CN1117053A - 制备和使用带载体的金属茂催化剂体系的方法 - Google Patents

制备和使用带载体的金属茂催化剂体系的方法 Download PDF

Info

Publication number
CN1117053A
CN1117053A CN95104379A CN95104379A CN1117053A CN 1117053 A CN1117053 A CN 1117053A CN 95104379 A CN95104379 A CN 95104379A CN 95104379 A CN95104379 A CN 95104379A CN 1117053 A CN1117053 A CN 1117053A
Authority
CN
China
Prior art keywords
fluorenyl
dichloride
liquid
solid
cyclopentadienyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN95104379A
Other languages
English (en)
Other versions
CN1050611C (zh
Inventor
M·B·韦奇
H·G·阿特
B·佩佛
S·J·帕拉克尔
G·L·格拉斯
T·M·佩蒂约翰
G·R·霍利
D·R·法尼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phillips Petroleum Co
Original Assignee
Phillips Petroleum Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phillips Petroleum Co filed Critical Phillips Petroleum Co
Publication of CN1117053A publication Critical patent/CN1117053A/zh
Application granted granted Critical
Publication of CN1050611C publication Critical patent/CN1050611C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65904Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with another component of C08F4/64
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/904Monomer polymerized in presence of transition metal containing catalyst at least part of which is supported on a polymer, e.g. prepolymerized catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明公开了制备高活性含固体金属茂催化剂体系的方法和该催化剂体系在烯烃聚合中的应用。该催化剂体系是通过在适宜液体中将铝氧烷与有烯属不饱和取代基金属茂混合以形成液体催化剂体系而产生催化剂体系溶液,在该液体催化剂体系存在下进行烯烃的预聚合和以反应混合物分离所得的含固体金属茂催化剂体系来制备。也公开了使用本发明固体催化剂体系进行烯烃的聚合。

