CN110164703B - 多孔Fe3O4/C多面体材料及其制备方法和应用 - Google Patents

多孔Fe3O4/C多面体材料及其制备方法和应用 Download PDF

Info

Publication number
CN110164703B
CN110164703B CN201910546562.9A CN201910546562A CN110164703B CN 110164703 B CN110164703 B CN 110164703B CN 201910546562 A CN201910546562 A CN 201910546562A CN 110164703 B CN110164703 B CN 110164703B
Authority
CN
China
Prior art keywords
porous
polyhedral
carbon
degrees
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910546562.9A
Other languages
English (en)
Other versions
CN110164703A (zh
Inventor
李雪莹
徐亚林
吴辉
钱秀
陈立庄
于清
丹媛媛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN201910546562.9A priority Critical patent/CN110164703B/zh
Publication of CN110164703A publication Critical patent/CN110164703A/zh
Application granted granted Critical
Publication of CN110164703B publication Critical patent/CN110164703B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本发明公开了一种多孔Fe3O4/C多面体材料及其制备方法和应用。本发明采用ZIF‑67为硬模板,经过碳化及酸洗得到碳多面体。以碳多面体为二次模板,以Fe(CH3COO)2,硫脲为氧化剂,水为溶剂进行恒温反应。产物离心并在空气下进行煅烧后得到一类具有多面体结构的四氧化三铁/碳微‑纳米材料。这种微‑纳米材料具有高的比表面积,颗粒分散均匀,有利于离子的快速传输,增加了表面活性位点。经测试,在2 A g‑1的电流密度下循环3000次之后其比容量仍然可达到571.7 F g‑1且在高功率密度下仍然能够保持较高的能量密度。因此,该多孔四氧化三铁/碳多面体能够作为超级电容器的电极材料进行实际应用。

Description

多孔Fe3O4/C多面体材料及其制备方法和应用
技术领域
本发明属于超级电容器技术领域,具体涉及多孔Fe3O4/C多面体材料及其制备方法和应用。
背景技术
超级电容器的储能机理可分为双电层电容及法拉第赝电容。以法拉第赝电容为机理的超级电容器由于电极材料与电解液的相界面处发生氧化还原反应,其比容量优于双电层电容储能的超级电容器。因此,以法拉第赝电容储能的电极材料受到人们更多的关注及研究。
目前,基于法拉第赝电容的超级电容器的电极材料多以金属氧化物及其复合电极材料为主。
金属氧化物,尤其是铁的氧化物虽然有较高的比容量,但是其较差的导电性限制了其发展。在快速充放电的过程中金属氧化物会发生团聚阻碍电解质与电极表面的电荷传输。因此,金属氧化物作为超级电容器的电极材料具有较低的功率密度及倍率性能,很难应用于实际生产实践当中。因此金属氧化物常与碳材料复合以提高电极材料整体的导电性及稳定性。现阶段研究发现,这类复合材料能够实现两者性能间的协同作用,使复合材料获得较高的电化学电容,优异的倍率性能及较好的循环稳定性。
影响电化学电容行为的不仅仅是电极材料的组成还有电极材料的微观结构。虽然电极材料在经过纳米化之后能够在一定程度上增大比表面积,提供较多的表面电容存储的活性位点。但经过长时间的充放电循环会导致纳米颗粒团聚,从而导致活性位点降低,电极表面与电解液之间的电荷传质受到抑制。
发明内容
发明目的:本发明所要解决的技术问题是提供了Fe3O4/C多面体材料。
本发明还要解决的技术问题是提供了Fe3O4/C多面体材料的制备方法,本发明采用模板法获得一种具有高比表面积的四氧化三铁/碳多面体微-纳米多级结构,该复合材料显著提高了氧化铁基超级电容器的比电容及循环寿命(在2Ag-1的电流密度下循环3000次后,比电容仍然保持在571.7F g-1且比电容保持率在88.8%以上),目前还未见相关报道。
