結果、混合ガスの供給開始直後から30分間の1-ブロモ-2,2-ジフルオロエチレンの濃度は、150.79~246.03体積ppmであった(下記の表11を参照)。すなわち、吸着剤としてモレキュラーシーブ13Xを用いた場合は、99.88~99.92%の1-ブロモ-2,2-ジフルオロエチレンが吸着剤に吸着されたことになる。
Figure JPOXMLDOC01-appb-T000011
〔実施例12〕
 吸着剤としてモレキュラーシーブ13Xの代わりに石炭系活性炭(大阪ガスケミカル株式会社製)を用いた点以外は実施例11と同様にして、1-ブロモ-2,2-ジフルオロエチレンの吸着処理を行った。その結果、混合ガスの供給開始直後から30分間の1-ブロモ-2,2-ジフルオロエチレンの濃度は、23.81~206.35体積ppmであった(下記の表12を参照)。すなわち、吸着剤として石炭系活性炭を用いた場合は、99.90~99.99%の1-ブロモ-2,2-ジフルオロエチレンが吸着剤に吸着されたことになる。
Figure JPOXMLDOC01-appb-T000012
〔比較例1〕
 吸着剤としてモレキュラーシーブ13Xの代わりにB型シリカゲル(豊田化工株式会社製)を用いた点以外は実施例1と同様にして、ブロモトリフルオロエチレンの吸着処理を行った。B型シリカゲルが有する細孔の平均細孔径は、6.0nmである。その結果、混合ガスの供給開始から2分以内に、定量測定限界(8000ppm)を超える濃度のブロモトリフルオロエチレンが検出された。すなわち、吸着剤としてB型シリカゲルを用いた場合は、ブロモトリフルオロエチレンが吸着されなかったことになる。
〔比較例2〕
 吸着剤としてモレキュラーシーブ13Xの代わりにモレキュラーシーブ3A(ユニオン昭和株式会社製)を用いた点以外は実施例1と同様にして、ブロモトリフルオロエチレンの吸着処理を行った。モレキュラーシーブ3Aが有する細孔の平均細孔径は、0.3nmである。その結果、混合ガスの供給開始直後から、定量測定限界(8000ppm)を超える濃度のブロモトリフルオロエチレンが検出された。すなわち、吸着剤としてモレキュラーシーブ3Aを用いた場合は、ブロモトリフルオロエチレンが吸着されなかったことになる。
〔比較例3〕
 吸着剤としてモレキュラーシーブ13Xの代わりにγ-アルミナ(株式会社高純度化学研究所製)を用いた点以外は実施例1と同様にして、ブロモトリフルオロエチレンの吸着処理を行った。γ-アルミナが有する細孔の平均細孔径は、8.5nmである。その結果、混合ガスの供給開始直後から、定量測定限界(8000ppm)を超える濃度のブロモトリフルオロエチレンが検出された。すなわち、吸着剤としてγ-アルミナを用いた場合は、ブロモトリフルオロエチレンが吸着されなかったことになる。
〔比較例4〕
 吸着塔内の温度を120℃とした点以外は実施例1と同様にして、ブロモトリフルオロエチレンの吸着処理を行った。その結果、混合ガスの供給開始直後から、定量測定限界(8000ppm)を超える濃度のブロモトリフルオロエチレンが検出された。すなわち、吸着塔内の温度が120℃以上の高温である場合は、ブロモトリフルオロエチレンが吸着されなかったことになる。
〔比較例5〕
 処理ガスとして2-ブロモ-1,1,3,3,3-ペンタフルオロプロペンと乾燥窒素の混合ガス(混合ガス中の2-ブロモ-1,1,3,3,3-ペンタフルオロプロペンの含有率は20体積%)を用いた点以外は実施例4と同様にして、2-ブロモ-1,1,3,3,3-ペンタフルオロプロペンの吸着処理を行った。その結果、混合ガスの供給開始直後から、定量測定限界(8000ppm)を超える濃度の2-ブロモ-1,1,3,3,3-ペンタフルオロプロペンが検出された。すなわち、吸着剤としてモレキュラーシーブ5Aを用いた場合は、2-ブロモ-1,1,3,3,3-ペンタフルオロプロペンが吸着されなかったことになる。
〔比較例6〕
 処理ガスとして2-ブロモ-1,1,3,3,3-ペンタフルオロプロペンと乾燥窒素の混合ガス(混合ガス中の2-ブロモ-1,1,3,3,3-ペンタフルオロプロペンの含有率は20体積%)を用いた点以外は実施例1と同様にして、2-ブロモ-1,1,3,3,3-ペンタフルオロプロペンの吸着処理を行った。その結果、混合ガスの供給開始から10分経過後に、定量測定限界(8000ppm)を超える濃度の2-ブロモ-1,1,3,3,3-ペンタフルオロプロペンが検出された。すなわち、吸着剤としてモレキュラーシーブ13Xを用いた場合は、2-ブロモ-1,1,3,3,3-ペンタフルオロプロペンの吸着量は、ブロモトリフルオロエチレンの吸着量に劣るという結果が得られた。
    1   ガス処理装置
    2   ブロモフルオロエチレンガス供給機構
    3   不活性ガス供給機構
    4   供給口
    5   排出口
    6   吸着塔
    7   吸着剤
    8   フーリエ変換赤外分光光度計
    9   廃棄用配管

Claims (9)

  1.  ブロモフルオロエチレンを含有するガスを、0℃以上120℃未満の温度環境下で、平均細孔径0.4nm以上4nm以下の細孔を有する吸着剤に接触させて、前記ブロモフルオロエチレンを前記吸着剤に吸着させることにより、前記ガスから前記ブロモフルオロエチレンを分離するガス処理方法。
  2.  前記ブロモフルオロエチレンは、ブロモトリフルオロエチレン、1-ブロモ-2,2-ジフルオロエチレン、(E)-1-ブロモ-1,2-ジフルオロエチレン、(Z)-1-ブロモ-1,2-ジフルオロエチレン、1-ブロモ-1-フルオロエチレン、(E)-1-ブロモ-2-フルオロエチレン、(Z)-1-ブロモ-2-フルオロエチレン、1,1-ジブロモ-2-フルオロエチレン、(E)-1,2-ジブロモ-2-フルオロエチレン、(Z)-1,2-ジブロモ-2-フルオロエチレン、及びトリブロモフルオロエチレンのうちの少なくとも1種である請求項1に記載のガス処理方法。
  3.  前記ブロモフルオロエチレンを含有するガスは前記ブロモフルオロエチレンと不活性ガスとの混合ガスである請求項1又は請求項2に記載のガス処理方法。
  4.  前記不活性ガスは、窒素ガス、ヘリウム、アルゴン、ネオン、及びクリプトンのうちの少なくとも1種である請求項3に記載のガス処理方法。
  5.  前記ブロモフルオロエチレンを含有するガス中の前記ブロモフルオロエチレンの含有率が25体積%未満である請求項1~4のいずれか一項に記載のガス処理方法。
  6.  前記吸着剤がゼオライト及び活性炭の少なくとも一方である請求項1~5のいずれか一項に記載のガス処理方法。
  7.  前記温度環境が0℃以上100℃以下である請求項1~6のいずれか一項に記載のガス処理方法。
  8.  前記温度環境が0℃以上70℃以下である請求項1~6のいずれか一項に記載のガス処理方法。
  9.  平均細孔径0.4nm以上4nm以下の細孔を有する吸着剤が収容された吸着処理容器を備え、
     前記吸着処理容器は、ブロモフルオロエチレンを含有するガスが供給される供給口と、前記ブロモフルオロエチレンを含有するガスに前記吸着剤による吸着処理が施されてなる処理済みガスを、前記吸着処理容器内から外部に排出する排出口と、を有するガス処理装置。
PCT/JP2020/027717 2019-08-06 2020-07-16 ガス処理方法及びガス処理装置 WO2021024746A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP20849694.3A EP4011833A4 (en) 2019-08-06 2020-07-16 GAS TREATMENT METHOD AND GAS TREATMENT DEVICE
KR1020217035901A KR102644490B1 (ko) 2019-08-06 2020-07-16 가스 처리 방법 및 가스 처리 장치
SG11202112211VA SG11202112211VA (en) 2019-08-06 2020-07-16 Gas treatment method and gas treatment device
JP2021537659A JPWO2021024746A1 (ja) 2019-08-06 2020-07-16
CN202080032955.9A CN113784776B (zh) 2019-08-06 2020-07-16 气体处理方法和气体处理装置
US17/595,409 US20220193597A1 (en) 2019-08-06 2020-07-16 Gas treatment method and gas treatment device
IL287766A IL287766A (en) 2019-08-06 2021-11-01 Gas treatment method and gas treatment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-144440 2019-08-06
JP2019144440 2019-08-06