Description

制备和使用带载体的金属茂 催化剂体系的方法
本发明涉及用于烯烃聚合和/或共聚的新型固体颗粒金属茂催化剂体系。本发明也涉及使用本发明的固体金属茂催化剂体系进行烯烃聚合的方法。
用于本文中的术语“金属茂”是指亚环戊二烯基的衍生物,它是含至少一个连到过渡金属上的环戊二烯基的金属衍生物,过渡金属选自IVB,VB和VIB,优选IVB和VIB。其例子包括钛、锆、铪、铬和钒。人们发现大量金属茂在烯烃聚合中是有用的。通常,更优选的催化剂是Zr,Hf或Ti的金属茂。
通常,为使金属茂催化剂具有最高的活性,必需将它们与有机铝氧烷助催化剂如甲基铝氧烷一起使用。这样获得的催化剂通常称为均相催化剂体系,因为至少一部分金属茂有机铝氧烷在聚合介质中是溶液形式。这些均相催化剂的缺点在于当它们在淤桨聚合条件下使用时,在聚合过程中生成的聚合物粘到反应器壁上和/或聚合物有较小的粒径和低的本体密度,这限制了它们的商业用途。
克服均相金属茂催化剂体系的缺点的一些偿试公开在美国专利专利5,240,894,4,871,705和5,160,804中。通常这些方法包括在一种载体存在或不存在下预聚合金属茂铝氧烷催化剂体系。评价这些方法表明仍有改进的余地,特别是当催化剂用于淤桨型聚合中,因为在淤桨型聚合中目的是生产最终产品聚合物不溶性颗粒的淤桨而不是能导致反应器结构的聚合物溶液。在连续环形反应器中进行淤桨聚合时,限制聚合物在反应器内表面结垢对有效操作是极端重要的。用于本文中的术语“结垢”是指聚合物在反应器内表面堆积。
本发明的一个目的是提供一种制备固体金属茂催化剂体系的新方法。按照本发明另一个方面,本发明提供一种使用新型预聚合的金属茂聚合烯烃的方法。
按照本发明,一种固体颗粒含金属茂的催化剂体系是通过下列步骤制备的:(a)在一种液体中将一种有机铝氧烷和至少一种有至少一个环戊二烯基型配位体的金属茂混合以形成一种液体催化剂,所述环戊二烯型配位体有至少一个烯属不饱和取代基,(b)在所述液体催化剂体系存在下将至少一种烯烃进行预聚合以制备一种预聚合固体催化剂,和(c)将所得固体与该液体和溶在该液体中的组份分离,所述固体是固体颗粒金属茂催化剂体系。用于本文的术语“液体催化剂体系”是指铝氧烷,金属茂和液体的混合物,不管铝氧烷和/或金属茂是否溶在液体中。
按照本发明另一个方面,所得的固体颗粒含金属茂催化剂体系通过将烯烃与本发明的固体颗粒含金属茂催化剂体系在适宜的反应条件下接触而用于烯烃聚合中。
大量的金属茂被认为可用于本方法,基本特征是金属茂中至少一个环戊二烯基型配位体有一个可聚合烯基的取代基。这类含烯烃金属茂的一些例子公开在美国专利5,169,818和公开的欧洲专利申请574,370中。本发明被认为可适用桥联和未桥联金属茂。未桥联的金属茂也可包括桥联配位体,这些桥联配位体含两个由一适宜桥结构联结的两个环戊二烯基型基团,但该配位体仅仅一个环戊二烯基型基团联到过渡金属上。另外,烯属取代基可在联结两个环戊二烯基型基团的桥上。
用于本发明中金属茂包括由式
Figure A9510437900091
所示的金属茂,其中每个Z连到Me上且可相同或不同,为选自取代或未取代环戊二烯基,茚基,四氢茚基,八氢茚基和芴基配位体的环戊二烯基型配位体;R是连结Z的结构桥和Me是选自元素周期表IVB,VB和VIB族的金属,每个Q相同或不同且选自氢,卤素和有机基团;x是1或0;k是足以充满Me余下化合价的数;其进一步特征在于至少一个Z有至少一个烯属不饱和取代基。在桥联金属茂中该烯属不饱和取代基可以是桥单元上或是桥联配位体上的一个或两个环戊二烯基型基团上的一个支链。
特别优选的桥联金属茂包括其中烯属不饱和取代基为下式的桥联金属茂其中R″是有1到20、优选2到10个碳原子的二价烃基;n是1或0,和每个R′独立地选自有1到10个碳原子的有机基团和氢。最优选R″在其亚烷基主链上有至少2个碳原子,即它是亚乙基或其高级同系基团。
可用于制备适合用作本发明的金属茂的一些烯属支化桥联配位体可通过将一种二卤烯属化合物与一种适宜环戊二烯型化合物的碱金属盐反应以形成式Z—R—Z的化合物,其中R是有烯属不饱和键的桥和每个Z相同来制备或通过首先生成式Z—R—X(其中X是卤素)的化合物,然后将该化合物与另一种不同的环戊二烯基型化合物的碱金属盐反应以制备式Z—R—Z化合物,其中两个Z不同。这类反应可使用公开在美国专利5,191,132中的条件进行。
用来制备烯属支化桥联配位体的另一种方法包括将有烯属不饱和键的羰基化合物与环戊二烯型化合物在碱和甲醇存在下反应以获得链烯基富烯,然后将其与一种环戊二烯型化合物如芴的碱金属盐反应得含两个环戊二烯基型基团如芴基和环戊二烯基的不饱和支化桥联配位体。例如可将5—己烯—2—酮与环戊二烯利用由Stone等人在J.Qrg.Chem.49,1849(1984)中公开的方法进行反应得6—(丁—3—烯基)—6—甲基富烯,然后将其与芴基锂反应,随后水解得5—环戊二烯基—5—(9—芴基)—1—己烯,有时也称为1—(9—芴基)—1—(环戊二烯基)—1—(甲基)—1—(丁—3—烯基)甲烷。
因此本发明包括使用由下式的乙烯基封端的支化桥联配位体制得的桥联金属茂
Figure A9510437900111
其中n通常为0到20,优选2—10;Riv是Si,Ge,C或Sn;R″和R′独立地选自氢或有1到10碳原子的有机基团。优选的R′和R″是氢或通常有1到10个碳原子的烷基,或通常有6—10个碳原子的芳基。Z是上述的环戊二烯基型基团。
这类烯属不饱和支化桥联配位体的金属茂可使用用于生成这类金属茂领域公知的技术将烯属支化桥联双(环戊二烯基型)配位体与烷基碱金属反应以制备二价配位体盐,然后将其与过渡金属化合物反应得金属茂。这类技术参见由欧洲公开的申请524,624公开的技术,其作为参考文献并入本文。
一些含带有烯属不饱和键的取代基金属茂的一些典型例子包括二氯化5—(环戊二烯基)—5—(9—芴基)—1—己烯合锆,二氯化双(9—芴基)(甲基)(乙烯基)硅烷合锆,二氧化双(9—芴基)(甲基)(丙—2—烯基)硅烷合锆,二氯化双(9—芴基)(甲基)(丁—3—烯基)硅烷合锆,二氯化双(9—芴基)(甲基)(己—5—烯基)硅烷合锆,二氯化双(9—芴基)(甲基)(辛—7—烯基)硅烷合锆,二氯化(环戊二烯基)(1—烯丙基茚基)合锆,二氯化双(1—烯丙基茚基)合锆,二氯化(9—(丙—2—烯基)芴基)(环戊二烯基)合锆,二氯化(9—(丙—2—烯基)芴基)(五甲基环戊二烯基)合锆,二氯化双(9—(丙—2—烯基)芴基)合锆,二氯化(9—(环戊—2—烯基)芴基)(环戊二烯基)合锆,二氯化双(9—环戊—2—烯基)芴基)合锆,二氯化5—(2—甲基环戊二烯基)—5—(9—芴基)—1—己烯合锆,二氯化5—(芴基)—5—(环戊二烯基)—1—己烯合锆,二氯化(9—芴基)(1—烯丙基茚基)二甲基硅烷合锆,二氯化1—(2,7—二(a—甲基乙烯基)—(9—芴基)—1—(环戊二烯基)—1,1—二甲基甲烷合锆,二氯化1—(2,7—二(环己—1—烯)9—芴基))—1—(环戊二烯基)—1,1—甲烷合锆和二氯化5—(环戊二烯基)—5—(9—芴基)—1—己烯合钛。
这些各种金属茂可通过必需的环戊二烯基型碱金属盐与过渡金属化合物反应来制备。这类反应的一些例子公开在上述EPC申请521,624中。
用于制备本发明固体催化剂体系的有机铝氧烷组分是有下式重复单元的低聚铝化合物
Figure A9510437900131
一些例子常由通式(R—Al—O)n或R(R—Al—O—)nAlR2表示。在铝氧烷通式中R是C1—C5烷基,例如,甲基,乙基,丙基,丁基或戊基和n是1到约50的整数。最优选R是甲基和n至少是4。铝氧烷可用本领域公知的各种方法制备。例如烷基铝可用溶解在惰性有机溶剂中的水处理,或它可与悬浮在惰性有机溶剂中的水合盐如水合硫酸铜以生产铝氧烷。通常烷基铝与有限量的水反应被认为获得直链和环状铝氧烷的混合物。
在本发明第一步,金属茂和铝氧烷在适宜的液体中混合以形成液体催化剂体系。优选该液体催化剂使用铝氧烷在其中至少部分溶解的有机液体制备。优选的液体是烃如己烷或甲苯。通常使用一些芳烃液体溶剂。其例子包括苯,甲苯、乙基苯,二乙基苯等。液体的使用量不是特别关键的。但该量应优选足以溶解金属茂和铝氧烷间的反应产物,为预聚合提供所希望的聚合粘度并促进良好的搅拌。温度应优选保持在低于使金属茂分解的温度。通常温度在—50℃到100℃范围内。优选金属茂,铝氧烷和液体稀释剂在室温即约10—30℃下混合。铝氧烷和金属茂之间的反应比较快。反应速率随金属茂配位体的变化而变化。通常希望它们接触至少1分钟到约1小时。
在颗粒固体存在下形成液体催化剂在本发明范围内。作为颗粒固体可使用许多种颗粒固体。通常载体可以是不妨碍最终结果的任何有机或无机固体。例子包括多孔载体如滑石,无机氧化物和树脂类载体材料如颗粒聚烯烃。无机氧化物材料包括II、III、IV、或V族金属的氧化物如二氧化硅,氧化铝,二氧化硅—氧化铝,和它们的混合物。无机氧化物的其它例子是氧化镁、氧化钛、氧化锆等。其它可用的适宜载体的载体材料包括如二氯化镁,和细颗粒聚烯烃如聚乙烯。使用一种或多种颗粒固体的混合物也在本发明范围内。