本发明还要解决的技术问题是提供了Fe3O4/C多面体材料的应用。该材料用于超级电容器的电极材料,具有较大的比表面积,良好的倍率性能及稳定性,适合大功率充放电使用。
本发明最后要解决的技术问题是提供了一种采用上述复合材料的超级电容器。
技术方案:为了解决上述技术问题,本发明采取了如下的技术方案:一种多孔Fe3O4/C多面体材料,其特征在于,所多孔Fe3O4/C多面体材料的X射线衍射主要数据: 18.99±0.5°.31.2±0.5°,36.8±0.5°,38.5±0.5°,44.8±0.5°,55.6±0.5°,59.3±0.5°,65.2±0.5°处出现了Fe3O4的特征峰,所对应的d间距为
Figure BDA0002102574040000021
4.67±0.1,2.86±0.1,2.44±0.1,2.34±0.1, 2.02±0.1,1.65±0.1,1.58±0.1,1.43±0.1,上述出现的峰位置对应的相对强度%为12.9±0.5, 31.9±0.5,100.0,9.3±0.5,23.8±0.5,10.7±0.5,31.6±0.5,34.9±0.5。值得注意的是,在 23.5±0.5°处出现波动为无定型碳的特征峰。
其中,所述多孔Fe3O4/C多面体材料为微米-纳米多级结构。
其中,所述多孔Fe3O4/C多面体材料为多孔Fe3O4/C多面体材料的比表面积123.32m2g-1~547.51m2g-1
其中,所述多孔Fe3O4/C多面体材料为Fe∶O∶C的元素比=1~1.5∶2∶1。
本发明内容还包括所述的多孔Fe3O4/C多面体材料的制备方法,包括以下步骤:
1)多面体碳加入到含有Fe(CH3COO)2及硫脲的水溶液中,将所得混合物在80~90℃进行水热反应9~12h,得Fe2O3/C复合材料干燥备用;
2)将步骤1)所得Fe2O3/C复合材料在空气中400~500℃保温2-4h,冷却即得。
其中,所述多面体碳是由以下方法制备的:将ZIF-67多面体在氮气下700~800℃煅烧3~4h得Co/C多面体,之后用4-12M的盐酸洗至Co离子完全去除即得。
其中,盐酸洗具体条件为:在25~30℃条件下搅拌2h,反复5~8次,后水洗至中性,干燥即得。
其中,Co/C多面体与盐酸的质量比为1∶1000,干燥的温度为80℃。
其中,所述步骤1)中的Fe(CH3COO)2∶硫脲∶水的质量之比为1-2∶2~4∶100。
本发明内容还包括所述多孔Fe3O4/C多面体材料在制备超级电容器电极材料中的应用。
本发明内容还包括一种超级电容电极材料,所述超级电容电极材料包括所述的多孔 Fe3O4/C多面体材料。
其中,所述超级电容电极材料2Ag-1的电流密度下循环3000次其比容量307.3~571.7 Fg-1
有益效果:相对于现有技术,本发明具有以下优点:本发明的多孔四氧化三铁/碳多面体的超级电容器电极材料为微米-纳米多级结构,具有较大的比表面积(547.51m2g-1)能够提供较多的表面活性位点。四氧化三铁与碳材料的复合能够发挥两者之间的协同效应,即利用碳材料较好的导电性以及材料间的双电层效应,为四氧化三铁的氧化还原赝电容行为提供稳定的电子通道,使四氧化三铁能够在大电流密度下最大限度实现高比容量。使复合电极能够获得较高的放电电压,整体提高电极材料的能量密度及功率密度。
附图说明
图1实施例1制得的碳多面体及多孔Fe3O4/C多面体的扫描电子显微镜图(SEM);
图2实施例1制得的碳多面体及多孔Fe3O4/C多面体的透射电子显微镜图(TEM);
图3实施例1制得的碳多面体及多孔Fe3O4/C多面体的X射线衍射图谱(XRD),其中a为碳多面体,b为多孔Fe3O4/C多面体材料;
图4在电流密度2Ag-1时多孔Fe3O4/C多面体材料的充放电循环图。
具体实施方式
下面结合具体实施实例对本发明做进一步说明,以使专业技术人员更好地理解本发明,但不局限于以下实施例。
本发明实施例中的ZIF-67多面体的合成步骤包括:称取249.0mg Co(NO3)2·6H2O和328.0mg 2-甲基咪唑分别溶于25.0mL甲醇中。接下来,将后一种2-甲基咪唑甲醇溶液缓慢加入前一种粉红色六水合硝酸钴甲醇溶液中得到混合物,并将混合物在室温下超声处理10分钟得到溶液。然后将溶液混合静置24小时并通过离心收集沉淀物,用甲醇洗涤数次,在80℃下真空干燥24小时,得到ZIF-67多面体。
实施例1多孔Fe3O4/C多面体的制备