Publications (1)

Publication Number Publication Date
WO2021024746A1 true WO2021024746A1 (ja) 2021-02-11

Family

ID=74503520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027717 WO2021024746A1 (ja) 2019-08-06 2020-07-16 ガス処理方法及びガス処理装置

Country Status (9)

Country Link
US (1) US20220193597A1 (ja)
EP (1) EP4011833A4 (ja)
JP (1) JPWO2021024746A1 (ja)
KR (1) KR102644490B1 (ja)
CN (1) CN113784776B (ja)
IL (1) IL287766A (ja)
SG (1) SG11202112211VA (ja)
TW (1) TWI771722B (ja)
WO (1) WO2021024746A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124726A1 (ja) * 2011-03-17 2012-09-20 日本ゼオン株式会社 エッチングガスおよびエッチング方法
WO2015125877A1 (ja) * 2014-02-20 2015-08-27 旭硝子株式会社 トリフルオロエチレンを含む流体の精製方法、およびトリフルオロエチレンの製造方法
JP2017047338A (ja) * 2015-08-31 2017-03-09 宇部興産株式会社 ブロモフルオロアルケン含有ガスの処理方法及びブロモフルオロアルケン含有ガスの処理装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU601817B2 (en) * 1987-03-04 1990-09-20 Union Carbide Canada Limited Process for the recovery of halogenated hydrocarbons in a gas stream
US4820318A (en) * 1987-12-24 1989-04-11 Allied-Signal Inc. Removal of organic compounds from gas streams using carbon molecular sieves
US5015365A (en) * 1988-04-20 1991-05-14 Vara International Inc. Process for removing halogenated hydrocarbons and other solvents from a solvent laden air (SLA) stream
US5425242A (en) * 1994-04-14 1995-06-20 Uop Process for recovery and purification of refrigerants with solid sorbents
US5904909A (en) * 1997-08-21 1999-05-18 The United States Of America As Represented By The Secretary Of Agriculture Methods for removing and decomposing methyl bromide from fumigation
AU5261701A (en) * 2000-04-28 2001-11-12 Showa Denko Kabushiki Kaisha Method for purification of tetrafluoromethane and use thereof
JP4471448B2 (ja) * 2000-04-28 2010-06-02 昭和電工株式会社 テトラフルオロメタンの精製方法及びその用途
KR100719371B1 (ko) * 2005-08-03 2007-05-17 삼성전자주식회사 퍼플루오르화 화합물을 재생하는 흡착 설비 및 방법
JP5132555B2 (ja) * 2006-06-30 2013-01-30 昭和電工株式会社 高純度ヘキサフルオロプロピレンの製造方法及びクリーニングガス
WO2009031467A1 (ja) * 2007-09-07 2009-03-12 Kuraray Chemical Co., Ltd. 吸着材及びその製造方法、並びにキャニスタ及びその使用方法
US8142549B2 (en) * 2008-03-26 2012-03-27 Matheson Tri-Gas, Inc. Purification of fluorine containing gases and systems and materials thereof
AU2010291823B2 (en) * 2009-09-01 2016-12-22 Blue-Zone Technologies Ltd. Systems and methods for gas treatment
TWI454303B (zh) * 2012-10-31 2014-10-01 China Steel Corp 組合式除臭模組及其應用
EP3084152B1 (en) * 2013-12-20 2023-05-31 3M Innovative Properties Company Fluorinated olefins as working fluids and methods of using same
JP2017047387A (ja) * 2015-09-03 2017-03-09 日新製鋼株式会社 硬化膜の製造方法
SG11202003151VA (en) * 2017-11-02 2020-05-28 Showa Denko Kk Etching method and semiconductor manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124726A1 (ja) * 2011-03-17 2012-09-20 日本ゼオン株式会社 エッチングガスおよびエッチング方法
WO2015125877A1 (ja) * 2014-02-20 2015-08-27 旭硝子株式会社 トリフルオロエチレンを含む流体の精製方法、およびトリフルオロエチレンの製造方法
JP2017047338A (ja) * 2015-08-31 2017-03-09 宇部興産株式会社 ブロモフルオロアルケン含有ガスの処理方法及びブロモフルオロアルケン含有ガスの処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4011833A4 *

Also Published As

Publication number Publication date
CN113784776A (zh) 2021-12-10
JPWO2021024746A1 (ja) 2021-02-11
KR102644490B1 (ko) 2024-03-08
SG11202112211VA (en) 2021-12-30
TW202112430A (zh) 2021-04-01
EP4011833A4 (en) 2023-02-22
CN113784776B (zh) 2024-03-19
EP4011833A1 (en) 2022-06-15
KR20210148295A (ko) 2021-12-07
IL287766A (en) 2022-01-01
US20220193597A1 (en) 2022-06-23
TWI771722B (zh) 2022-07-21

Similar Documents

Publication Publication Date Title
US7160360B2 (en) Purification of hydride gases
JP3693626B2 (ja) 吸着剤
US6616732B1 (en) Zeolite adsorbents, method for obtaining them and their use for removing carbonates from a gas stream
US7608134B1 (en) Decarbonating gas streams using zeolite adsorbents
JP2010533063A5 (ja)
KR940001410B1 (ko) 기체상 염소의 농축방법
KR20080106632A (ko) 일산화탄소를 선택적으로 분리하기 위한 흡착제 및 그제조방법
CN1268412C (zh) 纯化三氟化氮气体的方法
JP2008537720A (ja) 三フッ化窒素の精製
US5069690A (en) Process for kinetic gas-solid chromatographic separations
JP2010005542A (ja) Pfc吸着剤及びそれを用いたpfc除害方法
WO2021024746A1 (ja) ガス処理方法及びガス処理装置
JP4031293B2 (ja) 亜酸化窒素の回収精製法および回収精製装置
JPH0812602A (ja) トリフルオロメタンの精製法
JP2005021891A (ja) ガス精製方法及び装置
JP2005161306A (ja) ペルフルオロメタンの精製
JPH08309146A (ja) ガス流れからペルフルオロカーボン類を分離除去する方法
JP2013017930A (ja) 吸着剤を利用した水分除去、冷熱の回収を行う、低温液化voc回収方法におけるvoc回収率の向上方法
JPH10249157A (ja) フロンの回収方法
JPH07330316A (ja) 三弗化窒素ガスの精製方法
JPH04925B2 (ja)
JP2005533647A (ja) ガス混合物の分離方法
JP2931662B2 (ja) 三弗化窒素ガスの精製方法
JP2020006324A (ja) ガス分離装置及びガス分離方法
JP2011194337A (ja) ハイドロフルオロカーボン除去剤、およびハイドロフルオロカーボンの除去方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849694

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021537659

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217035901

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020849694

Country of ref document: EP

Effective date: 20220307