通常希望固体在使用前充分脱水,优选脱水到灼烧时含小于1%的水。热脱水处理可在真空中或在约20℃到1000℃下,优选约300℃到约800℃下在用干惰性气体如氮气吹扫下进行。压力并不是关键的。热处理的时间可为约1到24小时。但更短或较更长的时间也可以,只要在表面羟基达到平衡即可。
脱水处理也可通过将固体进行化学处理以除水和降低表面羟基的浓度来完成。化学处理通常能将氧化物表面的水和羟基转化成惰性物。有用的化学试剂是例如三甲基铝,氯化乙基镁、氯代硅烷如SiCl4,二硅氮烷,三甲基氯代硅烷,二甲基氨基三甲基硅烷等。
化学脱水也可通过将无机颗粒材料如二氧化硅在惰性低沸点烃如己烷中淤桨化来完成。在化学脱水处理期间,二氧化硅应维持在无湿份和氧气的气氛中。然后将一种化学脱水剂如二氯二甲基硅烷的低沸点惰性烃溶液加到二氧化硅淤桨中。该溶液缓缓加列淤桨中。在化学脱水反应期间温度范围从约20℃到约120℃,但更高和更低的温度也可使用。优选的温度为约50℃到约100℃。化学脱水应进行到基本上所有的活性基团从颗粒载体材料除去,这可从气体停止释出来表示。通常,化学脱水反应将进行约30分钟到16小时,优选1到5小时。在化学脱水完成后,固体颗粒材料可在氮氛下过滤并用干燥无氧惰性溶剂洗涤一次或多次。洗涤溶剂及用来形成淤桨和化学脱水剂溶液的稀释剂可以是任何适宜的惰性烃。这类烃的说明性例子是戊烷,己烷,庚烷,甲苯,异戊烷等。
另一种能用于固体无机氧化物如二氧化硅的化学处理包括通过该固体与一氧化碳在升温下接触而反应以使基本上所存水和羟基转化成比较不活泼的物质。
载体或无机氧化物具体粒径,表面积,孔体积和羟基数目对其在实施本发明中的应用并不关键。但这些性质常常决定用于制备催化剂组合物的载体量及影响形成聚合物的颗粒形态。因此在选择载体用于特定的发明时必须考虑其性能。
在液体催化剂体系形成后加颗粒固体到其中并在该固体存在下进行预聚合也在本发明范围内。
用于形成用作预聚合液体催化剂的铝氧烷和金属茂的量可在相当宽的范围内变化。但通常使用铝氧烷中的铝与金属茂的过渡金属的摩尔比为1∶1至20000∶1,优选约50∶1到2000∶1。如果使用颗粒固体即二氧化硅,通常金属茂与颗粒固体的重量比为约0.00001/1到1/1,优选0.0005/1到0.2/1。
预聚合在液体催化剂体系(可为溶液,淤桨或在液体中的凝胶)中进行。大量的烯烃可用来预聚合。通常预聚合将使用烯烃,优选选自乙烯和非芳族α—烯烃如丙烯来进行。使用烯烃的混合物也在本发明范围内,例如乙烯和更高级的α—烯烃可用于预聚合。使用高级α—烯烃如1—丁烯与乙烯据信增加了烯烃单体和金属茂烯属不饱和部分间发生的共聚的量。
预聚合可在比较温和的条件下进行。通常这将涉及使用(烯烃的)低压和比较低的温度以防止由于局部过热而导致的点分解。预聚合通常在约-15℃到约110℃,优选10至30℃下发生。预聚合物的量可以变化,但通常占所得的预聚合固体催化剂体系的约1—95%(wt),优选约5到80%(wt)。通常希望预聚合到至少这样的程度,几乎所有的金属茂是固体而不是液体,因为这样将最大限度地使用金属茂。
在预聚合后,将所得固体聚合催化剂与反应混合物的液体分离。本领域公知的各种技术都能用于进行这一步。例如物料可通过过滤,倾析或减压蒸发分离。然而优选不使用减压蒸发因为在预聚合催化剂储存或用于后续的聚合前希望将预聚合液体反应产品中基本上所有的可溶性组份都从所得的固体预聚合催化剂中除去。在将固体从液体中分离后,所得的固体优选用烃洗涤,然后在高真空度下干燥以除去基本上所有的液体和其它可能仍与固体结合的挥发性组分。减压干燥优选在比较温和的条件即低于100℃下进行。优选的方法至少用芳烃如甲苯初洗一次,随后用直链烃如己烷洗涤,然后减压干燥。
将预聚合反应混合物产品与一种预聚物在其中基本不溶的液体即预聚物的反萃溶剂接触以促使可溶性预聚物从溶液中沉淀出来也在本发明范围内。这类液体对预聚物固体的后续洗涤也是有用的。
在预聚合后将上述类型的颗粒固体加入也在本发明范围内。这样可在反萃溶剂加入前将该固体加到液体预聚产品中。以这样的方法可溶性预聚物倾向于沉淀到固体表面,从而可将滤液以颗粒形式回收并防止在干燥期间结块。如果需要,将由预聚合获得的液体混合物或本发明固体预聚合催化剂进行声波处理以破碎颗粒。
此外,如果需要,回收的固体预聚合催化剂体系可进行筛分以获得满足特定聚合需要的粒径。
另一种方法是将回收的本发明预聚合的催化剂体系与惰性烃如上述用作洗液的烃之一混合,然后减压除去该液体。在该方法中,有时需要在汽提液体前将所得混合物进行声波处理。
所得的固体预聚合的含金属茂的催化剂体系是有用的烯烃聚合催化剂。通常不需要加任何附加的铝氧烷到该催化剂体系中。在某些情况下需使用少量有机铝化合物作为毒物净化剂。术语有机铝化合物包括诸如三乙基铝,三甲基铝,氯化二乙基铝,二氯化乙基铝,一倍半氯化乙基铝等。三烷基铝化合物是优选的。在某些应用中,需要使用少量抗静电剂以防止在聚合期间聚合物颗粒结块。此外,当本发明催化剂体系以液体淤桨加到反应器中时,有时需要加颗粒干燥的固体作为淤桨的流动助剂。优选该固体已使用上述方法之一干燥。特别优选无机氧化物如二氧化硅。目前,优选使用熔化的二氧化硅如以商标名为Cab—o—sil销售的。通常熔化的二氧化硅使用热和三甲基铝干燥。
固体催化剂体系对有2到10个碳原子的α—烯烃的聚合特别有用。这类烯烃的例子包括乙烯,丙烯,丁烯—1,戊烯—1,3—甲基丁烯—1,己烯—1,4—甲基戊烯—1,3—甲基戊烯—1,庚烯—1,辛烯—1,癸烯—1,4,4—二甲基—1—戊烯,4,4—二乙基—1—己烯,3,4—二甲基—1—己烯等和它们的混合物。该催化剂对制备乙烯和丙烯共聚物,乙烯或丙烯与高分子量烯烃的共聚物也特别有用。
根据所使用的特定金属茂和所需的具体结果,聚合可在相当宽的条件下进行。虽然本发明催化剂体系是固体的,它在溶液,淤桨或气相反应条件下进行聚合也是特别有用的。
当聚合在液体稀释剂中进行时,很明显使用的稀释剂对催化剂体系无不利影响是很重要的。典型的液体稀释剂包括丙烷,丁烷,异丁烷,戊烷,己烷,庚烷,辛烷,环己烷,甲基环己烷,甲苯,二甲苯等。通常聚合温度可在相当范围内变化,通常为约-60℃到约300℃,优选约20℃到约160℃。通常聚合压力约从1到500大气压或更大。本发明催化剂对在颗粒型即淤桨型聚合条件下进行聚合特别有用。
用本发明制得的聚合物有许多用途,这对本领域技术人员从各个聚合物物理性能来看是显而易见的。诸如模塑,薄膜,粘合剂等应用作了标示。
下列实施例提供对本发明,它的各个方面,目标和优点的进一步理解。
                   实施例I
在该合成例中,将20.6ml环戊二烯和11.7ml 5—己烯—2—酮溶在100ml甲醇中,在冰中冷却下将12.4ml吡咯烷加入并将反应混合物在室温下搅拌过夜。将9.6ml冰醋酸加入。将反应混合物搅拌1个半小时然后减压下蒸发溶剂。将残留物溶在200ml二***中并用100ml水洗涤5次。使用硅胶过滤有机相并在硫酸钠上干燥。在减压下蒸发熔剂。得黄色油状物它被鉴定为6—(3—丁烯基)—6—甲基富烯。
将10g芴溶解在100ml THF下中制得一溶液,然后将其与37.6ml 1.6摩尔正丁基锂己烷溶液缓缓反应。将该暗红色溶液在室温下搅拌过夜。然后将8.8g 6—(3—丁烯基)—6—甲基富烯与50ml THF混合制得一溶液。将这后一溶液用一个半小时滴加到芴基锂盐溶液中。将所得反应混合物在室温下搅拌过夜。然后加入100ml水。将有机相在硫酸钠上干燥过夜,然后在减压下蒸发溶剂。将黄色残留物溶在戊烷中并用硅胶过滤。蒸发浓缩溶剂。在约—18℃下结晶得5—(环戊二烯基)—5—(9—芴基)—1—己烯,为白色固体,该化合物有时也称为1—(9—芴基)—1—(环戊二烯基)—1—(丁—3—烯基)—1—(甲基)甲烷。
                  实施例II
使用在公开的欧洲专利申请524,624中所述的条件将5克化合物5—(环戊二烯基)—5—(9—芴基)—1—己烯与在100ml二***中的相当于5—(环戊二烯基)—5—(9—芴基)—1—己烯的摩尔数2倍的丁基锂反应以制备二价配位体盐。将在二***中的二价配位体然后与3.96g四氯化铬在室温下反应。桔色金属茂二氯化1—(9—芴基)—1—(环戊二烯基)—1—(丁—3—烯)—1—(甲基)甲烷合锆被回收并通过倾析出液体和在二氯乙烷中于-18℃下结晶来纯化。然后倾析掉液体并使用高真空度干燥固体。
评价该金属茂在乙烯聚合中的效果。一种对比聚合方法包括将选择量的金属茂与由Schering获得的1.1摩尔甲基铝氧烷(MAO)甲苯溶液混合。将所得的催化剂体系溶液(催化剂A)注入到高压釜中。将高压釜充入2升异丁烷并将温度升到90℃的聚合反应温度。从300cc的容器中加入量为在该容器中达10Psi压降的氢气,然后用乙烯将反应器加压至450Psig。在反应温度达90℃后将聚合反应进行1个半小时。然后冷却反应器并打开反应器,回收固体聚合物。
在另一系列试验中,通过将金属茂与甲基铝氧烷甲苯溶液混合来制备液体催化剂,然后将其与乙烯在预聚合条件下接触以制备固体预聚后的催化剂体系而制得一系列本发明固体催化剂体系。具体地说,将19.3ml 1.1摩尔甲基铝氧烷甲苯溶液与0.102g金属茂混合得液体催化剂溶液。第一个固体催化剂通过将2ml该液体催化剂溶液加到38ml甲苯中,然后在室温下用乙烯鼓入该溶液105分钟以进行预聚合。将40ml己烷加到混合物中,过滤所得的混合物。所得固体用10ml己烷洗涤并干燥。干燥包括将回收的粉末在高真空度下进行1小时。
本发明第二个固体催化剂通过将2ml液体催化剂溶液与32ml甲苯和附加的6ml Schering甲基铝氧烷溶液混合制得。固体催化剂的预聚合和回收按如上所述方式进行。
本发明第三个固体聚合催化剂通过将2ml液体催化剂溶液与26ml甲苯及补加的12ml商品Schering甲基铝氧烷溶液混合制得。固体催化剂的预聚合和回收如制备本发明第一个催化剂。
本发明第四个催化剂通过将2ml液体催化剂溶液与20ml甲苯及补加的18ml商品甲基铝氧烷溶液混合制得。该固体催化剂的预聚合和回收如上所述。
本发明第五个催化剂通过将2ml液体催化剂溶液与38ml商品甲基铝氧烷溶液混合制得。该催化剂的预聚合和分离如上所述。
所有这些预聚固体催化剂体系然后用于乙烯聚合的评价。在这些试验中,将固体预聚催化剂进行声波处理,然后加到反应器中,将异丁烷加到反应器中。如对比试验那样加入氢气。如对比试验那样将反应器用乙烯加压并升温以进行预聚合。比较的参数和获得的结果给出在下表中
                                 表I
催化剂     Al/Z摩尔比    gPE/g催化剂/小时 熔融指数   HLMI/MI    结垢
A(溶液)     965    1170 0.43   41    10
1     100    6880 0.91   20    1
2     400    836 0.65   19    1
3     700    9840 0.93   17    1
4     1000    5970 0.67   21    1
5     2000    7230 0.74   19    3
结果表明本发明的固体预聚后的催化剂体系在相当宽的铝与锆之比都比对比试验的可溶性催化剂活泼。催化剂2的产率是不正常的。此外,使用可溶性催化剂体系进行聚合产生相当多的结垢,数字10表示反应器有严重的结垢,为除去粘着的聚合物需用加热的溶剂洗涤。在“结垢”一栏,数字1表示没有明显的结垢。数字3表示有少量结垢但很容易除去无须热溶剂洗涤。因此本发明催化剂能用在淤桨聚合中不会引起反应器的结垢。
进一步观察到本发明催化剂制备的聚合物比使用催化剂溶液如在对比试验中所用的溶液制得的聚合物有更高的本体密度。此外,用本发明固体预聚后的催化剂制备的聚合物比由观察到的熔融指数所预测的密度低,特别是不使用共聚用单体时。另外,用本发明固体预聚后的催化剂制得的聚合物的NMR分析表明聚合物含有乙基支链。这表明使用本发明预聚后的催化剂制得的聚合物与普通的乙烯均聚物有相当大的差别。具体地说,它表明即使不用共聚用单体也能获得像共聚物一样的产品。
              实施例III
进行一系列试验将本发明方法与其中进行预聚合但使用不含有烯属不饱键支链的类似的金属茂的方法进行比较。在这种情况下,金属茂是二氯化1—(9—芴基)—1—(环戊二烯基)—1—(甲基)—1—(丁基)甲烷合锆。配位体和金属茂以类似于实施例1解释的方法制备但使用6—丁基—6—甲基富烯而不是丁烯基富烯。这样该金属茂和用于上述实施例中的金属茂唯一的区别在于在该实施例中在桥上的烃支链没有烯属不饱和键。在第一个试验中,制备0.007g金属茂和10ml 1.1MSchering甲基铝氧烷甲苯的溶液,该催化剂溶液不进行预聚合就使用。它被标为催化剂溶液B。使用相同的金属茂和MAO制得的催化剂体系溶液制备三个预聚后的固体催化剂体系以获得不同铝与锆之比的固体预聚后的催化剂。在这种情况下,催化剂溶液通过将19.3ml 1.1M Schering MAO甲苯溶液与0.1g丁基取代的桥联金属茂混合来制备。
第一个对比固体预聚后的催化剂体系C是通过将2ml丁基金属茂/MAO催化剂体系溶液与补加的38ml甲基铝氧烷溶液混合制得的。在冷冻24小时后,在室温下将乙烯鼓入该溶液105分钟。获净重1.6g。在搅拌下,将40ml正己烷加到混合物中。然后将混合物过滤并用10ml正己烷洗涤并在高真空度下干燥1小时。
第二个对比固体催化剂体系D通过将2ml丁基催化剂体系溶液与20ml甲苯和补加的18ml甲基铝氧烷甲苯溶液混合来制备。以与上相同方式进行预聚合,分离固体和干燥。
第三个对比固体催化剂体系E通过将2ml丁基催化剂体系溶液与26ml甲苯和12ml补加的甲基铝氧烷溶液来制备。用如上所述的方法进行预聚合,回收和干燥。
比较的参数和所得结果给出在下表中
                               表II
催化剂 Al/Z摩尔比 gPE/g催化剂/小时 熔融指数 HLMI/MI    结垢g
B(溶液)m) 750 417 (0.38HLMI) NA    10
C 1900 32 0 NA    8
D 1000 85 0 NA    8
E 600 107 0 NA    8
在这种情况下,预聚后的固体催化剂体系确实没有显示出比溶液型催化剂体系有更高的活性。此外,注意到虽然预聚合后的催化剂比溶液催化剂产生的结垢小些但仍比实施例II的本发明的丁烯基固体催化剂体系产生的结垢高得多。
                    实施例IV
本实施例涉及在无机载体存在下制备本发明固体催化剂体系。
所用载体是作为Davidson Grade 948销售的二氧化硅。它平均粒径为50微米。在马弗炉中干燥。在马弗炉中以每小时约200℃升温直至达800℃。将所得固体冷却并放在800ml烧瓶中用干燥的正己烷覆盖。然后搅拌所得的混合物,同时将160ml 14.5%(wt)的三甲基铝正庚烷溶液以每次增加约20ml的方式加入。在所有的三甲基铝溶液加完后,将淤桨再搅拌约2小时。然后将在50ml甲苯中的0.60g Stadrs 450溶液加入。将固体然后用180ml干燥的正己烷洗3次。倾析液体并将固体静置过夜。然后在减压下干燥固体。
将该干燥后的固体用于制备本发明的固体催化剂体系。在手套箱中,将0.275g二氯化1—(9—芴基)—1—(环戊二烯基)—1—(甲基)—1—(丁—3—烯基)甲基合铬放在800ml烧瓶中。然后将180ml由Schering获得的1.1摩尔甲基铝氧烷甲苯溶液和340ml甲苯加到烧瓶中。将混合物搅拌并在室温下鼓入乙烯1小时。然后加入47g干燥的二氧化硅。再搅拌混合物并向混合物中再鼓乙烯1小时。所得重量增加了7.09g。将乙烯再鼓入搅拌的混合物1小时。重量增加至为12.58g。用过滤将所得固体与液体分离并用140ml甲苯洗2次,用140ml干燥的正己烷洗2次。虽然回收的固体为粉末,但它仍含一些液体。将一份含液体的催化剂用于乙烯聚合的评价。另一份含液体催化剂使用薄膜泵干燥1小时然后在约1mm汞柱的真空度下干燥2小时。然后将所得的干燥催化剂用于乙烯聚合的评价。
在这两个聚合中,固体催化剂以粉末而不是以粉末在液体稀释剂中的淤桨加到高压釜中。聚合如上述实施例进行。两个催化剂制备的聚乙烯对反应器有最小的结垢。结垢评级为1。在两种情况下用于制备在聚合中用的固体催化剂的铝/锆比为350。净催化剂体系的生产率为每克催化剂为900g聚合物,其中二氧化硅算作催化剂重量的一部分。干燥后的催化剂体系的生产率为每克催化剂为4800g聚合物其中二氧化硅算作催化剂重量的一部分。这是异乎寻常的活性,因为二氧化硅通常被视为惰性稀释剂,它不会增加预聚后的催化剂的活性。
                实施例V
一些其它含带有烯属不饱和键的取代基的金属茂也用来制备本发明的催化剂。其中金属茂为:
二氯化(环戊二烯基)(9—(丙—2—烯基)芴基)合锆,
二氯化(环戊二烯基)(9—(环戊—2—烯基)芴基)合锆,
二氯化1—(1—烯丙基芴基)—1—(9—芴基)—1—(二甲基)硅烷合锆,
二氯化双(9—芴基)(己—5—烯基)甲基硅烷合锆,
二氯化双(9—芴基)(丙—2—烯基)甲基乙烯基硅烷合锆。
在所有情况下,当本发明预聚后的固体催化剂体系用于乙烯的淤桨聚合时,它们产生的结垢比实施例I和III的溶液型对比催化剂要小,除了由二氯化双(9—芴基)(丙—2—烯基)甲基硅烷合锆制得的本发明催化剂***外,观察到的结垢远比在实施例III中所用的任何催化剂观到的结垢要小。为确定为什么二氯化丙烯基甲基硅烷合锆不像其它烯烃聚代的金属茂那么好还需进一步研究。

Claims (30)

1.一种制备含固体金属茂催化剂体系的方法,,包括(a)在一种液体中将一种有机铝氧烷和至少一种有至少一个带有至少一个烯属不饱和取代基的环戊二烯基型配位体的金属茂混合形成一种液体催化剂体系,(b)在所述液体催化剂体系存在下将一种烯烃进行预聚合以制备一种预聚合后的固体催化剂,和(C)将所得固体与该液体和溶在所述液体中的组分分离。
2.按照权利要求1的方法,其中在步骤(c)中固体与液体分离后,将固体进行干燥以基本上除去所有的液体。
3.按照权利要求2的方法,其中一种芳香族溶剂用来形成液体催化剂体系。
4.按照权利要求3的方法,其中用来形成液体催化剂体系的溶剂是甲苯。
5.按照权利要求4的方法,其中将一种固体颗粒载体加到步骤(b)的反应产品中,然后加入一种该预聚物在其中基本不溶的液体,和通过过滤、洗涤和干燥回收所得固体。
6.按照权利要求5的方法,其中所述颗粒载体是二氧化硅。
7.按照权利要求4的方法,其中在步骤(c)中固体与液体分离是通过过滤、然后用烃洗涤回收的固体,并干燥洗涤后的固体完成的。
8.按照权利要求7的方法,其中一种链烷烃用于洗涤中。
9.按照权利要求1的方法,其中步骤(a)是在步骤(a)中所用液体中不溶的颗粒载体存在进行的。
10.按照权利要求9的方法,其中所述颗粒载体是无机氧化物。
11.按照权利要求4的方法,其中预聚合是乙烯的预聚合。
12.按照权利要求11的方法,其中预聚合是乙烯和1—丁烯混合物预聚合。
13.按照权利要求1的方法,其中步骤(a)是在一种桥联金属茂存在下进行的,该桥联金属茂在从桥上向外伸出的支链上有一个烯属不饱和键,所述金属茂的配位体有下列分子式:
Figure A9510437900031
其中n是1或0;Riv是Si,Ge,C或Sn;每个R′独立选自氢和有1到10个碳原子的烃基;R″选自有1到10个碳原子的二价烃基;R″选自氢或有1—10碳原子的烃基;和每个Z相同或不同且选自取代或未取代环戊二烯基,茚基,四氢茚和芴基。
14.按照权利要求13的方法,其中使用二氯化5—(9—芴基)—5—(环戊二烯基)—1—己烯合锆。
15.按照权利要求1的方法,其中金属茂选自二氯化5—(环戊二烯基)—5—(9—芴基)—1—己烯合锆,二氯化双(9—芴基)(甲基)(乙烯基)硅烷合锆,二氧化双(9—芴基)(甲基)(丙—2—烯基)硅烷合锆,二氯化双(9—芴基)(甲基)(丁—3—烯基)硅烷合铬,二氯化双(9—芴基)(甲基)(己—5—烯基)硅烷合锆,二氯化双(9—芴基)(甲基)(辛—7—烯基)硅烷合锆,二氯化(环戊二烯基)(1—烯丙基茚基)合锆,二氯化双(1—烯丙基茚基)合锆,二氯化(9—(丙—2—烯基)芴基)(环戊二烯基)合锆,二氯化(9—(丙—2—烯基)芴基)(五甲基环戊二烯基)合锆,二氯化双(9—(丙—2—烯基)芴基)合锆,二氯化(9—(环戊—2—烯基)芴基)(环戊二烯基)合锆,二氯化双(9—环戊—2—烯基)芴基)合锆,二氯化5—(2—甲基环戊二烯基)—5—(9—芴基)—1—己烯合锆,二氯化5—(芴基)—5—(环戊二烯基)—1—己烯合锆,二氯化(9—芴基)(1—烯丙基茚基)二甲基硅烷合锆,二氯化1—(2,7—二(a—甲基乙烯基)—(9—芴基)—1—(环戊二烯基)—1,1—二甲基甲烷合锆,和二氯化1—(2,7—二(环己—1—烯)9—芴基))-1—(环戊二烯基)—1,1—甲烷合锆。
16.按照权利要求1的方法,其中在预聚合期间有两个不同的金属茂。
17.按照权利要求16的方法,其中在预聚合期间使用至少两个不同的金属茂,每个金属茂有至少一个烯属不饱和取代基。
18.按照权利要求17的方法,其中至少一个金属茂是二氯化5—(芴基)—5—(环戊二烯基)—1—己烯合锆。
19.按照权利要求16的方法,其中使用至少两个不同的桥联金属茂,每个在从桥上向外伸出的支链中有一个烯属不饱和键。
20.一种聚合烯烃的方法,包括在适宜的聚合条件下将所述烯烃与由权利要求1的方法制得的含固体金属茂的催化剂体系接触。
21.按照权利要求20的方法,其中聚合是在淤桨聚合条件下进行的。
22.按照权利要求21的方法,其中乙烯是在链烷烃液体稀释剂存在下聚合的。
23.按照权利要求22的方法,其中所述含固体金属茂催化剂体系是由二氯化5—(9—芴基)—5—(环戊二烯基)—1—己烯合锆制得的。
24.按照权利要求23的方法,其中聚合是在连续环形反应器中进行的,异丁烷用作聚合液体稀释剂。
25.按照权利要求24的方法,其中用于聚合中的含固体金属茂催化剂体系是通过(a)在液体中将二氧化5—(9—芴基)—5—(环戊二烯基)—1—己烯合锆和甲基铝氧烷混合,(b)在二氧化硅存在下在所得液体中聚合乙烯,和(c)从该液体分离所得固体。
26.按照权利要求24的方法,其中用于步骤(a)中的液体基本上由芳烃液体组成。
27.按照权利要求20的方法,其中所述含固体金属茂的催化剂体系是使用至少一种有下式乙烯基封支链端桥联配位体的桥联金属茂,
Figure A9510437900061
其中n是1或0;Riv是Si,Ge,C或Sn;每个R′独立选自氢和有1到10个碳原子的烃基;R″选自有1到10个碳原子的二价烃基;R″选自氢或有1-10碳原子的烃基;和每个Z相同或不同且选自取代或未取代环戊二烯基,茚基,四氢茚,八氢芴基和芴基。
28.按照权利要求27的方法,其中n是1和R″是在其主链上有2到10个碳原子的亚烷基。
29.按照权利要求28的方法,其中Riv是C。
30.按照权利要求28的方法,其中Riv是Si。
CN95104379A 1994-06-01 1995-04-10 聚合烯烃的方法 Expired - Lifetime CN1050611C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US252611 1988-10-03
US252,611 1994-06-01
US08/252,611 US5498581A (en) 1994-06-01 1994-06-01 Method for making and using a supported metallocene catalyst system

Publications (2)

Publication Number Publication Date
CN1117053A true CN1117053A (zh) 1996-02-21
CN1050611C CN1050611C (zh) 2000-03-22

Family

ID=22956762

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95104379A Expired - Lifetime CN1050611C (zh) 1994-06-01 1995-04-10 聚合烯烃的方法

Country Status (21)

Country Link
US (1) US5498581A (zh)
EP (2) EP0810234B1 (zh)
JP (1) JPH0859729A (zh)
KR (1) KR960000927A (zh)
CN (1) CN1050611C (zh)
AT (2) ATE189823T1 (zh)
AU (2) AU677902B2 (zh)
BG (1) BG99676A (zh)
BR (1) BR9502632A (zh)
CA (1) CA2143586C (zh)
CZ (1) CZ138995A3 (zh)
DE (2) DE69501977T2 (zh)
DK (1) DK0810234T3 (zh)
ES (2) ES2142124T3 (zh)
FI (1) FI952645A (zh)
GR (1) GR3033150T3 (zh)
HU (1) HU214925B (zh)
NO (2) NO309867B1 (zh)
PL (1) PL308837A1 (zh)
SK (1) SK71895A3 (zh)
ZA (1) ZA954144B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1109050C (zh) * 1998-04-09 2003-05-21 Lg化学株式会社 使用金属茂催化剂进行烯烃聚合中的助催化剂循环的方法
CN106574009A (zh) * 2014-06-12 2017-04-19 道达尔研究技术弗吕公司 用于在至少一个连续搅拌釜反应器中制备聚乙烯的工艺

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594078A (en) * 1991-07-23 1997-01-14 Phillips Petroleum Company Process for producing broad molecular weight polyolefin
US6153716A (en) * 1994-06-01 2000-11-28 Phillips Petroleum Company Polyethylenes containing a unique distribution of short chain branching
US5705578A (en) * 1995-05-04 1998-01-06 Phillips Petroleum Company Method for making and using a supported metallocene catalyst system
US5681301A (en) * 1996-01-24 1997-10-28 Johnson & Johnson Worldwide Absorbent Products Backing web in an absorbent article
US6291695B1 (en) 1996-02-20 2001-09-18 Northwestern University Organo-Lewis acids of enhanced utility, uses thereof, and products based thereon
US6274752B1 (en) 1996-02-20 2001-08-14 Northwestern University Organo-Lewis acid as cocatalyst for cationic homogeneous Ziegler-Natta olefin polymerizations
US5780659A (en) * 1996-03-29 1998-07-14 Phillips Petroleum Company Substituted indenyl unbridged metallocenes
US6130302A (en) 1996-08-19 2000-10-10 Northwestern University Synthesis and use of (polyfluoroaryl)fluoroanions of aluminum, gallium and indium
US6262200B1 (en) 1996-08-19 2001-07-17 Northwestern University (Polyfluoroaryl)fluoroanions of aluminum, gallium, and indium of enhanced utility, uses thereof, and products based thereon
US5886202A (en) * 1997-01-08 1999-03-23 Jung; Michael Bridged fluorenyl/indenyl metallocenes and the use thereof
US6329541B1 (en) 1997-01-08 2001-12-11 Phillips Petroleum Company Organo omega-alkenyl cyclopentacarbyl silane-bridged metallocene compounds
US5856547A (en) * 1997-01-08 1999-01-05 Phillips Petroleum Company Organo omega-alkenyl cyclopentacarbyl silane compounds
US5854363A (en) * 1997-01-08 1998-12-29 Phillips Petroleum Company (Omega-alkenyl) (cyclopentacarbyl) metallocene compounds
CA2287840A1 (en) * 1997-05-22 1998-11-26 Phillips Petroleum Company Method for making and using a prepolymerized olefin polymerization catalyst
TR200000905T2 (tr) 1997-08-27 2000-07-21 The Dow Chemical Company Alfa-olefin interpolimerleri ile vinli aromatik monomerlerde akışbilimsel değişimler
DE69821528T2 (de) 1997-12-08 2004-07-01 Albemarle Corp. Katalysatorzusammensetzungen mit gesteigertem leistungsvermögen
US6677265B1 (en) * 1997-12-08 2004-01-13 Albemarle Corporation Process of producing self-supported catalysts
US6551955B1 (en) 1997-12-08 2003-04-22 Albemarle Corporation Particulate group 4 metallocene-aluminoxane catalyst compositions devoid of preformed support, and their preparation and their use
US6166152A (en) * 1998-02-26 2000-12-26 Phillips Petroleum Company Process to produce low density polymer in a loop reactor
EP2261266B1 (en) 1998-05-18 2016-03-23 Chevron Phillips Chemical Company LP Process for the polymerization of a monomer with a catalyst composition containing an organometal compound, an organoaluminum compound and a treated solid oxide compound
US6329312B1 (en) 1998-06-19 2001-12-11 Phillips Petroleum Company Metallocycle metallocenes and their use
US6262201B1 (en) 1998-06-19 2001-07-17 Phillips Petroleum Company Aryl substituted metallocene catalysts and their use
US6221981B1 (en) * 1998-09-14 2001-04-24 Phillips Petroleum Company Method for making and using a supported metallcene catalyst system
US6239060B1 (en) 1998-12-31 2001-05-29 Phillips Petroleum Company Supported metallocene catalyst system and method for polymerizing olefins
US6239300B1 (en) 1999-02-17 2001-05-29 Phillips Petroleum Company Metallocene production process
DE19908938A1 (de) * 1999-03-02 2000-09-07 Targor Gmbh Übergangsmetallverbindung, Katalysatorsystem, Verfahren zu seiner Herstellung und seine Verwendung zur Polymerisation von Olefinen
US6232415B1 (en) 1999-03-31 2001-05-15 Phillips Petroleum Company Process to produce a monovinylaromatic/ monoolefin polymer and said monovinylaromatic/monoolefin polymer
US6340651B1 (en) * 1999-04-26 2002-01-22 Phillips Petroleum Company Multicyclic metallocycle metallocenes and their use
US6291382B1 (en) * 1999-05-24 2001-09-18 Phillips Petroleum Company Metallocenes, polymerization catalyst systems, their preparation, and use
DE19927766A1 (de) * 1999-06-17 2000-12-21 Basf Ag Trägerkatalysator zur Olefinpolymerisation
US6475947B1 (en) 1999-09-10 2002-11-05 Phillips Petroleum Company Oligomeric metallocenes and their use
DE60034308T2 (de) 1999-10-08 2007-12-20 Mitsui Chemicals, Inc. Metallocene, ein Verfahren zur deren Herstellung, Olefinpolymerisationskatalysator, und ein Verfahren zur Herstellung von Polyolefinen
CN1217733C (zh) 1999-12-16 2005-09-07 菲利浦石油公司 有机金属化合物催化剂
US6582762B2 (en) 1999-12-22 2003-06-24 Exxonmobil Chemical Patents Inc. Sprayable hot melt adhesives
US7041617B2 (en) 2004-01-09 2006-05-09 Chevron Phillips Chemical Company, L.P. Catalyst compositions and polyolefins for extrusion coating applications
WO2001098381A2 (en) * 2000-06-16 2001-12-27 Albemarle Corporation Polymerization process using self-supported catalysts
ITMI20010405A1 (it) 2001-02-28 2002-08-28 Solvay Procedimento per la polimerizzazione dell'etilene
US6534609B2 (en) * 2001-03-13 2003-03-18 Chevron Phillips Chemical Company Lp Method for making and using a metallocene catalyst system
GB0118010D0 (en) 2001-07-24 2001-09-19 Borealis Tech Oy Catalysts
US6992131B2 (en) 2002-03-22 2006-01-31 Exxonmobil Chemical Patents Inc. Adhesives
US7271277B2 (en) * 2002-08-29 2007-09-18 Lg Chem, Ltd. Fulvene, metallocene catalysts and preparation method thereof, and preparation of polyolefines copolymer using the same
EP1548018B1 (en) 2002-09-27 2018-10-10 Mitsui Chemicals, Inc. Crosslinked metallocene compound for olefin polymerization and method of polymerizing olefin with the same
JP2006511679A (ja) * 2002-12-20 2006-04-06 バーゼル・ポリオレフィン・ゲーエムベーハー エチレンとα−オレフィンのコポリマー
US7211536B2 (en) * 2004-10-22 2007-05-01 Fina Technology, Inc. Supported metallocene catalysts and their use in producing stereospecific polymers
US7696280B2 (en) 2004-04-30 2010-04-13 Chevron Phillips Chemical Company, Lp HDPE resins for use in pressure pipe and related applications
US7294599B2 (en) * 2004-06-25 2007-11-13 Chevron Phillips Chemical Co. Acidic activator-supports and catalysts for olefin polymerization
US20050288461A1 (en) * 2004-06-25 2005-12-29 Jensen Michael D Polymerization catalysts for producing polymers with low levels of long chain branching
US7064225B2 (en) * 2004-06-25 2006-06-20 Chevron Phillips Chemical Company, L.P. Synthesis of ansa-metallocenes and their parent ligands in high yield
US7148298B2 (en) * 2004-06-25 2006-12-12 Chevron Phillips Chemical Company, L.P. Polymerization catalysts for producing polymers with low levels of long chain branching
US7163906B2 (en) * 2004-11-04 2007-01-16 Chevron Phillips Chemical Company, Llp Organochromium/metallocene combination catalysts for producing bimodal resins
US7220806B2 (en) * 2005-04-29 2007-05-22 Fina Technology, Inc. Process for increasing ethylene incorporation into random copolymers
US7312283B2 (en) * 2005-08-22 2007-12-25 Chevron Phillips Chemical Company Lp Polymerization catalysts and process for producing bimodal polymers in a single reactor
US7226886B2 (en) * 2005-09-15 2007-06-05 Chevron Phillips Chemical Company, L.P. Polymerization catalysts and process for producing bimodal polymers in a single reactor
US20070105660A1 (en) * 2005-11-04 2007-05-10 Harris Kevin M Polymerized metallocene catalyst compositions and the use thereof to produce golf ball compositions
US7517939B2 (en) * 2006-02-02 2009-04-14 Chevron Phillips Chemical Company, Lp Polymerization catalysts for producing high molecular weight polymers with low levels of long chain branching
US7619047B2 (en) * 2006-02-22 2009-11-17 Chevron Phillips Chemical Company, Lp Dual metallocene catalysts for polymerization of bimodal polymers
US7576163B2 (en) * 2006-03-31 2009-08-18 Chevron Phillips Chemical Company, Lp Polymerization catalysts for producing polymers with low levels of long chain branching
GB0610668D0 (en) * 2006-05-30 2006-07-12 Nova Chem Int Sa Supported antistatic polymerization catalysts
CN101711258B (zh) * 2007-03-07 2012-07-04 陶氏环球技术有限责任公司 系连负载型过渡金属络合物
US7897539B2 (en) * 2007-05-16 2011-03-01 Chevron Phillips Chemical Company Lp Methods of preparing a polymerization catalyst
US7572948B2 (en) * 2007-05-16 2009-08-11 Chevron Phillips Chemical Company, Lp Fulvene purification
US8058200B2 (en) * 2007-05-17 2011-11-15 Chevron Phillips Chemical Company, L.P. Catalysts for olefin polymerization
US8119553B2 (en) 2007-09-28 2012-02-21 Chevron Phillips Chemical Company Lp Polymerization catalysts for producing polymers with low melt elasticity
US7799721B2 (en) * 2007-09-28 2010-09-21 Chevron Phillips Chemical Company Lp Polymerization catalysts for producing polymers with high comonomer incorporation
US7884163B2 (en) * 2008-03-20 2011-02-08 Chevron Phillips Chemical Company Lp Silica-coated alumina activator-supports for metallocene catalyst compositions
US11208514B2 (en) 2008-03-20 2021-12-28 Chevron Phillips Chemical Company Lp Silica-coated alumina activator-supports for metallocene catalyst compositions
US8114946B2 (en) 2008-12-18 2012-02-14 Chevron Phillips Chemical Company Lp Process for producing broader molecular weight distribution polymers with a reverse comonomer distribution and low levels of long chain branches
KR101673043B1 (ko) 2009-06-16 2016-11-04 셰브론 필립스 케미컬 컴퍼니 엘피 메탈로센-ssa 촉매시스템을 이용한 알파 올레핀 올리고머화 및 윤활제 블렌드 제조를 위한 생성된 폴리알파올레핀의 용도
MX2012000254A (es) * 2009-06-29 2012-01-25 Chevron Philips Chemical Company Lp El uso de catalizadores de depuracion de hidrogeno para controlar niveles de hidrogeno y peso molecular de polimero en un reactor de polimerizacion.
ES2582396T3 (es) * 2009-06-29 2016-09-12 Chevron Phillips Chemical Company Lp Sistemas catalíticos duales de metaloceno para disminuir el índice de fluidez y aumentar la velocidad de producción de polímero
US8476394B2 (en) 2010-09-03 2013-07-02 Chevron Philips Chemical Company Lp Polymer resins having improved barrier properties and methods of making same
US10292937B2 (en) 2011-03-23 2019-05-21 Ironshore Pharmaceuticals & Development, Inc. Methods of treatment of attention deficit hyperactivity disorder
US8440772B2 (en) 2011-04-28 2013-05-14 Chevron Phillips Chemical Company Lp Methods for terminating olefin polymerizations
US8487053B2 (en) 2011-11-30 2013-07-16 Chevron Phillips Chemical Company Lp Methods for removing polymer skins from reactor walls
US8501882B2 (en) 2011-12-19 2013-08-06 Chevron Phillips Chemical Company Lp Use of hydrogen and an organozinc compound for polymerization and polymer property control
US8703883B2 (en) 2012-02-20 2014-04-22 Chevron Phillips Chemical Company Lp Systems and methods for real-time catalyst particle size control in a polymerization reactor
US10273315B2 (en) 2012-06-20 2019-04-30 Chevron Phillips Chemical Company Lp Methods for terminating olefin polymerizations
US8916494B2 (en) 2012-08-27 2014-12-23 Chevron Phillips Chemical Company Lp Vapor phase preparation of fluorided solid oxides
US8940842B2 (en) 2012-09-24 2015-01-27 Chevron Phillips Chemical Company Lp Methods for controlling dual catalyst olefin polymerizations
US8937139B2 (en) 2012-10-25 2015-01-20 Chevron Phillips Chemical Company Lp Catalyst compositions and methods of making and using same
US8895679B2 (en) 2012-10-25 2014-11-25 Chevron Phillips Chemical Company Lp Catalyst compositions and methods of making and using same
US9034991B2 (en) 2013-01-29 2015-05-19 Chevron Phillips Chemical Company Lp Polymer compositions and methods of making and using same
US8877672B2 (en) 2013-01-29 2014-11-04 Chevron Phillips Chemical Company Lp Catalyst compositions and methods of making and using same
US8815357B1 (en) 2013-02-27 2014-08-26 Chevron Phillips Chemical Company Lp Polymer resins with improved processability and melt fracture characteristics
US9181369B2 (en) 2013-03-11 2015-11-10 Chevron Phillips Chemical Company Lp Polymer films having improved heat sealing properties
US10577440B2 (en) 2013-03-13 2020-03-03 Chevron Phillips Chemical Company Lp Radically coupled resins and methods of making and using same
US10654948B2 (en) 2013-03-13 2020-05-19 Chevron Phillips Chemical Company Lp Radically coupled resins and methods of making and using same
US9303106B1 (en) 2014-10-17 2016-04-05 Chevron Phillips Chemical Company Lp Processes for preparing solid metallocene-based catalyst systems
US9828451B2 (en) 2014-10-24 2017-11-28 Chevron Phillips Chemical Company Lp Polymers with improved processability for pipe applications
KR102578006B1 (ko) 2015-05-11 2023-09-12 더블유.알. 그레이스 앤드 캄파니-콘. 개질된 점토, 지지된 메탈로센 중합 촉매의 제조 방법, 제조된 촉매, 및 이의 용도
CN107864635B (zh) 2015-05-11 2021-06-25 格雷斯公司 制备改性粘土的方法、所制备的改性粘土及其用途
US9708426B2 (en) 2015-06-01 2017-07-18 Chevron Phillips Chemical Company Lp Liquid-solid sampling system for a loop slurry reactor
WO2017078974A1 (en) 2015-11-05 2017-05-11 Chevron Phillips Chemical Company Lp Radically coupled resins and methods of making and using same
US9645066B1 (en) 2015-12-04 2017-05-09 Chevron Phillips Chemical Company Lp Polymer compositions having improved processability and methods of making and using same
US9645131B1 (en) 2015-12-04 2017-05-09 Chevron Phillips Chemical Company Lp Polymer compositions having improved processability and methods of making and using same
US10005861B2 (en) 2016-06-09 2018-06-26 Chevron Phillips Chemical Company Lp Methods for increasing polymer production rates with halogenated hydrocarbon compounds
US11560440B2 (en) 2017-03-30 2023-01-24 Borealis Ag Aluminoxane-activated metallocene catalysts
US10550252B2 (en) 2017-04-20 2020-02-04 Chevron Phillips Chemical Company Lp Bimodal PE resins with improved melt strength
US10774161B2 (en) 2019-01-31 2020-09-15 Chevron Phillips Chemical Company Lp Systems and methods for polyethylene recovery with low volatile content
US11339229B2 (en) 2020-01-27 2022-05-24 Formosa Plastics Corporation, U.S.A. Process for preparing catalysts and catalyst compositions
WO2021154204A1 (en) 2020-01-27 2021-08-05 Formosa Plastics Corporation, U.S.A. Process for preparing catalysts and catalyst compositions
US20230183390A1 (en) 2021-12-15 2023-06-15 Chevron Phillips Chemical Company Lp Production of polyethylene and ethylene oligomers from ethanol and the use of biomass and waste streams as feedstocks to produce the ethanol
US11845814B2 (en) 2022-02-01 2023-12-19 Chevron Phillips Chemical Company Lp Ethylene polymerization processes and reactor systems for the production of multimodal polymers using combinations of a loop reactor and a fluidized bed reactor
US20230331875A1 (en) 2022-04-19 2023-10-19 Chevron Phillips Chemical Company Lp Loop slurry periodogram control to prevent reactor fouling and reactor shutdowns
WO2023239560A1 (en) 2022-06-09 2023-12-14 Formosa Plastics Corporaton, U.S.A. Clay composite support-activators and catalyst compositions

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4871705A (en) * 1988-06-16 1989-10-03 Exxon Chemical Patents Inc. Process for production of a high molecular weight ethylene a-olefin elastomer with a metallocene alumoxane catalyst
DE3840772A1 (de) * 1988-12-03 1990-06-07 Hoechst Ag Verfahren zur herstellung einer heterogenen metallocenkatalysatorkomponente
DE3904468A1 (de) * 1989-02-15 1990-08-16 Hoechst Ag Polypropylenwachs und verfahren zu seiner herstellung
FR2656314B1 (fr) * 1989-12-22 1992-04-17 Bp Chemicals Snc Catalyseur a base de zirconium supporte sur du chlorure de magnesium, procede de preparation et utilisation du catalyseur dans la polymerisation des olefines.
MY107639A (en) * 1990-04-18 1996-05-30 Mitsui Chemicals Incorporated Process for the preparation of an ethylene copolymer and an olefin polymer, and catalyst for olefin polymeri -zation
US5169818A (en) * 1991-01-12 1992-12-08 Hoechst Aktiengesellschaft Metallocene (co)polymers, process for their preparation and their use as catalysts
ES2116299T3 (es) * 1991-01-12 1998-07-16 Targor Gmbh (co)polimeros de metaloceno, procedimiento para su obtencion, y su empleo como catalizadores.
US5191132A (en) 1991-05-09 1993-03-02 Phillips Petroleum Company Cyclopentadiene type compounds and method for making
US5466766A (en) * 1991-05-09 1995-11-14 Phillips Petroleum Company Metallocenes and processes therefor and therewith
US5436305A (en) 1991-05-09 1995-07-25 Phillips Petroleum Company Organometallic fluorenyl compounds, preparation, and use
US5387567A (en) * 1991-06-27 1995-02-07 Nippon Oil Co., Ltd. Catalyst components for polymerization of olefins
US5308815A (en) * 1991-07-26 1994-05-03 Ethyl Corporation Heterogeneous methylaluminoxane catalyst system
US5308817A (en) * 1992-05-18 1994-05-03 Fina Technology, Inc. Metallocene catalyst component with good catalyst efficiency after aging
US5240894A (en) * 1992-05-18 1993-08-31 Exxon Chemical Patents Inc. Method for making and using a supported metallocene catalyst system
ATE194361T1 (de) * 1992-09-04 2000-07-15 Bp Chem Int Ltd Katalysatorzusammensetzungen und verfahren zur herstellung von polyolefinen
EP0969020A3 (en) * 1992-09-04 2000-01-19 BP Chemicals Limited Mettallocene complexes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1109050C (zh) * 1998-04-09 2003-05-21 Lg化学株式会社 使用金属茂催化剂进行烯烃聚合中的助催化剂循环的方法
CN106574009A (zh) * 2014-06-12 2017-04-19 道达尔研究技术弗吕公司 用于在至少一个连续搅拌釜反应器中制备聚乙烯的工艺
CN106574009B (zh) * 2014-06-12 2019-06-28 道达尔研究技术弗吕公司 用于在至少一个连续搅拌釜反应器中制备聚乙烯的工艺

Also Published As

Publication number Publication date
EP0810234A2 (en) 1997-12-03
DE69515135T2 (de) 2000-06-15
HU214925B (hu) 1998-07-28
NO20005744D0 (no) 2000-11-13
HU9501571D0 (en) 1995-07-28
JPH0859729A (ja) 1996-03-05
AU677902B2 (en) 1997-05-08
NO952162L (no) 1995-12-04
ATE164857T1 (de) 1998-04-15
NO310825B1 (no) 2001-09-03
SK71895A3 (en) 1995-12-06
HUT72719A (en) 1996-05-28
EP0810234A3 (en) 1998-04-29
PL308837A1 (en) 1995-12-11
ATE189823T1 (de) 2000-03-15
CN1050611C (zh) 2000-03-22
US5498581A (en) 1996-03-12
EP0685495A1 (en) 1995-12-06
NO952162D0 (no) 1995-05-31
CZ138995A3 (en) 1995-12-13
AU686538B2 (en) 1998-02-05
DE69501977T2 (de) 1998-07-30
BG99676A (en) 1996-05-31
EP0810234B1 (en) 2000-02-16
ES2142124T3 (es) 2000-04-01
AU3156997A (en) 1997-10-02
DE69501977D1 (de) 1998-05-14
DE69515135D1 (de) 2000-03-23
FI952645A (fi) 1995-12-02
CA2143586C (en) 2000-05-30
KR960000927A (ko) 1996-01-25
CA2143586A1 (en) 1995-12-02
EP0685495B1 (en) 1998-04-08
ES2114248T3 (es) 1998-05-16
FI952645A0 (fi) 1995-05-31
ZA954144B (en) 1996-01-19
AU2011695A (en) 1996-01-04
NO5744A (no) 1995-12-04
NO309867B1 (no) 2001-04-09
DK0810234T3 (da) 2000-06-05
GR3033150T3 (en) 2000-08-31
BR9502632A (pt) 1996-04-30

Similar Documents

Publication Publication Date Title
CN1050611C (zh) 聚合烯烃的方法
CA2177407C (en) Metallocene preparation and use
CN1138796C (zh) 烯烃共聚合用的桥连茂金属
JP3429334B2 (ja) ポリオレフィンワックスの製造方法
US6509427B1 (en) Metallocenes, polymerization catalyst systems, their preparation, and use
JP5639744B2 (ja) 双峰型ポリマーの重合のための二元メタロセン触媒
RU2165435C2 (ru) Каталитическая композиция, используемая при полимеризации олефинов
TWI235161B (en) Method for the preparation of metallocene catalysts
JP2000515898A (ja) 結合陽イオン形成性活性剤を含有する担持触媒
JPH1067815A (ja) オレフィン重合用触媒
CN1319979C (zh) 用改性铝烷制备粒状金属茂催化剂的方法和在烯烃聚合中的用途
KR19990014714A (ko) 올레핀 중합을 위한 중합체 지지된 촉매
CN101054388B (zh) 聚合催化剂活化剂化合物、其制备方法及其应用
SK112495A3 (en) Method of manufacture of polyolefine with broad distribution of molecular mass by using of catalytic system
JP2009144148A (ja) オレフィン重合用触媒およびそれを用いたエチレン系重合体の製造方法
HUT73051A (en) Catalyst compositions useful for olefin polymerization, and process for production thereof and use thereof
EP0830395B1 (en) Process for preparing and using a supported metallocene-alumoxane catalyst
JP2000513761A (ja) 官能性ポリオレフィンの製造法
JPH08311077A (ja) 有機アルミノキシ化合物の製法
US6534609B2 (en) Method for making and using a metallocene catalyst system
US6340651B1 (en) Multicyclic metallocycle metallocenes and their use
CA2287840A1 (en) Method for making and using a prepolymerized olefin polymerization catalyst
CN1308353C (zh) 烯烃聚合方法
WO2000034290A1 (fr) Compose aluminumoxy, compose de catalyse de polymerisation d'olefines et procede de production de polyolefines
CN1117500A (zh) 烯烃聚合反应及催化剂

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CX01 Expiry of patent term

Expiration termination date: 20150410

Granted publication date: 20000322