将400mg ZIF-67多面体放入石英舟中,放置到管式炉内。将管式炉以3℃min-1加热至700℃并在氮气气氛下退火处理4小时,并自然冷却至室温得到Co/C。将得到的 Co/C置于4mol L-1HCl中12个小时以洗去金属钴,最后得到多面体碳。
配置30mL50mmol。L-1Fe(CH3COO)2的水溶液,再向其中加入60mg的多面体碳,先超声0.5h,然后磁力搅拌0.5h得到分散液。向上述分散液中加入0.5g的硫脲,继续搅拌0.5h,在90℃的水浴锅中加热12h,然后离心得到Fe2O3/C前驱体,在80℃下烘干10h。将烘干后的Fe2O3/C前驱体放入石英舟中,放置在管式炉内。将管式炉加热至 500℃并在空气气氛下保持4h(升温速率为1℃min-1),去除Fe2O3/C中的碳并自然冷却至室温得到多孔Fe3O4/C多面体,其比表面积为547.51m2g-1
实施例2多孔Fe3O4/C多面体的制备
将400mg ZIF-67多面体放入石英舟中,放置到管式炉内。将管式炉以3℃min-1加热至700℃并在氮气气氛下退火处理4小时,并自然冷却至室温得到Co/C。将得到Co/C 置于4mol L-1HCl中12个小时以洗去金属钴,最后得到多面体碳。
配置30mL 25mmol·L-1Fe(CH3COO)2的水溶液,再向其中加入30mg的多面体碳,先超声0.5h,然后磁力搅拌0.5h得到分散液。向分散液中加入0.25g的硫脲,继续搅拌0.5h,在90℃的水浴锅中加热12h,然后离心得到Fe2O3/C前驱体,在80℃下烘干 10h。将烘干的Fe2O3/C前驱体放入石英舟中,放置在管式炉内。将管式炉加热至500℃并在空气气氛下保持4h(升温速率为1℃min-1),去除Fe2O3/C中的碳并自然冷却至室温得到多孔Fe3O4/C多面体。
实施例3多孔Fe3O4/C多面体的制备
将400mg ZIF-67多面体放入石英舟中,放置到管式炉内。将管式炉以3℃min-1加热至700℃并在氮气气氛下退火处理4小时,并自然冷却至室温得到Co/C。将得到Co/C 置于4mol L-1HCl中12个小时以洗去金属钴,最后得到多面体碳。
配置50mL 100mmol·L-1Fe(CH3COO)2的水溶液,再向其中加入120mg的多面体碳,先超声0.5h,然后磁力搅拌0.5h得到分散液。向上述分散液中加入1.0g的硫脲,继续搅拌0.5h,在90℃的水浴锅中加热12h,然后离心得到Fe2O3/C前驱体,在80℃下烘干10h。将得到的Fe2O3/C前驱体放入石英舟中,放置在管式炉内。将管式炉加热至500℃并在空气气氛下保持4h(升温速率为1℃min-1),去除Fe2O3/C中的碳并自然冷却至室温得到多孔Fe3O4/C多面体。
实施例4多孔Fe3O4/C多面体的制备
将400mg ZIF-67多面体放入石英舟中,放置到管式炉内。将管式炉以1℃min-1加热至700℃并在氮气气氛下退火处理4小时,并自然冷却至室温得到Co/C。将得到Co/C 置于4mol L-1HCl中12个小时以洗去金属钴,最后得到多面体碳。
配置30mL 50mmol·L-1Fe(CH3COO)2的水溶液,再向其中加入60mg的多面体碳,先超声0.5h,然后磁力搅拌0.5h得到分散液。向上述分散液中加入0.5g的硫脲,继续搅拌0.5h,在90℃的水浴锅中加热12h,然后离心得到Fe2O3/C前驱体,在80℃下烘干10h。将得到的Fe2O3/C前驱体放入石英舟中,放置在管式炉内。将管式炉加热至400℃并在空气气氛下保持4h(升温速率为1℃min-1),去除Fe2O3/C中的碳并自然冷却至室温得到多孔Fe3O4/C多面体。
实施例5多孔Fe3O4/C多面体的制备
将400mg ZIF-67多面体放入石英舟中,放置到管式炉内。将管式炉以3℃min-1加热至700℃并在氮气气氛下退火处理4小时,并自然冷却至室温得到Co/C。将得到Co/C 置于4mol L-1HCl中12个小时以洗去金属钴,最后得到多面体碳。
配置50mL 50mmol·L-1Fe(CH3COO)2的水溶液,再向其中加入60mg的多面体碳,先超声0.5h,然后磁力搅拌0.5h得到分散液。向上述分散液中加入0.5g的硫脲,继续搅拌0.5h,在90℃的水浴锅中加热12h,然后离心得到Fe2O3/C前驱体,在60℃下烘干10h。将得到的Fe2O3/C前驱体放入石英舟中,放置在管式炉内。将管式炉加热至 500℃并在空气气氛下保持4h(升温速率为1℃min-1),去除Fe2O3/C中的碳并自然冷却至室温得到多孔Fe3O4/C多面体。
