CN109192998A - 一种钴-氮共掺杂复合纳米碳材料及其制备方法和应用 - Google Patents

一种钴-氮共掺杂复合纳米碳材料及其制备方法和应用 Download PDF

Info

Publication number
CN109192998A
CN109192998A CN201810926950.5A CN201810926950A CN109192998A CN 109192998 A CN109192998 A CN 109192998A CN 201810926950 A CN201810926950 A CN 201810926950A CN 109192998 A CN109192998 A CN 109192998A
Authority
CN
China
Prior art keywords
cobalt
nitrogen
composite nano
carbon material
doped composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810926950.5A
Other languages
English (en)
Inventor
张超
陈山
刘天西
封其春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
National Dong Hwa University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201810926950.5A priority Critical patent/CN109192998A/zh
Publication of CN109192998A publication Critical patent/CN109192998A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种钴‑氮共掺杂复合纳米碳材料及其制备方法和应用,该材料采用一步溶剂热法制得钴‑氮共掺杂复合纳米材料前驱体后转移至惰性气氛下升温进行碳化制得;制备方法为:将三聚氰胺,金属钴盐与对苯二甲醛分别溶解于溶剂中,进行溶剂热反应,过滤,离心并干燥得到粉末,加入丙酮混匀,离心分离出固体浆料,洗涤,真空干燥得到前驱体,后置于惰性气氛下升温进行碳化,最后水洗、真空干燥,得到钴‑氮共掺杂复合纳米碳材料。本发明方法简单,前驱体制备容易,一步碳化制备得到‑氮共掺杂复合纳米碳材料,该材料催化性能优异,循环稳定性好;作为非贵金属催化剂材料,经济廉价,在质子交换膜燃料电池储能材料应用上有很好的前景。

Description

一种钴-氮共掺杂复合纳米碳材料及其制备方法和应用
技术领域
本发明属于燃料电池电极催化剂材料领域,特别涉及复合纳米碳材料制备方法和应用技术领域。
背景技术
随着全球经济的迅速发展,化石燃料的快速消耗和环境污染的日益恶化,对可持续和可再生能源的需求不断增加,这刺激了研究人员对高效清洁能源转换,开发新型存储设备的深入研究来满足未来全球紧张的能源需求。
在各种储能设备中质子交换膜燃料电池由于其突出的特点:如转换效率高,燃料易得,环境友好,长循环寿命,以及出色的稳定性和安全性,使其成为当今无处不在的门户电子产品,电源备份和混合动力汽车中潜在应用的下一代能源存储***。最近,质子交换膜燃料电池成功应用于新能源电动汽车。
提到可持续并且环境友好的材料,人们首先想到就是碳材料。碳材料的来源非常丰富,可谓取之不尽用之不竭,化学污染小。一般而言,质子交换膜燃料电池的转换效率和循环稳定性强烈依赖所使用的电极上的催化剂材料。各种多孔碳材料是用于质子交换膜燃料电池电极上催化剂材料罪常用的材料,其通过在电极/电解质界面处吸附氧气进行氧还原反应。碳为基础的活性炭(AC),碳的衍生物(CDC),碳纳米管(CNT)和石墨烯(GR)等多孔材料由于它们的比表面积高,导电性高以及优异的化学稳定性和热稳定性而被深入研究用作质子交换膜燃料电池的电极上的催化剂。
发明内容
本发明所要解决的技术问题是提供一种钴-氮共掺杂复合纳米碳材料及其制备方法和应用,该方法设计简单,容易制备;该钴-氮共掺杂复合纳米碳材料,催化性能优异,循环稳定性好,作为非贵金属催化剂材料,经济廉价,在质子交换膜燃料电池储能材料应用上有很好的前景。
为了解决上述技术问题,本发明提供了一种钴-氮共掺杂复合纳米碳材料,其特征在于,采用一步溶剂热法制得钴-氮共掺杂复合纳米材料前驱体后转移至惰性气氛下升温进行碳化制得。
优选地,所述的钴-氮共掺杂复合纳米材料前驱体是由三聚氰胺、四水合乙酸钴和对苯二甲醛通过溶剂热法制得。
本发明还提供了上述的钴-氮共掺杂复合纳米碳材料的制备方法,其特征在于,包括以下步骤:
(1)将三聚氰胺、金属钴盐和对苯二甲醛分别溶解于溶剂中,加入反应釜中进行溶剂热反应,过滤,离心并干燥得到粉末,加入丙酮超声洗涤,离心分离出固体浆料,洗涤,干燥,得到钴-氮共掺杂复合纳米材料前驱体;
(2)将制得的钴-氮共掺杂复合纳米材料前驱体置于惰性气氛下升温进行碳化,最后水洗、真空干燥,得到钴-氮共掺杂复合纳米碳材料。
优选地,所述步骤(1)中的三聚氰胺、金属钴盐和对苯二甲醛的摩尔比为20:1:30。
优选地,所述步骤(1)中的金属钴盐为四水合乙酸钴。
优选地,所述步骤(1)中的溶剂为DMF,反应温度为150-200℃。
优选地,所述步骤(2)中的惰性气氛为氩气氛围。
优选地,所述步骤(2)中的碳化的工艺参数为:升温速率2-5℃/min,碳化温度700-900℃,保温时间1-5h。
优选地,所述步骤(2)水洗为采用去离子水洗涤6-12h。
优选地,所述步骤(1)和(2)中的真空干燥为在真空烘箱中60-100℃干燥6-18h。
本发明还提供了一种非贵金属氧还原催化剂,其特征在于,含有上述的钴-氮共掺杂复合纳米碳材料。
本发明还提供了上述的非贵金属氧还原催化剂在制备质子交换膜燃料电池的储能材料中的应用。
与现有技术相比,本发明的有益效果在于:
(1)本发明方法设计简单,前驱体制备容易,一步碳化制备得到的钴-氮共掺杂复合纳米碳材料。
(2)本发明制备得到的钴-氮共掺杂复合纳米碳材料催化性能优异,循环稳定性好;作为非金属催化剂材料,经济廉价,在质子交换膜燃料电池储能材料应用上有很好的前景。
附图说明
图1为实施例1中Co@CNT-800-2材料的多种倍数SEM图;
图2为对比例1中Co@CNT-800-0材料的多种倍数SEM图;
图3为对比例2中Co@CNT-800-1材料的多种倍数SEM图;
图4为对比例2中Co@CNT-800-3材料的多种倍数SEM图;
图5为实施例1与对比例1、对比例2和对比例3以10mV/s的扫描速率下的LSV循环图;
图6为实施例1中Co@CNT-800-2材料抗甲醇稳定性测试曲线;
图7为实施例1中Co@CNT-800-2材料的TEM图。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
一种钴-氮共掺杂复合纳米碳材料,通过采用一步溶剂热法制得钴-氮共掺杂复合纳米材料前驱体后转移至惰性气氛下升温进行碳化制得。
所述的钴-氮共掺杂复合纳米碳材料的制备方法为:
(1)将6mmol三聚氰胺,0.3mmol四水合乙酸钴和9mmol对苯二甲醛分别溶解于30mL,20mL,10mL DMF中并搅拌后转移到反应釜中,在150℃条件下进行溶剂热反应,过夜,取出样品过滤,6000rpm条件下离心并在烘箱中干燥,得到混合均匀的粉末,然后加入100ml丙酮超声洗涤10min,接着用高速离心机离出固体浆料并用去离子水洗涤,重复三次。60℃真空干燥8h,即得钴-氮共掺杂复合纳米材料前驱体。
(2)将200mg钴-氮共掺杂复合纳米材料前驱体的粉末倒进瓷坩埚内,放进管式炉,通氩气,在氩气气氛下升温进行碳化,升温速率为2℃/min,碳化的温度为800℃,保温时间为2h,得到钴-氮共掺杂复合纳米碳材料,采用去离子水洗涤10h,在真空烘箱中60℃干燥8h,得到钴-氮共掺杂复合纳米碳材料,命名为Co@CNT-800-2。
(3)以活性物质Co@CNT-800-2:无水乙醇:Nafion(含水量5wt%)=5mg:350μL:95μL配制浆料,在超声机中超声0.5h,然后涂在玻碳电极上(d=2mm),控制活性物质0.296mg/cm2
(4)以氯化银电极为参比电极,石墨棒为对电极,电解液选0.1mol/L的氢氧化钾溶液,用上海辰华电化学工作站测试其电化学性能。
图1表明:从SEM图看出Co@CNT-800-2是碳纳米管状,从a到b分别为10k,50k放大倍数。
图5表明Co@CNT-800-2具有优异的氧还原催化性能,半波电位与Pt/C相当,表明这种氧还原催化剂材料的催化性能优良。
图6表明:曲线稳定,说明实施例1中的Co@CNT-800-2具有良好的抗甲醇稳定性能。
图7表明:Co@CNT-800-2为碳纳米管。
对比例1
按照实施例1的制备方法进行制备,不同的是,所述三聚氰胺与四水合乙酸钴的摩尔比为1:0,即不加入金属,制备得到的产物命名为Co@CNT-800-0。
图2表明:对比例1中的Co@CNT-800-0,从SEM图看出Co@CNT-800-0是碳纳米片状,从a到b分别为10k,50k放大倍数。
对比例2
按照实施例1的制备方法进行制备,不同的是,所述三聚氰胺与四水合乙酸钴的摩尔比为40:1,制备得到的产物并碳化后命名为Co@CNT-800-1。
图3表明:对比例2中的Co@CNT-800-1,从SEM图看出Co@CNT-800-1催化剂为碳纳米管状,从a到b分别为10k,50k放大倍数。
对比例3
按照实施例1的制备方法进行制备,不同的是,所述三聚氰胺与四水合乙酸钴的摩尔比为10:1,制备得到的产物并碳化后命名为Co@CNT-800-3。
图4表明:对比例1中的Co@CNT-800-3,从SEM图看出Co@CNT-800-3催化剂为碳纳米管状,从a到b分别为10k,50k放大倍数。

Claims (10)

1.一种钴-氮共掺杂复合纳米碳材料,其特征在于,采用一步溶剂热法制得钴-氮共掺杂复合纳米材料前驱体后转移至惰性气氛下升温进行碳化制得。
2.如权利要求1所述的钴-氮共掺杂复合纳米碳材料,其特征在于,所述的钴-氮共掺杂复合纳米材料前驱体是由三聚氰胺、四水合乙酸钴和对苯二甲醛通过溶剂热法制得。
3.权利要求1或2所述的钴-氮共掺杂复合纳米碳材料的制备方法,其特征在于,包括以下步骤:
(1)将三聚氰胺、金属钴盐和对苯二甲醛分别溶解于溶剂中,进行溶剂热反应,过滤,离心并干燥得到粉末,加入丙酮或乙醇混匀,离心分离出固体浆料,洗涤,真空干燥,得到钴-氮共掺杂复合纳米材料前驱体;
(2)将制得的钴-氮共掺杂复合纳米材料前驱体置于惰性气氛下升温进行碳化,最后水洗、真空干燥,得到钴-氮共掺杂复合纳米碳材料。
4.如权利要求3所述的钴-氮共掺杂复合纳米碳材料的制备方法,其特征在于,所述步骤(1)中的三聚氰胺、金属钴盐和对苯二甲醛的摩尔比为20:1:30。
5.如权利要求3所述的钴-氮共掺杂复合纳米碳材料的制备方法,其特征在于,所述步骤(1)中的金属钴盐为四水合乙酸钴,溶剂为DMF,反应温度为150-200℃。
6.如权利要求3所述的钴-氮共掺杂复合纳米碳材料的制备方法,其特征在于,所述步骤(2)中的惰性气氛为氩气氛围。
7.如权利要求3所述的钴-氮共掺杂复合纳米碳材料的制备方法,其特征在于,所述步骤(2)中的碳化的工艺参数为:升温速率2-5℃/min,碳化温度700-900℃,保温时间1-5h。
8.如权利要求3所述的钴-氮共掺杂复合纳米碳材料的制备方法,其特征在于,所述步骤(2)水洗为采用去离子水洗涤6~12h,所述步骤(1)和(2)中的真空干燥为在真空烘箱中60-100℃干燥6-18h。
9.一种非贵金属氧还原催化剂,其特征在于,含有权利要求1或2所述的钴-氮共掺杂复合纳米碳材料。
10.权利要求9所述的非贵金属氧还原催化剂在制备质子交换膜燃料电池的储能材料中的应用。
CN201810926950.5A 2018-08-15 2018-08-15 一种钴-氮共掺杂复合纳米碳材料及其制备方法和应用 Pending CN109192998A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810926950.5A CN109192998A (zh) 2018-08-15 2018-08-15 一种钴-氮共掺杂复合纳米碳材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810926950.5A CN109192998A (zh) 2018-08-15 2018-08-15 一种钴-氮共掺杂复合纳米碳材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN109192998A true CN109192998A (zh) 2019-01-11

Family

ID=64935924

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810926950.5A Pending CN109192998A (zh) 2018-08-15 2018-08-15 一种钴-氮共掺杂复合纳米碳材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109192998A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112331869A (zh) * 2020-11-06 2021-02-05 五邑大学 一种钴氮双掺杂的杂化碳材料及其制备方法
CN112723341A (zh) * 2020-12-15 2021-04-30 南京工业大学 一种双原子掺杂碳纳米管及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103007976A (zh) * 2012-12-11 2013-04-03 湖南科技大学 一种掺杂聚苯胺直接碳化的复合电催化剂、制备方法及应用
CN104953135A (zh) * 2015-04-30 2015-09-30 北京化工大学 一种氮掺杂碳纳米管负载钴基电催化材料及其制备方法
CN105413730A (zh) * 2015-11-25 2016-03-23 青岛大学 一种氮掺杂碳纳米管包裹钴电催化氧还原材料的制备方法
CN106669758A (zh) * 2016-12-26 2017-05-17 华东理工大学 一种氮掺杂多孔碳层包覆非贵金属纳米颗粒氧电极双功能催化剂及其制备方法
CN106887620A (zh) * 2015-12-15 2017-06-23 中国科学院上海高等研究院 钴氮掺杂碳纳米棒催化剂及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103007976A (zh) * 2012-12-11 2013-04-03 湖南科技大学 一种掺杂聚苯胺直接碳化的复合电催化剂、制备方法及应用
CN104953135A (zh) * 2015-04-30 2015-09-30 北京化工大学 一种氮掺杂碳纳米管负载钴基电催化材料及其制备方法
CN105413730A (zh) * 2015-11-25 2016-03-23 青岛大学 一种氮掺杂碳纳米管包裹钴电催化氧还原材料的制备方法
CN106887620A (zh) * 2015-12-15 2017-06-23 中国科学院上海高等研究院 钴氮掺杂碳纳米棒催化剂及其制备方法与应用
CN106669758A (zh) * 2016-12-26 2017-05-17 华东理工大学 一种氮掺杂多孔碳层包覆非贵金属纳米颗粒氧电极双功能催化剂及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112331869A (zh) * 2020-11-06 2021-02-05 五邑大学 一种钴氮双掺杂的杂化碳材料及其制备方法
CN112723341A (zh) * 2020-12-15 2021-04-30 南京工业大学 一种双原子掺杂碳纳米管及其制备方法和应用
CN112723341B (zh) * 2020-12-15 2024-02-27 南京工业大学 一种双原子掺杂碳纳米管及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN110752380A (zh) 一种ZIF-8衍生的中空Fe/Cu-N-C型氧还原催化剂及其制备方法和应用
CN105107536A (zh) 一种多面体形磷化钴电解水制氢催化剂的制备方法
CN107658474B (zh) 一种氮硫共掺杂多孔碳微球及制备方法、用途和氧还原电极
CN106669762A (zh) 一种氮掺杂碳纳米管/Co复合催化剂及其制备与应用
WO2017049466A1 (zh) 复合电极材料、其制备方法及其在全钒液流电池中的应用
CN111569855B (zh) Zif-8/c60复合物衍生非金属电催化剂的制备方法
CN109346735A (zh) 多孔聚合物衍生的碳纳米球氧还原催化剂及其制备与应用
CN110854392A (zh) 一种基于金属有机骨架的谷穗状碳材料及制备和应用
CN112626544B (zh) 多孔泡沫碳担载CoO纳米片电催化剂的微波超快速制备方法
CN112619710A (zh) 一种三嗪基共价网络负载金属单原子的复合材料及其制备方法和应用
CN113117709A (zh) 基于MXene和海藻酸钠制备高效锌空气电池催化剂
CN106111130A (zh) 一种多孔超高比表面积IrO2析氧催化剂及其制备方法
CN111841641B (zh) 氮杂环卡宾修饰镍铱双原子碳基催化剂的制备方法及应用
CN112382514A (zh) 一种全固态柔性超级电容器用NiCo2O4@Ni-Co LDH复合电极的制备方法
CN109860645B (zh) 一种生物胶固氮掺杂多孔碳的制备方法及其应用
CN109873172B (zh) 一种甲醇燃料电池催化剂的制备方法
CN114284515B (zh) 一种三元异质结构FePc/Ti3C2/g-C3N4复合材料的制备方法与应用
CN112164807A (zh) 一种多孔氮硼共掺杂的碳基氧还原催化剂及其制备方法和应用
CN109192998A (zh) 一种钴-氮共掺杂复合纳米碳材料及其制备方法和应用
CN115094440B (zh) 钴/四氧化三铁/碳纳米管/c多孔微球制氢催化剂的制备方法
CN111744527A (zh) 一种基于介孔二氧化硅分子筛的高性能碳基电催化氧还原材料及其制备方法
CN108832144B (zh) 一种多孔聚合物氧还原催化剂及其制备方法和应用
CN110629245B (zh) 氮掺杂碳包覆铜镉硫化物催化剂光电还原co2方法
CN114232024A (zh) 一种电解水析氧用单分散镍铁纳米材料的制备方法
CN114481204A (zh) 一种磷化钴负载贵金属纳米材料的制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20190111

RJ01 Rejection of invention patent application after publication