CN112382513A - 一种双离子水系储能器件的制备方法 - Google Patents

一种双离子水系储能器件的制备方法 Download PDF

Info

Publication number
CN112382513A
CN112382513A CN202011064878.3A CN202011064878A CN112382513A CN 112382513 A CN112382513 A CN 112382513A CN 202011064878 A CN202011064878 A CN 202011064878A CN 112382513 A CN112382513 A CN 112382513A
Authority
CN
China
Prior art keywords
energy storage
storage device
electrode
water system
cuo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011064878.3A
Other languages
English (en)
Other versions
CN112382513B (zh
Inventor
刘博天
江林峰
石成龙
刘勇平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Technology
Original Assignee
Guilin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Technology filed Critical Guilin University of Technology
Priority to CN202011064878.3A priority Critical patent/CN112382513B/zh
Publication of CN112382513A publication Critical patent/CN112382513A/zh
Application granted granted Critical
Publication of CN112382513B publication Critical patent/CN112382513B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种双离子水系储能器件的制备方法。(1)将金属铜片经过清洗等预处理,通过一定条件的阳极氧化,在管式炉中高温烧结,得到CuO纳米阵列电极;(2)将商用碳布经过清洗等预处理,通过一定条件的电化学沉积、碳包覆和高温碳化,得到VC/V2O3/C纳米复合电极;(3)将上述两种电极通过隔膜分开,在KOH电解液中,组装成水系储能器件,这种储能器件具有独特的双离子储能特性,即CuO与OH氧化还原反应,VC/V2O3/C与K+氧化还原反应。因此,本发明使用制备简单的方法,发明了一种双离子水系储能器件,其优异的电化学性能,在电化学储能器件中是很有应用前景的。

Description

一种双离子水系储能器件的制备方法
技术领域
本发明涉及电化学储能器件领域,具体是一种双离子水系储能器件的制备方法
背景技术
随着人类科学技术的进步,化石能源的消耗同时导致了严重环境问题。因此,开发能够利用清洁能源的电化学储能器件成为了研究热点。其中,水系超级电容器/电池具有充放电速度快,循环寿命长,价格低等优点被认为是理想的储能器件。
众所周知,与存储单一阳离子(Li,Na,K离子等)比较多离子的存储方式能够有效提升器件能量密度。但水系环境下,缺乏有关多离子存储器件的相关设计。
鉴于此,本发明特提出通过正负极材料与碱性电解液的阴阳离子同时发生氧化还原反应来促进电荷存储,实现高的比容量,从而显著提升储能器件的能量密度。因此,本发明使用操作简单的方法,发明了一种双离子水系储能器件。其优异的电化学性能,在电化学储能器件中是很有应用前景发明。
发明内容
本发明的在于提供一种双离子水系能量存储器件的设计方法,该方法能够有效的提升器件能量存储密度。其中,存储(OH-)阴离子的关键正极材料可包括CuO、NiO、Co3O4中的一种或多种的混合物。
本发明是这样实现的:本发明的实施例中,提供了一种双离子能量存储器件的设计方法,其包括:正极材料选用CuO纳米阵列电极,负极材料选用VC/V2O3/C纳米复合电极,电解液选用KOH溶液。其制备方法是将制备好的CuO纳米阵列电极和VC/V2O3/C纳米复合电极用隔膜分开,组装在水系电解液中。
(1)所述正极材料CuO纳米阵列电极制备步骤如下:
a.将金属基底依次在去离子水,酸溶液和乙醇中超声清洗,并真空干燥;
b.配置一定浓度的KOH电解液,通过直流稳定电源阳极氧化法制得金属氢氧化物电极;
c.在氩气氛围下,通过高温烧结将金属氢氧化物失水制得金属氧化物纳米线。
所述步骤a中的金属基底为商用金属铜片,超声清洗时间10~30min,真空干燥温度40~100℃,干燥时间6~12h。。
所述步骤b中的KOH浓度为2~6M,阳极氧化电压为1~3V,时间20~60min,电解池中阳极为铜片,阴极为铂片,金属氢氧化物为Cu(OH)2,金属氧化物为CuO。
所述步骤c中的高温条件为先150℃保温3h,再200~350℃保温3h。
(2)所述负极材料VC/V2O3/C纳米复合电极制备步骤如下:
a.将商用碳布依次在去离子水,酸溶液和乙醇中超声清洗,并真空干燥;
b.配置一定浓度的VOSO4电解液,通过电化学沉积技术将钒氧化物沉积到商用碳布上;
c.将沉积到碳布上的钒氧化物浸入一定浓度的葡萄糖水溶液中,浸泡数小时;
d.在氩气氛围下,通过高温烧结将钒氧化物表面碳化为钒碳化物。
所述步骤a中超声清洗时间10~30min,真空干燥温度40~100℃,干燥时间6~12h。
所述步骤b在三电极体系中,工作电极为碳布,对电极为铂片,参比电极为Ag/AgCl。VOSO4浓度为0.5~2M,电化学沉积电压为1~3V,时间1~5min。
所述步骤c中的葡萄糖水溶液浓度为1~3M,浸泡时间6~12h。
所述步骤d中的高温烧结温度为900~1200℃,时间60~120min。
通过所述方法制得的双离子水系储能器件,其电化学测试方法为:将所述正极材料CuO纳米阵列电极和负极材料VC/V2O3/C纳米复合电极用隔膜分开,在2M KOH电解液中组装成水系储能器件。循环伏安曲线和充放电曲线电压窗口为0~1.2V,改变扫描速率得到不同扫描速率下的循环伏安曲线,并计算不同扫描速率的面积比容量,改变电流密度得到不同电流密度下的充放电曲线,在105HZ~0.01Hz的频率下进行电化学阻抗谱测试,在200mVs-1扫描速率下10000圈循环伏安曲线测试并计算出容量保持率,根据电化学性能测试计算出能量密度和功率密度的关系。
本发明的有益效果在于:
本发明通过阳极氧化法在铜片基底上直接生长出CuO纳米阵列;通过电化学沉积法和碳包覆技术在碳布上制备出VC/V2O3/C纳米复合电极。将两种电极组装在KOH电解液中,正极CuO与OH-的氧化还原反应,负极VC/V2O3/C与K+的氧化还原反应,从而促进电荷存储,实现双离子储能特性。并且这两种电极的制备方法都不需要电极的二次制备和添加一定比例的粘结剂,可以有效地降低电极的内阻。本发明制备方法简单,通过正负极材料与KOH电解液在充放电过程中实现双离子储能特性,其优异的电化学性能,在电化学储能器件中是很有应用前景的。
附图说明
图1为正极材料CuO纳米阵列的扫描电镜(SEM)图;
图2为负极材料的扫描电镜(SEM)图,其中:
图2a为V2O3/C纳米复合电极的SEM图;
图2b为VC/V2O3/C纳米复合电极的SEM图;
图3为正极材料CuO纳米阵列的XRD光谱图;
图4为负极材料的XRD图,其中:
图4a为V2O3/C纳米复合电极的XRD图;
图4b为VC/V2O3/C纳米复合电极的XRD图;
图5为双离子水系储能器件在不同扫描速率下的循环伏安图;
图6为双离子水系储能器件在不同扫描速率下的面积比容量图;
图7为双离子水系储能器件在不同电流密度下的充放电图;
图8为双离子水系储能器件的电化学阻抗谱图;
图9为双离子水系储能器件在200mV s-1扫描速率下的循环稳定性图;
图10为双离子水系储能器件的Ragone图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。下面将结合说明书附图及具体实施对本发明的具体实施方式做进一步阐述:
(1)基于正极材料CuO纳米阵列电极制备的具体过程如下:
a.将商用金属铜片依次在去离子水,酸溶液和乙醇中超声清洗20min,并在80℃真空干燥12h;
b.配置6M的KOH电解液,使用直流稳定电源,通过阳极氧化法,电压为1V,时间20min,制得Cu(OH)2电极;
c.在氩气氛围下,通过高温先150℃保温3h,再200℃保温3h。将Cu(OH)2失水制得CuO纳米线。
(2)基于负极材料VC/V2O3/C纳米复合电极制备的具体过程如下:
a.将商用碳布依次在去离子水,酸溶液和乙醇中超声清洗20min,并在80℃真空干燥12h;
b.配置1M的VOSO4电解液,通过电化学沉积技术,电压为1.5V,时间2min,将钒氧化物沉积到商用碳布上;
c.将沉积到碳布上的钒氧化物放入1.5M的葡萄糖水溶液中,浸泡8h;
d.在氩气氛围下,通过1200℃高温烧结90min,将钒氧化物表面碳化为钒碳化物。
CuO纳米阵列电极作为正极,VC/V2O3/C纳米复合电极作为负极,组装成双离子水系储能器件,其电化学测试方法为:将所述正负极材料用隔膜分开,并浸入2M KOH的电解液中,循环伏安曲线和充放电曲线的电压窗口为0~1.2V,改变扫描速率得到不同扫描速率下的循环伏安曲线,如图5所示;计算不同扫描速率的面积比容量,如图6所示;改变电流密度得到不同电流密度下的充放电曲线,如图7所示;进行电化学阻抗谱测试,如图8所示;在200mV s-1扫描速率下10000圈循环计算出与初始曲线的容量保持率,如图9所示;电化学能量密度和功率密度关系图,如图10所示。
作为正极材料CuO纳米阵列电极和负极材料VC/V2O3/C纳米复合电极的表征如下:
通过扫描电镜(SEM)对样品表面形态表征。如图1所示,通过阳极氧化法在金属铜片表面直接生长出了均匀的纳米阵列,从而有效地提高了材料的比表面积。如图2a所示,通过电化学沉积技术,碳布表面包裹着一层尺寸均匀的钒氧化物;如图2b所示,在电沉积基础上,通过碳包覆和高温烧结,碳布表面的钒氧化物被一层更致密的钒碳化物包裹。
通过XRD光谱图对样品表面形态表征。如图3所示,阳极氧化后在商用金属铜片上生长了CuO。如图4所示,从图4a中可以看出,电化学沉积后成功制备了V2O3/C电极;从图4b中可以看出,经过碳包覆和高温烧结后成功制备了VC/V2O3/C纳米复合电极。
电化学测试如下:
在双离子水系储能器件中,扫描速率从5~200mV s-1,获得在各个速率下的循环伏安曲线,该器件在不同扫描速率的循环伏安曲线都出现了氧化还原峰,展现出良好的双离子储能特性,如图5所示;在5mV s-1时,该器件的面积比容量高达124.97mF cm-2,如图6所示;电流密度从1~5mA cm-2,获得在各个速率下的循环伏安曲线,随着电流密度的增加,该器件的充放电曲线保持了良好的对称性,展现出良好的倍率性能,如图7所示;通过电化学阻抗谱测试,可以发现,该器件的溶液电阻RI仅为1.25ohms,电荷转移电阻Rct为1.39ohms,并且在低频区斜率接近与实部垂直,表明该器件展现出了接近理想储能器件的电化学性能,如图8所示。
如图9所示,在电压窗口为0~1.2V,扫描速率为200mV s-1循环伏安测试了双离子水系储能器件,经过10000次循环伏安测试,容量保持率为86.78%,展现出了优异的循环稳定性。
如图10所示,在0.75mW cm-2的功率密度下,所制备的双离子水系储能器件的能量密度高达24.99μWh cm-2,表明本发明制备的储能器件具有较高的能量密度,在储能器件中是很有应用前景的。

Claims (2)

1.一种双离子水系储能器件的制备方法,其特征在于,包括:
通过正极材料CuO纳米阵列电极、负极材料VC/V2O3/C纳米复合电极,组装成的储能器件能够在水系环境下同时存储K+和OH-,使得其获得更高的能量密度:
其中,所述的正极材料CuO纳米阵列电极制备步骤如下:
a.将金属基底依次在去离子水,酸溶液和乙醇中超声清洗,并真空干燥;
b.配置一定浓度的KOH电解液,通过直流稳定电源阳极氧化法制得金属氢氧化物电极;
c.在氩气氛围下,通过高温烧结将金属氢氧化物失水制得金属氧化物纳米线;
所述步骤a中的金属基底为商用金属铜片,超声清洗时间10~30min,真空干燥温度40~100℃,干燥时间6~12h;
所述步骤b中的KOH浓度为2~6M,阳极氧化电压为1~3V,时间20~60min,电解池中阳极为铜片,阴极为铂片,金属氢氧化物为Cu(OH)2,金属氧化物为CuO;
所述步骤c中的高温条件为先150℃保温3h,再200~350℃保温3h;
所述的负极材料VC/V2O3/C纳米复合电极制备步骤如下:
a.将商用碳布依次在去离子水,酸溶液和乙醇中超声清洗,并真空干燥;
b.配置一定浓度的VOSO4电解液,通过电化学沉积技术将钒氧化物沉积到商用碳布上;
c.将沉积到碳布上的钒氧化物浸入一定浓度的葡萄糖水溶液中,浸泡数小时;
d.在氩气氛围下,通过高温烧结将钒氧化物表面碳化为钒碳化物;
所述步骤a中超声清洗时间10~30min,真空干燥温度40~100℃,干燥时间6~12h;
所述步骤b在三电极体系中,工作电极为碳布,对电极为铂片,参比电极为Ag/AgCl;VOSO4浓度为0.5~2M,电化学沉积电压为1~3V,时间1~5min;
所述步骤c中的葡萄糖水溶液浓度为1~3M,浸泡时间6~12h;
所述步骤d中的高温烧结温度为900~1200℃,时间60~120min。
2.根据权利要求1所述的双离子水系储能器件的制备方法,其特征在于,在选择存储OH-的正极材料时,可包括CuO、NiO、Co3O4中的一种或多种的混合物。
CN202011064878.3A 2020-10-01 2020-10-01 一种双离子水系储能器件的制备方法 Active CN112382513B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011064878.3A CN112382513B (zh) 2020-10-01 2020-10-01 一种双离子水系储能器件的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011064878.3A CN112382513B (zh) 2020-10-01 2020-10-01 一种双离子水系储能器件的制备方法

Publications (2)

Publication Number Publication Date
CN112382513A true CN112382513A (zh) 2021-02-19
CN112382513B CN112382513B (zh) 2021-11-16

Family

ID=74580975

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011064878.3A Active CN112382513B (zh) 2020-10-01 2020-10-01 一种双离子水系储能器件的制备方法

Country Status (1)

Country Link
CN (1) CN112382513B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113223865A (zh) * 2021-05-11 2021-08-06 辽宁大学 一种纳米棒状结构的氧化钒电极材料及其制备方法和应用
CN113936929A (zh) * 2021-10-27 2022-01-14 桂林理工大学 一种基于电池型正极-赝电容型负极的双离子超级电容器的制备方法
CN115537840A (zh) * 2022-10-12 2022-12-30 成都理工大学 一种复合电催化材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106229563A (zh) * 2016-10-02 2016-12-14 复旦大学 一种具有自愈合功能的柔性水系锂离子电池及其制备方法
WO2019184939A1 (zh) * 2018-03-28 2019-10-03 华南师范大学 基于电化学和光电化学的离子去除装置及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106229563A (zh) * 2016-10-02 2016-12-14 复旦大学 一种具有自愈合功能的柔性水系锂离子电池及其制备方法
WO2019184939A1 (zh) * 2018-03-28 2019-10-03 华南师范大学 基于电化学和光电化学的离子去除装置及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘文燚等: "基于阵列电极的新型混合电容器", 《物理化学学报》 *
杨景海等: "双离子电池的研究与应用", 《吉林师范大学学报(自然科学版)》 *
雷宇等: "钾离子电池中碳负极材料的研究进展", 《新型炭材料》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113223865A (zh) * 2021-05-11 2021-08-06 辽宁大学 一种纳米棒状结构的氧化钒电极材料及其制备方法和应用
CN113936929A (zh) * 2021-10-27 2022-01-14 桂林理工大学 一种基于电池型正极-赝电容型负极的双离子超级电容器的制备方法
CN113936929B (zh) * 2021-10-27 2023-03-14 桂林理工大学 一种双离子超级电容器的制备方法
CN115537840A (zh) * 2022-10-12 2022-12-30 成都理工大学 一种复合电催化材料及其制备方法

Also Published As

Publication number Publication date
CN112382513B (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
US9705165B2 (en) Lithium-air battery air electrode and its preparation method
CN112382513B (zh) 一种双离子水系储能器件的制备方法
KR101775468B1 (ko) 슈퍼 커패시터용 전극 및 이의 제조 방법
Li et al. Regulating the oxidation degree of nickel foam: a smart strategy to controllably synthesize active Ni 3 S 2 nanorod/nanowire arrays for high-performance supercapacitors
JP6057293B2 (ja) Co(OH)2垂直配向グラフェン/CNT複合体、その製造方法、Co(OH)2垂直配向グラフェン/CNT複合体電極及びCo(OH)2垂直配向グラフェン/CNT複合体キャパシター
CN104051161B (zh) 自氧化纳米多孔镍钴锰/羟基氧化物复合三元电极
CN109904004B (zh) 一种SiC纳米线阵列薄膜的制备方法及其在超级电容器电极中的应用
CN109267047A (zh) 一种基于镍锰氢氧化物的柔性布电极的制备方法
CN103762090A (zh) 一种自集流超级电容器电极材料及其制备方法
CN111217361B (zh) 一种电化学阴极剥离制备石墨烯纳米片的方法
CN113077999A (zh) 一种无粘结剂CoFe LDH@Co8FeS8复合电极材料的制备方法
CN108461301B (zh) 一种MnO2-PPy/H-TiO2三元核壳杂化阵列电极材料及其制备方法
CN109786126A (zh) 一种水系高电压电极材料的制备方法及应用
JP7265019B2 (ja) イオノマー膜セパレーター及び自立電極を有する金属イオン電池
CN110938856A (zh) 一种镍基薄膜储能材料的新型阳极氧化工艺
CN114300276B (zh) 一种Ni-Fe-S@NiCo2O4@NF复合材料及其制备方法与应用
CN109741969A (zh) 一种氧化钛纳米线/聚苯胺复合材料的制备方法
CN111146008A (zh) 一种作为超级电容器的锰钼硫化物/石墨烯复合电极材料及其制备方法
CN115995351A (zh) 一种过渡金属镍掺杂二氧化锰电极材料的制备方法
CN108054022A (zh) 一种表层多孔结构镍钴氧化物的非晶合金复合电极及其制备方法
CN109103457B (zh) 纳米多孔金/钒酸钾||纳米多孔金/锰酸钾水性钾离子微电池及其制备方法和应用
CN110211817B (zh) 一种铝掺杂碱式氟化钴超薄纳米片阵列电极的制作方法
CN113936929B (zh) 一种双离子超级电容器的制备方法
CN108417411B (zh) 一种超级电容器及其制备方法
TUZLUCA Investigation of Flower-like ZnCo2O4 Nanowire Arrays Growth on 3D-Ni Foam as Supercapacitor Electrode Material

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20210219

Assignee: Guangxi Guiren Energy Saving Technology Co.,Ltd.

Assignor: GUILIN University OF TECHNOLOGY

Contract record no.: X2022450000610

Denomination of invention: A preparation method of dual-ion water system energy storage device

Granted publication date: 20211116

License type: Common License

Record date: 20221230