实施例6多孔Fe3O4/C多面体的制备
将400mg ZIF-67多面体放入石英舟中,放置到管式炉内。将管式炉以3℃min-1加热至700℃并在氮气气氛下退火处理4小时,并自然冷却至室温得到Co/C。将得到Co/C 置于4mol L-1HCl中12个小时以洗去金属钴,最后得到多面体碳。
配置50mmol·L-1Fe(CH3COO)2的水溶液,再向其中加入60mg的多面体碳,先超声0.5h,然后磁力搅拌0.5h得到分散液。向上述分散液中加入0.5g的硫脲,继续搅拌 0.5h,在90℃的水浴锅中加热10h,然后离心得到Fe2O3/C前驱体,在80℃下烘干10 h。将得到的Fe2O3/C前驱体放入石英舟中,放置在管式炉内。将管式炉加热至500℃并在空气气氛下保持4h(升温速率为1℃min-1),去除Fe2O3/C中的碳并自然冷却至室温得到多孔Fe3O4/C多面体,其比表面积为123.32m2g-1
实施例7超级电容器电极材料的制备
用乙炔黑作导电剂、聚偏二氟乙烯(PVDF)作为粘结剂,分别将实施例1~6中的多孔Fe3O4/C多面体活性材料,乙炔黑导电剂以及聚偏氟乙烯(PVDF)粘结剂以8∶1∶1 的质量比混合均匀,加入200μL N-甲基吡咯烷酮作溶剂,在超声机中超声6-8h,涂在处理后的泡沫镍(1×1cm2)表面,然后将负载有活性物质的泡沫镍放在120℃真空干燥箱中干燥去除溶剂,最后在10MPa压力下压片,便可得到工作电极。
实验例 超级电容器电极材料的性能测试
将实施例7制备的以负载实施例1-6中多孔Fe3O4/C多面体的泡沫镍为工作电极,铂片为对电极,Hg/HgO为参比电极,在3.0M的KOH溶液中进行超级电容器相关性能测试。
从图1可看出实施例1~6多孔Fe3O4/C多面体基本保持了碳多面体模板的形貌,所制得的复合材料表面粗糙,粗糙的表面可以增大表面积,为电化学氧化还原反应提供更多的活性位点。
从图2可看出实施例1~6多孔Fe3O4/C多面体由20nm的小颗粒组成,具有微观多孔结构。多孔结构有利于电解液的浸润及离子的传输,进一步促进电化学反应动力学。
从图3可看出实施例1~6多孔Fe3O4/C多面体的XRD衍射峰与Fe3O4的标准卡片 PDF(#26-1136)衍射峰位置一致,在25°左右的波动为无定型碳的特征峰。
从图4可看出实施例1多孔Fe3O4/C多面体作为超级电容器电极材料在2Ag-1的电流密度下充放电循环3000次,其比容量仍然能够保持在571.7F g-1.表明该电极具有较高的能量密度以及较好的循环性能;而实施例2~6合成的多孔Fe3O4/C多面体为超级电容器的材料充放电循环3000次之后其比电容分别为319.6F g-1,403.1F g-1,418.8F g-1,428.9F g-1,307.3F g-1,与实施例1相比,比电容偏低。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种多孔Fe3O4/C多面体材料,其特征在于,所述多孔Fe3O4/C多面体材料的X射线衍射数据为:18.99±0.5°,31.2±0.5 °,36.8±0.5°,38.5±0.5 °,44.8±0.5 °,55.6±0.5°,59.3±0.5°,65.2±0.5°处出现了Fe3O4的特征峰,所对应的d间距为Å:4.67±0.1,2.86±0.1,2.44±0.1,2.34±0.1,2.02±0.1,1.65±0.1,1.58±0.1,1.43±0.1,上述出现的峰位置对应的相对强度%为12.9±0.5,31.9±0.5,100.0,9.3±0.5,23.8±0.5,10.7±0.5,31.6±0.5,34.9±0.5,所述多孔Fe3O4/C多面体材料为微米-纳米多级结构,所述多孔Fe3O4/C多面体材料比表面积123.32 m2 g-1~ 547.51 m2 g-1,所述多孔Fe3O4/C多面体材料为Fe:O:C的元素比=1~1.5:2:1;所述多孔Fe3O4/C多面体材料的制备方法,包括以下步骤:
1)多面体碳加入到含有Fe(CH3COO)2及硫脲的水溶液中,将所得混合物在80~90℃进行水热反应9~12 h,得Fe2O3/C复合材料干燥备用;
2)将步骤1)所得Fe2O3/C复合材料在空气中400~500℃保温2~4 h,冷却即得。
2.权利要求1所述的多孔Fe3O4/C多面体材料的制备方法,其特征在于,包括以下步骤:
1)多面体碳加入到含有Fe(CH3COO)2及硫脲的水溶液中,将所得混合物在80~90℃进行水热反应9~12 h,得Fe2O3/C复合材料干燥备用;
