WO2019184939A1 - 基于电化学和光电化学的离子去除装置及其制备方法和应用 - Google Patents

基于电化学和光电化学的离子去除装置及其制备方法和应用 Download PDF

Info

Publication number
WO2019184939A1
WO2019184939A1 PCT/CN2019/079827 CN2019079827W WO2019184939A1 WO 2019184939 A1 WO2019184939 A1 WO 2019184939A1 CN 2019079827 W CN2019079827 W CN 2019079827W WO 2019184939 A1 WO2019184939 A1 WO 2019184939A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
fluid
exchange membrane
desalination
positive
Prior art date
Application number
PCT/CN2019/079827
Other languages
English (en)
French (fr)
Inventor
陈福明
Original Assignee
华南师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810261936.8A external-priority patent/CN108483573B/zh
Priority claimed from CN201810294845.4A external-priority patent/CN108493501B/zh
Priority claimed from CN201810473562.6A external-priority patent/CN108675404B/zh
Priority claimed from CN201811400339.5A external-priority patent/CN109574151B/zh
Priority claimed from CN201910093085.5A external-priority patent/CN109796065B/zh
Application filed by 华南师范大学 filed Critical 华南师范大学
Priority to US17/629,794 priority Critical patent/US20230013770A1/en
Publication of WO2019184939A1 publication Critical patent/WO2019184939A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/26Treatment of water, waste water, or sewage by extraction
    • C02F1/265Desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4616Power supply
    • C02F2201/46165Special power supply, e.g. solar energy or batteries
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4618Supplying or removing reactants or electrolyte
    • C02F2201/46185Recycling the cathodic or anodic feed
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention belongs to the technical field of electrochemical deionization, and particularly relates to an ion removal device based on electrochemical and photoelectrochemistry, a preparation method and application thereof.
  • Rechargeable battery systems including lithium-ion batteries, sodium-ion batteries, lead-acid batteries, nickel-metal hydride batteries, and hydrogen fuel cells, have received much attention from research and they have been devoted to practical applications in various fields.
  • Rechargeable battery systems including lithium-ion batteries, sodium-ion batteries, lead-acid batteries, nickel-metal hydride batteries, and hydrogen fuel cells.
  • cationic battery systems This is because negative ion transport performance, negative ion electrochemical energy storage technology has become a hot topic of research.
  • Maximilian Fichtner et al. proposed the concept of a chloride ion battery system and developed an ionic liquid or an organic solvent electrolyte by several research combinations.
  • the theoretical energy density is as high as 2500 Wh L-1.
  • the design of an aqueous chloride battery has been realized in an aqueous NaCl solution in which the anode is BiOCl and the cathode is Ag.
  • a stable and reversible capacity of 92.1 mAh g-1 can be obtained in 45 cycles.
  • Fluorine is the first element in the halogen table compared to chloride. The radius of the fluoride ion is much smaller, which facilitates rapid ion transport and kinetic diffusion. Fluoride ion battery systems have been proven in pioneering work.
  • fluoride ion batteries are tested in a solid state under high temperature, organic solvent or ionic liquid electrolyte.
  • achieving functional fluoride ion transport in aqueous electrolyte solutions remains a challenge because most electrode materials are unstable or soluble in aqueous electrolyte solutions.
  • Another object of the present invention is to provide a method for preparing a sodium fluoride dual ion battery and its use in electrochemical fluorine removal.
  • Another object of the present invention is to provide a method for continuous low energy consumption desalination using a fluid cell redox reaction and its use.
  • Another object of the present invention is to provide a method for continuous low energy consumption desalination using material electrochemistry.
  • Another object of the present invention is to provide a method of photo-driven electrochemical catalysis continuous desalination and a desalination fluid battery device therefor.
  • a method for desalination by using a fluid battery wherein desalination is performed by a desalination fluid battery device; wherein the demineralization fluid battery device is a positive electrode active material as a positive electrode of the fluid battery, and the negative electrode active material is a negative electrode of the fluid battery, and the salt solution is Intermediate fluid electrolyte of the fluid battery;
  • the positive active material is an organic material, an inorganic material, an organic solution or an inorganic solution;
  • the organic material is 4-hydroxy-piperidinol oxide (4-Hydroxy-TEMPO), and riboflavin sodium phosphate (Riboflavin- 5'-phosphate sodium salt dihydrate) or Methyl viologen dichloride hydrate, preferably 4-hydroxy-piperidinol oxide;
  • the inorganic material is VCl 3 or NaI;
  • the inorganic solution is contained Br 2 /Br - , VO 2+ /VO 2+ , V 3+ /VO 2+ , Fe 3+ /Fe 2+ , Ce 3+ /Ce 4+ , Ti 3+ /Ti 4+ , or Ce 3+ /Ce 2+ solution;
  • the negative active material is an organic material, an inorganic material, an organic solution or an inorganic solution; the inorganic material is VCl 3 , NaI, Zn or Pb; and the inorganic solution contains V 3+ /V 2+ , Cr 3+ /Cr 2+ , Cu 2+ /Cu + , TiOH 3+ /Ti 3+ , Cr 3+ /Cr 2+ , S/S 2- , Ti 3+ /Ti 2+ , Mn 2+ /Mn 3 + , or a solution of I 3- /I - ;
  • the salt solution is a sodium chloride solution, sea water, or a salt solution containing a heavy metal/metalloid element
  • the anion exchange membrane is an ion exchange membrane containing a functional group such as -NH 2 (amino), -N(CH 3 ) 3 OH (quaternary amine group), or a chloride ion exchange membrane, a fluoride ion exchange membrane, and a sulfate group.
  • a functional group such as -NH 2 (amino), -N(CH 3 ) 3 OH (quaternary amine group), or a chloride ion exchange membrane, a fluoride ion exchange membrane, and a sulfate group.
  • the cation exchange membrane is an ion exchange membrane containing a functional group such as -COOH (carboxyl) or -SO 3 H (sulfonic acid group); or a sodium ion exchange membrane, a lithium ion exchange membrane, a potassium ion exchange membrane, and calcium (Ca)
  • the desalination fluid battery device is prepared by the following method:
  • the concentration of the salt solution described in the step (1) is 200 mg / L ⁇ 50g / L; the concentration of the electrolyte of the positive electrode material described in the step (2) is 0.005 ⁇ 10mol / L;
  • the volume ratio of the intermediate fluid electrolyte, the positive electrode material electrolyte solution and the negative electrode material electrolyte solution in the step (4) is from 1 to 100:1 to 50:1 to 50; the carbon paper is washed with a surface treatment agent and The dried carbon paper; the surface treatment agent is 4% to 5% (w/w) hydrochloric acid and absolute ethanol; the cleaning is ultrasonic cleaning; the drying condition is: drying at 50 to 60 ° C 1 ⁇ 2h;
  • the anion exchange membrane described in the step (4) is an anion exchange membrane containing a quaternary amine group; preferably a homogeneous anion exchange membrane containing a quaternary amine group; the cation exchange membrane is a cation exchange membrane containing a sulfonic acid group; Preferably, it is a homogeneous cation exchange membrane containing a sulfonic acid group;
  • the self-assembly sequence of the fluid battery device mold in the step (4) is: starting from the negative electrode, sequentially placing the mold, the tab, the carbon paper, the mold, the foamed carbon, the cation exchange membrane, the mold, the anion exchange membrane, the foamed carbon, Mold, carbon paper, ear, mold.
  • a sodium fluoride dual ion battery comprising a sodium ion electrochemical material, a fluorine ion electrochemical material and an electrolyte; wherein the sodium ion electrode material is Na 0.44 MnO 2 , K 0.27 MnO 2 , Na 2 FeP 2 O 7 , V 2 O 5 , Na 3 V 2 (PO 4 ) 3 , Na 2 V 6 O 16 , NaTi 2 (PO 4 ) 3 , polytetrafluoroethylene, polybutyl acrylate, Na 2 C 8 H 4 O 4 And one or more of polyvinyl alcohol and Na 0.44 [Mn 1-x Ti x ]O 2 ; the fluorine ion electrochemical material is an electrochemical material coated with an electrochemical material or a carbon material; wherein the electrochemical material is One or more of Bi, BiF 3 , Pb, PbF 2 , a piperidine-based inorganic substance, and a bipyridylium salt; the electrolytic solution is a Na
  • the concentration of the NaF solution is 0.75 to 0.85 mol/L.
  • the Na 0.44 MnO 2 is prepared by the following method:
  • step 2) The product J obtained in the step 1) is again subjected to ball milling, and then the precursor obtained after the ball milling is again calcined to obtain Na 0.44 MnO 2 .
  • the molar ratio of sodium carbonate and dimanganese trioxide described in the step 1) is from 0.4 to 0.5:1.
  • the conditions of the ball milling described in the step 1) and the step 2) are: 250 to 270 r / min ball milling 10 to 15 h;
  • the calcination conditions in the step 1) are: in the air, at a rate of 2 ⁇ 10 ° C / min, the temperature is raised to 400 ⁇ 600 ° C, and then kept at a constant temperature for 4 ⁇ 7h;
  • the calcination conditions described in the step 2) are such that the temperature is raised to 900 to 1200 ° C in air at a rate of 2 ° C / min, and the temperature is maintained at 10 to 14 h.
  • the fluoride ion electrochemical material (carboxylated carbon nanotube coated nano ruthenium) is preferably prepared by the following method:
  • step 3 adding the mixed acid solution of concentrated sulfuric acid and hydrogen peroxide to the powder B obtained in step 2) for secondary acidification, then diluting with water, cooling, filtering, and washing to neutral to obtain filter cake C;
  • the preparation method of the sodium fluoride dual ion battery comprises the following steps:
  • step (c) assembling the negative electrode sheet of the sodium fluoride dual ion battery obtained in the step (a), the separator, the electrolytic solution, and the positive electrode sheet of the sodium fluoride dual ion battery obtained in the step (b) to obtain a sodium fluoride double ion battery. ;
  • the mass ratio of the anode material, the binder and the conductive agent described in the step (a) is (70 to 84): (15 to 8): (15 to 8);
  • the binder described in the step (a) is preferably polyvinylidene fluoride (PVDF) or polyvinylpyrrolidone K30 (PVP-K30);
  • the conductive agent described in the steps (a) and (b) is a conventional commercially available commercial conductive liquid; the conductive agent is preferably conductive carbon black Super-P;
  • the thickness of the coating described in the step (a) is preferably from 120 to 200 ⁇ m;
  • the steps (a) and (b) are vacuum drying; preferably drying under vacuum conditions of 50 to 100 ° C for 5 to 24 hours;
  • the sizing slurry described in the step (a) and the step (b) is a solvent-added slurry
  • the solvent is preferably N-methylpyrrolidone or dimethylformamide
  • the solvent is used in an amount ratio of solute to solvent of 1:2, wherein the solute is a sodium fluoride dual ion battery anode material (or cathode material), a binder and a conductive agent;
  • the mass ratio of the positive electrode material, the binder and the conductive agent described in the step (b) is (76 to 84): (12 to 8): (12 to 8);
  • the binder described in the step (b) is preferably the binder LA132 of Chengdu Yindile Company;
  • the thickness of the coating described in the step (b) is preferably from 100 to 180 ⁇ m.
  • the method for removing fluoride ions is a precipitation method and an adsorption method, but the two methods have poor ion removal ability and low efficiency.
  • This innovative desalination process not only achieves the goal of fluoride removal, but also provides stable electrical energy during desalination.
  • the preparation of the negative electrode material has the disadvantage of poor cycle performance of the battery negative electrode material due to the nano alum and its tendency to agglomerate, and the conventional method cannot uniformly disperse the nano cerium.
  • the present invention adopts a two-step acidification treatment of carbon nanotubes to synthesize carboxylated carbon nanotubes, and then coats the nanosized cerium with the carboxylated carbon nanotubes, so that not only the nano cerium can be fully Disperse and enhance its conductivity.
  • sodium manganate is prepared by a solid state reaction method.
  • the positive and negative electrodes are assembled into a battery, and the sodium fluoride double ion whole battery assembled by the sodium manganeseate positive electrode and the carboxylated carbon nanotube coated nanometer negative electrode has high specific capacity and good cycle performance, and the first specific capacity. Up to 220 mAh/g or more; on the other hand, the positive and negative materials and the electrolyte are assembled into a fluid device, and the ion ion detector is used to detect the removal ability of the fluoride ion with the charge and discharge cycle, and the effect of removing fluoride ions in the device is remarkably achieved.
  • the anion further includes one of Cl - , Br - , and I - the cation further includes one of Li + , K + , Mg 2+ , and Al 3+ ; the anion is captured or released
  • the compound includes Bi, BiOCl, Ag, AgCl, Sb, SbxOyClz; wherein SbxOyClz may be one of Sb 4 O 5 Cl 2 , Sb 8 Cl 2 O 11 and SbOCl.
  • the electrolyte solution in the battery includes Cl - , F - , Br - , I - , NO 3 - , CO 3 2- , SO 4 2- , CrO 4 2- , Na + , K + , NH 4 + , and hydroxide One or more of the substances and oxides.
  • the electrolyte further includes a NaCl salt solution and a pH buffer
  • the pH buffer includes tris(hydroxymethyl)aminomethane (TRIS), potassium dihydrogen phosphate, potassium hydrogen phosphate, potassium phosphate, 3-[[1,3- Dihydroxy-2-(hydroxymethyl)propan-2-one]yl]amino]propane-1-sulfonic acid, 2-(bis(2-hydroxyethyl)amino)acetic acid, N-(2-hydroxy-1 ,1-bis(hydroxymethyl)ethyl)glycine, 2-(N-morpholino))ethanesulfonic acid, dimethyldecanoic acid, 1,4-piperazinediethanesulfonic acid, 3-morpholino Propane-1-sulfonic acid, 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid, 2-[4-(2-hydroxyethyl)peri Zin-1-yl]ethanes
  • the fixing order of the fluid device mold self-assembly is as follows:
  • mold A tab, graphite paper, foamed carbon, mold B, cation exchange membrane, mold C, anion exchange membrane, mold B, foamed carbon, graphite paper, tab, mold A were placed in this order.
  • mold A (2) Starting from the negative electrode, mold A, tab, graphite paper, foamed carbon, mold B, quantitative filter paper, mold C, quantitative filter paper, mold B, foamed carbon, graphite paper, tab, mold A were placed in this order.
  • the order is: alternating the two salt solutions as the intermediate fluid electrolyte, and the positive and negative active fluid materials as the outermost positive and negative electrodes communicating with each other.
  • graphite paper, and a plurality of anion exchange membranes and cation exchange membranes are layered alternately into a desalination fluid battery device;
  • a method for continuously and low-energy demineralization by using a fluid battery redox reaction for demineralization by a desalination fluid battery device wherein the demineralization fluid battery device uses positive and negative active liquid flow materials as positive and negative fluid cells Extremely, the salt solution is the electrolyte of the fluid battery;
  • the positive and negative active liquid materials are Ag/AgCl mixed solution, Na 0.44 MnO 2 mixed solution, Bi/BiOCl, Sb/SbOCl, K 0.27 MnO 2 , Na 2 FeP 2 O 7 , V 2 O 5 , Na 3 V 2 (PO 4 ) 3 , Na 2 V 6 O 16 , NaTi 2 (PO 4 ) 3 , polytetrafluoroethylene, polybutyl acrylate, Na 2 C 8 H 4 O 4 , polyvinyl alcohol, Na 0.44 [ Mn 1-x Ti x ]O 2 , BiF 3 , Pb, PbF 2 , one or more of piperidine-based inorganic substances and bipyridylium salts; further including polyamide, Prussian blue Fe 4 [Fe(CN) 6 ] 3 and more than one type of manganese oxide.
  • the positive and negative electrode active liquid flow materials further include an auxiliary conductive additive, which is at least one of carbon nanotubes, graphene, activated carbon and carbon black.
  • the desalination fluid battery device further comprises an isolation device for isolating the salt solution and the positive and negative electrode active liquid flow materials;
  • the salt solution is a NaCl solution, a NaF solution, a domestic water pretreatment, an industrial sewage, a seawater or a A solution of toxic ions.
  • the volume ratio of the positive and negative electrode active liquid flow materials to the salt solution is 1:0.1 to 280.
  • the Ag/AgCl mixed solution is prepared by adding Ag particles, AgCl particles and activated carbon to deionized water, and then obtaining a mixed solution for ball milling to obtain an Ag/AgCl mixed solution;
  • the molar ratio of Ag particles and AgCl particles is 1:1;
  • the total mass ratio of activated carbon to Ag/AgCl is 3:7, wherein the total mass of Ag/AgCl is the total mass of Ag particles and AgCl particles; the conditions of the ball milling are: 2000 to 3000r ball milling for 5 to 10 hours.
  • the Ag particles are prepared by the following method: (1) adding the carboxylated carbon nanotubes to deionized water, ultrasonically dispersing them uniformly to obtain a mixed solution A; (2) adding AgNO 3 to the mixing of the step (1) In the solution A, the mixture is stirred and uniformly mixed to obtain a mixed solution B; (3) the NaBH 4 solution is added dropwise to the mixed solution B of the step (2), and after the completion of the dropwise addition, the stirring is continued to be uniformly mixed, and the mixture is centrifuged and rinsed.
  • the AgCl particles are prepared by the following method: (I) adding the carboxylated carbon nanotubes to deionized water, and uniformly dispersing them to obtain a mixed solution D; (II) adding AgNO 3 to the step (I) In the mixed solution D, the mixture is stirred and uniformly mixed to obtain a mixed solution E; (III) the NaCl solution is added dropwise to the mixed solution E of the step (II), and after the completion of the dropwise addition, stirring is continued to uniformly mix, and the mixture is centrifuged and rinsed. , to obtain AgCl particles.
  • the salt solution is NaCl solution, NaF solution, domestic water pretreatment, industrial sewage, sea water and other solutions containing toxic ions (such as containing copper, lead, zinc, iron, cobalt, nickel, manganese, cadmium, mercury, tungsten). , metal ions such as molybdenum, gold, silver, mercury, lead, cadmium).
  • toxic ions such as containing copper, lead, zinc, iron, cobalt, nickel, manganese, cadmium, mercury, tungsten.
  • metal ions such as molybdenum, gold, silver, mercury, lead, cadmium).
  • the desalination fluid battery device further includes an anion exchange membrane and a cation exchange membrane; the anion exchange membrane is an anion exchange membrane containing a quaternary amine group; and the cation exchange membrane is a cation exchange membrane containing a sulfonic acid group.
  • the desalination fluid battery device is prepared by the following method:
  • the salt solution is used as the intermediate fluid electrolyte, and the positive and negative electrode active liquid flow materials, the graphite paper, and the anion and cation exchange membranes are assembled into a desalination fluid battery device.
  • the volume ratio of the positive and negative electrode active liquid flow materials to the salt solution is 1:0.1 to 280; preferably 1:3 to 5.
  • the fixing sequence of the self-assembly of the fluid battery device mold is: starting from the negative electrode, sequentially placing the mold A, the tab, the graphite paper, the carbon cloth, the mold B, the cation exchange film, the mold C, the anion exchange film, the mold B, the carbon Cloth, graphite paper, ear, mold A.
  • the method for continuously low-energy demineralization using a fluid battery is applied in the field of seawater desalination.
  • the Ag/AgCl mixed solution is used as the positive and negative active liquid flow materials; the fluid battery composed of the NaCl solution as the electrolyte is charged and discharged by the redox reaction, exhibiting low energy consumption, high specific capacity and good cycle performance. Electrochemical performance.
  • the fluid device is connected to a conductivity meter, and the removal ability of NaCl ions is detected by an ion detector, and significant desalination ability can be detected, and the salt removal rate is as high as 175 mg/L (Ag/AgCl volume).
  • a method for continuously and low-energy demineralization using material electrochemistry wherein desalination is performed by a material electrochemically catalyzed continuous demineralization fluid device, wherein the desulfurization fluid device is positively oxidized and reduced by the same active liquid flow material a negative electrode, the oxidation tank and the reduction tank are connected by a hose; the intermediate flowing salt solution is a sample to be treated;
  • the active liquid flow material includes TEMPO, CNTs-TEMPO, GO-TEMPO, polymer-TEMPO, Ag/AgCl solution, LiCoO 2 , LiMn 2 O 4 , Bi/BiOCl, LiMn 2 O 4 /NaTi 2 (PO 4 ) 3 , Zn/VS 2 , FeFe(CN) 6 .
  • the desalination fluid device comprises an anion exchange membrane, a cation exchange membrane, a quantitative filter paper and an isolating device, wherein the cation exchange membrane is an anion exchange membrane containing a quaternary amine group, and the anion exchange membrane is a cation exchange membrane containing a sulfonic acid group.
  • the quantitative filter paper has a pore diameter of 0.10 to 20 ⁇ m, and the isolating device is used for isolating the salt solution from the active liquid flow materials of the positive electrode and the negative electrode.
  • the active liquid flow material further includes a conductive additive, and the conductive additive is one or more of NaCl, NaF, Na 2 SO 4 , KCl, CNT, GO, and activated carbon.
  • the salt solution includes a NaCl solution, a NaBr solution, domestic sewage, industrial sewage, sea water, and sewage containing heavy metal ions.
  • the volume ratio of the active liquid flow material to the salt solution is from 1:0.001 to 20,000.
  • the TEMPO solution is prepared by adding TEMPO powder particles and NaCl powder particles to deionized water according to a molar ratio of 1:X (0 ⁇ X ⁇ 100) to obtain a mixed solution, and the obtained mixed solution is ultrasonically 0.5KHZ-100KHZ 0.5. -8h, a TEMPO mixed solution was obtained.
  • the electrochemical catalytic process means that the active solution solution of the positive electrode and the negative electrode is a circulating TEMPO mixed solution, and the TEMPO as a catalyst remains unchanged throughout the cycle.
  • the desalination fluid device is prepared by the following methods by different functions: assembly according to a fixed sequence of self-assembly of the fluid battery mold, the order is: graphite paper, negative active liquid flow material or filter paper, cation exchange membrane, salt Solution, anion exchange membrane or filter paper, positive active fluid stream material, graphite paper;
  • the order is: graphite paper, negative active liquid flow material or filter paper, cation exchange membrane, salt solution 1, anion exchange membrane or filter paper, salt solution 2, cation exchange membrane, positive electrode activity Liquid flow material, graphite paper;
  • the order is: graphite paper, negative active liquid flow material or filter paper, anion exchange membrane, salt solution 1, cation exchange membrane or filter paper, salt solution 2, anion exchange membrane, positive electrode activity Liquid flow material, graphite paper;
  • the order is as follows: two salt solutions are alternately used as the intermediate fluid electrolyte, and the positive and negative active fluid materials are used as the outermost positive and negative electrodes and graphite paper. And a plurality of anion exchange membranes and cation exchange membranes are layered alternately into a desalination fluid battery device;
  • a method for photocatalytic electrochemical catalyzed continuous desalination uses a conductive glass having a photosensitive semiconductor material as an electrochemically catalyzed negative electrode. Under illumination, the negative electrode generates electrons to drive the desalination reaction, and is continuously carried out by ion exchange. Desalting, that is, generating an electron-hole pair by irradiating a photosensitive semiconductor material to drive an electrochemical redox reaction of the positive and negative electrode materials, and continuously removing the salt by ion exchange by an isolation device;
  • the illumination source includes sunlight, laser, arc lamp, flash lamp, plasma lamp, Xe lamp, and the like;
  • the negative electrode of the desalination fluid battery device adopts a conductive glass having a photosensitive semiconductor material
  • the desalting fluid battery device has an oxidation tank and a reduction tank of the same electrode active material as positive and negative electrodes, and the oxidation tank and the reduction tank hose are connected to each other;
  • the photosensitive semiconductor material includes a dye semiconductor, a quantum dot semiconductor, an elemental semiconductor, an inorganic compound semiconductor, an organic compound semiconductor, an amorphous semiconductor, and a liquid semiconductor, and more preferably a dye semiconductor Dyenamo red (a red dye produced by the Swedish company Dyenamo); Also includes a two-dimensional semiconductor material, the two-dimensional semiconductor material including MoS 2 , MoSe 2 ;
  • the photosensitive semiconductor can be a solid phase, a liquid phase or a solution phase.
  • the liquid phase or solution phase materials include, but are not limited to, Azure C, thionine, azure A, azure B, methylene blue, etc., which have light reduction or photooxidation.
  • Conductive glass as a light window including but not limited to ITO, FTO, etc.; coating a dense layer of semiconductor material on the surface of the conductive glass, the dense layer semiconductor includes TiO 2 , ZnO, SrTiO 3 , Co 3 O 4 , CuO, ZnS, SiC, Cu 2 O, BaTiO 3 , Bi 2 O 3 , Sb 2 S 3 , ZnSe, PtTe 2 , WTe 2 , MoTe 2 , SnS 2 , Bi 4 Ti 5 O 12 , BiOI, Bi 2 WO 6 , Fe 2 O 3 and WO 3 .
  • the conductive glass having a photosensitive semiconductor material is preferably prepared by the following method:
  • the isolating device is an isolating device for isolating the salt solution and the positive and negative electrode active materials in the battery device, and comprises an anion exchange membrane, a cation exchange membrane and a quantitative filter paper, wherein the anion exchange membrane comprises an anion exchange membrane containing a quaternary ammonium group, and the cation exchange membrane comprises a cation exchange membrane containing a sulfonic acid group, the quantitative filter paper having a pore diameter of 0.10 to 20 ⁇ m;
  • the salt solution includes NaCl, NaBr, domestic sewage, industrial sewage, sea water or sewage containing heavy metal ions;
  • Positive and negative active materials include TEMPO (2,2,6,6-tetramethylpiperidine-nitrogen-oxide), carbon nanotube-TEMPO, graphene-TEMPO, graphene oxide-TEMPO, Polymer-TEMPO, Methyl Viologen dichloride hydrate, Riboflavin-5'-phosphate sodium salt dehydrate, Ag/AgCl solution, LiCoO 2 , LiMn 2 O 4 , Bi/BiOCl , Sb/SbOCl, LiMn 2 O 4 /NaTi 2 (PO 4 ) 3 , Zn/VS 2 , Fe(CN) 6 , K 0.27 MnO 2 , Na 2 FeP 2 O 7 , V 2 O 5 , Na 3 V 2 (PO 4 ) 3 , Na 2 V 6 O 16 , Na 0.44 MnO 2 , NaTi 2 (PO 4 ) 3 , PTFE (polytetrafluoroethylene), PBA (polybutyl acrylate), Na 2 C 8 H
  • the preparation method of the TEMPO solution includes any of the following methods:
  • the TEMPO powder and the NaCl particles are added to deionized water to obtain a mixed solution, and the resulting mixed solution is ultrasonicated to obtain a TEMPO mixed solution, and the molar ratio of the TEMPO particles to the NaCl particles is 1:X (0 ⁇ X ⁇ 100).
  • the ultrasonic condition is: 40KHZ ⁇ 100KHZ ultrasound 0.5 ⁇ 8h;
  • the salt solution is NaCl, NaBr, domestic sewage, industrial sewage, sea water or sewage containing heavy metal ions;
  • the volume ratio of the positive and negative active materials to the salt solution is 1:0.001 to 20000;
  • All piperidine-based inorganic substances in the present invention include 2-hydroxypyrimidine, and the bipyridylium salt includes 4'-bipyridinium salt dichloride;
  • the desalination fluid battery device is prepared according to different functions, by one of the following three methods:
  • the order is: conductive glass with photosensitive semiconductor material, photo negative active liquid flow material or filter paper, anion exchange membrane, salt solution, cation exchange membrane or filter paper, positive active liquid flow material Graphite paper;
  • the order is: conductive glass with photosensitive semiconductor material, photo-negative active flow material or filter paper, anion exchange membrane, salt solution 1, cation exchange membrane or filter paper, salt solution 2 Anion exchange membrane, positive active fluid flow material, graphite paper;
  • the order is: conductive glass with photosensitive semiconductor material, photo-negative active liquid flow material or filter paper, anion exchange membrane, alternating with two salt solutions as intermediate fluid electrolyte, And the positive and negative active liquid flow materials are interconnected as the outermost positive and negative electrodes, graphite paper, and a plurality of anion exchange membranes and cation exchange membranes are alternately assembled into a desalination fluid battery device;
  • the ion exchange resin, the conductive ion, the conductive carbon material, and the conductive polymer are filled to increase the conductance and reduce the energy consumption.
  • the sodium ion electrode material is a positive electrode/anode material
  • the negative ion electrochemical material is a negative electrode/cathode material, and is represented by the same material as the positive electrode active material, the negative electrode active material, the positive and negative electrode active liquid flow materials, and the active liquid flow material, and is electrically conductive.
  • Additives and auxiliary conductive additives are also indicated as the same material.
  • the positive and negative electrodes used in the present invention are organic compounds, the organic active material has low cost, is environmentally friendly, and has high sustainability; the organic active material fluid battery test has excellent electrochemical performance, and the first charge and discharge efficiency is high, and charging is performed. It can effectively remove cations and anions, and achieve the purpose of desalting; it can provide good electrical energy cycle performance and high specific capacity (first time up to 7800mAh/g); the method of salt removal is simple, low cost and green, making It has practical application benefits in seawater desalination.
  • the positive and negative electrode materials obtained by the invention exhibit excellent electrochemical performance, high specific capacity and good cycle stability.
  • the positive and negative electrodes are assembled into a battery, and the sodium fluoride double ion whole battery assembled by the nanometer yttrium anode coated with the sodium manganate positive electrode and the carboxylated carbon nanotube is electrochemically tested, and has a high specific capacity, good cycle performance, and raw material requirements.
  • Low, low preparation process, simple process, easy to operate, suitable for scale production; the prepared materials are suitable for water-based batteries, meeting the requirements of a new generation of high-performance water-based battery active materials; this technology can not only remove fluoride ions, but also provide electrical energy.
  • the first specific capacity reaches 220 mAh/g; the sodium fluoride double ion full battery of the present invention can be applied not only to the flow battery field, but also to remove fluorine ions in the electrolyte during charging and discharging to achieve purification of the water source. purpose.
  • the Ag/AgCl mixed solution of the positive and negative electrode active liquid flow materials of the present invention is prepared by using a nano ball mill to carry out nano-scale ball milling of Ag, AgCl and activated carbon with deionized water as a carrier, and the Ag/AgCl mixed solution exhibits electricity. Excellent chemical properties, high specific capacity, good cycle stability and low energy consumption. Compared with traditional desalination technology, it provides an innovative concept of desalination. Based on the chemical reaction principle of batteries, the demineralization is carried out using positive and negative electrode materials. This technology not only removes NaCl ions, provides electrical energy, but also consumes very little energy.
  • the invention adopts the same electrode active liquid flow material, and the oxidation tank and the reduction tank are connected by a hose connection, so that the positive and negative electrode active solution cycles are repeatedly used repeatedly, and the CNT-TEMPO solution of the invention overcomes the exchange of anions and cations.
  • the limitation of the membrane can also achieve a good desalting effect, cost saving and easy operation, and the industrialization function is greatly improved; according to the fixed sequence of self-assembly of the fluid battery mold, the electrolyte and the positive and negative active liquid streams can be made. The materials are separated, and the recovery of the positive and negative active liquid materials is simple and cost-effective.
  • the negative electrode of the flow battery of the present invention uses a conductive glass having a photosensitive semiconductor material to generate electron holes under illumination conditions, drives the progress of the desalination reaction, and solves the problem of energy consumption in the desalination process; the same electrode active material is used.
  • the oxidation tank and the reduction tank are connected by the same hose, so that the positive and negative active solution cycles are repeatedly used repeatedly; the positive and negative active materials used are low in cost, environmentally friendly, and highly sustainable, and conform to a new generation of high performance green Environmentally friendly desalination concept; the method of continuous demineralization by photochemical catalytic oxidation-reduction reaction is applied in seawater desalination, industrial wastewater treatment, domestic water purification, and photoelectric energy conversion and storage.
  • Example 1 is a diagram showing a device for desalting a fluid battery of Example 1 and an electrochemical performance test chart thereof;
  • Example 2 is a device diagram of a sodium fluoride dual ion battery of Example 2 and an electrochemical performance test chart thereof;
  • Example 3 is a diagram showing a low-energy continuous desalination apparatus for a fluid battery of Example 3 and an electrochemical performance test chart thereof;
  • Example 4 is a graph showing the electrochemical continuous low energy consumption desalination apparatus of the material of Example 4 and its electrochemical performance test chart;
  • Example 5 is a photo-driven electrochemical catalytic continuous desalination apparatus of Example 5 and its electrochemical performance test chart.
  • a device for removing salt by using a fluid battery and a preparation method thereof (1) cutting a carbon paper, a homogeneous anion exchange membrane with a quaternary amine group, and a homogeneous cation exchange membrane with a sulfonic acid group into 11*11 cm
  • the square is consistent with the mold size of the fluid battery device (11*11*1cm), and then perforated on the carbon paper and the anion and cation exchange membranes respectively to fix the device with screws, which is beneficial to maintain the pressure during the reaction and prevent it from being prevented. Materials are contaminated with each other.
  • the cut carbon paper was placed in a 1000 ml beaker, and then poured into 150 ml of 4% (w/w) hydrochloric acid for 5 min, and the ultrasonic power was 200 W.
  • the hydrochloric acid was then poured off, rinsed with deionized water, and poured into 150 ml of absolute ethanol for 5 min (200 W).
  • the absolute ethanol was poured off, rinsed with deionized water, and then ultrasonicated with deionized water for 5 min (power: 200 W).
  • the treated carbon paper was placed in an evaporating dish and dried, and dried at 50 ° C for 2 h.
  • the anion and cation exchange membranes were respectively rinsed with deionized water and then immersed in deionized water for storage.
  • the fluid battery device mold is a custom mold made of acrylic material, and the schematic diagram is shown in Figure 1 (a-b).
  • the mold A is placed in sequence, the tab made of carbon cloth, the carbon paper processed in step (1), the mold B, the foamed carbon, the cation exchange membrane treated in the step (1), the mold C, The anion exchange membrane after treatment in step (1), foamed carbon, mold B, carbon paper treated in step (1), tab carbon cloth, mold A. Secure the unit with the screw and attach the remaining opening to the peristaltic pump hose through the fitting.
  • the inlet hoses of the positive electrode, the negative electrode and the intermediate fluid electrolyte are placed in the peristaltic pump, the inlet and outlet hose ports of the positive electrode are simultaneously placed in the positive electrode organic body, and the inlet and outlet hose ports of the negative electrode are simultaneously placed in the negative electrode organic substance.
  • the inlet and outlet hose ports of the intermediate fluid electrolyte are simultaneously placed in a beaker containing the intermediate fluid electrolyte sodium chloride.
  • the battery clamp is clamped on the carbon cloth with the positive and negative poles, and the carbon cloth is separated by a non-conductive plastic sheet.
  • a beaker containing an intermediate fluid electrolyte sodium chloride was placed on a magnetic stir plate, and then the temperature electrode and the conductivity electrode of the conductivity meter were placed in the beaker.
  • the electrolyte of the fluid battery was circulated by a peristaltic pump, and the concentration change of the intermediate fluid electrolyte was tested by a conductivity meter, thereby testing the desalination ability of the fluid battery (desalting fluid)
  • the principle of demineralization of the battery is shown in Figure 1(ab).
  • the charge and discharge and cycle performance of the constant current charge and discharge test are carried out using a current of 100 mA.
  • the charge and discharge voltage ranges from 0.01 V to 1.40 V. (Shenzhen Xinwei Electronics Co., Ltd.) BTS battery test system test
  • the electrochemical performance of the desalted fluid battery in this experiment was tested under normal temperature conditions.
  • Figure 1d is the charge and discharge curve of the desalination fluid battery of this example. It can be obtained from Fig. 1c, the first charge specific capacity is 3980 mAh / g, the first discharge specific capacity is 2750mAh / g. The cycle is 20 weeks, the specific capacity is still maintained at 300mAh / g, the cycle performance is good.
  • the conductivity of the intermediate fluid electrolyte NaCl of the invention changes significantly, when charging, conductivity Gradually become smaller, the electrical conductivity gradually becomes larger during discharge; the electrical conductivity is also cyclically repeated during the charge and discharge cycle, which embodies the desalination ability of the method of the present invention during charging.
  • sodium carbonate and manganese trioxide are mixed in a molar ratio of 0.45:1, 10h, 260r / min planetary ball mill for ball milling, to obtain a mixed powder I;
  • the mixed powder I obtained in the step (8) is calcined in air, heated to 400 ° C at a rate of 2 ° C / min, and then kept at a constant temperature for 4 h, to obtain a product J;
  • the precursor K obtained in the step (10) is again calcined in air; the calcination conditions are: at a rate of 2 ° C / min to 900 ° C, and then kept at a constant temperature for 10 h, to obtain the final material sodium manganate J;
  • the carboxylated carbon nanotube-coated nano-ruthenium anode material prepared in the step (1), the binder polyvinylidene fluoride and the conductive carbon black Super-P (conductive agent) are in a mass ratio of 70:15:15.
  • Sodium fluoride double ion whole battery assembled by electrolytic cell: the carboxylated carbon nanotube coated nano ruthenium negative electrode sheet 1, separator and electrolyte solution prepared in step (4) (1) (0.8 mol/L The NaF solution) and the sodium manganate positive electrode sheet 1 prepared in the step (4) (2) were assembled into a fluid device to obtain a sodium fluoride double ion full battery.
  • the positive and negative electrode holders were respectively sandwiched with a sodium manganate positive electrode and a carboxylated carbon nanotube-coated nano ruthenium negative electrode for electrochemical performance test, and the results are shown in Fig. 2c.
  • the conductivity of the ions was measured by a conductivity meter to obtain the removal ability of the fluoride ions, and the cycle characteristics are shown in Fig. 2d.
  • a desalination device for performing low-energy continuous electrochemical redox reaction using a fluid battery includes the following aspects: (I) positive and negative materials; (II) electrolyte; (III) fluid device; (IV) isolation device;
  • the mixed solution C obtained in the step (3) is centrifuged at 8000 rpm with deionized water and absolute ethanol (first, the mixed solution C is centrifuged first, and then ionized water or alcohol is added and centrifuged) to obtain Ag particles;
  • the mixed solution obtained in the step (8) is deionized water and absolute ethanol into 8000r, centrifuged for 15 minutes to obtain AgCl particles;
  • the salt solution (electrolyte) of the desalination fluid battery device according to (II) is a sodium chloride solution, which is prepared by the following method:
  • the fluid device described in (III) is prepared by the following method:
  • the mold of the fluid battery device is a custom mold of a stable acrylic material, the size of the mold is 11 ⁇ 11 ⁇ 1 cm
  • 30 ml of the salt solution obtained in the step (11) is used as Intermediate fluid electrolyte, 10 ml of positive and negative liquid flow materials obtained in step (10), graphite paper, anion exchange membrane (anion exchange membrane is an anion exchange membrane containing quaternary amine groups, only anions are allowed to pass; cation exchange The membrane is a cation exchange membrane containing a sulfonic acid group, allowing only cations to pass through to assemble a desalination fluid battery device, which is a custom mold.
  • the mold A is placed in turn, the tab made of carbon cloth, the carbon paper processed in step (1), the mold B, the carbon cloth, the cation exchange film treated in step (1), carbon cloth, Mold C, the anion exchange membrane after treatment in the step (1), the mold B, the carbon paper treated in the step (1), the tab carbon cloth, and the mold A. Secure the unit with the screw and attach the remaining opening to the peristaltic pump hose through the fitting.
  • the inlet and outlet of the positive and negative electrodes and the intermediate fluid electrolyte are placed in the peristaltic pump, the positive and negative materials are the same material, the positive and negative hoses are connected, and the inlet of the positive electrode and the outlet of the negative electrode are simultaneously placed in the positive and negative
  • the pole material, the inlet and outlet hose ports of the intermediate fluid electrolyte are simultaneously placed in a beaker containing the intermediate fluid electrolyte sodium chloride.
  • the battery clamp is clamped on the carbon cloth with the positive and negative poles, and the carbon cloth is separated by a non-conductive plastic sheet.
  • the isolation device of (IV) is realized by the following method:
  • the NaCl in the fluid battery charging process passes through the anion and cation exchange membranes to reach the positive/negative active material as an Ag/AgCl mixed solution (as shown in FIG. 3a), and the NaCl concentration in the electrolyte gradually decreases.
  • the concentration of NaCl in the positive and negative active fluid materials gradually increases; at this time, the NaCl solution in the positive and negative active fluid materials is isolated by the isolation device, and the clean water flows out from the other end, and the positive and negative materials can also be used. Reuse, this can achieve true desalination purposes, as shown in Figure 3a.
  • Figure 3b shows the process of precipitation of the discharge salt.
  • the positive and negative electrodes are sandwiched between the tabs (the anode adjacent to the anion exchange membrane and the anode adjacent to the cation exchange membrane) are subjected to electrochemical performance tests.
  • the electrical conductivity of the ions is then measured by a conductivity meter to obtain the removal ability of the NaCl ions.
  • the change in charge and discharge voltage over time is shown in Figure 3c, and the detection of real-time conductance is shown in Figure 3d.
  • a continuous low-energy demineralization fluid device using a catalytic effect of electrochemical oxidation reduction of a material or a desalination fluid battery device including a light-driven electrochemical catalytic continuous desalination includes the following aspects: (I) positive Anode material; (II) electrolyte; (III) fluid device; (IV) isolation device;
  • the salt solution of the desalination fluid battery device according to (II) is a NaCl solution, which is obtained by the following method:
  • the mold of the fluid battery is a custom mold of acrylic material with very stable performance, size 11 ⁇ 11 ⁇ 1 cm
  • 25 mL of the salt solution of the step (2) is used as the intermediate fluid (fluid Battery electrolyte) and 50 mL of positive and negative electrode flow materials obtained in step (1), graphite paper, anion exchange membrane (anion exchange membrane is an anion exchange membrane containing quaternary amine groups, only anions are allowed to pass; cation exchange membrane For the cation exchange membrane containing a sulfonic acid group, only the cation is allowed to pass through) to constitute a desalination fluid battery device, and the fluid battery device is a custom mold.
  • the inlet hose of the positive electrode and the inlet hose of the intermediate fluid electrolyte are placed in the peristaltic pump, the positive and negative electrodes are of the same material, the positive electrode and the negative electrode are connected, and the positive water inlet hose and the negative water outlet hose are placed in the step ( 1)
  • the inlet of the intermediate fluid electrolyte and the hose outlet of the outlet are simultaneously placed in the solution beaker in step (2), at which time the inlet is also connected to the probe of the conductivity meter.
  • the battery clamp is clamped to the tabs with positive and negative poles and separated by plastic sheets in the middle to prevent short circuit.
  • the isolation device of (IV) is realized by the following method:
  • the NaCl in the fluid battery charging process passes through the anion and cation exchange membranes to reach the positive and negative active materials as the TEMPO mixed solution, and the NaCl concentration in the electrolyte gradually increases;
  • the NaCl solution in the active stream material is isolated, and the clean water flows out from the other end.
  • the positive and negative materials can be reused for the purpose of true desalination, as shown in Figures 4a-c.
  • the positive and negative electrodes are clamped on the tabs (close to the anion exchange membrane and connected to the positive electrode, and the cation exchange membrane is connected to the negative electrode) for electrochemical performance test.
  • the conductivity of the ions is then measured with a conductivity meter to test the desalination capacity.
  • the conductivity of the ions is tested with a conductivity meter so that the desalination capacity can be tested, as shown in Figure 4d, during which the conductance continues to decrease.
  • the positive and negative active solutions and the NaCl solution can be separated from each other, and the positive and negative active solutions can be reused for multiple times, and the electrochemical deionization and sodium ion processes can be regenerated by charging, after regeneration. It can be used for the next cycle of electrochemical discharge desalination.
  • a multi-cycle test procedure is shown in Figure 4e, showing good cycle characteristics.
  • a fluid battery device that utilizes illumination to realize external circuit electrical energy conversion and internal circuit electrochemical catalysis for continuous desalination includes the following aspects: (I) positive and negative materials; (II) electrolyte; (III) fluid equipment; IV) isolation equipment;
  • the salt solution of the desalination fluid battery device according to (II) is a NaCl solution, which is obtained by the following method:
  • the mold of the fluid battery is a custom mold of acrylic material with very stable performance, size 11 ⁇ 11 ⁇ 1 cm
  • 25 mL of the salt solution of the step (2) is used as the intermediate fluid (fluid Battery electrolyte) and 50 mL of positive and negative electrode flow materials obtained in the step (1), graphite paper, conductive glass having a photosensitive semiconductor material, an anion exchange membrane (anion exchange membrane is an anion exchange membrane containing a quaternary amine group, Only the anion is allowed to pass; the cation exchange membrane is a cation exchange membrane containing a sulfonic acid group, allowing only cations to pass through) to constitute a desalination fluid battery device, and the fluid battery device is a custom mold.
  • the conductive glass with photosensitive semiconductor material is placed in sequence, the tab made of carbon cloth, the anode flow material tank, the anion exchange membrane, the intermediate salt bath, the cation exchange membrane, the cathode liquid flow material tank, and the pretreatment Good graphite paper, very ear.
  • the water outlet of the negative electrode flow material tank and the water inlet of the positive liquid flow material tank are connected by a peristaltic pump hose, and the inlet hose of the negative electrode and the inlet hose of the middle salt liquid are placed in the peristaltic pump.
  • the positive and negative liquid flows are the same material, the positive electrode and the negative electrode are connected, and the negative water inlet hose and the positive water outlet hose are placed in the solution beaker configured in the step (1), and the inlet and outlet of the middle salt liquid are
  • the nozzle hose port is simultaneously placed in the solution beaker in step (2), at which time the water inlet is also connected to the probe of the conductivity meter.
  • the battery clamp is clamped to the tabs with positive and negative poles and separated by plastic sheets in the middle to prevent short circuit.
  • the isolation device of (IV) is realized by the following method:
  • step (3) the NaCl in the fluid battery discharge process passes through the anion and cation exchange membranes to reach the positive and negative active materials to form a mixed solution, and the NaCl concentration in the electrolyte gradually increases; at this time, the electrode is separated by an isolating device.
  • the NaCl solution in the active stream material is isolated, and the clean water flows out from the other end.
  • the positive and negative materials can be reused for the purpose of true desalination, as shown in Figures 5a-c.
  • the light source is turned on and the light source is vertically irradiated onto the conductive glass having the photosensitive semiconductor material.
  • the electrochemical performance test was carried out by sandwiching the positive and negative electrodes of the electrochemical workstation on the tabs (near the anion exchange membrane and the negative electrode, and close to the cation exchange membrane to the positive electrode). The conductivity of the ions is then measured with a conductivity meter to test the desalination capacity.
  • Figure 5d shows the I-V curve of the photosensitive semiconductor material under dark and light conditions. It can be seen that the selected photosensitive semiconductor material can produce a stable and high current under illumination conditions and can be used for discharge desalination testing.

Abstract

一种基于电化学和光电化学的离子去除装置及其能量转换和存储的应用,离子去除流体电池装置以正、负极活性材料为流体电池的正、负极,盐溶液为电解液。正、负极活性材料包括有机材料如4-羟基-哌啶醇氧化物,核黄素磷酸钠或甲基紫精。按照流体电池模具自组装的固定顺序进行组装,可以使得电解液与正负极活性液流材料分离开来。利用光化学催化氧化还原反应进行连续除盐的方法在海水淡化、工业废水处理、生活用水净化,以及光电能量转换和存储中得到应用。

Description

基于电化学和光电化学的离子去除装置及其制备方法和应用 技术领域
本发明属于电化学去离子的技术领域,具体涉及基于电化学和光电化学的离子去除装置及其制备方法和应用。
背景技术
由于气候变化剧烈,淡水资源短缺最近已成为人类生存关键的危机之一,许多人因淡水资源枯竭而缺水。海洋是一种无限的水源,其含水量占地球总水量的97.5%。因此,海水淡化是获得可用水的实用方法。去除海水中过量的盐分是海水淡化过程中最关键的一步。反渗透(RO),近年来电渗析和热蒸馏被广泛应用于脱盐的工业化和商业化,但是需要大量的资本投资和高的操作成本。电容去离子(CDI)技术被开发为用于脱盐的节能和经济技术。由两个电容电极组成的常规CDI装置,例如高表面积多孔碳,通过静电相互作用来去除盐离子。然而,由于来自双电层的静电电容有限,除盐能力低,因此CDI技术对于高浓度的盐进料是不实用的。此后,Mantia等人在2012年提出了电池脱盐的概念,以提高除盐能力。由于电极材料的容量限制,特别是氯离子电化学材料,研究陷入停滞。最近,人们已经提出了含水氯离子电池和双离子法拉第电化学去离子***,其潜在地增加了离子捕获能力。这种方法推进了电池脱盐的研究。已经提出了许多基于电池的去离子的设计,其中包括使用静电电极材料的摇椅脱盐,以及各种电池脱盐装置甚至氧化还原液流电池***。
对水和节能的不断增长的需求需要开发新的海水淡化技术,其具有更低的能量消耗,更高的去离子能力,更低的成本,丰富的资源和环境特征等优点。
不断增长的能源需求和日益增长的环境因素迫使新能源发电和新型能源存储有进一步的发展,具有高能量密度,安全,环保,可靠性和可持续性等主要特征。包括锂离子电池,钠离子电池,铅酸电池镍氢电池,氢燃料电池在内的可充电电池***受到了很多研究的关注,它们已经致力于各个领域的实际应用。然而,几乎所有的研究工作都集中在阳离子电池***上。这是因为负离子传输性能,负离子电化学储能技术成为热门研究话题。例如,Maximilian Fichtner等人提出了氯离子电池***的概念,并由几个研究小组合力开发了离子液体或有机溶剂电解质。其中对于选定的电极电化学对,其理论能量密度高达2500Wh L-1。最近,在阳极为BiOCl和阴极为Ag的NaCl水溶液中实现了氯化物水溶液电池的设计。当在400mA/g的电流密度下操作时,可以在45个循环中获得92.1mAh g-1的稳定和可逆容量。与氯化物相比,氟是卤素表中的第一个元素。氟离子的半径要小得多,这有利于快速离子传输和动力学扩散。氟化物离子电池***在先驱工作中得到了证明。然而,氟化物离子电池在高温,有机溶剂或离子液体电解质下在固态下进行测试。然而,在电解质水溶液中实现功能性氟离子传输仍然是一个挑战,因为大多数电极材料不稳定或溶解在电解质水溶液中。
发明内容
本发明的目的在于提供一种利用流体电池除盐的方法及其应用。
本发明的另一目的在于提供氟化钠双离子电池的制备方法及其在电化学除氟中的应用。
本发明的另一目的在于提供一种利用流体电池氧化还原反应进行连续低耗能除盐的方法及其应用。
本发明的另一目的在于提供一种利用材料电化学进行连续低耗能除盐的方法。
本发明的另一目的在于提供一种光驱动电化学催化连续除盐的方法及其除盐流体电池装置。
本发明的技术方案如下:
一种利用流体电池除盐的方法,通过除盐流体电池装置进行除盐;其中,除盐流体电池装置是以正极活性材料为流体电池的正极,负极活性材料为流体电池的负极,盐溶液为流体电池的中间流体电解液;
所述的正极活性材料为有机材料、无机材料、有机溶液或无机溶液;所述的有机材料为4-羟基-哌啶醇氧化物(4-Hydroxy-TEMPO),核黄素磷酸钠(Riboflavin-5’-phosphate sodium salt dihydrate)或甲基紫精(Methyl viologen dichloride hydrate),优选为4-羟基-哌啶醇氧化物;所述的无机材料为VCl 3或NaI;所述的无机溶液为含有Br 2/Br -,VO 2+/VO 2+,V 3+/VO 2+,Fe 3+/Fe 2+,Ce 3+/Ce 4+,Ti 3+/Ti 4+,或Ce 3+/Ce 2+的溶液;
所述的负极活性材料为有机材料、无机材料、有机溶液或无机溶液;所述的无机材料为VCl 3、NaI、Zn或Pb;所述的无机溶液为含有V 3+/V 2+,Cr 3+/Cr 2+,Cu 2+/Cu +,TiOH 3+/Ti 3+,Cr 3+/Cr 2+,S/S 2-,Ti 3+/Ti 2+,Mn 2+/Mn 3+,或I 3-/I -的溶液;
所述的盐溶液为氯化钠溶液、海水、或含有重金属/类金属元素的盐溶液;
所述的阴离子交换膜为含有-NH 2(氨基)、-N(CH 3) 3OH(季胺基)、等官能团的离子交换膜;或为氯离子交换膜,氟离子交换膜、硫酸根离子交换膜、硝酸根离子交换膜等;优选为含有季胺基的阴离子交换膜;
所述的阳离子交换膜为含有-COOH(羧基)、-SO 3H(磺酸基)等官能团的离子交换膜;或为钠离子交换膜,锂离子交换膜、钾离子交换膜,钙(Ca)离子交换膜,镁(Mg)离子交换膜等;优选为含有磺酸基的阳离子交换膜。
所述的除盐流体电池装置通过如下方法制备得到:
(1)将无机盐溶解在溶剂中,均匀搅拌,得到盐溶液;
(2)将正极活性材料溶解到步骤(1)得到中得到的盐溶液中,得到正极材料电解液;
(3)将负极活性材料溶解到步骤(1)得到中得到的盐溶液中,得到负极材料电解液;
(4)由流体电池装置模具自组装的固定顺序组装流体电池装置:将步骤(1)中得到的盐溶液作为中间流体电解液,与步骤(2)中得到的正极材料电解液、步骤(3)中得到的负极材料电解液、碳纸、阴离子交换膜、以及阳离子交换膜组装成除盐流体电池装置;
其中,步骤(1)中所述的盐溶液的浓度为200mg/L~50g/L;步骤(2)中所述的正极材料电解液的浓度为0.005~10mol/L;
步骤(4)中所述的中间流体电解液、正极材料电解液和负极材料电解液的体积比为1~100:1~50:1~50;所述的碳纸为采用表面处理剂清洗并干燥后的碳纸;所述的表面处理剂为4%~5%(w/w)盐酸和无水乙醇;所述的清洗为超声清洗;所述的干燥的条件为:50~60℃干燥1~2h;
步骤(4)中所述的阴离子交换膜为含有季胺基的阴离子交换膜;优选为含有季胺基的均相阴离子交换膜;所述的阳离子交换膜为含有磺酸基的阳离子交换膜;优选为含有磺酸基的均相阳离子交换膜;
步骤(4)中所述流体电池装置模具自组装的固定顺序为:从负极开始,依次放置模具,极耳,碳纸,模具,泡沫碳,阳离子交换膜,模具,阴离子交换膜,泡沫碳,模具,碳纸,极耳,模具。
一种利用流体电池除盐的方法,在海水除盐、移除氟离子或有毒离子(重金属离子)领域中的应用。
一种氟化钠双离子电池,包括钠离子电化学材料、氟离子电化学材料以及电解液;其中,所述的钠离子电极材料为Na 0.44MnO 2、K 0.27MnO 2、Na 2FeP 2O 7、V 2O 5,Na 3V 2(PO 4) 3、Na 2V 6O 16、NaTi 2(PO 4) 3、聚四氟乙烯、聚丙烯酸丁酯、Na 2C 8H 4O 4、聚乙烯醇和Na 0.44[Mn 1-xTi x]O 2中的一种以上;所述的氟离子电化学材料为电化学材料或碳材料包覆的电化学材料;其中,电化学材料为Bi、BiF 3、Pb、PbF 2、哌啶类无机物和联吡啶鎓盐中的一种以上;所述的电解液为NaF溶液。双离子电池的电解质溶液还包括NaF、KF、ZnF 2的一种;
所述的NaF溶液的浓度为0.75~0.85mol/L。
所述的Na 0.44MnO 2通过如下方法制备得到:
1)将碳酸钠和三氧化二锰混合后进行球磨,然后将球磨后获得的混合粉末进行煅烧,得到产物J;
2)将步骤1)得到的产物J再次进行球磨,然后将球磨后获得的前驱体再次进行煅烧,得到Na 0.44MnO 2
其中,步骤1)中所述的碳酸钠和三氧化二锰的摩尔比为0.4~0.5:1。
步骤1)和步骤2)中所述的球磨的条件为:250~270r/min球磨10~15h;
步骤1)中所述的煅烧的条件为:在空气中、以2~10℃/min的速度升温至400~600℃,再恒温保持4~7h;
步骤2)中所述的煅烧的条件为:在空气中、以2℃/min的速度升温至900~1200℃,再恒温保持10~14h。
所述的氟离子电化学材料(羧化碳纳米管包覆的纳米铋)优选通过如下方法制备得到:
1)向碳纳米管中加入浓硫酸和浓硝酸的混合溶液进行酸化处理,然后加水稀释、冷却后过滤,并洗涤至中性,得到滤饼A;
2)将步骤1)中得到的滤饼A进行干燥、研磨,得到粉末B;
3)向步骤2)中得到的粉末B中加入浓硫酸和双氧水的混合酸溶液进行二次酸化处理,然后加水稀释、冷却后过滤,并洗涤至中性,得到滤饼C;
4)将步骤3)中得到的滤饼C进行干燥、研磨,得到羧化的碳纳米管D;
5)将步骤4)中得到的羧化的碳纳米管D分散到水中,得到溶液E;
6)将柠檬酸铋铵加入到步骤5)中得到的溶液E中,并搅拌均匀,得到溶液F;
7)将硼氢化钠溶液滴加到步骤6)得到的溶液F中,滴加结束后继续搅拌,得到溶液G,再进行离心纯化、漂洗,然后真空干燥,得到氟离子电化学材料。
所述的氟化钠双离子电池的制备方法,包括如下步骤:
(a)将负极材料、粘结剂和导电剂混合均匀后调成浆料,再涂覆在石墨纸上,干燥,得到氟化钠双离子电池负极片;
(b)将正极材料、粘结剂和导电剂混合均匀后调成浆料,再涂覆在石墨纸上,干燥,得 到氟化钠双离子电池正极片;
(c)将步骤(a)中得到的氟化钠双离子电池负极片、隔膜、电解液和步骤(b)中得到的氟化钠双离子电池正极片进行组装,得到氟化钠双离子电池;
步骤(a)中所述的负极材料、粘结剂和导电剂的质量比为(70~84):(15~8):(15~8);
步骤(a)中所述的粘结剂优选为聚偏二氟乙烯(PVDF)或聚乙烯吡咯烷酮K30(PVP-K30);
步骤(a)和(b)中所述的导电剂为常规市购的商用导电液;导电剂优选为导电碳黑Super-P;
步骤(a)中所述的涂覆的厚度优选为120~200微米;
步骤(a)和步骤(b)中所述的为真空干燥;优选为在50~100℃的真空条件下干燥5~24h;
步骤(a)和步骤(b)中所述的调成浆料为加入溶剂调成浆料;
所述的溶剂优选为N-甲基吡咯烷酮或二甲基甲酰胺;
所述的溶剂的用量按溶质和溶剂的质量比为1:2配比计算,其中,溶质为氟化钠双离子电池负极材料(或正极材料)、粘结剂和导电剂;
步骤(b)中所述的正极材料、粘结剂和导电剂混合的质量比为(76~84):(12~8):(12~8);
步骤(b)中所述的粘结剂优选为成都茵地乐公司的粘结剂LA132;
步骤(b)中所述的涂覆的厚度优选为100~180微米。
目前的净化水源,除去氟离子的方法有沉淀法和吸附法,但是这两种方法的离子去除能力差,而且效率低,为解决这一问题,本发明选Na 0.44MnO 2作为正极材料,因为Na xMnO 2(X=0.18-0.64),所以Na 0.44MnO 2既可以提供钠离子也可以接受钠离子,由羧化的碳纳米管包覆纳米铋作为负极材料,以50ml以流体存在的氟化钠溶液作为电解质。这种创新的海水淡化术不仅可以达到除氟离子的目的,而且可以在海水淡化的过程中提供稳定的电能。
负极材料的制备,由于纳米铋及其容易产生团聚现象,从而引起了电池负极材料的循环性能较差的缺点,常规的方式不能让纳米铋很好地均匀分散。为解决上述的技术不足,本发明采用将碳纳米管进行两步酸化处理合成羧化的碳纳米管,然后将羧化的碳纳米管对纳米铋进行包覆,这样不仅可以将纳米铋充分地分散开,而且可以增强其导电性。正极材料方面,采用固态反应的方法制备锰酸钠。然后将正负极组装电池,通过电化学测试,由锰酸钠正极和羧化碳纳米管包覆的纳米铋负极组装的氟化钠双离子全电池比容量高、循环性能好,首次比容量达220mAh/g以上;另一方面,将正负极材料及电解液组装成流体装置,随着充放电的循环用离子检测仪检测氟离子的去除能力,此装置去除氟离子的效果显著达到。
氟化钠双离子电池中,阴离子还包括Cl -、Br -、I -中的一种;阳离子还包括Li +、K +、Mg 2+和Al 3+中的一种;阴离子捕获或释放的化合物包括Bi、BiOCl、Ag、AgCl、Sb、SbxOyClz;其中SbxOyClz可为Sb 4O 5Cl 2、Sb 8Cl 2O 11以及SbOCl的一种。
电池中的电解质溶液包括含有Cl -、F -、Br -、I -、NO 3-、CO 3 2-、SO 4 2-、CrO 4 2-、Na +、K +、NH 4 +、氢氧化物以及氧化物的一种以上。
所述电解液还包括NaCl盐溶液以及pH缓冲剂,pH缓冲剂包括三(羟甲基)氨基甲烷(TRIS),磷酸二氢钾,磷酸氢钾,磷酸钾,3-[[1,3-二羟基-2-(羟甲基)丙-2-酮]yl]氨基]丙烷-1-磺酸,2-(双(2-羟乙基)氨基)乙酸,N-(2-羟基-1,1-双(羟甲基)乙基)甘氨酸,2-(N-吗啉代))乙磺酸,二甲基胂酸,1,4-哌嗪二乙磺酸,3-吗啉代丙烷-1-磺酸,2-[[1,3- 二羟基-2-(羟甲基)丙-2-基]氨基]乙磺酸,2-[4-(2-羟乙基)哌嗪-1-基]乙磺酸,3-[[1,3-二羟基-2-(羟甲基)丙-2-基]氨基]-2-羟基丙烷-1-磺酸和它们的混合物。
所述的流体装置模具自组装的固定顺序为以下几种:
(1)从负极开始,依次放置模具A,极耳,石墨纸,泡沫碳,模具B,阳离子交换膜,模具C,阴离子交换膜,模具B,泡沫碳,石墨纸,极耳,模具A。
(2)从负极开始,依次放置模具A,极耳,石墨纸,泡沫碳,模具B,定量滤纸,模具C,定量滤纸,模具B,泡沫碳,石墨纸,极耳,模具A。
(3)从负极开始,依次放置模具A,极耳,石墨纸、泡沫碳,模具B,滤纸、或阴离子交换膜、盐溶液1,模具C,阳离子交换膜或滤纸、盐溶液2、阴离子交换膜、正极活性液流材料、石墨纸;
(4)按照流体电池模具自组装的固定顺序进行组装,顺序为:以两支盐溶液分层交替作为中间流体电解液,与正负极活性液流材料作为相互连通的最外层正负电极、石墨纸、以及若干张阴离子交换膜和阳离子交换膜分层交替组装成除盐流体电池装置;
所述的氟化钠双离子电池在废水处理领域或电化学除氟设备中的应用。
一种利用流体电池氧化还原反应进行连续低耗能除盐的方法,为通过除盐流体电池装置进行除盐;其中,除盐流体电池装置以正负极活性液流材料为流体电池的正负极,以盐溶液为流体电池的电解液;
所述的正负极活性液流材料为Ag/AgCl混合溶液,Na 0.44MnO 2混合溶液,Bi/BiOCl,Sb/SbOCl,K 0.27MnO 2,Na 2FeP 2O 7,V 2O 5,Na 3V 2(PO 4) 3,Na 2V 6O 16,NaTi 2(PO 4) 3,聚四氟乙烯,聚丙烯酸丁酯,Na 2C 8H 4O 4,聚乙烯醇,Na 0.44[Mn 1-xTi x]O 2,BiF 3,Pb,PbF 2,哌啶类无机物和联吡啶鎓盐中的一种以上;还包括聚酰胺、普鲁士蓝Fe 4[Fe(CN) 6] 3以及氧化锰的一种以上。
所述的正负极活性液流材料还包括辅助导电添加剂,为碳纳米管,石墨烯,活性炭和炭黑中的一种以上。
所述的除盐流体电池装置还包括用于将盐溶液和正负极活性液流材料隔离开的隔离装置;所述的盐溶液为NaCl溶液、NaF溶液、生活用水预处理、工业污水、海水或含有有毒离子的溶液。
所述的正负极活性液流材料与盐溶液的体积比为1:0.1~280。
所述的Ag/AgCl混合溶液通过如下方法制备得到:将Ag颗粒、AgCl颗粒和活性炭加入到去离子水中,然后将获得混合溶液进行球磨,得到Ag/AgCl混合溶液;
所述的Ag颗粒和AgCl颗粒的摩尔比为1:1;
所述的活性炭与Ag/AgCl总质量比为3:7,其中,Ag/AgCl总质量为Ag颗粒和AgCl颗粒的总质量;所述的球磨的条件为:2000~3000r球磨5~10h。
所述Ag颗粒通过如下方法制备得到:(1)将羧化碳纳米管加入到去离子水中,超声使其分散均匀,得到混合溶液A;(2)将AgNO 3加入到步骤(1)的混合溶液A中,搅拌使其混合均匀,得到混合溶液B;(3)将NaBH 4溶液滴加到步骤(2)的混合溶液B中,滴加结束后继续搅拌使其混合均匀,离心、漂洗,得到Ag颗粒;AgCl颗粒通过如下方法制备得到:(I)将羧化碳纳米管加入到去离子水中,超声使其分散均匀,得到混合溶液D;(II)将AgNO 3加入到 步骤(I)的混合溶液D中,搅拌使其混合均匀,得到混合溶液E;(III)将NaCl溶液滴加到步骤(II)的混合溶液E中,滴加结束后继续搅拌使其混合均匀,离心、漂洗,得到AgCl颗粒。
所述的盐溶液为NaCl溶液、NaF溶液、生活用水预处理、工业污水、海水以及其他含有有毒离子的溶液(如含有铜、铅、锌、铁、钴、镍、锰、镉、汞、钨、钼、金、银、汞、铅、镉等金属离子)。
所述的除盐流体电池装置还包括阴离子交换膜和阳离子交换膜;所述的阴离子交换膜为含有季胺基的阴离子交换膜;所述的阳离子交换膜为含有磺酸基的阳离子交换膜。
所述的除盐流体电池装置通过如下方法制备得到:
按照流体电池模具自组装的固定顺序进行组装,具体为:以盐溶液作为中间流体电解液,与正负极活性液流材料、石墨纸、以及阴、阳离子交换膜组装成除盐流体电池装置。
所述的正负极活性液流材料与盐溶液的体积比为1:0.1~280;优选为1:3~5。
所述的流体电池装置模具自组装的固定顺序为:从负极开始,依次放置模具A,极耳,石墨纸,碳布,模具B,阳离子交换膜,模具C,阴离子交换膜,模具B,碳布,石墨纸,极耳,模具A。
所述的利用流体电池进行连续低耗能除盐的方法在海水淡化领域中得到应用。
通过电化学测试,由Ag/AgCl混合溶液作为正负极活性液流材料;NaCl溶液作为电解液组合成的流体电池通过氧化还原反应进行充放电表现出能耗低、比容量高、循环性能好的电化学性能。另一方面,将此流体装置与电导率仪相连接,用离子检测仪检测NaCl离子的去除能力,可以检测到显著地除盐能力,除盐率高达175mg/L(Ag/AgCl体积)。
一种利用材料电化学进行连续低耗能除盐的方法,通过材料电化学催化连续除盐流体装置进行除盐,所述除盐流体装置以同一活性液流材料的氧化槽和还原槽为正负极,所述氧化槽和还原槽通过软管连接相通;中间流动的盐溶液为待处理样品;
所述活性液流材料包括TEMPO、CNTs-TEMPO、GO-TEMPO、polymer-TEMPO、Ag/AgCl溶液、LiCoO 2、LiMn 2O 4、Bi/BiOCl、LiMn 2O 4/NaTi 2(PO 4) 3、Zn/VS 2、FeFe(CN) 6
所述除盐流体装置包括阴离子交换膜、阳离子交换膜、定量滤纸和隔离装置,所述阳离子交换膜为含有季胺基的阴离子交换膜,所述阴离子交换膜为含有磺酸基的阳离子交换膜,所述定量滤纸的孔径为0.10~20微米,所述隔离装置用于将盐溶液和正极和负极的活性液流材料隔离开。
所述的活性液流材料还包括导电添加剂,所述导电添加剂为NaCl、NaF、Na 2SO 4、KCl、CNT、GO和活性炭中的一种或几种。
所述盐溶液包括NaCl溶液、NaBr溶液、生活污水、工业污水、海水和含有重金属离子的污水。
所述活性液流材料与所述盐溶液的体积比为1:0.001-20000。
所述TEMPO溶液用以下方式制备得到:将TEMPO粉末颗粒和NaCl粉末颗粒按照摩尔比1:X(0<X<100)加入到去离子水中,得到混合溶液,将所得混合溶液40KHZ~100KHZ超声0.5-8h,得到TEMPO混合溶液。
所述电化学催化过程是指:所述正极和负极的活性液流溶液为循环的TEMPO混合溶液,所述TEMPO作为催化剂在整个循环过程中保持不变。
所述的除盐流体装置由功能不同,通过以下几种方式制备得到:按照流体电池模具自组装的固定顺序进行组装,顺序为:石墨纸、负极活性液流材料或滤纸、阳离子交换膜、盐溶液,阴离子交换膜或滤纸、正极活性液流材料、石墨纸;
按照流体电池模具自组装的固定顺序进行组装,顺序为:石墨纸、负极活性液流材料或滤纸、阳离子交换膜、盐溶液1,阴离子交换膜或滤纸、盐溶液2、阳离子交换膜、正极活性液流材料、石墨纸;
按照流体电池模具自组装的固定顺序进行组装,顺序为:石墨纸、负极活性液流材料或滤纸、阴离子交换膜、盐溶液1,阳离子交换膜或滤纸、盐溶液2、阴离子交换膜、正极活性液流材料、石墨纸;
按照流体电池模具自组装的固定顺序进行组装,顺序为:以两支盐溶液分层交替作为中间流体电解液,与正负极活性液流材料作为相互连通的最外层正负电极、石墨纸、以及若干张阴离子交换膜和阳离子交换膜分层交替组装成除盐流体电池装置;
利用材料电化学进行连续低耗能除盐的方法在海水淡化、工业废水处理和生活用水净化中的应用。
一种光驱动电化学催化连续除盐的方法,采用具有光敏半导体材料的导电玻璃作为电化学催化的负极,在光照条件下,负极产生电子从而驱动除盐反应的进行,通过离子交换的方式连续除盐,即通过光照光敏半导体材料产生电子空穴对来驱动正负电极材料电化学氧化还原反应,通过隔离装置进行离子交换的方式连续除盐;
所述光照来源包括太阳光、激光、弧光灯、闪光灯、等离子灯、Xe灯等;
其中,除盐流体电池装置的负极采用具有光敏半导体材料的导电玻璃,除盐流体电池装置以同一电极活性材料的氧化槽、还原槽为正负极,氧化槽和还原槽软管连接相通;
光敏半导体材料包括染料半导体、量子点半导体、元素半导体、无机化合物半导体、有机化合物半导体、非晶态半导体以及液态半导体,其中,更优选的为染料半导体Dyenamo red(瑞典公司Dyenamo生产的红染料);还包括二维半导体材料,二维半导体材料包括MoS 2、MoSe 2
光敏半导体可以为固态相、液态相或者溶液相的一种,液态相或溶液相的材料包括但不限于Azure C、thionine、azure A、azure B、methylene blue等具有光照还原或光照氧化的物质。
导电玻璃作为光照窗口,包含但不限于ITO,FTO等;在导电玻璃的表面涂敷致密层半导体材料,致密层半导体包括TiO 2、ZnO、SrTiO 3、Co 3O 4、CuO、ZnS、SiC、Cu 2O、BaTiO 3、Bi 2O 3、Sb 2S 3、ZnSe、PtTe 2、WTe 2、MoTe 2、SnS 2、Bi 4Ti 5O 12、BiOI、Bi 2WO 6、Fe 2O 3以及WO 3
所述的具有光敏半导体材料的导电玻璃优选通过以下方法制备:
(a)将FTO或ITO玻璃依次用质量分数2%的洗涤剂溶液、去离子水、酒精、丙酮超声清洗;
(b)在(a)中预处理过的FTO或ITO玻璃上制备一层过渡层(将1.5ml钛酸异丙酯溶于20ml酒精中配成混合溶液,以1500r/min的速度旋转涂布1min,然后将涂布后的FTO玻璃放在马弗炉中450℃下加热30分钟);
(c)将0.6g TiO 2粉末,0.1g PEG,0.1g PEO,0.5ml乙酰丙酮,几滴TritonX 100在研钵中混合研磨后,用蒸馏水稀释至5ml,然后超声处理30min后搅拌一夜,涂布在(b)得到的玻璃上,最后在150℃,300℃,450℃,500℃分别加热10min,15min,10min,30min;
(d)将(c)得到的FTO玻璃放入40mmol/L的TiO2溶液中70℃下处理30min,然后将处理过的玻璃500℃下加热1h;
(e)将LEG4染料溶于乙腈中配制0.2mmol/L的染料溶液,然后将(d)中的玻璃放入此溶液中浸泡12~14h后取出,用酒精清洗,即可制得所需的光敏半导体材料。
隔离装置为将电池装置中的盐溶液和正负极活性材料隔离开的隔离装置,包括阴离子交换膜、阳离子交换膜和定量滤纸,所述的阴离子交换膜包括含有季铵基的阴离子交换膜,阳离子交换膜包括含有磺酸基的阳离子交换膜,所述的定量滤纸的孔径为0.10~20μm;
其中,盐溶液包括NaCl、NaBr、生活污水、工业污水、海水或含有重金属离子的污水;
正负极活性材料包括TEMPO(2,2,6,6-四甲基哌啶-氮-氧化物)、碳纳米管-TEMPO、石墨烯-TEMPO、氧化石墨烯-TEMPO、Polymer-TEMPO、Methyl viologen dichloride hydrate(甲基紫精)、Riboflavin-5′-phosphate sodium salt dehydrate(核黄素-5′-磷酸钠二水合物)、Ag/AgCl溶液、LiCoO 2、LiMn 2O 4、Bi/BiOCl、Sb/SbOCl、LiMn 2O 4/NaTi 2(PO 4) 3、Zn/VS 2、Fe(CN) 6、K 0.27MnO 2、Na 2FeP 2O 7、V 2O 5、Na 3V 2(PO 4) 3、Na 2V 6O 16、Na 0.44MnO 2、NaTi 2(PO 4) 3、PTFE(聚四氟乙烯)、PBA(聚丙烯酸丁酯)、Na 2C 8H 4O 4、PVA(聚乙烯醇)、Na 0.44[Mn 1-xTi x]O 2、Bi、BiF 3、Pb、PbF 2、哌啶类无机物以及联吡啶鎓盐的一种或一种以上,其中Na 0.44[Mn 1-xTi x]O 2中x小于1;还包括聚酰胺、氧化锰以及普鲁士蓝Fe 4[Fe(CN) 6] 3的一种或一种以上;
其中,更优选的为TEMPO,TEMPO溶液的制备方法包括以下任一方式:
(1)将TEMPO粉末和NaCl颗粒加入到去离子水中,得到混合溶液,将所得混合溶液超声,得到TEMPO混合溶液,TEMPO颗粒与NaCl颗粒的摩尔比为1:X(0<X<100)。
(2)将TEMPO颗粒直接加入到去离子水中,将TEMPO溶液超声,得到TEMPO溶液。
所述的超声条件:40KHZ~100KHZ超声0.5~8h;
所述的盐溶液为NaCl,NaBr,生活污水,工业污水,海水或者含有重金属离子的污水;
正负极活性材料与盐溶液的体积比为1:0.001~20000;
本发明中所有哌啶类无机物包括2-羟基嘧啶,联吡啶鎓盐包括4'-联吡啶鎓盐二氯化物;
除盐流体电池装置根据功能不同,通过如下三种方式的其中一种制备得到:
按照流体电池模具自组装的固定顺序进行组装,顺序为:具有光敏半导体材料的导电玻璃、光负极活性液流材料或滤纸、阴离子交换膜、盐溶液,阳离子交换膜或滤纸、正极活性液流材料、石墨纸;
按照流体电池模具自组装的固定顺序进行组装,顺序为:具有光敏半导体材料的导电玻璃、光负极活性液流材料或滤纸、阴离子交换膜、盐溶液1,阳离子交换膜或滤纸、盐溶液2、阴离子交换膜、正极活性液流材料、石墨纸;
按照流体电池模具自组装的固定顺序进行组装,顺序为:具有光敏半导体材料的导电玻璃、光负极活性液流材料或滤纸、阴离子交换膜、以两支盐溶液分层交替作为中间流体电解液,与正负极活性液流材料作为相互连通的最外层正负电极、石墨纸、以及若干张阴离子交 换膜和阳离子交换膜分层交替组装成除盐流体电池装置;
在以上器件里面的盐液通道、电解质通道中,包含离子交换树脂、导电离子、导电碳材料、导电高分子的填充,用以增大电导,降低能耗。
所述钠离子电极材料为正极/阳极材料、负离子电化学材料为负极/阴极材料,与正极活性材料、负极活性材料、正负极活性液流材料、活性液流材料均表示为相同材料,导电添加剂和辅助导电添加剂亦表示为相同材料。
本发明的有益效果如下:
(1)本发明采用的正负极物质为有机化合物,有机活性材料成本低,对环境友好,可持续性高;有机活性物质流体电池测试的电化学性能优异,首次充放电效率高,在充电时能有效的除去阳离子和阴离子,达到了除盐的目的;在放电时能提供电能循环性能好,比容量高(首次达7800mAh/g以上);除盐方法简单、成本低廉、绿色环保,使其在海水除盐方面具有实际的应用效益。
(2)本发明制得的正、负极材料,表现出电化学性能优秀、比容量高、循环稳定性好的优点。将正负极组装成电池,通过电化学测试,由锰酸钠正极和羧化碳纳米管包覆的纳米铋负极组装的氟化钠双离子全电池比容量高、循环性能好,且原料要求低、制备工艺少、过程简单、操作简便,适合规模生产使用;制备的材料适用于水系电池,符合新一代高性能水系电池活性材料的要求;这种技术不仅可以除去氟离子,而且可以提供电能,首次比容量达到220mAh/g;本发明所述的氟化钠双离子全电池不仅可以应用于液流电池领域,而且可以在充放电的过程中除去电解液中的氟离子,达到净化水源的目的。
(3)本发明正负极活性液流材料Ag/AgCl混合溶液制备,通过采用纳米球磨机,以去离子水为载体将Ag、AgCl和活性炭进行纳米级的球磨,Ag/AgCl混合溶液表现出电化学性能优秀、比容量高、循环稳定性好和能耗低的优点,相比于传统的除盐技术提供一种创新的除盐概念,基于电池的化学反应原理利用正负电极材料进行除盐;这种技术不仅可以除去NaCl离子,提供电能,而且能耗特别低。
(4)本发明采用同一种电极活性液流材料,氧化槽和还原槽由软管连接相通,使得正负极活性溶液循环重复多次使用,本发明的CNT-TEMPO溶液克服了阴、阳离子交换膜的局限性,也能达到很好的除盐效果,节约成本以及操作简便,产业化功能大大提升;按照流体电池模具自组装的固定顺序进行组装,可以使得电解液与正负极活性液流材料分离开来,回收正负极活性液流材料简便,节约成本。
(5)本发明的液流电池负极采用具有光敏半导体材料的导电玻璃,在光照条件下产生电子空穴,驱动除盐反应的进行,解决除盐过程的能量消耗问题;采用同一种电极活性材料,氧化槽和还原槽由软管连接相同,使得正负极活性溶液循环重复多次使用;所采用的正负极活性材料成本低,对环境友好,可持续性高,符合新一代高性能绿色环保的除盐理念;利用光化学催化氧化还原反应进行连续除盐的方法在海水淡化、工业废水处理、生活用水净化,以及光电能量转换和存储中得到应用。
说明书附图
图1为实施例1流体电池除盐的装置及其电化学性能测试图;
图2为实施例2的氟化钠双离子电池的装置图及其电化学性能测试图;
图3为实施例3的流体电池低能耗连续脱盐装置图及其电化学性能测试图;
图4为实施例4的材料电化学连续低耗能除盐装置及其电化学性能测试图;
图5为实施例5的光驱动电化学催化连续除盐装置及其电化学性能测试图。
具体实施方式
以下通过具体的实施案例以及附图说明对本发明作进一步详细的描述,应理解这些实施例仅用于说明本发明而不用于限制本发明的保护范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定。
实施例1
一种利用流体电池除盐的装置及其制备方法:(1)先将碳纸、带有季胺基的均相阴离子交换膜和带有磺酸基的均相阳离子交换膜裁剪成11*11cm的正方形,与流体电池装置的模具尺寸(11*11*1cm)一致,然后分别在碳纸和阴、阳离子交换膜上打孔,以便用螺丝固定装置,有利于在反应过程中保持压力,防止材料互相污染。再将裁剪好的碳纸放入1000ml烧杯中,先倒入150ml的4%(w/w)盐酸超声5min,超声功率为200W。随后将盐酸倒掉,用去离子水冲洗,再倒入150ml的无水乙醇同样超声5min(功率为200W)。最后将无水乙醇倒掉,用去离子水冲洗,再用去离子水超声5min(功率为200W)。超声完成后,将处理完的碳纸放入蒸发皿中干燥,50℃干燥2h。阴、阳离子交换膜分别用去离子水冲洗,然后用去离子水浸泡保存。
(2)称量15g的氯化钠(纯度99%)溶解在1000ml的容量瓶中,用去离子水定容至1000ml,即可得到15g/L的氯化钠溶液。量取40ml氯化钠溶液倒入50ml的烧杯中,作为流体电池的中间流体电解液。
(3)称量0.008612g的正极有机物4-羟基-哌啶醇氧化物(4-Hydroxy-TEMPO,TEMPO,纯度为97%),用量筒量取15ml步骤(2)中得到的氯化钠溶液,将称量好的正极有机物溶解于氯化钠溶液中,充分溶解即可。
(4)称量0.025718g的负极有机物核黄素磷酸钠(Riboflavin-5’-phosphate sodium salt dihydrate,FMN-Na),用量筒量取15ml步骤(2)中得到的氯化钠溶液,将称量好的负极有机物溶解于氯化钠溶液中,充分溶解即可。
(5)按照流体电池装置模具的自组装固定顺序搭建流体电池装置:
流体电池装置模具为亚克力材质的定制模具,示意图如图1(a-b)所示。从左边负极开始,依次放置模具A,用碳布做的极耳,步骤(1)中处理好的碳纸,模具B,泡沫碳,步骤(1)中处理后的阳离子交换膜,模具C,步骤(1)中处理后的阴离子交换膜,泡沫碳,模具B,步骤(1)中处理好的碳纸,极耳碳布,模具A。用螺丝固定好装置,并将剩余开孔处通过接头接上蠕动泵软管。再将正极、负极和中间流体电解液的进口软管置于蠕动泵中,正极的进口和出口软管口同时放在正极有机物中,负极的进口和出口软管口同时放在负极有机物中,中间流体电解液的进口和出口软管口同时放在装有中间流体电解液氯化钠的烧杯中。电池夹具按正负极夹在极耳碳布上,碳布中用不导电的塑料片隔开。将装有中间流体电解液氯化钠的烧杯放在磁力搅拌台上,然后在烧杯中放入电导率仪的温度电极和电导电极。
采用本实验例1搭建的除盐流体电池,通过蠕动泵使流体电池的电解液循环,通过电导率仪测试中间流体电解液的浓度变化,由此测试该流体电池的除盐能力(除盐流体电池的除 盐原理如图1(a-b)所示。使用100mA电流进行恒电流充放电实验测试充放电和循环性能,充放电电压的范围是0.01V到1.40V。采用(深圳新威电子有限公司)BTS电池测试***测试本实验除盐流体电池的电化学性能,在常温条件下测试。图1d是本实例除盐流体电池的充放电曲线。由图1c可得,首次充电比容量是3980mAh/g,首次放电比容量为2750mAh/g。循环20周,比容量还保持在300mAh/g,循环性能好。本实例中,发明的中间流体电解液NaCl的电导率变化明显,充电时,电导率逐渐变小,放电时,电导率逐渐变大;充放电循环过程电导率也反复循环,即体现了本发明方法充电时的除盐能力。
实施例2
一种氟化钠双离子电池及其制备方法(一)羧化碳纳米管包覆的纳米铋负极材料的制备,具体步骤如下:
(1)将1.5g碳纳米管置于圆底烧瓶中,并将100ml体积比为1:2的质量分数为98%的浓硫酸和质量分数为68%的浓硝酸的混合溶液加入到圆底烧瓶中,进行10min功率为300W的超声分散;再进行0.5h转速为400r/min的磁子搅拌;用1000ml去离子水稀释,冷却后用0.22μm的滤纸减压过滤,并用去离子水洗涤多次至PH显中性,得到滤饼A;
(2)将步骤(1)所得滤饼A进行60℃,1h的真空干燥、然后研碎,得到粉末B;
(3)将步骤(2)中得到的粉末B置于圆底烧瓶中,加入120ml体积比为:1:2.5的质量分数为98%的浓硫酸和质量分数为36%双氧水的混合溶液,进行15min功率为300W的超声;然后进行1.5h转速为500r/min的磁子搅拌;并用1000ml去离子水稀释,冷却后用0.22μm的滤纸减压过滤(采用抽滤机减压过滤),再用去离子水洗涤多次至滤液呈中性,得到滤饼C;
(4)将步骤(3)中得到的滤饼C进行60℃,12h真空干燥、研磨,制得羧化的碳纳米管D;
(5)将步骤(4)中得到的20mg的D溶于500ml去离子水中,进行12min功率为300W的超声分散;再进行1.5h转速为350r/min的磁子搅拌,得到溶液E;
(6)将0.4g的柠檬酸铋铵溶于步骤(5)中得到的溶液E,并进行2h转速为400r/min的磁子搅拌,得到溶液F;
(7)将55ml 1mol/L的硼氢化钠溶液滴加到步骤(6)配置的溶液F中,滴加结束后继续磁力搅拌2h,得到溶液G,再进行离心(8000r离心15min)纯化、用去离子水漂洗,然后80℃真空干燥10h,得到所需材料羧化碳纳米管包覆的纳米铋H;
(二)锰酸钠正极材料的制备,具体步骤如下:
(8)将碳酸钠和三氧化二锰按照摩尔比为0.45:1的比例混合,进行10h,260r/min的行星球磨机进行球磨,得到混合粉末I;
(9)将步骤(8)得到的混合粉末I在空气中煅烧,以2℃/min的速度升温至400℃,再恒温保持4h,得到产物J;
(10)将步骤(9)得到的产物J再次进行12h,260r/min的的行星球磨机进行球磨,得到前驱体K;
(11)将步骤(10)得到的前驱体K再次在空气中煅烧;煅烧的条件为:以2℃/min的速度升温至900℃,再恒温保持10h,得到最终材料锰酸钠J;
(三)将步骤(一)制得的羧化碳纳米管包覆的纳米铋负极材料进行XRD图谱检测,检测结果如图2a所示。从图2a中可看出,图谱中明显呈现了纳米铋的衍射峰,该峰与标准PDF卡 完全吻合,另外在大概在30°出现一个馒头峰,该峰为羧化碳纳米管对应的峰。羧化碳纳米管包覆的纳米铋负极材料进行扫描电子显微镜检测,检测结果如图2b所示。从图2b中可看出,纳米铋颗粒均匀地分散在碳纳米管上。
(四)电池电极片制备,具体步骤如下:
(1)将步骤(一)制备的羧化碳纳米管包覆的纳米铋负极材料、粘结剂聚偏二氟乙烯和导电碳黑Super-P(导电剂)按照质量比70:15:15混合,以N-甲基吡咯烷酮为溶剂(溶质和溶剂的质量比为1:2调成浆料,涂覆(涂覆厚度为100μm)在1mm厚的石墨纸上,并经真空干燥80℃,10h。制备成羧化碳纳米管包覆的纳米铋负极片1;
(2)将步骤(二)制备的锰酸钠正极材料、粘结剂LA132(成都茵地乐公司,粘结剂固体含量为15%)和导电碳黑Super-P按照重量比70:15:15均匀混合,以N-甲基吡咯烷酮为溶剂(溶质和溶剂的质量比为1:2调成浆料,涂覆在石墨纸上,涂覆厚度为100μm,并经真空100℃干燥10h,制备成锰酸钠正极片1。
(五)氟化钠双离子全电池的组装,具体步骤如下:
氟化钠双离子全电池,用电解池进行组装:将步骤(四)(1)中制备得到的羧化碳纳米管包覆的纳米铋负极片1、隔膜、电解液(0.8mol/L的NaF溶液)和步骤(四)(2)中制备得到的锰酸钠正极片1进行流体装置的组装,得到氟化钠双离子全电池。正负极电极夹分别夹锰酸钠正极和羧化碳纳米管包覆的纳米铋负极,进行电化学性能的测试,结果如图2c所示。用电导率仪测试离子的电导率,进而得到氟离子的去除能力,循环特性在图2d所示。
实施例3
一种利用流体电池进行低能耗连续电化学氧化还原反应的脱盐装置包括以下几个方面:(I)正负极材料;(II)电解液;(III)流体设备;(IV)隔离设备;
(I)所述的除盐流体电池装置的正负极液流材料的制备,具体步骤如下:
(1)将0.01g羧化碳纳米管[13]放入烧杯中,加入100ml去离子水,进行3000w,10mins的超声,得到混合溶液A;
(2)将10mmol的AgNO3加入到步骤(1)的混合溶液A中,进行转速为1500r/min,0.5h的磁子搅拌,得到混合溶液B;
(3)将400ml 0.8mol/L的NaBH 4溶液通过蠕动泵滴加到步骤(2)的混合溶液B中;蠕动泵速率为:1rpm,滴加结束后进行转速为150r/min,0.5h的磁子搅拌,得到混合溶液C;
(4)将步骤(3)得到的混合溶液C采用去离子水和无水乙醇进行8000r,15mins的离心(先将混合溶液C先离心,然后加入离子水或酒精后离心),得到Ag颗粒;
(5)将0.01g羧化碳纳米管放入烧杯中,加入100ml去离子水,进行3000w,10mins的超声,得到混合溶液D;
(6)将10mmol的AgNO3加入到步骤(5)的混合溶液D中,进行转速为1500r/min,0.5h的磁子搅拌,得到混合溶液E;
(7)将120ml 0.8mol/L的NaCl溶液通过蠕动泵滴加到步骤(6)的混合溶液E中;蠕动泵速率为:1rpm,滴加结束后进行转速为150r/min,0.5h的磁子搅拌,得到混合溶液F;
(8)将步骤(8)得到的混合溶液采用去离子水和无水乙醇进8000r,15min的离心,得到AgCl颗粒;
(9)将步骤(4)得到的Ag颗粒和步骤(8)得到的AgCl颗粒以及1.8g活性炭放入到装有40ml的去离子水的烧杯中,得到混合溶液G;
(10)将步骤(9)得到的混合溶液G,进行转速为2000r、时间为5h的纳米球磨(采用纳米球磨机进行磨机),得到混合溶液H;
(II)所述的除盐流体电池装置的盐溶液(电解液)为氯化钠溶液,通过如下方法制备得到:
(11)将纯度99.99%的NaCl配置成30ml浓度为10g/L的盐溶液,放入50ml的烧杯中;
(III)所述的流体设备通过如下方法制备得到:
(12)按照流体电池组装的顺序进行组装(流体电池装置的模具为性能稳定的亚克力材质的定制模具,模具的尺寸为11×11×1cm):将步骤(11)中得到的30ml盐溶液作为中间流体电解液,与步骤(10)中得到的10ml正负极液流材料、石墨纸、阴、阳离子交换膜(阴离子交换膜为含有季胺基的阴离子交换膜,只允许阴离子通过;阳离子交换膜为含有磺酸基的阳离子交换膜,只允许阳离子通过)组装成除盐流体电池装置,流体电池装置为定制模具。从左边负极开始,依次放置模具A,用碳布做的极耳,步骤(1)中处理好的碳纸、模具B、碳布,步骤(1)中处理后的阳离子交换膜、碳布、模具C,步骤(1)中处理后的阴离子交换膜,模具B,步骤(1)中处理好的碳纸,极耳碳布,模具A。用螺丝固定好装置,并将剩余开孔处通过接头接上蠕动泵软管。再将正负极和中间流体电解液的进口软管置于蠕动泵中,正负极材料为同一材料,正极和负极软管相连,正极的进口和负极的出口软管口同时放在正负极材料,中间流体电解液的进口和出口软管口同时放在装有中间流体电解液氯化钠的烧杯中。电池夹具按正负极夹在极耳碳布上,碳布中用不导电的塑料片隔开。
(Ⅳ)所述的隔离装置通过如下方法实现:
(13)在步骤(12)中流体电池充电过程中的NaCl通过阴、阳离子交换膜到达正负极活性材料为Ag/AgCl混合溶液(如图3a所示),电解液中NaCl浓度逐渐降低,正负极活性液流材料中的NaCl浓度逐渐升高;此时用隔离装置将正负极活性液流材料中的NaCl溶液隔离出来,而干净的水从另一端流出,正负极材料也可以重复使用,这样可以达到真正的除盐目的,如图3a所示。图3b显示放电盐析出的过程。
流体电池装置组装完成后将正负极电极夹在极耳(靠近阴离子交换膜的一边接正极,靠近阳离子交换膜的一边接负极)进行电化学性能测试。再用电导率仪测试离子的电导率,进而得到NaCl离子的去除能力。充放电的电压随时间的变化如图3c所示,并且实时电导的检测如图3d所示。
实施例4
一种利用材料电化学氧化还原的催化效果来进行连续低耗能除盐流体装置或者包括一种光驱动电化学催化连续除盐的除盐流体电池装置均包括以下几个方面:(I)正负极材料;(II)电解液;(III)流体设备;(IV)隔离设备;
(I)所述的除盐流体电池装置的正负极液流材料的制备,具体步骤如下:
(1)将0.05gTEMPO颗粒与0.5gNaCl颗粒加入到100mL去离子水中,3000w,10mins的超声,得到混合溶液A,即为正负极活性液流材料;
(II)所述的除盐流体电池装置的盐溶液为NaCl溶液,通过以下方法得到:
(2)将纯度为99.99%的NaCl配置成25ml浓度为8g/L的盐溶液,放入50ml的烧杯中;
(III)所述流体电池设备通过如下方法制备得到:
(3)按照流体电池组装的顺序进行组装(流体电池的模具为性能十分稳定的亚克力材质的定制模具,尺寸为11×11×1cm):将步骤(2)的25mL盐溶液作为中间流体(流体电池电解液)与步骤(1)中所得的50mL正负极液流材料、石墨纸、阴、阳离子交换膜(阴离子交换膜为含有季胺基的阴离子交换膜,只允许阴离子通过;阳离子交换膜为含有磺酸基的阳离子交换膜,只允许阳离子通过)组成除盐流体电池装置,流体电池装置为定制模具。从左边负极开始,依次放置模具A,用碳布做的极耳,步骤(1)中处理好的石墨纸,模具B,泡沫碳(3×3cm),步骤(1)中处理后的阳离子交换膜,泡沫碳(3×3cm),模具C,步骤(1)中处理好的阴离子交换膜,模具B,步骤(1)中处理好的石墨纸,极耳,模具A。用螺丝固定好装置,此时用软管把氧化槽的出水口和还原槽的进水口用蠕动泵软管相连,同时将装置上其余的开孔处通过接头街上蠕动泵配套软管,再将正极的进水口软管和中间流体电解液的进口软管置于蠕动泵中,正负极为同一种材料,正极和负极相连,将正极进水口软管和负极出水口软管置于步骤(1)配置好的溶液烧杯中,中间流体电解液的进水口和出水口软管口同时放置在步骤(2)中的溶液烧杯中,此时进水口同时也连接电导仪的探头。电池夹具按正负极夹在极耳上,并在中间用塑料片隔开,防止短路。
(IV)所述的隔离装置通过如下方法实现:
(4)在步骤(3)中流体电池充电过程中的NaCl通过阴、阳离子交换膜到达正负极活性材料为TEMPO混合溶液,电解液中的NaCl浓度逐渐升高;此时用隔离装置将电极活性液流材料中的NaCl溶液隔离出来,而干净的水从另一端流出,正负极材料可以重复使用,这样可以达到真正除盐的目的,如图4a-c所示。
流体电池装置组装完成后将正负极夹在极耳上(靠近阴离子交换膜接正极,靠近阳离子交换膜接负极)进行电化学性能测试。再用电导率仪测试离子的电导率,从而可以测试除盐能力。用电导率仪测试离子的电导率,从而可以测试除盐能力,如图4d所示,在充电过程中,电导持续减低。在此过程中能够正负极活性溶液与NaCl溶液相互分离,正负极活性溶液可以多次利用,进行回收,此外该电化学除氯离子和钠离子离子过程是可以通过充电再生的,再生后可用于下一次循环电化学放电除盐。一个多循环的测试过程如图4e所示,显示良好的循环特性。
实施例5
一种利用光照实现外电路电能转换、内电路电化学催化进行连续除盐的流体电池装置包括以下几个方面:(I)正负极材料;(II)电解液;(III)流体设备;(IV)隔离设备;
(I)所述的除盐流体电池装置的正负极液流材料的制备,具体步骤如下:
(1)将0.05gTEMPO颗粒与0.5gNaCl颗粒加入到100mL去离子水中,3000w,10mins的超声,得到混合溶液A,即为正负极活性液流材料;
(II)所述的除盐流体电池装置的盐溶液为NaCl溶液,通过以下方法得到:
(2)将纯度为99.99%的NaCl配置成25ml浓度为8g/L的盐溶液,放入50ml的烧杯中;
(III)所述流体电池设备通过如下方法制备得到:
(3)按照流体电池组装的顺序进行组装(流体电池的模具为性能十分稳定的亚克力材质的定制模具,尺寸为11×11×1cm):将步骤(2)的25mL盐溶液作为中间流体(流体电池 电解液)与步骤(1)中所得的50mL正负极液流材料、石墨纸、具有光敏半导体材料的导电玻璃、阴、阳离子交换膜(阴离子交换膜为含有季胺基的阴离子交换膜,只允许阴离子通过;阳离子交换膜为含有磺酸基的阳离子交换膜,只允许阳离子通过)组成除盐流体电池装置,流体电池装置为定制模具。从左边负极开始,依次放置具有光敏半导体材料的导电玻璃,用碳布做的极耳,负极液流材料槽,阴离子交换膜,中间盐液槽,阳离子交换膜,正极液流材料槽,预处理好的石墨纸,极耳。此时用软管把负极液流材料槽的出水口和正极液流材料槽的进水口用蠕动泵软管相连,同时将负极的进水口软管和中间盐液的进口软管置于蠕动泵中,正负极液流为同一种材料,正极和负极相连,将负极进水口软管和正极出水口软管置于步骤(1)配置好的溶液烧杯中,中间盐液的进水口和出水口软管口同时放置在步骤(2)中的溶液烧杯中,此时进水口同时也连接电导仪的探头。电池夹具按正负极夹在极耳上,并在中间用塑料片隔开,防止短路。
(IV)所述的隔离装置通过如下方法实现:
(4)在步骤(3)中流体电池放过程中的NaCl通过阴、阳离子交换膜到达正负极活性材料行成混合溶液,电解液中的NaCl浓度逐渐升高;此时用隔离装置将电极活性液流材料中的NaCl溶液隔离出来,而干净的水从另一端流出,正负极材料可以重复使用,这样可以达到真正除盐的目的,如图5a-c所示。
流体电池装置组装完成后打开光源,并将光源垂直照射到具有光敏半导体材料的导电玻璃上。将电化学工作站的正负极夹在极耳上(靠近阴离子交换膜接负极,靠近阳离子交换膜接正极)进行电化学性能测试。再用电导率仪测试离子的电导率,从而可以测试除盐能力。图5d显示的是光敏半导体材料在黑暗和光照条件下的I-V曲线,可以看出所选取的光敏半导体材料在光照条件下可以产生稳定且较高的电流,可用于放电除盐测试。
在光照LEG4时,TEMPO分子发生氧化还原反应,盐液中连续去除。初步测试的电压变化如图5e所示:黑暗条件下,开路电压为0.16V;光照时,开路电压立即上升到0.65V;横流0.1mA放电时,电压降低并维持,盐液中的盐分降低。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (50)

  1. 一种利用流体电池除盐的方法,其特征在于:通过除盐流体电池装置进行除盐;其中,除盐流体电池装置是以正极活性材料为流体电池的正极,负极活性材料为流体电池的负极,盐溶液为流体电池的中间流体电解液。
  2. 由权利要求1所述的利用流体电池除盐的方法,其特征在于:所述的正极活性材料为有机材料、无机材料、有机溶液或无机溶液;所述的有机材料为4-羟基-哌啶醇氧化物,核黄素磷酸钠或甲基紫精;所述的无机材料为VCl 3或NaI;所述的无机溶液为含有Br 2/Br -,VO 2+/VO 2+,V 3+/VO 2+,Fe 3+/Fe 2+,Ce 3+/Ce 4+,Ti 3+/Ti 4+,或Ce 3+/Ce 2+的溶液。
  3. 由权利要求1所述的利用流体电池除盐的方法,其特征在于:所述的负极活性材料为有机材料、无机材料、有机溶液或无机溶液;所述的无机材料为VCl 3、NaI、Zn或Pb;所述的无机溶液为含有V 3+/V 2+,Cr 3+/Cr 2+,Cu 2+/Cu +,TiOH 3+/Ti 3+,Cr 3+/Cr 2+,S/S 2-,Ti 3+/Ti 2+,Mn 2+/Mn 3+,或I 3-/I -的溶液。
  4. 由权利要求1所述的利用流体电池除盐的方法,其特征在于:所述的盐溶液为氯化钠溶液、海水、或含有重金属/类金属元素的盐溶液;所述的氯化钠溶液的浓度为200mg/L~50g/L。
  5. 由权利要求1所述的利用流体电池除盐的方法,其特征在于:所述的除盐流体电池装置还包括阴离子交换膜和阳离子交换膜;所述的阴离子交换膜为含有氨基或季胺基的离子交换膜,氯离子交换膜,氟离子交换膜、硫酸根离子交换膜、或硝酸根离子交换膜;所述的阳离子交换膜为含有羧基或磺酸基的离子交换膜,钠离子交换膜,锂离子交换,钾离子交换膜,钙离子交换膜,或镁离子交换膜。
  6. 由权利要求1所述的利用流体电池除盐的方法,其特征在于,所述的除盐流体电池装置通过如下方法制备得到:
    (1)将无机盐溶解在溶剂中,均匀搅拌,得到盐溶液;
    (2)将正极活性材料溶解到步骤(1)得到中得到的盐溶液中,得到正极材料电解液;
    (3)将负极活性材料溶解到步骤(1)得到中得到的盐溶液中,得到负极材料电解液;
    (4)由流体电池装置模具自组装的固定顺序组装流体电池装置:将步骤(1)中得到的盐溶液作为中间流体电解液,与步骤(2)中得到的正极材料电解液、步骤(3)中得到的负极材料电解液、碳纸、阴离子交换膜、以及阳离子交换膜组装成除盐流体电池装置。
  7. 权利要求1至6任一项所述的利用流体电池除盐的方法在除盐、移除氟离子或有毒离子领域中的应用。
  8. 一种氟化钠双离子电池,其特征在于:包括钠离子电化学材料、氟离子电化学材料以及电解液;其中,所述的钠离子电极材料为Na 0.44MnO 2、K 0.27MnO 2、Na 2FeP 2O 7、V 2O 5,Na 3V 2(PO 4) 3、Na 2V 6O 16、NaTi 2(PO 4) 3、聚四氟乙烯、聚丙烯酸丁酯、Na 2C 8H 4O 4、聚乙烯醇和Na 0.44[Mn 1-xTi x]O 2中的一种以上;所述的氟离子电化学材料为电化学材料或碳材料包覆的电化学材料;其中,电化学材料为Bi、BiF 3、Pb、PbF 2、哌啶类无机物和联吡啶鎓盐中的一种以上;所述的电解液为NaF溶液。
  9. 由权利要求8所述的氟化钠双离子电池,其特征在于:所述的NaF溶液的浓度为0.75~0.85mol/L。
  10. 由权利要求8所述的氟化钠双离子电池,其特征在于,所述的Na 0.44MnO 2通过如下方 法制备得到:
    1)将碳酸钠和三氧化二锰混合后进行球磨,然后将球磨后获得的混合粉末进行煅烧,得到产物J;
    2)将步骤1)得到的产物J再次进行球磨,然后将球磨后获得的前驱体再次进行煅烧,得到Na 0.44MnO 2
  11. 由权利要求10所述的氟化钠双离子电池,其特征在于:
    步骤1)中所述的碳酸钠和三氧化二锰的摩尔比为0.4~0.5:1。
  12. 由权利要求10所述的氟化钠双离子电池,其特征在于:
    步骤1)和步骤2)中所述的球磨的条件为:250~270r/min球磨10~15h;
    步骤1)中所述的煅烧的条件为:在空气中、以2~10℃/min的速度升温至400~600℃,再恒温保持4~7h;
    步骤2)中所述的煅烧的条件为:在空气中、以2℃/min的速度升温至900~1200℃,再恒温保持10~14h。
  13. 由权利要求8所述的氟化钠双离子电池,其特征在于,所述的氟离子电化学材料通过如下方法制备得到:
    1)向碳纳米管中加入浓硫酸和浓硝酸的混合溶液进行酸化处理,然后加水稀释、冷却后过滤,并洗涤至中性,得到滤饼A;
    2)将步骤1)中得到的滤饼A进行干燥、研磨,得到粉末B;
    3)向步骤2)中得到的粉末B中加入浓硫酸和双氧水的混合酸溶液进行二次酸化处理,然后加水稀释、冷却后过滤,并洗涤至中性,得到滤饼C;
    4)将步骤3)中得到的滤饼C进行干燥、研磨,得到羧化的碳纳米管D;
    5)将步骤4)中得到的羧化的碳纳米管D分散到水中,得到溶液E;
    6)将柠檬酸铋铵加入到步骤5)中得到的溶液E中,并搅拌均匀,得到溶液F;
    7)将硼氢化钠溶液滴加到步骤6)得到的溶液F中,滴加结束后继续搅拌,得到溶液G,再进行离心纯化、漂洗,然后真空干燥,得到氟离子电化学材料。
  14. 由权利要求8至13任一项所述的氟化钠双离子电池,其特征在于,氟化钠双离子电池中,阴离子还包括Cl -、Br -、I -中的一种;阳离子还包括Li +、K +、Mg 2+和Al 3+中的一种;阴离子捕获或释放的化合物包括Bi、BiOCl、Ag、AgCl、Sb、Sb xO yCl z
  15. 由权利要求8至14任一项所述的氟化钠双离子电池,其特征在于,该电池中的电解质溶液包括含有Cl -、F -、Br -、I -、NO 3 -、CO 3 2-、SO 4 2-CrO 4 2-、Na +、K +、NH 4 +、氢氧化物以及氧化物的一种以上。
  16. 由权利要求8至15任一项所述的氟化钠双离子电池,其特征在于,该电池的电解质溶液还包括NaF、KF、ZnF 2的一种。
  17. 由权利要求8至16任一项所述的氟化钠双离子电池,其特征在于,所述电解液还包括NaCl盐溶液以及pH缓冲剂,pH缓冲剂包括三(羟甲基)氨基甲烷(TRIS),磷酸二氢钾,磷酸氢钾,磷酸钾,3-[[1,3-二羟基-2-(羟甲基)丙-2-酮]yl]氨基]丙烷-1-磺酸,2-(双(2-羟乙基)氨基)乙酸,N-(2-羟基-1,1-双(羟甲基)乙基)甘氨酸,2-(N-吗啉代))乙磺酸,二甲基胂酸,1,4-哌嗪二乙磺酸,3-吗啉代丙烷-1-磺酸,2-[[1,3-二羟 基-2-(羟甲基)丙-2-基]氨基]乙磺酸,2-[4-(2-羟乙基)哌嗪-1-基]乙磺酸,3-[[1,3-二羟基-2-(羟甲基)丙-2-基]氨基]-2-羟基丙烷-1-磺酸和它们的混合物。
  18. 权利要求8至17任一项所述的氟化钠双离子电池在废水处理领域或电化学除氟设备中的应用。
  19. 一种利用流体电池氧化还原反应进行连续低耗能除盐的方法,其特征在于,为通过除盐流体电池装置进行除盐;其中,除盐流体电池装置以正负极活性液流材料为流体电池的正负极,以盐溶液为流体电池的电解液;
    所述的正负极活性液流材料为Ag/AgCl混合溶液,Na 0.44MnO 2混合溶液,Bi/BiOCl,Sb/SbOCl,K 0.27MnO 2,Na 2FeP 2O 7,V 2O 5,Na 3V 2(PO 4) 3,Na 2V 6O 16,NaTi 2(PO 4) 3,聚四氟乙烯,聚丙烯酸丁酯,Na 2C 8H 4O 4,聚乙烯醇,Na 0.44[Mn 1-xTi x]O 2,BiF 3,Pb,PbF 2,哌啶类无机物和联吡啶鎓盐中的一种以上。
  20. 由权利要求19所述的利用流体电池氧化还原反应进行连续低能耗除盐的方法,其特征在于,正负电极活性液流材料还包括聚酰胺、普鲁士蓝Fe 4[Fe(CN) 6] 3以及氧化锰的一种以上。
  21. 由权利要求19所述的利用流体电池氧化还原反应进行连续低耗能除盐的方法,其特征在于:
    所述的正负极活性液流材料还包括辅助导电添加剂,为碳纳米管,石墨烯,活性炭和炭黑中的一种以上。
  22. 由权利要求19所述的利用流体电池氧化还原反应进行连续低耗能除盐的方法,其特征在于:所述的除盐流体电池装置还包括用于将盐溶液和正负极活性液流材料隔离开的隔离装置。
  23. 由权利要求19所述的利用流体电池氧化还原反应进行连续低耗能除盐的方法,其特征在于:
    所述的盐溶液为NaCl溶液、NaF溶液、生活用水预处理、工业污水、海水或含有有毒离子的溶液。
  24. 由权利要求19所述的利用流体电池氧化还原反应进行连续低耗能除盐的方法,其特征在于:
    所述的正负极活性液流材料与盐溶液的体积比为1:0.1~280。
  25. 由权利要求19所述的利用流体电池氧化还原反应进行连续低耗能除盐的方法,其特征在于,所述的Ag/AgCl混合溶液通过如下方法制备得到:
    将Ag颗粒、AgCl颗粒和活性炭加入到去离子水中,然后将获得混合溶液进行球磨,得到Ag/AgCl混合溶液;
    所述的球磨的条件为:2000~3000r球磨5~10h。
  26. 由权利要求25所述的利用流体电池氧化还原反应进行连续低耗能除盐的方法,其特征在于,所述的Ag颗粒通过如下方法制备得到:
    (1)将羧化碳纳米管加入到去离子水中,超声使其分散均匀,得到混合溶液A;
    (2)将AgNO 3加入到步骤(1)的混合溶液A中,搅拌使其混合均匀,得到混合溶液B;
    (3)将NaBH 4溶液滴加到步骤(2)的混合溶液B中,滴加结束后继续搅拌使其混合均匀, 离心、漂洗,得到Ag颗粒;
    所述的AgCl颗粒通过如下方法制备得到:
    (I)将羧化碳纳米管加入到去离子水中,超声使其分散均匀,得到混合溶液D;
    (II)将AgNO3加入到步骤(I)的混合溶液D中,搅拌使其混合均匀,得到混合溶液E;
    (III)将NaCl溶液滴加到步骤(II)的混合溶液E中,滴加结束后继续搅拌使其混合均匀,离心、漂洗,得到AgCl颗粒。
  27. 由权利要求19所述的利用流体电池氧化还原反应进行连续低耗能除盐的方法,其特征在于:所述的除盐流体电池装置还包括阴离子交换膜和阳离子交换膜;所述的阴离子交换膜为含有季胺基的阴离子交换膜;所述的阳离子交换膜为含有磺酸基的阳离子交换膜。
  28. 由权利要求19所述的利用流体电池氧化还原反应进行连续低耗能除盐的方法,其特征在于,所述的除盐流体电池装置通过如下方法制备得到:
    按照流体电池模具自组装的固定顺序进行组装,具体为:以盐溶液作为中间流体电解液,与正负极活性液流材料、石墨纸、以及阴、阳离子交换膜组装成除盐流体电池装置。
  29. 权利要求19至28任一项所述的利用流体电池进行连续低耗能除盐的方法在海水淡化领域中得到应用。
  30. 一种利用材料电化学进行连续低耗能除盐的方法,其特征在于,其特征在于,通过材料电化学催化连续除盐流体装置进行除盐,所述除盐流体装置以同一活性液流材料的氧化槽和还原槽为正负极,所述氧化槽和还原槽通过软管连接相通;中间流动的盐溶液为待处理样品;
    所述活性液流材料包括TEMPO、CNTs-TEMPO、GO-TEMPO,polymer-TEMPO、Ag/AgCl溶液、LiCoO 2、LiMn 2O 4、Bi/BiOCl、LiMn 2O 4、NaTi 2(PO 4) 3、Zn/VS 2、FeFe(CN) 6
  31. 由权利要求30所述的一种利用材料电化学进行连续低耗能除盐的方法,其特征在于,所述除盐流体装置包括阴离子交换膜、阳离子交换膜、定量滤纸和隔离装置,所述阳离子交换膜为含有季胺基的阴离子交换膜,所述阴离子交换膜为含有磺酸基的阳离子交换膜,所述定量滤纸的孔径为0.10~20微米,所述隔离装置用于将盐溶液和正极和负极的活性液流材料隔离开。
  32. 由权利要求30所述的一种利用材料电化学进行连续低耗能除盐的方法,其特征在于,所述的活性液流材料还包括导电添加剂,所述导电添加剂为NaCl、NaF、Na 2SO 4、KCl、CNT、GO和活性炭中的一种或几种。
  33. 由权利要求30所述的一种利用材料电化学进行连续低耗能除盐的方法,其特征在于,所述盐溶液包括NaCl溶液、NaBr溶液、生活污水、工业污水、海水和含有重金属离子的污水。
  34. 由权利要求30所述的一种利用材料电化学进行连续低耗能除盐的方法,其特征在于,所述活性液流材料与所述盐溶液的体积比为1:0.001-20000。
  35. 由权利要求30所述的一种利用材料电化学进行连续低耗能除盐的方法,其特征在于,所述TEMPO溶液用以下方式制备得到:将TEMPO粉末颗粒和NaCl粉末颗粒按照摩尔比1:X(0<X<100)加入到去离子水中,得到混合溶液,将所得混合溶液40KHZ~100KHZ超声0.5-8h,得到TEMPO混合溶液。
  36. 由权利要求30所述的一种利用材料电化学进行连续低耗能除盐的方法,其特征在于,所述电化学催化过程是指:所述正极和负极的活性液流溶液为循环的TEMPO混合溶液,所述TEMPO作为催化剂在整个循环过程中保持不变。
  37. 由权利要求30所述的一种利用材料电化学进行连续低耗能除盐的方法,其特征在于,所述的除盐流体装置由功能不同,通过以下几种方式制备得到:
    (1)按照流体电池模具自组装的固定顺序进行组装,顺序为:石墨纸、负极活性液流材料或滤纸、阳离子交换膜、盐溶液、阴离子交换膜或滤纸、正极活性液流材料、石墨纸;
    (2)按照流体电池模具自组装的固定顺序进行组装,顺序为:石墨纸、负极活性液流材料或滤纸、阳离子交换膜、盐溶液1,阴离子交换膜或滤纸、盐溶液2、阳离子交换膜、正极活性液流材料、石墨纸;
    (3)按照流体电池模具自组装的固定顺序进行组装,顺序为:石墨纸、负极活性液流材料或滤纸、阴离子交换膜、盐溶液1,阳离子交换膜或滤纸、盐溶液2、阴离子交换膜、正极活性液流材料、石墨纸;
    (4)按照流体电池模具自组装的固定顺序进行组装,顺序为:以两支盐溶液分层交替作为中间流体电解液,与正负极活性液流材料作为相互连通的最外层正负电极、石墨纸、以及若干张阴离子交换膜和阳离子交换膜分层交替组装成除盐流体电池装置;
  38. 权力要求30至38任一项的利用材料电化学进行连续低耗能除盐的方法在海水淡化、工业废水处理和生活用水净化中的应用。
  39. 一种光驱动电化学催化连续除盐的方法,其特征在于,采用具有光敏半导体材料的导电玻璃作为电化学催化的,在光照条件下,产生电子从而驱动除盐反应的进行,通过离子交换的方式连续除盐。
  40. 由权利要求39所述的光驱动电化学催化连续除盐的方法,其特征在于,光敏半导体材料包括染料半导体、量子点半导体、元素半导体、无机化合物半导体、有机化合物半导体、非晶态半导体以及液态半导体的一种。
  41. 由权利要求39所述的光驱动电化学催化连续除盐的方法,其特征在于,电池的正负极活性材料包括TEMPO、碳纳米管-TEMPO、石墨烯-TEMPO、氧化石墨烯-TEMPO、Polymer-TEMPO、Methyl viologen dichloride hydrate、Riboflavin-5′-phosphate sodium salt dehydrate、Ag/AgCl溶液、LiCoO 2、LiMn 2O 4、Bi/BiOCl、Sb/SbOCl、LiMn 2O 4/NaTi 2(PO 4) 3、Zn/VS 2、K 0.27MnO 2、Na 2FeP 2O 7、V 2O 5、Na 3V 2(PO 4) 3、Na 2V 6O 16、Na 0.44MnO 2、NaTi 2(PO 4) 3、PTFE、PBA、Na 2C 8H 4O 4、PVA、Na 0.44[Mn 1-xTi x]O 2、Bi、BiF 3、Pb、PbF 2、哌啶类无机物以及联吡啶鎓盐的一种或一种以上。
  42. 由权利要求39至41任一项所述的光驱动电化学催化连续除盐的方法,其特征在于,电池的正负极活性材料还包括聚酰胺、氧化锰以及普鲁士蓝Fe 4[Fe(CN) 6] 3的一种或一种以上。
  43. 由权利要求41所述的光驱动电化学催化连续除盐的方法,其特征在于,哌啶类无机物包括2-羟基嘧啶;联吡啶鎓盐包括4'-联吡啶鎓盐二氯化物。
  44. 由权利要求39至43所述的光驱动电化学催化连续除盐的方法,其特征在于,光敏半导体材料还包括二维半导体材料,二维半导体材料包括MoS 2、MoSe 2
  45. 由权利要求39至44任一项所述的光驱动电化学催化连续除盐的方法,其特征在于,光敏半导体可以为固态相、液态相或者溶液相的一种;液态相或溶液相的材料包括Azure C、thionine、azure A、azure B、methylene blue的一种或以上。
  46. 由权利要求39至45任一项所述的光驱动电化学催化连续除盐的方法,其特征在于,导电玻璃作为光照窗口,包括ITO或者FTO;在导电玻璃的表面涂敷致密层半导体材料,致密层半导体包括TiO 2、ZnO、SrTiO 3、Co 3O 4、CuO、ZnS、SiC、Cu 2O、BaTiO 3、Bi 2O 3、Sb 2S 3、ZnSe、PtTe 2、WTe 2、MoTe 2、SnS 2、Bi 4Ti 5O 12、BiOI、Bi 2WO 6、Fe 2O 3以及WO 3
  47. 由权利要求41所述的光驱动电化学催化连续除盐的方法,其特征在于,正负极活性材料还包括辅助导电添加剂NaCl、NaF、Na 2SO 4、KCl、CNT、GO、活性炭、导电碳材料、离子交换树脂以及不溶性材料中的一种或一种以上。
  48. 由权利要求39所述的光驱动电化学催化连续除盐的方法,其特征在于,具有光敏半导体材料的导电玻璃通过以下方法制备:
    (a)清洗FTO玻璃;
    (b)在(a)中预处理过的FTO玻璃上制备一层过渡层;
    (c)将TiO 2粉末、PEG、PEO、乙酰丙酮以及几滴TritonX 100在研钵中混合研磨后,用蒸馏水稀释,然后超声处理后搅拌一夜,涂布在(b)得到的玻璃上,最后加热;
    (d)将(c)得到的FTO玻璃放入TiO 2溶液中处理,然后将处理过的玻璃加热;
    (e)将LEG4染料溶于乙腈中配制染料溶液,然后将(d)中的玻璃放入此溶液中浸泡12~14h后取出,用酒精清洗,即得光敏半导体材料的导电玻璃。
  49. 一种实施权利要求39至48任一项所述方法的光驱动电化学催化连续除盐的除盐流体电池装置,其特征在于,通过如下三种方式的其中一种制备得到:
    按照流体电池模具自组装的固定顺序进行组装,顺序为:具有光敏半导体材料的导电玻璃、光负极活性液流材料或滤纸、阴离子交换膜、盐溶液,阳离子交换膜或滤纸、正极活性液流材料、石墨纸;
    按照流体电池模具自组装的固定顺序进行组装,顺序为:具有光敏半导体材料的导电玻璃、光负极活性液流材料或滤纸、阴离子交换膜、盐溶液1,阳离子交换膜或滤纸、盐溶液2、阴离子交换膜、正极活性液流材料、石墨纸;
    按照流体电池模具自组装的固定顺序进行组装,顺序为:具有光敏半导体材料的导电玻璃、光负极活性液流材料或滤纸、阴离子交换膜、以两支盐溶液分层交替作为中间流体电解液,与正负极活性液流材料作为相互连通的最外层正负电极、石墨纸、以及若干张阴离子交换膜和阳离子交换膜分层交替组装成除盐流体电池装置。
  50. 由权利要求49所述的光驱动电化学催化连续除盐的除盐流体电池装置,其特征在于,除盐流体电池装置以同一活性液流材料的氧化槽、还原槽为正负极,氧化槽和还原槽软管连接相通。
PCT/CN2019/079827 2018-03-28 2019-03-27 基于电化学和光电化学的离子去除装置及其制备方法和应用 WO2019184939A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/629,794 US20230013770A1 (en) 2018-03-28 2019-03-27 Ion Removal Devices Based on Electrochemistry and Photo-electrochemistry, and Preparation Method and Application

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN201810261936.8A CN108483573B (zh) 2018-03-28 2018-03-28 一种利用流体电池除盐的方法及其应用
CN201810261936.8 2018-03-28
CN201810294845.4 2018-03-30
CN201810294845.4A CN108493501B (zh) 2018-03-30 2018-03-30 氟化钠双离子电池的制备方法及其在电化学除氟中的应用
CN201810473562.6A CN108675404B (zh) 2018-05-17 2018-05-17 一种利用流体电池氧化还原反应进行连续低耗能除盐的方法及其应用
CN201810473562.6 2018-05-17
CN201811400339.5A CN109574151B (zh) 2018-11-22 2018-11-22 一种利用材料电化学进行连续低耗能除盐的方法及其应用
CN201811400339.5 2018-11-22
CN201910093085.5 2019-01-30
CN201910093085.5A CN109796065B (zh) 2019-01-30 2019-01-30 一种光驱动电化学催化连续除盐的方法及其除盐流体电池装置

Publications (1)

Publication Number Publication Date
WO2019184939A1 true WO2019184939A1 (zh) 2019-10-03

Family

ID=68060899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079827 WO2019184939A1 (zh) 2018-03-28 2019-03-27 基于电化学和光电化学的离子去除装置及其制备方法和应用

Country Status (2)

Country Link
US (1) US20230013770A1 (zh)
WO (1) WO2019184939A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112382513A (zh) * 2020-10-01 2021-02-19 桂林理工大学 一种双离子水系储能器件的制备方法
CN117116662A (zh) * 2023-08-28 2023-11-24 济南大学 一种纸基氧化铋-Bi纳米簇光电极材料及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116879278B (zh) * 2023-09-06 2023-11-28 太仓斯迪克新材料科技有限公司 用于干膜溶膜量检测的电致化学发光传感器及检测方法
CN117558957B (zh) * 2024-01-11 2024-03-15 西南石油大学 磁管理顺磁性反应离子的液流电池***及性能提升方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567459A (zh) * 2008-04-25 2009-10-28 北京化工大学 一种酸性单液流电池
CN103594716A (zh) * 2013-11-21 2014-02-19 天津工业大学 一种制备钠离子电池正极材料氟磷酸钒钠的方法
CN106904728A (zh) * 2017-03-31 2017-06-30 中国科学院生态环境研究中心 光驱动的废水脱氮方法及设备
CN108493501A (zh) * 2018-03-30 2018-09-04 华南师范大学 氟化钠双离子电池的制备方法及其在电化学除氟中的应用
CN108483573A (zh) * 2018-03-28 2018-09-04 华南师范大学 一种利用流体电池除盐的方法及其应用
CN108675404A (zh) * 2018-05-17 2018-10-19 华南师范大学 一种利用流体电池氧化还原反应进行连续低耗能除盐的方法及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567459A (zh) * 2008-04-25 2009-10-28 北京化工大学 一种酸性单液流电池
CN103594716A (zh) * 2013-11-21 2014-02-19 天津工业大学 一种制备钠离子电池正极材料氟磷酸钒钠的方法
CN106904728A (zh) * 2017-03-31 2017-06-30 中国科学院生态环境研究中心 光驱动的废水脱氮方法及设备
CN108483573A (zh) * 2018-03-28 2018-09-04 华南师范大学 一种利用流体电池除盐的方法及其应用
CN108493501A (zh) * 2018-03-30 2018-09-04 华南师范大学 氟化钠双离子电池的制备方法及其在电化学除氟中的应用
CN108675404A (zh) * 2018-05-17 2018-10-19 华南师范大学 一种利用流体电池氧化还原反应进行连续低耗能除盐的方法及其应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112382513A (zh) * 2020-10-01 2021-02-19 桂林理工大学 一种双离子水系储能器件的制备方法
CN112382513B (zh) * 2020-10-01 2021-11-16 桂林理工大学 一种双离子水系储能器件的制备方法
CN117116662A (zh) * 2023-08-28 2023-11-24 济南大学 一种纸基氧化铋-Bi纳米簇光电极材料及其制备方法
CN117116662B (zh) * 2023-08-28 2024-04-19 济南大学 一种纸基氧化铋-Bi纳米簇光电极材料及其制备方法

Also Published As

Publication number Publication date
US20230013770A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
WO2019184939A1 (zh) 基于电化学和光电化学的离子去除装置及其制备方法和应用
Zhang et al. An aqueous rechargeable battery based on zinc anode and Na0. 95MnO2
Li et al. Metal–organic frameworks as highly active electrocatalysts for high-energy density, aqueous zinc-polyiodide redox flow batteries
CN108675404B (zh) 一种利用流体电池氧化还原反应进行连续低耗能除盐的方法及其应用
CN109796065B (zh) 一种光驱动电化学催化连续除盐的方法及其除盐流体电池装置
Wang et al. Recent progress and prospect of flow-electrode electrochemical desalination system
WO2008046343A1 (en) Manganese dioxide / hydrotalcite inorganic nano flake composite film and its preparation method
CN108630446A (zh) 用于非对称超级电容器的正极片及水系非对称超级电容器
CN109354131B (zh) 一种基于静电纺丝制备电化学脱盐电极的方法
Hao et al. Recent progress and challenges in faradic capacitive desalination: from mechanism to performance
Wu et al. Electrochemical characterization of hollow urchin-like MnO2 as high-performance cathode for aqueous zinc ion batteries
Chen et al. Realizing high-rate aqueous zinc-ion batteries using organic cathode materials containing electron-withdrawing groups
CN106044862A (zh) 低温电解制备纳米二氧化锰的方法
Su et al. Ultrafast rate capability of V2O5 yolk-shell microspheres with hierarchical nanostructure as an aqueous lithium-ion battery anode
CN104300133A (zh) 一种碳纳米管包覆的钛酸锂材料及其制备方法
CN107148696A (zh) 钒活性物质液体以及钒氧化还原电池
Wang et al. Construction of oxygen defects in V2O5 for improved performance in Zn-ion battery and sea water desalination
CN1925076A (zh) 高功率电化学电极
CN112928315B (zh) 一种碱性锌基液流电池用复合膜的制备和应用
CN101255261A (zh) 一种聚乙烯亚胺/二氧化锰纳米片多层复合薄膜及其制备方法
Meng et al. Target design towards HER inhibition for an electrolytic Mn//MnO2 aqueous battery with high discharge voltage
CN111924987B (zh) 一种硬水中选择性吸附钙离子的方法以及CuHCF的应用
CN108493501A (zh) 氟化钠双离子电池的制备方法及其在电化学除氟中的应用
CN105024061B (zh) 一种水系钠离子电池用尖晶石型锰基氧化物材料的制备方法
CN112978868A (zh) 钴铁层状双金属氢氧化物@碳化钛电极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19777147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19777147

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19777147

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.05.21)