CN112909234A - 一种锂负极或钠负极的制备方法与应用 - Google Patents

一种锂负极或钠负极的制备方法与应用 Download PDF

Info

Publication number
CN112909234A
CN112909234A CN202110072786.8A CN202110072786A CN112909234A CN 112909234 A CN112909234 A CN 112909234A CN 202110072786 A CN202110072786 A CN 202110072786A CN 112909234 A CN112909234 A CN 112909234A
Authority
CN
China
Prior art keywords
lithium
sodium
carbon fiber
current collector
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110072786.8A
Other languages
English (en)
Inventor
吴玉程
刘铭
李凯辉
刘家琴
余彦
张琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202110072786.8A priority Critical patent/CN112909234A/zh
Publication of CN112909234A publication Critical patent/CN112909234A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明属于新能源材料与器件技术领域,尤其涉及一种锂负极或钠负极的制备方法与应用。该制备方法包括:将酸洗后的碳纤维布浸渍于硝酸镍水溶液中;然后将表面吸附硝酸镍的碳纤维布干燥并在惰性气氛中煅烧,获得一种三维多孔集流体,组成该集流体的碳纤维表面呈多孔结构并且弥散嵌有纳米镍颗粒;进而采用熔融法将金属锂或金属钠引入上述三维多孔集流体中,获得一种锂负极或钠负极。由于碳纤维表面的多孔结构能够为锂或钠金属提供坚实的限域作用,弥散的镍颗粒可以赋予三维集流体亲锂或亲钠性并降低金属锂或钠的沉积过电势。因此,所制备的锂负极或钠负极表现出优异的电化学性能、高安全性和长寿命。

Description

一种锂负极或钠负极的制备方法与应用
技术领域
本发明涉及新能源材料与器件技术领域,尤其涉及一种锂负极或钠负极的制备方法与应用。
背景技术
锂离子电池因具有能量密度高、循环寿命长、自放电小、无记忆效应和环境友好等众多优点而广泛应用于可移动电子设备、电动汽车、航空航天和电力储存等领域。锂离子电池主要由正极、负极、电解液和隔膜等部分组成,其中负极材料的选择会直接关系到电池的能量密度。然而,以石墨为基础的负极材料经过多年发展,已接近其理论能量密度极限。为了进一步提高电池能量密度,亟需发展高能量密度的负极材料。
金属锂由于其极高的质量比容量(理论容量3860mA h g-1)和极低的氧化还原电势(-3.040V vs.标准氢电极),成为下一代高能量密度锂电池中最理想的负极材料之一。金属锂负极与硫正极组合而成锂硫电池的理论能量密度高达2576Wh/kg,完全能够满足汽车动力电池长续航的需求。然而,金属锂负极在充放电过程中存在电解质界面处不均匀的传质、传荷过程导致的枝晶生长和“死锂”问题,以及金属锂负极体积变化导致的SEI膜破裂、锂金属不可逆消耗和库伦效率的持续降低的问题。此外,循环充放电过程中锂枝晶的持续生长还会最终刺破隔膜与正极直接接触造成电池短路,从而引发安全事故。与金属锂负极的问题类似,钠金属负极也存在枝晶生长和“死钠”问题以及循环过程中SEI膜破裂、钠金属不可逆消耗的问题。因此,寻找有效抑制锂枝晶或钠枝晶生长的方法成为当前亟待解决的热点问题。
为解决以上问题,研究人员提出了不同的解决方法,如利用电解液添加剂稳定锂负极或钠负极表面SEI膜性能,对锂负极进行表面改性以促进锂的均匀沉积与剥离。近年来,研究人员发现三维多孔集流体对锂枝晶或钠枝晶的生长具有显著抑制作用:一方面高比表面积的三维结构能够降低局部电流密度,有利于降低枝晶生长速度,也有利于调控表面电荷分布,使锂离子的沉积更加均匀;另一方面,多孔结构可以为沉积的锂提供了物理限域作用,抑制了锂负极相对无限体积膨胀,稳定电极的机械强度。因此,使用三维集流体作为锂金属的宿主是实现高容量和长循环锂金属或钠金属负极非常有效的方法。碳基材料由于具有质量轻、导电性好、化学稳定、机械性能良好等特性受到了研究人员的广泛关注。然而,非极性碳材料与锂金属或钠金属润湿性较差会导致融锂或融钠困难,因此研究人员尝试对碳材料表面进行改性,引入亲锂或亲钠位点以提升其亲锂或亲钠性。
发明内容
本发明的目的在于:提供一种锂负极或钠负极的制备方法与应用,制备的电极结构稳定、柔韧性好、机械强度高,三维多孔碳纤维集流体能够有效抑制锂(钠)枝晶生长,提升电池循环稳定性。
为了达到上述目的,本发明的技术方案如下:
一种锂负极或钠负极的制备方法,将金属锂或金属钠引入一种三维多孔集流体中,组成该三维集流体的碳纤维表面呈多孔结构并且弥散嵌有金属镍纳米颗粒,弥散分布的金属镍纳米颗粒作为亲锂、钠位点,使金属锂、钠在熔融时均匀分布于三维多孔集流体中。
进一步地,一种锂负极或钠负极的制备方法,包括以下步骤:
(1)将碳纤维布置于浓硝酸与浓硫酸的混合溶液中进行回流处理;
(2)将步骤(1)所得碳纤维布分别在丙酮、无水乙醇和去离子水中依次超声处理;
(3)将步骤(2)所得碳纤维布浸渍于硝酸镍水溶液中,然后空气中干燥处理;
(4)将步骤(3)所得碳纤维布在惰性气氛中煅烧得到三维多孔集流体,组成该集流体的碳纤维表面呈多孔结构并且弥散嵌有金属镍纳米颗粒;
(5)将金属锂或金属钠加热至熔融状态,然后将步骤(4)所得三维多孔集流体浸入其中,得到锂负极或钠负极。
作为本发明的优选技术方案,制备方法中:
所述的步骤(1)具体为:65~68%浓硝酸与95~98%浓硫酸体积比为1∶3,回流温度为80~100℃,回流时间为2~4h。
所述的步骤(2)具体为:所述碳纤维布分别在丙酮、无水乙醇和去离子水中依次超声处理15~20min,重复1~3次。
所述的步骤(3)具体为:所述的硝酸镍水溶液浓度为0.5~1.0mol/L,浸渍温度为40~80℃,浸渍时间为1~5h,干燥温度为50~80℃,干燥时间为1~3h。
所述的步骤(4)具体为:所述煅烧惰性气氛为氩气,煅烧温度为800~900℃,升温速率为3~5℃/min,保温时间为4~6h,冷却方式为自然冷却。
所述的步骤(5)具体为:将金属锂或金属钠加热至熔融状态的操作在真空手套箱中进行,手套箱中的气氛为氩气,熔锂温度为300~400℃,熔钠温度为230~380℃。
本发明的一种锂负极或钠负极的制备方法与应用,有益效果表现在:
(1)基于碳纤维布的锂负极或钠负极具有结构稳定、高机械强度和良好柔韧性等优点。
(2)三维多孔集流体表面的多孔结构可以有效提升其比表面积,大的比表面积可以降低金属锂或金属钠在沉积和剥离过程中的局部电流密度,抑制锂(钠)枝晶的生长,提高电池安全性能及循环稳定性。
(3)多孔碳纤维骨架表面的金属镍纳米颗粒具有较好的亲锂(钠)作用,弥散分布的镍颗粒可以作为亲锂(钠)位点,使金属锂(钠)在熔融时均匀分布,且熔融过程可在10~60s内完成。
(4)所需原材料来源丰富,成本低廉,制备方法简单高效,适于规模化生产和应用。
附图说明
图1中(a)为原始碳纤维布SEM形貌图,(b-c)为不同倍数下实施例1制备的三维多孔集流体SEM形貌图,(d)为实施例1中三维多孔集流体注入熔融锂后所制备锂负极的数码照片。
图2为实施例1所制备三维多孔集流体的XRD图谱。
图3为实施例1和对比例1中0.5mA/cm2电流密度下半电池库伦效率测试。
图4为实施例1和对比例1中对称电池在1mA/cm2电流密度,1mAh/cm2面积容量下的循环性能测试。
图5为实施例1和对比例1中全电池在0.5C下的循环性能测试。
图6为实施例5中对称电池在电流密度为0.5mA/cm2,面积容量为0.5mAh/cm2下的循环性能测试。
图7为实施例5中全电池在1C下的循环性能测试。
具体实施方式
以下将结合附图及具体实施例对本技术方案实施例作进一步的详细说明。
实施例1
本实施例提供一种锂负极的制备方法,包括以下几个步骤:
(1)将碳纤维布置于浓硝酸与浓硫酸的混合溶液中进行回流处理;
(2)将步骤(1)所得碳纤维布分别在丙酮、无水乙醇和去离子水中依次超声处理;
(3)将步骤(2)所得碳纤维布浸渍于硝酸镍水溶液中,然后空气中干燥处理;
(4)将步骤(3)所得碳纤维布在惰性气氛中煅烧得到三维多孔集流体,组成该集流体的碳纤维表面呈多孔结构并且弥散嵌有金属镍纳米颗粒;
(5)将金属锂加热至熔融状态,然后将步骤(4)所得三维多孔集流体浸入其中,得到目标锂负极。
所述的步骤(1)具体为:浓硝酸(68%)与浓硫酸(98%)体积比为1∶3,回流温度为80℃,回流时间为2h。
所述的步骤(2)具体为:所述碳纤维布分别用丙酮、无水乙醇和去离子水依次超声处理15min,重复3次。
所述的步骤(3)具体为:所述的硝酸镍水溶液浓度为0.8mol/L,硝酸镍水溶液温度为60℃,浸渍时间为5h,干燥温度为60℃,干燥时间为2h。
所述的步骤(4)具体为:所述煅烧惰性气氛为氩气,温度为800℃,升温速率为5℃/min,保温时间为5h,冷却方式为自然冷却。
所述的步骤(5)具体为:将金属锂加热至熔融状态的操作在真空手套箱中进行,手套箱中的气氛为氩气,熔锂温度为300℃。
图1a为原始碳纤维布SEM形貌图,图1b-c为不同倍数下三维多孔集流体SEM形貌图,图1d为三维多孔集流体注入熔融锂后所制备锂负极的数码照片。从图1a中可以看出碳纤维直径约8~10μm,表面光滑平整。图1b-c为所制备三维多孔集流体,可以看出碳纤维表面存在多孔结构且金属镍颗粒均匀分布于多孔碳纤维表面。图1d可以看出,融锂后的碳布表面均匀平整,呈现锂金属的金属光泽。
图2为所制备三维多孔集流体的XRD图谱,图谱中在25.6°附近出现一个宽化的衍射峰,对应石墨化碳的特征峰;在44.6°、52.0°和76.6°出现三个尖锐的衍射峰,分别对应于金属镍(111)、(200)和(220)晶面的衍射峰,说明金属镍有效地负载于多孔碳纤维表面。
以本实施例1所制备的三维多孔集流体组装半电池;以所制备锂负极组装对称电池;以所制备锂负极,普通商用隔膜和磷酸铁锂正极组装全电池进行电化学性能测试,具体步骤如下:
(1)磷酸铁锂正极的制备:以磷酸铁锂粉末作为正极活性物质,按质量比8∶1∶1分别称取磷酸铁锂,Super P,PVDF研磨混合均匀,添加适量溶剂NMP研磨混合得到浆料,将研磨后的浆料刮涂在铝箔集流体上,60℃真空干燥24h得到正极片,所制备正极片中活性物质磷酸铁锂面积载量约5mg/cm2
(2)电池组装:在氩气气氛的手套箱中以实施例1所制备的三维多孔集流体和商用锂片组装半电池;以所制备锂负极组装对称电池;以所制备锂负极和磷酸铁锂正极组装全电池,所有电池均为CR2032型号扣式电池。其中半电池和对称电池电解液为1M LiTFSI/DOL+DME(DOL和DME体积比为1∶1,添加2wt%LiNO3)全电池电解液为1.0M LiPF6/EC+DEC(EC与DEC体积比为1∶1)。
(3)性能测试:将组装好的扣式电池置于20℃恒温箱内,使用电池测试***对组装电池进行电化学性能测试,全电池测试的电压窗口为2.1~4.2V。
对比例1
为对比说明本发明所提供的锂负极可以有效抑制锂枝晶的生长,提升电池电化学性能,本对比例1中测试所用电池与实施例1基本相同,不同之处在于以原始碳纤维布组装半电池,以商用锂片组装对称电池或全电池进行测试。
图3中实施例1为所制备三维多孔集流体与商用锂片所组装半电池在0.5mA/cm2下循环的库伦效率,在400圈循环过程中,库伦效率始终保持在99%以上;作为对照,对比例1以原始碳纤维布与商用锂片所组装半电池库伦效率在300圈左右开始快速衰减。
图4中实施例1为以所制备锂负极组装对称电池在1mA/cm2,1mAh/cm2条件下进行循环性能测试,经600h循环后,保持18mV左右的过电位;作为对照,对比例1以商用锂片组装的对称电池只能运行340h,其过电位高达40mV。
图5中实施例1以所制备锂负极组装全电池,在0.5C条件下进行循环充放电,初始放电容量为158.7mAh/g,127圈后容量为150.7mAh/g,平均每圈容量衰减率为0.039%;作为对照,对比例1以商用锂片为负极组装全电池进行循环充放电,首圈放电比容量为140.1mAh/g,127圈后容量为121.2mAh/g,平均每圈容量衰减率为0.106%。二者库伦效率均接近100%。
相较于对比例1,实施例1使用所制备锂负极的半电池、对称电池及全电池都表现出更加优异的循环稳定性,说明所制备的锂负极在循环充放电过程中枝晶生长被有效抑制。
实施例2
本实施例制备方法与实施例1基本相同,不同之处在于步骤(4)中煅烧温度为900℃,其中所得到三维集流体形貌结构与实施例1相似,说明在一定温度范围内,温度的改变对其形貌影响不大。该实施例所获得的锂负极电化学性能与实施例1中的锂负极电化学性能基本一致。
实施例3
本实施例制备方法与实施例1基本相同,不同之处在于步骤(3)中硝酸镍水溶液浓度为1mol/L,在此条件下所得到三维集流体与实施例1相比,金属镍颗粒尺寸变大,碳纤维表面多孔结构的孔径尺寸略有减小。该实施例所获得的锂负极电化学性能与实施例1中的锂负极电化学性能基本一致。
实施例4
本实施例制备方法与实施例1基本相同,不同之处在于步骤(3)中硝酸镍水溶液浓度为0.5mol/L,在此条件下所得到三维集流体与实施例1相比,金属镍颗粒尺寸略有减小,碳纤维表面多孔结构的孔径尺寸变化不大。该实施例所获得的锂负极电化学性能与实施例1中的锂负极电化学性能基本一致。
实施例5
本实施例制备方法与实施例1基本相同,不同之处在于步骤(5)中在氩气气氛手套箱中将钠块加热至熔融状态,然后将步骤(4)所得三维集流体浸入熔融钠中,制备获得金属钠负极。
图6展示了以所制备钠负极或商用钠块组装对称电池在0.5mA/cm2,0.5mAh/cm2条件下进行循环性能测试,其中所制备钠负极对称电池在700h循环后,保持160mV左右的过电位;与之对照,商用钠块所组装的对称电池700h循环后过电位高达400mV。
图7展示了以所制备钠负极或商用钠片负极,Na3V2(PO4)3正极(Na3V2(PO4)3,SuperP,PVDF质量比为8∶1∶1)及含1M NaPF6的二甘醇二甲醚电解液组装的全电池循环充放电性能。在1C条件下,以所制备钠负极组装的全电池初始放电比容量为98.5mAh/g,150圈后容量为94.4mAh/g,容量保持率为95.8%;作为对照,以商用钠块为负极组装全电池进行循环充放电,首圈放电比容量为92.6mAh/g,150圈后容量为79.3mAh/g,容量保持率为85.6%。二者库伦效率均接近100%。
因此,相较于商用钠块,本实施例所制备钠负极所组装的对称电池及全电池都表现出更加优异的循环稳定性,所制备的钠负极在循环充放电过程中枝晶生长被有效抑制。
以上内容仅仅是对本发明的构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (8)

1.一种锂负极或钠负极的制备方法,其特征在于:将酸洗后的碳纤维布浸渍于硝酸镍水溶液中;然后将表面吸附硝酸镍的碳纤维布干燥并在惰性气氛中煅烧,获得一种三维多孔集流体,组成该集流体的碳纤维表面呈多孔结构并且弥散嵌有纳米镍颗粒;进而采用熔融法将金属锂或金属钠引入上述三维多孔集流体中,获得一种锂负极或钠负极。
2.根据权利要求1所述的制备方法,其特征在于,包括以下步骤:
(1)将碳纤维布置于浓硝酸与浓硫酸的混合溶液中进行回流处理;
(2)将步骤(1)所得碳纤维布分别在丙酮、无水乙醇和去离子水中依次超声处理;
(3)将步骤(2)所得碳纤维布浸渍于硝酸镍水溶液中,然后空气中干燥处理;
(4)将步骤(3)所得碳纤维布在惰性气氛中煅烧得到三维多孔集流体,组成该集流体的碳纤维表面呈多孔结构并且弥散嵌有金属镍纳米颗粒;
(5)将金属锂或金属钠加热至熔融状态,然后将步骤(4)所得三维多孔集流体浸入其中,得到锂负极或钠负极。
3.根据权利要求2所述的制备方法,其特征在于步骤(1)中浓硝酸与浓硫酸体积比为1∶3,回流温度为80~100℃,回流时间为2~4h。
4.根据权利要求2所述的制备方法,其特征在于步骤(2)所述碳纤维布分别在丙酮、无水乙醇和去离子水中依次超声处理15~20min,重复1~3次。
5.根据权利要求2所述的制备方法,其特征在于步骤(3)所述的硝酸镍水溶液浓度为0.5~1.0mol/L,浸渍温度为40~80℃,浸渍时间为1~5h,干燥温度为50~80℃,干燥时间为1~3h。
6.根据权利要求2所述的制备方法,其特征在于步骤(4)所述煅烧惰性气氛为氩气,煅烧温度为800~900℃,升温速率为3~5℃/min,保温时间为4~6h,冷却方式为自然冷却。
7.根据权利要求2所述的制备方法,其特征在于步骤(5)中将金属锂或金属钠加热至熔融状态的操作在真空手套箱中进行,手套箱中的气氛为氩气,熔锂温度为300~400℃,熔钠温度为230~380℃。
8.根据权利要求1-7任一项所述方法制备的锂负极或钠负极在锂离子电池负极中的应用。
CN202110072786.8A 2021-01-20 2021-01-20 一种锂负极或钠负极的制备方法与应用 Pending CN112909234A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110072786.8A CN112909234A (zh) 2021-01-20 2021-01-20 一种锂负极或钠负极的制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110072786.8A CN112909234A (zh) 2021-01-20 2021-01-20 一种锂负极或钠负极的制备方法与应用

Publications (1)

Publication Number Publication Date
CN112909234A true CN112909234A (zh) 2021-06-04

Family

ID=76116329

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110072786.8A Pending CN112909234A (zh) 2021-01-20 2021-01-20 一种锂负极或钠负极的制备方法与应用

Country Status (1)

Country Link
CN (1) CN112909234A (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113422064A (zh) * 2021-06-22 2021-09-21 广东工业大学 一种锂金属负极集流体及其制备方法和应用
CN113578222A (zh) * 2021-07-12 2021-11-02 浙江大学 基于瞬时高温焦耳热法的纳米复合材料合成装置及制备方法和应用
CN113629236A (zh) * 2021-07-15 2021-11-09 华中科技大学 一种复合金属锂负极及其制备方法和应用
CN113644267A (zh) * 2021-08-03 2021-11-12 西北工业大学 一种多元合金诱导柔性钠金属电池基底及制备方法
CN113972375A (zh) * 2021-10-21 2022-01-25 合肥工业大学 一种多孔碳纤维/氧化钨自支撑锂硫电池正极材料制备方法及其应用
CN113991094A (zh) * 2021-10-27 2022-01-28 重庆硕盈峰新能源科技有限公司 一种杂原子原位掺杂的多孔碳复合锂负极及其制备方法和应用
CN114122332A (zh) * 2021-11-25 2022-03-01 江苏科技大学 一种利用MOFs衍生物制备三维金属锂负极的方法
CN114335540A (zh) * 2021-12-29 2022-04-12 北京卫蓝新能源科技有限公司 一种亲锂碳骨架复合材料及其制备方法和应用
CN114512637A (zh) * 2022-01-20 2022-05-17 武汉工程大学 一种具有多功能界面层的三维复合锂金属负极及其制备方法
CN114551895A (zh) * 2021-07-08 2022-05-27 万向一二三股份公司 一种柔性锂金属电池负极的制作方法
CN114628685A (zh) * 2021-08-09 2022-06-14 万向一二三股份公司 一种超亲锂高稳定的金属锂复合负极片及电池
CN115036454A (zh) * 2022-06-21 2022-09-09 天目湖先进储能技术研究院有限公司 一种安全稳定的活化负极

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109904390A (zh) * 2019-01-28 2019-06-18 武汉理工大学 一种金属锂/镀镍碳布复合负极的制备方法
CN109950547A (zh) * 2019-03-27 2019-06-28 华中农业大学 一种修饰有非贵金属涂层的三维集流体
CN110660968A (zh) * 2019-09-17 2020-01-07 天津大学 复合锂金属负极及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109904390A (zh) * 2019-01-28 2019-06-18 武汉理工大学 一种金属锂/镀镍碳布复合负极的制备方法
CN109950547A (zh) * 2019-03-27 2019-06-28 华中农业大学 一种修饰有非贵金属涂层的三维集流体
CN110660968A (zh) * 2019-09-17 2020-01-07 天津大学 复合锂金属负极及其制备方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113422064A (zh) * 2021-06-22 2021-09-21 广东工业大学 一种锂金属负极集流体及其制备方法和应用
CN114551895B (zh) * 2021-07-08 2023-10-03 万向一二三股份公司 一种柔性锂金属电池负极的制作方法
CN114551895A (zh) * 2021-07-08 2022-05-27 万向一二三股份公司 一种柔性锂金属电池负极的制作方法
CN113578222A (zh) * 2021-07-12 2021-11-02 浙江大学 基于瞬时高温焦耳热法的纳米复合材料合成装置及制备方法和应用
CN113629236A (zh) * 2021-07-15 2021-11-09 华中科技大学 一种复合金属锂负极及其制备方法和应用
CN113629236B (zh) * 2021-07-15 2022-08-05 华中科技大学 一种复合金属锂负极及其制备方法和应用
CN113644267A (zh) * 2021-08-03 2021-11-12 西北工业大学 一种多元合金诱导柔性钠金属电池基底及制备方法
CN113644267B (zh) * 2021-08-03 2023-09-29 西北工业大学 一种多元合金诱导柔性钠金属电池基底及制备方法
CN114628685A (zh) * 2021-08-09 2022-06-14 万向一二三股份公司 一种超亲锂高稳定的金属锂复合负极片及电池
CN114628685B (zh) * 2021-08-09 2023-10-03 万向一二三股份公司 一种超亲锂高稳定的金属锂复合负极片及电池
CN113972375A (zh) * 2021-10-21 2022-01-25 合肥工业大学 一种多孔碳纤维/氧化钨自支撑锂硫电池正极材料制备方法及其应用
CN113991094A (zh) * 2021-10-27 2022-01-28 重庆硕盈峰新能源科技有限公司 一种杂原子原位掺杂的多孔碳复合锂负极及其制备方法和应用
CN113991094B (zh) * 2021-10-27 2023-09-22 重庆硕盈峰新能源科技有限公司 一种杂原子原位掺杂的多孔碳复合锂负极及其制备方法和应用
CN114122332A (zh) * 2021-11-25 2022-03-01 江苏科技大学 一种利用MOFs衍生物制备三维金属锂负极的方法
CN114335540A (zh) * 2021-12-29 2022-04-12 北京卫蓝新能源科技有限公司 一种亲锂碳骨架复合材料及其制备方法和应用
CN114512637A (zh) * 2022-01-20 2022-05-17 武汉工程大学 一种具有多功能界面层的三维复合锂金属负极及其制备方法
CN115036454B (zh) * 2022-06-21 2023-06-02 天目湖先进储能技术研究院有限公司 一种安全稳定的活化负极
CN115036454A (zh) * 2022-06-21 2022-09-09 天目湖先进储能技术研究院有限公司 一种安全稳定的活化负极

Similar Documents

Publication Publication Date Title
CN112909234A (zh) 一种锂负极或钠负极的制备方法与应用
CN109103399B (zh) 一种锂硫电池用功能性隔膜及其制备方法和在锂硫电池中的应用
CN110416503B (zh) 一种软碳包覆磷酸钛钠介孔复合材料及其制备方法与应用
CN111362254A (zh) 一种氮掺杂碳纳米管负载磷掺杂四氧化三钴复合材料的制备方法及应用
CN108394884A (zh) 一种壳聚糖基高比表面积氮/磷共掺杂碳纳米片的制备方法
CN1907844A (zh) 高密度超微复合型磷酸铁锂正极材料及制备方法
CN109037594B (zh) 一种自愈合聚合物修饰的碱金属负极及其制备方法与应用
CN111769272A (zh) 一种Bi@C空心纳米球复合材料及其制备方法与应用
CN108807920B (zh) Laso包覆八面体结构镍锰酸锂复合材料及制备方法
CN111029560A (zh) 钠离子梯度掺杂的尖晶石结构正极活性材料及其制备方法
CN111646459A (zh) 一种硼掺杂石墨烯材料的制备方法及其应用
CN110790248B (zh) 具有花状结构的铁掺杂磷化钴微米球电极材料及其制备方法和应用
CN114702614A (zh) 一种提高硫化聚丙烯腈电池循环稳定性的正极材料及其制备方法
CN101414679A (zh) 一种复合材料及其制备方法和负极及锂电池
CN114335534A (zh) 磷酸锆锂快离子导体包覆改性的钴酸锂正极材料及其制备方法与应用
CN114171729A (zh) 一种石墨烯基磷酸铁锂正极材料的制备方法
CN110098384A (zh) 一种改性钴酸锂及其制备和应用
CN114751395A (zh) 一种氮掺杂多孔碳球/s复合材料及其制备方法和在锂硫电池中的应用
CN110767878B (zh) 一种导电聚合物包覆硅基负极极片及其制备方法和应用
CN109065879B (zh) 一种钠离子电池负极材料及其制备方法
CN113353970A (zh) 一种SnS-Fe1-xS双硫化物异质结及其合成方法和应用
CN111261857B (zh) 一种钠离子电池用FePS3/NC复合负极材料及其制备方法、钠离子电池
CN114583137B (zh) 一种在碳表面进行硫掺杂磷修饰的方法及其应用
CN117766742B (zh) 多孔硅碳复合材料、其制备方法及在二次电池中的应用
CN109935824B (zh) 一种负载十字针状氧化锡的膨胀石墨负极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210604

RJ01 Rejection of invention patent application after publication