2)将步骤1)所得Fe2O3/C复合材料在空气中400~500℃保温2~4 h,冷却即得。
3.根据权利要求2所述的多孔Fe3O4/C多面体材料的制备方法,其特征在于,所述多面体碳是由以下方法制备的:将ZIF-67多面体在氮气下700~800℃煅烧3~4 h,之后用4~12 M的盐酸洗至Co离子完全去除即得。
4.根据权利要求2所述的多孔Fe3O4/C多面体材料的制备方法,其特征在于, 所述步骤1)中的Fe(CH3COO)2:硫脲:水的质量之比为1~2:2~4:100。
CN201910546562.9A 2019-06-21 2019-06-21 多孔Fe3O4/C多面体材料及其制备方法和应用 Active CN110164703B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910546562.9A CN110164703B (zh) 2019-06-21 2019-06-21 多孔Fe3O4/C多面体材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910546562.9A CN110164703B (zh) 2019-06-21 2019-06-21 多孔Fe3O4/C多面体材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN110164703A CN110164703A (zh) 2019-08-23
CN110164703B true CN110164703B (zh) 2021-07-09

Family

ID=67625480

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910546562.9A Active CN110164703B (zh) 2019-06-21 2019-06-21 多孔Fe3O4/C多面体材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110164703B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112928232B (zh) * 2021-01-25 2022-02-08 燕山大学 一种多面体结构氧化铁材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105271431A (zh) * 2015-10-12 2016-01-27 南京大学 一种制备四氧化三铁磁性材料及其复合材料的方法
CN107731557A (zh) * 2017-08-23 2018-02-23 温州大学 超级电容器用电极氮氧共掺杂多孔碳/四氧化三铁复合材料的制备方法及其应用
CN108154984A (zh) * 2017-12-26 2018-06-12 山东大学 一种多孔四氧化三铁/碳纳米棒状电磁波吸收材料及其制备方法与应用
CN109473651A (zh) * 2018-11-09 2019-03-15 扬州大学 由ZIF-67衍生化合成双金属硫化物Co8FeS8/N-C多面体纳米材料的方法
CN109494038A (zh) * 2018-11-06 2019-03-19 同济大学 四氧化三铁-纳米多孔碳纳米复合材料及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2502577A (en) * 2012-05-31 2013-12-04 Univ Dublin Microparticles and a device and method for the production thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105271431A (zh) * 2015-10-12 2016-01-27 南京大学 一种制备四氧化三铁磁性材料及其复合材料的方法
CN107731557A (zh) * 2017-08-23 2018-02-23 温州大学 超级电容器用电极氮氧共掺杂多孔碳/四氧化三铁复合材料的制备方法及其应用
CN108154984A (zh) * 2017-12-26 2018-06-12 山东大学 一种多孔四氧化三铁/碳纳米棒状电磁波吸收材料及其制备方法与应用
CN109494038A (zh) * 2018-11-06 2019-03-19 同济大学 四氧化三铁-纳米多孔碳纳米复合材料及其制备方法与应用
CN109473651A (zh) * 2018-11-09 2019-03-15 扬州大学 由ZIF-67衍生化合成双金属硫化物Co8FeS8/N-C多面体纳米材料的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Fabrication and electrochemical properties of a graphene-enhanced hierarchical porous network of Fe3O4/carbon nanobelts;Xing Yu etc;《Electrochimica Acta》;20170724;第248卷;全文 *
Study of the Capacitive Behavior of MOF-Derived Nanocarbon Polyhedra;Uday Pratap Azad etc;《ChemistrySelect》;20181231;第3卷;第6107页右栏第1段,图3 *

Also Published As

Publication number Publication date
CN110164703A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
CN108390014B (zh) 泡沫镍负载不同形貌一氧化钴纳米材料的制备方法
CN109037625B (zh) 一种多级孔碳与硫化钴的复合材料及其制备方法和应用
Yin et al. Hierarchical porous carbon@ PbO1-x composite for high-performance lead-carbon battery towards renewable energy storage
CN109616331B (zh) 一种核壳型的氢氧化镍纳米片/锰钴氧化物复合电极材料及其制备方法
CN112186182B (zh) 一维中空碳包覆硒化铁纳米管复合电极材料及其制备方法
CN110660981B (zh) 一种石墨烯包裹的双金属硒化物材料及其制备方法和应用
CN109559902B (zh) 一种金属有机框架衍生钴镍硼硫化物材料及其制备方法与应用
CN112421044B (zh) 核壳结构硫正极材料、制备方法以及在锂硫电池中的应用
CN113161533B (zh) 一种MOF衍生的ZnO@C复合材料及其应用
CN106299344B (zh) 一种钠离子电池钛酸镍负极材料及其制备方法
CN115084489B (zh) 超声波辅助插层钒基氧化物复合材料的制备方法及应用
CN112786865A (zh) 一种MoS2准量子点/氮硫共掺杂生物质碳复合纳米材料的制备方法和应用
CN109904001A (zh) 一种氧化镍/镍纳米复合超级电容器电极材料及其制备方法
CN110921668B (zh) 一种过渡金属碳化物、碳材料、过渡金属硫属化合物的制备方法和应用
CN114583123A (zh) 磷杂碳包覆的超薄磷酸铁锂片层材料及制备方法
CN108539170B (zh) 锂离子电池纳米片负极材料的形成方法
CN108598403B (zh) 锂离子电池二元过渡金属氧化物负极材料的形成方法
CN110164703B (zh) 多孔Fe3O4/C多面体材料及其制备方法和应用
CN113644256A (zh) 钴基双金属硒化物/氮掺杂碳复合材料及其制备方法
Yu et al. Facile assembly of cobalt-nickel double hydroxide nanoflakes on nitrogen-doped hollow carbon spheres for high performance asymmetric supercapacitors
CN113436901A (zh) 一种镍钴锰三元金属硫化物中空结构材料及其制备和应用
CN116812969A (zh) 用于锂离子电池负极的多级孔氧化铟纳米管的制备方法
CN110600719A (zh) 一种高倍率性能的多孔硅碳锂离子电池负极材料及其制备方法
CN112201480B (zh) 一种用于超级电容器电极的含氧功能基团修饰的多孔碳布材料及其制备方法
CN114804045A (zh) 一种构成电容器材料的磷化铁镍纳米片制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant