CN112234197B - 一种无定形碳-硅-碳纳米纤维-石墨复合材料及其制备方法和应用 - Google Patents

一种无定形碳-硅-碳纳米纤维-石墨复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN112234197B
CN112234197B CN202010931540.7A CN202010931540A CN112234197B CN 112234197 B CN112234197 B CN 112234197B CN 202010931540 A CN202010931540 A CN 202010931540A CN 112234197 B CN112234197 B CN 112234197B
Authority
CN
China
Prior art keywords
silicon
carbon
composite material
graphite composite
carbon nanofiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010931540.7A
Other languages
English (en)
Other versions
CN112234197A (zh
Inventor
谢志勇
刘备
黄鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202010931540.7A priority Critical patent/CN112234197B/zh
Publication of CN112234197A publication Critical patent/CN112234197A/zh
Application granted granted Critical
Publication of CN112234197B publication Critical patent/CN112234197B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开一种无定形碳‑硅‑碳纳米纤维‑石墨复合材料及其制备方法和应用,该方法是在石墨烯表面,先利用金属催化化学气相沉积生成碳纳米纤维,脱除金属催化剂后,再利用碳纳米纤维催化化学气相沉积硅,最后沉积无定形碳,得到无定形碳‑硅‑碳纳米纤维‑石墨复合材料,该方法能够避免金属催化剂等在复合材料中的残留,且制备的硅碳复合材料电化学活性高,稳定性好,有利于提高电池的安全性能和使用寿命。

Description

一种无定形碳-硅-碳纳米纤维-石墨复合材料及其制备方法 和应用
技术领域
本发明涉及一种硅碳复合负极材料,具体涉及一种无定形碳-硅-碳纳米纤维-石墨复合材料,还涉及利用气相沉积制备无定形碳-硅-碳纳米纤维-石墨复合材料的方法,以及无定形碳-硅-碳纳米纤维-石墨复合材料在锂离子电池负极材料中的应用,属于锂离子电池负极材料制备技术领域。
背景技术
硅作为最具有开发前景的高容量锂离子电池负极材料,其具有理论储锂容量4200mAh/g,充放电过程中析锂可能性低,安全性能高等优点。但是硅的导电性差,在脱嵌锂的过程中体积变化率约为400%,造成负极材料结构的坍塌,材料粉化,以及与集流体分离,会大大降低电池的循环稳定性。另外,充放电过程中的体积效应,使得SEI膜破裂重构,消耗电解液中大量的锂,造成电池容量的衰减。硅作为锂离子电池负极材料上述的缺陷严重影响了其商业化的应用进程。
为了解决上述问题,推进硅作为锂离子电池的商业化的进展,目前国内外对硅基负极材料的研究主要集中在将硅与无定形碳、石墨等碳材料复合,制备硅碳复合负极材料。此种材料兼具硅的高容量和石墨的循环性能。目前常用的方法是通过球磨法制备硅碳复合负极材料,这种机械的复合方法制备得到纳米硅与基底碳之间的结合强度差,多次充放电后由于硅与基底的脱嵌锂膨胀收缩系数的差距导致硅从基底碳表面脱落。而化学气相沉积是另一种主要的、易于工业化生产的制备硅碳复合负极材料的制备方法,通常在基底表面通过化学气相沉积上纳米硅,得到的纳米硅-碳复合材料中硅和基底的结合强度远高于球磨法制备得到的,从而有利于提高复合负极材料的电池性能。常规的化学气相沉积要借助Fe、Co、Ni、Cu等第四周期的过渡元素作为催化剂催化硅的沉积。其中Fe、Co、Ni为磁性元素,这类杂质元素能在电池中由于原电池的形成,位于负极材料中的这些金属杂质会游离出来,在隔膜表面沉积造成隔膜导通,形成物理微短路,从而影响电池的安全性能。而Cu、Mo等微量杂质会影响电解液的性能,造成电池的电化学性能和使用寿命。国标GB/T 24533-2009锂离子电池石墨类负极材料技术指标中明确微量金属元素Fe含量小于10ppm,Cu、Ni、Co等含量小于5ppm。中华人民共和国工业和信息化部颁发《锂离子电池行业规范条件》明确规定企业应具有电池正负极材料金属有害杂质的检测能力,电池正负极材料中铁、锌、铜等有害单质含量分别不超过1ppm。同时在产品质量中明确指出负极材料如碳(石墨)、钛酸锂、硅碳、无定形碳负极材料(包括软碳,硬碳)以及其他负极材料中磁性不纯物含量小于100ppb。这些要求限制了化学气相沉积技术在制备碳硅复合材料中的应用。
发明内容
针对现有的化学气相沉积技术通过金属催化剂催化硅沉积,由于微量金属存在导致的诸多问题,本发明的第一个目的是在于提供一种先金属催化气相沉积碳纳米纤维,再高温脱除金属,再利用碳纳米纤维来催化化学气相沉积硅,最后化学气相沉积无定形碳,获得无定形碳-硅-碳纳米纤维-石墨复合材料的方法,该方法在化学气相沉积硅之前高温脱除了金属催化剂,利用碳纳米纤维来催化化学气相沉积硅,避免了金属催化剂在复合材料中的残留,改善复合材料的电化学性能。
本发明的另一个目的是在于提供一种金属杂质残留低,碳硅结合稳定,电化学性能好的无定形碳-硅-碳纳米纤维-石墨复合材料。
本发明的第三个目的是在于提供一种无定形碳-硅-碳纳米纤维-石墨复合材料作为锂离子电池负极材料的应用,可以获得循环稳定好的锂离子电池。
为了实现上述技术目的,本发明提供了一种无定形碳-硅-碳纳米纤维-石墨复合材料的制备方法,其包含以下步骤:
1)将金属类催化剂和天然石墨混合均匀后,在天然石墨表面通过化学气相沉积碳纳米纤维,再采用高温挥发脱除金属类催化剂,即得碳纳米纤维-天然石墨复合材料;
2)在碳纳米纤维-天然石墨复合材料表面通过化学气相沉积硅,得到硅-碳纳米纤维-天然石墨复合材料;
3)在硅-碳纳米纤维-天然石墨复合材料表面通过化学气相沉积无定形碳,即得无定形碳-硅-碳纳米纤维-石墨复合材料。
本发明技术方案首先将金属类催化剂与石墨复合,利用金属催化剂催化在石墨烯表面原位生成碳纳米纤维,通过金属类催化剂催化化学气相沉积生成的碳纳米纤维表面会生成很多缺陷,这些缺陷成为高活性的催化活性中心,从而可以在化学气相沉积过程中催化硅的原位生成。一般来说,化学气相沉积硅都主要利用金属类催化剂促进硅的生成,但是沉积硅后金属催化剂脱除困难,导致金属类催化剂残留而影响其电化学性能。由此,本发明申请技术方案在生成碳纳米纤维后可以直接通过高温挥发将金属类催化剂高效脱除,再利用生成的碳纳米纤维具有高活性催化促进硅沉积的特点,从而避免了金属催化剂在复合材料中的残留。同时碳纳米纤维具有高比表面积和高导电性,利用其高比表面积的碳纳米纤维来与硅原位复合,提高了硅的稳定性和分散性,同时利用其良好的导电性,提供电子传输通道。本发明技术方案在沉积硅以后,在进一步沉积不定型碳,无定形碳层的存在使得电解液不与电极中的硅直接接触,避免电极循环过程中SEI膜的反复形成与破坏,以进行稳定循环。
作为一个优选的技术方案,金属类催化剂和天然石墨通过干法混合或湿法混合。干法混合是直接将天然石墨和金属类催化剂机械混合,如研磨,球磨等方式。而湿法混合主要是将金属类催化剂溶于溶剂后,再与天然石墨混合,干燥。优选为湿法混合,将金属盐均匀负载在石墨烯上有利于在石墨烯表面均匀生成碳纳米纤维。
作为一个优选的技术方案,所述金属类催化剂为含有铁、镍、铜、钴中至少一种的金属化合物。具体的金属类催化剂如氯化铁、硝酸镍、硫酸铜、氯化钴等等。
作为一个优选的技术方案,所述金属类催化剂的质量为金属类催化剂和天然石墨总质量的0.01%~10%。
作为一个优选的技术方案,所述化学气相沉积碳纳米纤维的条件为:以脂肪烃为碳源,压力为常压,温度为500~1100℃,时间为0.5~3小时。脂肪烃主要为短链气态脂肪烃,如甲烷、乙炔、丙烯、天然气等。
作为一个优选的技术方案,所述高温挥发脱除金属类催化剂的条件为:温度为1500~2500℃,时间为0.5~2小时。在该条件下能够实现金属类催化剂的高效挥发脱除。
作为一个优选的技术方案,所述化学气相沉积硅的条件为:以硅烷和/或氯硅烷为硅源,压力为常压,温度为500~1100℃,时间为1~3小时。氯硅烷如二氯二甲基硅烷。
作为一个优选的技术方案,所述化学气相沉积无定形碳的条件为:以脂肪烃或芳烃为碳源,压力为负压或正压,温度为500~1100℃,时间为1~3小时。碳源具体如甲苯、二甲苯、甲烷、乙炔、丙烯、天然气等。
本发明还提供了一种无定形碳-硅-碳纳米纤维-石墨复合材料,其由上述制备方法得到。
本发明还提供了一种无定形碳-硅-碳纳米纤维-石墨复合材料的应用,其作为锂离子电池负极材料应用。
相对现有技术,本发明技术方案带来的有益技术效果:
1.本发明技术方案的无定形碳-硅-碳纳米纤维-石墨复合材料中硅与碳通过化学气相沉积方法复合,硅分散均匀,且与碳结合强度高,大大提高了复合材料的稳定性和电化学活性。
2.本发明技术方案的无定形碳-硅-碳纳米纤维-石墨复合材料中,石墨-碳纳米纤维-碳包覆层形成了3D导电结构,增加了电极的导电性,碳纳米纤维与硅纳米纤维交叉分布,紧密相连,有效缓解硅在循环过程带来的体积效应。
3.本发明技术方案的无定形碳-硅-碳纳米纤维-石墨复合材料的制备过程,利用碳纳米纤维来催化硅的化学气相沉积,能够减少金属类催化剂的残留,有效免微量金属元素对电池的毒害,有助于提高电池的安全性能和使用寿命。
4.本发明技术方案的无定形碳-硅-碳纳米纤维-石墨复合材料的制备方法简单,成本低,易于工业化生产。
5.本发明技术方案的无定形碳-硅-碳纳米纤维-石墨复合材料通过化学气相沉积方法制备,具有硅尺寸、载量可控,碳包覆厚度可控的特点,能根据设计需要来制备不同性能要求的硅碳复合负极材料。
附图说明
图1为纯粉Si、石墨G及无定形碳-硅-碳纳米纤维-石墨复合材料C-Si-CNF-G(实施例1)的Raman图谱。
图2为扫描电镜图,其中a为石墨G,b为硅-碳纳米纤维-石墨复合材料Si-CNF-G,c为无定形碳-硅-碳纳米纤维-石墨复合材料C-Si-CNF-G。
图3为不同负极材料的锂离子电池的循环曲线,测试采用的CR2032半电池测试,锂金属为对电极;分别对应为石墨G,碳纳米纤维-石墨CNF-G,无定形碳-硅-碳纳米纤维-石墨复合材料C-Si-CNF-G。
具体实施方式
以下实施实例旨在进一步说明本发明内容,而不是限制本发明权利要求的保护范围。
实施例1
1.称取50g石墨粉与2g氯化铁在水溶液中混合,鼓风干燥箱中80摄氏度12h烘干、研磨、200目过筛。取上述试样置于化学气相沉积炉中,以甲烷为碳源、800摄氏度常压条件下沉积0.5h,随后置于高温炉中1500摄氏度热处理0.5h,除去微量元素制备得到碳纳米纤维-天然石墨复合材料。
2.取1中试样5g放入特定工装中置于化学气相沉积炉中,以二氯二甲基硅烷为硅源,以氩气为载气,900摄氏度沉积2h,沉积试样研磨后去离子水洗涤三次,抽滤、烘干,制备得到硅-碳纳米纤维-天然石墨复合材料。
3.取2中试样放入化学气相沉积炉中,氮气、氢气、乙炔气流量比为0.8:0.1:0.1,在负压条件下600摄氏度碳包覆沉积1h,制备得到无定形碳-硅-碳纳米纤维-天然石墨的硅碳复合负极材料。
制备的无定形碳-硅-碳纳米纤维-石墨复合材料C-Si-CNF-G的Raman图谱如图1所示,相比石墨G基底的D峰和G峰,材料C-Si-CNF-G明显多出了硅的特征峰,且D峰与G峰的比值发生了明显的变化,这说明了硅沉积的成功,以及无定形碳的成功包覆。
制备的无定形碳-硅-碳纳米纤维-石墨复合材料C-Si-CNF-G扫描电镜图如图2所示,图2.a为单个石墨颗粒的电镜图,图2.b是依次经过碳纤维沉积和硅纤维沉积得到的试样,碳纤维及硅纤维密集交错分布在石墨表面,图2.c是经过无定形碳包覆后的样品形貌。
将复合负极材料、导电炭黑和粘接剂PVDF按比例为7:1:2组成负极材料,以锂金属为对电极,采用Celgard2400聚丙烯多孔隔膜,电解液为1mol/L的LiPF6溶液,有机溶剂是体积比为EC:DMC=1:1的混合物,制备成CR2032半电池测试,测试电流密度为100mA/g。
无定形碳-硅-碳纳米纤维-石墨复合材料C-Si-CNF-G的循环性能曲线如图3所示,石墨G经过50圈循环后的可逆比容量为330mAh/g,碳纳米纤维-石墨CNF-G经过50圈循环后的可逆比容量为378mAh/g,这得益于表面碳纤维的生长,提高了导电性及离子电导率,无定形碳-硅-碳纳米纤维-石墨复合材料C-Si-CNF-G经过50圈循环后的可逆比容量为480mAh/g,这是由于硅纳米纤维的生长,提高了材料的储锂能力,同时无定形碳层的包覆提高了复合材料循环稳定性。
实施例2
1.称取50g石墨粉与2g硝酸镍,在水溶液中混合,鼓风干燥箱中80摄氏度12h烘干、研磨、200目过筛。取上述试样置于化学气相沉积炉中,以丙烯为碳源、900摄氏度常压条件下沉积0.5h,随后置于高温炉中1500摄氏度热处理0.5h,除去微量元素制备得到碳纳米纤维-天然石墨复合材料。
2.取1中试样5g放入特定工装中置于化学气相沉积炉中,以二氯二甲基硅烷为硅源,以氩气为载气,900摄氏度沉积1h,沉积试样研磨后去离子水洗涤三次,抽滤、烘干,制备得到硅-碳纳米纤维-天然石墨复合材料。
3.取2中试样放入化学气相沉积炉中,氮气、氢气、乙炔气流量比为0.9:0.05:0.05,在负压条件下800摄氏度碳包覆沉积1h,制备得到无定形碳-硅-碳纳米纤维-天然石墨的硅碳复合负极材料。
制备的无定形碳-硅-碳纳米纤维-天然石墨的硅碳复合负极材料按实施例1组装成锂电池,首次放电比容量为1050mAh/g,在经历50圈循环后仍有463mAh/g的比容量。
实施例3
1.称取50g石墨粉与2g硝酸钴,在水溶液中混合,鼓风干燥箱中80摄氏度12h烘干、研磨、200目过筛。取上述试样置于化学气相沉积炉中,以丙烯为碳源、800摄氏度常压条件下沉积0.5h,随后置于高温炉中1500摄氏度热处理0.5h,除去微量元素制备得到碳纳米纤维-天然石墨复合负极擦料。
2.取1中试样5g放入特定工装中置于化学气相沉积炉中,以二氯二甲基硅烷为硅源,以氩气为载气,900摄氏度沉积2h,沉积试样研磨后去离子水洗涤三次,抽滤、烘干,制备得到硅-碳纳米纤维-天然石墨复合负极擦料。
3.取2中试样放入化学气相沉积炉中,氮气、氢气、乙炔气流量比为0.8:0.1:0.1,在常压条件下600摄氏度碳包覆沉积1h,制备得到无定形碳-硅-碳纳米纤维-天然石墨的硅碳复合负极材料。
制备的无定形碳-硅-碳纳米纤维-天然石墨的硅碳复合负极材料按实施例1组装成锂电池,首次放电比容量为980mAh/g,在经历50圈循环后仍有460mAh/g的比容量。

Claims (9)

1.一种无定形碳-硅-碳纳米纤维-石墨复合材料的制备方法,其特征在于:包含以下步骤:
1)将金属类催化剂和天然石墨混合均匀后,在石墨表面通过化学气相沉积碳纳米纤维,再采用高温挥发脱除金属类催化剂,即得碳纳米纤维-石墨复合材料;所述金属类催化剂为含有铁、镍、铜、钴中至少一种的金属化合物;
2)在碳纳米纤维-石墨复合材料表面通过化学气相沉积硅,得到硅-碳纳米纤维-石墨复合材料;
3)在硅-碳纳米纤维-石墨复合材料表面通过化学气相沉积无定形碳,即得无定形碳-硅-碳纳米纤维-石墨复合材料。
2.根据权利要求1所述的一种无定形碳-硅-碳纳米纤维-石墨复合材料的制备方法,其特征在于:金属类催化剂和天然石墨通过干法混合或湿法混合。
3.根据权利要求1所述的一种无定形碳-硅-碳纳米纤维-石墨复合材料的制备方法,其特征在于:所述金属类催化剂的质量为金属类催化剂和天然石墨总质量的0.01%~10%。
4.根据权利要求1所述的一种无定形碳-硅-碳纳米纤维-石墨复合材料的制备方法,其特征在于:所述化学气相沉积碳纳米纤维的条件为:以脂肪烃为碳源,压力为常压,温度为500~1100℃,时间为0.5~3小时。
5.根据权利要求1所述的一种无定形碳-硅-碳纳米纤维-石墨复合材料的制备方法,其特征在于:所述高温挥发脱除金属类催化剂的条件为:温度为1500~2500℃,时间为0.5~2小时。
6.根据权利要求1所述的一种无定形碳-硅-碳纳米纤维-石墨复合材料的制备方法,其特征在于:所述化学气相沉积硅的条件为:以硅烷和/或氯硅烷为硅源,压力为常压,温度为500~1100℃,时间为1~3小时。
7.根据权利要求1所述的一种无定形碳-硅-碳纳米纤维-石墨复合材料的制备方法,其特征在于:所述化学气相沉积无定形碳的条件为:以脂肪烃或芳烃为碳源,压力为负压或正压,温度为500~1100℃,时间为1~3小时。
8.一种无定形碳-硅-碳纳米纤维-石墨复合材料,其特征在于:由权利要求1~7任一项所述制备方法得到。
9.权利要求8所述的一种无定形碳-硅-碳纳米纤维-石墨复合材料的应用,其特征在于:作为锂离子电池负极材料应用。
CN202010931540.7A 2020-09-08 2020-09-08 一种无定形碳-硅-碳纳米纤维-石墨复合材料及其制备方法和应用 Active CN112234197B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010931540.7A CN112234197B (zh) 2020-09-08 2020-09-08 一种无定形碳-硅-碳纳米纤维-石墨复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010931540.7A CN112234197B (zh) 2020-09-08 2020-09-08 一种无定形碳-硅-碳纳米纤维-石墨复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112234197A CN112234197A (zh) 2021-01-15
CN112234197B true CN112234197B (zh) 2022-02-01

Family

ID=74116631

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010931540.7A Active CN112234197B (zh) 2020-09-08 2020-09-08 一种无定形碳-硅-碳纳米纤维-石墨复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112234197B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113380998A (zh) * 2021-06-02 2021-09-10 夏秀明 一种硅碳负极材料及其制备方法和应用
CN114122352B (zh) * 2021-10-29 2023-05-02 西安交通大学 一种多孔碳掺杂诱导硅沉积的硅碳负极材料及其制备方法
CN114824199A (zh) * 2022-03-29 2022-07-29 广东氢发新材料科技有限公司 一种碳化硅-硅-石墨复合材料及其制备方法和应用
CN114855305A (zh) * 2022-04-25 2022-08-05 延边大学 一种碳纳米纤维材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111180713A (zh) * 2020-02-10 2020-05-19 马鞍山科达普锐能源科技有限公司 一种锂离子电池用硅碳负极材料及制备方法
CN111525121A (zh) * 2020-05-10 2020-08-11 兰溪致德新能源材料有限公司 一种绒毛结构的硅负极材料及其制备方法
CN111525110A (zh) * 2020-04-29 2020-08-11 深圳市德方纳米科技股份有限公司 一种硅基复合负极材料及其制备方法和应用

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100500210B1 (ko) * 2002-11-20 2005-07-11 한국화학연구원 기계화학적으로 처리된 촉매를 사용하는 탄소 나노튜브의제조방법
KR100835883B1 (ko) * 2006-07-14 2008-06-09 금호석유화학 주식회사 탄소나노섬유를 혼성화시킨 리튬이차전지용 음극 활물질
DE102008056968B4 (de) * 2008-11-13 2011-01-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Abscheiden einer Nanoverbund-Schicht auf einem Substrat mittels chemischer Dampfabscheidung
CN102214817A (zh) * 2010-04-09 2011-10-12 清华大学 一种碳/硅/碳纳米复合结构负极材料及其制备方法
CN102139872A (zh) * 2011-05-06 2011-08-03 同济大学 一种无损伤高效纯化单壁碳纳米管的方法
CN102394287B (zh) * 2011-11-24 2013-03-20 深圳市贝特瑞新能源材料股份有限公司 锂离子电池硅碳负极材料及其制备方法
CN103545521A (zh) * 2012-07-11 2014-01-29 长沙永力新能源科技有限公司 一种特殊壳层结构石墨基碳负极复合材料及制备方法
CN103225203B (zh) * 2013-05-09 2014-12-31 西北工业大学 碳纤维-氧化石墨烯-碳纳米管多尺度增强体的制备方法
CN103474667B (zh) * 2013-08-16 2015-08-26 深圳市贝特瑞新能源材料股份有限公司 一种锂离子电池用硅碳复合负极材料及其制备方法
CN106531287B (zh) * 2016-11-09 2018-03-20 华中科技大学 一种超高纯度碳纳米管导电浆料及其制备方法
CN106848268A (zh) * 2017-04-11 2017-06-13 深圳市贝特瑞新能源材料股份有限公司 一种碳‑硅复合材料、其制备方法及用途
CN109980190B (zh) * 2017-12-28 2022-05-10 上海杉杉科技有限公司 一种通过催化作用制备硅-碳纳米管负极材料的方法
CN110880592A (zh) * 2019-12-03 2020-03-13 哈尔滨工业大学 一种碳-碳纳米管-硅纳米颗粒及其制备方法和应用
CN111180712B (zh) * 2020-01-22 2022-08-16 佛山科学技术学院 一种纳米硅/碳纳米管微球/石墨复合结构负极材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111180713A (zh) * 2020-02-10 2020-05-19 马鞍山科达普锐能源科技有限公司 一种锂离子电池用硅碳负极材料及制备方法
CN111525110A (zh) * 2020-04-29 2020-08-11 深圳市德方纳米科技股份有限公司 一种硅基复合负极材料及其制备方法和应用
CN111525121A (zh) * 2020-05-10 2020-08-11 兰溪致德新能源材料有限公司 一种绒毛结构的硅负极材料及其制备方法

Also Published As

Publication number Publication date
CN112234197A (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
CN112234197B (zh) 一种无定形碳-硅-碳纳米纤维-石墨复合材料及其制备方法和应用
CN110212183B (zh) 一种粉体预锂化硅基负极材料及其制备方法和应用
CN112234171B (zh) 一种硅-天然石墨复合材料及应用和微量无害杂质催化制备硅-天然石墨复合材料的方法
CN114447305B (zh) 一种多元碳基快充负极复合材料及其制备方法
CN110416522B (zh) 一种含锂复合负极材料、其制备方法和其在锂二次电池中的应用
CN107317006A (zh) 氧化硅基碳复合负极材料、其制备方法及锂离子电池
EP4220757A1 (en) Silicon-based negative electrode material containing silicate skeleton, negative electrode plate, and lithium battery
CN113380998A (zh) 一种硅碳负极材料及其制备方法和应用
CN114864909A (zh) 一种负极材料及包括该负极材料的负极片和电池
CN115863600A (zh) 一种硅碳负极材料及其制备方法和应用
CN115312736B (zh) 一种Si@TiN-沥青复合负极材料的制备方法
CN114639809B (zh) 一种复合硬碳负极材料、制备方法及应用
Zou et al. CNT network crosslinked by metal Co2+ for stabilizing SnO2 anodes
CN116014146A (zh) 一种自支撑生物质碳集流体、复合集流体及应用
CN115394980A (zh) 一种锂离子电池硅碳纳米线材料及其制备方法和应用
CN112142060B (zh) 一种煤基硅碳复合负极材料其制备方法
CN115566169A (zh) 硅氧复合材料、负极极片、锂离子电池及其制备方法
CN112125294B (zh) 一种煤基硅碳复合负极材料其制备方法
CN105161724B (zh) 锂硫电池用多孔碳球及其制备方法和应用
CN111348685B (zh) 石墨烯基复合材料及其制备方法和应用
CN112968155A (zh) 一种锂离子电池用复合负极材料及其制备方法
CN111554928A (zh) 石墨烯基复合材料及其制备方法和应用
CN115986085B (zh) 一种三维碳骨架硅基负极材料及其制备方法
CN116454256B (zh) 硅碳复合材料的制备方法、硅碳复合材料和电池
CN115911306B (zh) 一种高能量密度石墨复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant