WO2017049466A1 - 复合电极材料、其制备方法及其在全钒液流电池中的应用 - Google Patents

复合电极材料、其制备方法及其在全钒液流电池中的应用 Download PDF

Info

Publication number
WO2017049466A1
WO2017049466A1 PCT/CN2015/090317 CN2015090317W WO2017049466A1 WO 2017049466 A1 WO2017049466 A1 WO 2017049466A1 CN 2015090317 W CN2015090317 W CN 2015090317W WO 2017049466 A1 WO2017049466 A1 WO 2017049466A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode material
battery
composite electrode
acid
carbonate
Prior art date
Application number
PCT/CN2015/090317
Other languages
English (en)
French (fr)
Inventor
付华峰
姚川
李�浩
孟晶晶
孙红
Original Assignee
许昌学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 许昌学院 filed Critical 许昌学院
Priority to PCT/CN2015/090317 priority Critical patent/WO2017049466A1/zh
Publication of WO2017049466A1 publication Critical patent/WO2017049466A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the technical field of large-scale energy storage batteries, in particular to a composite electrode material, a preparation method thereof and application thereof in an all-vanadium flow battery.
  • the installed capacity of wind power will increase from 30GW in 2010 to 150GW, and the installed capacity of photovoltaic power will increase from 1GW in 2010 to 20GW.
  • renewable energy generation such as wind energy and solar energy produces random fluctuations and is characterized by discontinuity and instability. If these low-grade electric energy are directly connected to the grid, it will bring impact hazard and harmonic pollution to the power grid, which will bring major obstacles to its large-scale application, resulting in waste of resources such as “disposal of electricity” and “waste power”. phenomenon.
  • VFB Vanadium Flow Battery
  • Electrode material is one of the key materials in liquid energy storage batteries, and is also an important factor in determining the power density of the battery.
  • the main electrode material for VFB is carbon fiber felt or graphite felt.
  • the main features of such an electrode material is high porosity, the active area is relatively large, but poor reversibility of the electrode reaction activity and for VO 2+ / VO 2 + redox couple, the power density to be limiting of the battery
  • One of the main factors [Carbon, 2012, 50, 2347-2374].
  • it is usually required to be surface treated or modified.
  • the usual methods mainly include surface oxidation and metal coating [Electrochimica Acta, 1992, 37, 1253-1269].
  • Oxidation treatment is easy to reduce the mechanical properties and electrical conductivity of carbon fiber, and it is easy to cause the decrease of oxygen evolution overpotential of electrode material during charging process; the surface coated metal material is stable in long-term operation of strong acid and strong oxidizing electrolyte system. Sexual problems are difficult to solve, and most of the metals used are precious metals or alloys thereof such as Ir, Pt, Ru, etc., and high cost is also an obstacle to their large-scale application.
  • the object of the present invention is to provide a composite electrode material having a large specific surface area, high catalytic activity, stable cycle performance and low cost, a preparation method thereof and application thereof, thereby improving energy conversion efficiency and power density of an all-vanadium redox flow battery, thereby Solve the problem that carbon fiber fabrics (such as carbon felt, carbon paper and carbon cloth) have low electrocatalytic activity for VO 2+ /VO 2 + redox couples; and other modified electrode materials are difficult to apply on a large scale.
  • the technical solution adopted by the present invention is: a method of preparing a composite electrode material for an all-vanadium redox flow battery, the method comprising the steps of:
  • the pickled material is repeatedly washed with deionized water, and then placed in a vacuum oven to be dried at room temperature for use in assembling the battery.
  • the organic carbon source precursor in the step 1) is cellulose, starch, fructose, maltose, hemicellulose, gum arabic, carrageenan, arabinose, glucose, sucrose, polyvinyl alcohol, polyethylene glycol and polypropylene. At least one of the alcohols.
  • the organic solvent in the step 1) is at least one of methanol, ethanol, n-propanol, isopropanol, acetone, ethylene glycol, and dimethyl sulfoxide.
  • the hard template material in step 2) is calcium carbonate, zinc oxide, sodium carbonate, potassium carbonate, iron carbonate, barium carbonate, barium carbonate, zinc carbonate, magnesium carbonate, lithium carbonate, magnesium hydroxide, zinc hydroxide, and At least one of iron oxide
  • the three-dimensional carbon base material is at least one of carbon fiber felt, graphite fiber felt, carbon fiber paper, graphite fiber paper, foamed carbon, and carbon cloth.
  • the inert gas in the step 4) is at least one of nitrogen, argon and helium.
  • the temperature rising rate of the carbonization process in the step 4) is 1 to 20 ° C / min; the target temperature is 600 to 1500 ° C; and the carbonization time is 0.5 to 20 h.
  • the acid solution in the step 5) is a solution obtained by dissolving at least one of hydrofluoric acid, sulfuric acid, phosphoric acid, nitric acid, formic acid, hydrochloric acid, acetic acid, and benzenesulfonic acid in water.
  • the molar concentration of the acid solution is from 0.1 to 3.0 mol/L.
  • the invention provides a composite electrode material prepared by the method described above.
  • the present invention provides the use of a composite electrode material prepared by the above described method in the electrode material of an all vanadium redox flow battery.
  • the present invention provides a composite electrode material prepared by the method described above, or a material further loaded with other catalysts using the composite electrode material as a carrier in an electrode material of an all-vanadium redox flow battery .
  • the surface of the composite electrode material has a uniform porous morphology, a pore passage, a pore size of micro-nano, a high specific surface area and a porosity, and a surface containing a certain number of oxygen-containing functional groups such as a hydroxyl group and a carboxyl group. Lactone group and the like.
  • the composite electrode material can be used as an electrode material of an all-vanadium redox flow battery, and has strong electrocatalytic activity, which significantly reduces the charge transfer impedance of the VO 2+ /VO 2 + redox reaction electrode and thus The resulting polarization overpotential significantly increases the reversibility of the electrode reaction.
  • the composite electrode prepared by using the composite electrode material can be used for the whole vanadium redox flow battery, greatly improving the energy conversion efficiency and the charge and discharge current density of the battery, thereby improving the power density of the battery, and simultaneously completing the same energy storage task. Reduce the size and manufacturing cost of the battery module. Conducive to the commercialization of all vanadium redox flow batteries.
  • Example 1(a) and (b) are microscopic topography of a novel composite electrode material prepared in Example 1 of the present invention.
  • Example 2 is a cyclic voltammetry curve of a novel composite electrode material prepared in Example 1 of the present invention in a 0.05 mol/L VO 2+ +0.05 mol/L VO 2 + +3 mol/L H 2 SO 4 electrolyte solution.
  • Example 3 is an all-vanadium flow battery assembled using the novel composite electrode material prepared in Example 1 of the present invention at 80 mA/cm 2 , 100 mA/cm 2 , 120 mA/cm 2 , 140 mA/cm 2 and 160 mA/cm 2 . Charge and discharge curves at current density.
  • Example 4 is an all-vanadium flow battery assembled using the novel composite electrode material prepared in Example 2 of the present invention at 40 mA/cm 2 , 60 mA/cm 2 , 80 mA/cm 2 , 100 mA/cm 2 and 120 mA/cm 2 . Charge and discharge curves at current density.
  • the invention provides a method of preparing a composite electrode material for an all vanadium redox flow battery, the method comprising the steps of:
  • the three-dimensional carbon substrate material is placed in a suspension for full impregnation, and the inner surface of the three-dimensional carbon substrate material is uniformly coated, and then the coated three-dimensional carbon substrate material is taken out and placed in a vacuum drying oven at room temperature. Drying;
  • the organic carbon source precursor in step 1) is cellulose, starch, fructose, maltose, hemicellulose, gum arabic, carrageenan, arabinose, glucose, sucrose, polyvinyl alcohol, polyethylene glycol and polypropylene. At least one of the alcohols.
  • the organic solvent in the step 1) is at least one of methanol, ethanol, n-propanol, isopropanol, acetone, ethylene glycol and dimethyl sulfoxide.
  • the hard template material in step 2) is calcium carbonate, zinc oxide, sodium carbonate, potassium carbonate, iron carbonate, barium carbonate, barium carbonate, zinc carbonate, magnesium carbonate, lithium carbonate, magnesium hydroxide, zinc hydroxide and At least one of iron oxides.
  • the hard template material accounts for 5% to 40% of the total mass fraction of the suspension.
  • the three-dimensional carbon base material is at least one of carbon fiber felt, graphite fiber felt, carbon fiber paper, graphite fiber paper, foamed carbon, and carbon cloth.
  • the inert gas in the step 4) is at least one of nitrogen, argon and helium.
  • the temperature rising rate of the carbonization process in step 4) is 1 to 20 ° C / min; the target temperature is 600 to 1500 ° C; and carbonization The time is 0.5 to 20 hours.
  • the acid solution in the step 5) is a solution obtained by dissolving at least one of hydrofluoric acid, sulfuric acid, phosphoric acid, nitric acid, formic acid, hydrochloric acid, acetic acid, and benzenesulfonic acid in water.
  • the amount of the substance of the acid solution is 0.1 to 3.0 mol/L.
  • the invention provides a composite electrode material prepared by the method described above.
  • the present invention provides the use of a composite electrode material prepared by the above described method in the electrode material of an all vanadium redox flow battery.
  • the present invention provides a composite electrode material prepared by the method described above, or a material further loaded with other catalysts using the composite electrode material as a carrier in an electrode material of an all-vanadium redox flow battery .
  • the carbon fiber felt is cut into a size of 30 mm ⁇ 30 mm ⁇ 5 mm, and then placed in the suspension to be fully impregnated so that the inner surface of the carbon fiber felt is uniformly coated, and then the coated carbon fiber felt is taken out and placed Dry in a vacuum oven at room temperature.
  • a hydrochloric acid solution having a concentration of 1 mol/L of the formulation substance is used for pickling the carbonized material to remove the micro-nanoparticle zinc carbonate as a hard template.
  • the acid washed material is repeatedly washed with deionized water, and then placed in a vacuum drying oven and dried at room temperature for use.
  • the morphology of the prepared composite electrode material was characterized by field emission scanning electron microscopy. The results are shown in Fig. 1(a) and (b). As shown in Fig. 1, the surface of the electrode material has a uniform porous structure with a pore size of about 50 to 100 nm, and the pore walls are only a few nanometers, and the pores are penetrated. This structure will give the electrode material a high specific surface area and porosity, thereby facilitating the transfer and adsorption of the electrode active material.
  • Electrochemical performance characterization of the prepared new composite electrode material firstly, the three composite electrodes were prepared as the working electrode, the large-area graphite plate was used as the counter electrode, and the saturated calomel electrode was used as the reference electrode. Electrode system electrolytic cell; then preparing an electrolyte solution: 0.05 mol/L VO 2+ + 0.05 mol/L VO 2 + +3 mol/L H 2 SO 4 , in which cyclic voltammetry scanning is performed to obtain a prepared novel composite electrode material The cyclic voltammetry curve of the VO 2+ /VO 2 + redox couple is shown in Figure 2.
  • the novel composite electrode material is applied to an assembled all-vanadium flow battery.
  • the batteries were assembled in the order of a filter press in the order of the end plate-collector-electrode-separator-electrode-collector-end plate.
  • the separator is a perfluorosulfonic acid membrane. The battery was subjected to charge and discharge tests at different current densities, and the results are shown in FIG.
  • the battery was able to perform normal charge and discharge at a current density of 80 mA/cm 2 , 100 mA/cm 2 , 120 mA/cm 2 , 140 mA/cm 2 , and 160 mA/cm 2 , and the curve was smooth.
  • the energy conversion efficiency of the battery was as high as 86.5%; and even at a high rate of 160 mA/cm 2 , the energy conversion efficiency of the battery was still close to 80%.
  • Example 2 In contrast to Example 1, an all-vanadium flow battery was assembled using the currently untreated untreated carbon fiber felt of the same size as an electrode material. The assembly of the battery and the materials other than the working electrode were the same as in Example 1, and also at current densities of 80 mA/cm 2 , 100 mA/cm 2 , 120 mA/cm 2 , 140 mA/cm 2 and 160 mA/cm 2 . Charge and discharge the battery under test. The results show that, at a current density of 80mA / cm 2, the battery energy conversion efficiency was 82.2%; and high-rate conditions at 160mA / cm 2, the battery energy conversion efficiency of only 73.5%.
  • the carbon fiber paper is cut into a size of 30 mm ⁇ 30 mm, and the thickness thereof is about 200 ⁇ m. Then, it was placed in a suspension and fully impregnated so that the inner surface of the carbon fiber paper was uniformly coated, and then the coated carbon fiber paper was taken out and placed in a vacuum drying oven to be dried at room temperature.
  • a nitric acid solution having a concentration of 0.5 mol/L of the formulated material is used for pickling the carbonized material to remove the micro-nanoparticle magnesium carbonate as a hard template.
  • the acid washed material is repeatedly washed with deionized water, and then placed in a vacuum drying oven and dried at room temperature for use.
  • the novel composite electrode material is applied to an assembled all-vanadium flow battery.
  • the batteries were assembled in the order of a filter press in the order of the end plate-collector-electrode-separator-electrode-collector-end plate.
  • the separator is a perfluorosulfonic acid membrane.
  • the battery was tested for charge and discharge at different current densities, and the results are shown in FIG. The results showed that the battery was capable of normal charge and discharge at a current density of 40 mA/cm 2 , 60 mA/cm 2 , 80 mA/cm 2 , 100 mA/cm 2 and 120 mA/cm 2 , and the curve was smooth.
  • the energy conversion efficiency of the battery is as high as 81.4%; and even at a high rate of 120 mA/cm 2 , the energy conversion efficiency of the battery can reach 70.9%.
  • an all-vanadium flow battery was assembled using the currently untreated untreated carbon fiber paper of the same size as an electrode material.
  • the assembly of the battery and the materials other than the working electrode were the same as in Example 1, and also at current densities of 40 mA/cm 2 , 60 mA/cm 2 , 80 mA/cm 2 , 100 mA/cm 2 and 120 mA/cm 2 .
  • sucrose as a precursor of an organic carbon source was dissolved in water and acetone in a total volume of 100 mL.
  • the volume ratio of water to acetone is 4:1.
  • the graphite fiber paper is cut into a size of 30 mm ⁇ 30 mm, and the thickness thereof is about 250 ⁇ m. Then, it was sufficiently impregnated in a suspension so that the inner surface of the graphite fiber paper was uniformly coated, and then the coated graphite fiber paper was taken out and placed in a vacuum drying oven to be dried at room temperature.
  • a hydrochloric acid solution having a concentration of 1.5 mol/L of the formulated substance was used for pickling the carbonized material to remove the micro-nanoparticle calcium carbonate as a hard template.
  • the pickled material is repeatedly washed with deionized water, and then placed in a vacuum drying oven and dried at room temperature for use.
  • the novel composite electrode material is applied to an assembled all-vanadium flow battery.
  • the batteries were assembled in the order of a filter press in the order of the end plate-collector-electrode-separator-electrode-collector-end plate.
  • the separator is a perfluorosulfonic acid membrane.
  • the battery was tested for charge and discharge at different current densities. The results showed that the battery was capable of normal charge and discharge at a current density of 40 mA/cm 2 , 60 mA/cm 2 , 80 mA/cm 2 , 100 mA/cm 2 and 120 mA/cm 2 , and the curve was smooth.
  • the energy conversion efficiency of the battery is as high as 83.1%; and at a high rate of 120 mA/cm 2 , the energy conversion efficiency of the battery can still reach 72.4%.
  • an all-vanadium flow battery was assembled using the currently untreated untreated graphite fiber paper of the same size as an electrode material.
  • the assembly of the battery and the materials other than the working electrode were the same as in Example 1, and also at current densities of 40 mA/cm 2 , 60 mA/cm 2 , 80 mA/cm 2 , 100 mA/cm 2 and 120 mA/cm 2 .
  • lithium carbonate was added as a hard template to the above solution, and the lithium carbonate had a particle size of about 300 to 500 nm. They are then placed in an ultrasonic bath to oscillate until a uniformly dispersed suspension is formed.
  • the foamed carbon is cut into a size of 30 mm ⁇ 30 mm ⁇ 5 mm, and the inner pore size thereof is about 100 to 200 ⁇ m, and then the foamed carbon is sufficiently impregnated in the suspension to uniformly coat the inner surface thereof, and then taken out. It was placed in a vacuum oven and dried at room temperature.
  • a sulfuric acid solution having a concentration of 2 mol/L of the formulation substance is used for pickling the carbonized material to remove the micro-nanoparticle lithium carbonate as a hard template.
  • the acid washed material is repeatedly washed with deionized water, and then placed in a vacuum drying oven and dried at room temperature for use.
  • the novel composite electrode material is applied to an assembled all-vanadium flow battery.
  • the batteries were assembled in the order of a filter press in the order of the end plate-collector-electrode-separator-electrode-collector-end plate.
  • the separator is a perfluorosulfonic acid membrane.
  • the battery was tested for charge and discharge at different current densities. The results showed that the battery was capable of normal charge and discharge at current densities of 40 mA/cm 2 , 60 mA/cm 2 , 80 mA/cm 2 , 100 mA/cm 2 and 120 mA/cm 2 , and the curve was smooth.
  • the energy conversion efficiency of the battery reaches 85.7%; and at a high rate of 120 mA/cm 2 , the energy conversion efficiency of the battery can still reach 78.2%.
  • an all-vanadium flow battery was assembled using the currently untreated untreated foamed carbon of the same size as an electrode material.
  • the assembly of the battery and the materials other than the working electrode were the same as in Example 1, and also at current densities of 40 mA/cm 2 , 60 mA/cm 2 , 80 mA/cm 2 , 100 mA/cm 2 and 120 mA/cm 2 .
  • the graphite fiber felt is cut into a size of 30 mm ⁇ 30 mm ⁇ 5 mm, and then placed in a suspension to be fully impregnated, so that the inner surface of the graphite fiber felt is uniformly coated, and then the coated graphite fiber felt is taken out, and It was placed in a vacuum oven and dried at room temperature.
  • a phosphoric acid solution having a concentration of 1.2 mol/L of the formulated material was subjected to pickling of the carbonized material to remove the micro-nanoparticle zinc oxide as a hard template.
  • the acid washed material is repeatedly washed with deionized water, and then placed in a vacuum drying oven and dried at room temperature for use.
  • the novel composite electrode material is applied to an assembled all-vanadium flow battery.
  • the batteries were assembled in the order of a filter press in the order of the end plate-collector-electrode-separator-electrode-collector-end plate.
  • the separator is a perfluorosulfonic acid membrane.
  • the battery was tested for charge and discharge at different current densities. The results showed that the battery was able to perform normal charge and discharge at a current density of 40 mA/cm 2 , 60 mA/cm 2 , 80 mA/cm 2 , 100 mA/cm 2 and 120 mA/cm 2 , and the curve was smooth.
  • the energy conversion efficiency of the battery reaches 89.6%; and at a high rate of 120 mA/cm 2 , the energy conversion efficiency of the battery can still reach 82.6%.
  • Example 5 an all-vanadium flow battery was assembled using an untreated conventionally sized graphite fiber mat of the same size as an electrode material.
  • the assembly of the battery and the materials other than the electrodes were the same as in Example 1, and also at current densities of 40 mA/cm 2 , 60 mA/cm 2 , 80 mA/cm 2 , 100 mA/cm 2 and 120 mA/cm 2 .
  • the carbon cloth was cut into a size of 30 mm ⁇ 30 mm, and the thickness thereof was about 250 ⁇ m. Then, it was placed in a suspension and fully impregnated so that the inner surface of the carbon cloth was uniformly coated, and then the coated carbon cloth was taken out and placed in a vacuum drying oven to be dried at room temperature.
  • a formic acid solution having a concentration of 0.5 mol/L of the formulated material is used for pickling the carbonized material to remove the micro-nanoparticle magnesium hydroxide as a hard template.
  • the pickled material is repeatedly washed with deionized water, and then placed in a vacuum drying oven and dried at room temperature for use.
  • the novel composite electrode material is applied to an assembled all-vanadium flow battery.
  • the batteries were assembled in the order of a filter press in the order of the end plate-collector-electrode-separator-electrode-collector-end plate.
  • the separator is a perfluorosulfonic acid membrane.
  • the battery was tested for charge and discharge at different current densities. The results showed that the battery was capable of normal charge and discharge at a current density of 40 mA/cm 2 , 60 mA/cm 2 , 80 mA/cm 2 , 100 mA/cm 2 and 120 mA/cm 2 , and the curve was smooth.
  • the energy conversion efficiency of the battery reached 75.6%; and at a high magnification of 120 mA/cm 2 , the energy conversion efficiency of the battery was 65.8%.
  • Example 6 an all-vanadium flow battery was assembled using the currently used untreated carbon cloth of the same size as an electrode material.
  • the assembly of the battery and the materials other than the working electrode were the same as in Example 1, and also at current densities of 40 mA/cm 2 , 60 mA/cm 2 , 80 mA/cm 2 , 100 mA/cm 2 and 120 mA/cm 2 .
  • the carbon fiber felt is cut into a size of 30 mm ⁇ 30 mm ⁇ 5 mm, and then placed in a suspension to be fully impregnated so that the inner surface of the carbon fiber felt is uniformly coated, and then the coated carbon fiber felt is taken out and placed in a vacuum. Dry in a dry box at room temperature.
  • the acid washed material is repeatedly washed with deionized water, and then placed in a vacuum drying oven and dried at room temperature for use.
  • the novel composite electrode material is applied to an assembled all-vanadium flow battery.
  • the batteries were assembled in the order of a filter press in the order of the end plate-collector-electrode-separator-electrode-collector-end plate.
  • the membrane is a perfluorosulfonic acid membrane.
  • the battery was tested for charge and discharge at different current densities. The results showed that the battery was capable of normal charge and discharge at a current density of 40 mA/cm 2 , 60 mA/cm 2 , 80 mA/cm 2 , 100 mA/cm 2 and 120 mA/cm 2 , and the curve was smooth.
  • the energy conversion efficiency of the battery reaches 88.3%; and at a high rate of 120 mA/cm 2 , the energy conversion efficiency of the battery can still reach 83.5%.
  • Example 7 an all-vanadium flow battery was assembled using the currently untreated untreated carbon fiber felt of the same size as an electrode material.
  • the assembly of the battery and the materials other than the working electrode were the same as in Example 1, and also at current densities of 40 mA/cm 2 , 60 mA/cm 2 , 80 mA/cm 2 , 100 mA/cm 2 and 120 mA/cm 2 .
  • the carbon cloth was cut into a size of 30 mm ⁇ 30 mm, and the thickness thereof was about 250 ⁇ m. Then, it was placed in a suspension and fully impregnated so that the inner surface of the carbon cloth was uniformly coated, and then the coated carbon cloth was taken out and placed in a vacuum drying oven to be dried at room temperature.
  • a benzenesulfonic acid solution having a concentration of 2.5 mol/L of the formulated material was subjected to pickling of the carbonized material to remove the micro-nanoparticle iron oxide as a hard template.
  • the acid washed material is repeatedly washed with deionized water, and then placed in a vacuum drying oven and dried at room temperature for use.
  • the novel composite electrode material is applied to an assembled all-vanadium flow battery.
  • the batteries were assembled in the order of a filter press in the order of the end plate-collector-electrode-separator-electrode-collector-end plate.
  • the separator is a perfluorosulfonic acid membrane.
  • the battery was tested for charge and discharge at different current densities. The results showed that the battery was capable of normal charge and discharge at a current density of 40 mA/cm 2 , 60 mA/cm 2 , 80 mA/cm 2 , 100 mA/cm 2 and 120 mA/cm 2 , and the curve was smooth.
  • the energy conversion efficiency of the battery reached 79.5%; and at a high magnification of 120 mA/cm 2 , the energy conversion efficiency of the battery was 67.6%.
  • an all-vanadium flow battery was assembled using an untreated conventionally sized carbon cloth of the same size as an electrode material.
  • the assembly of the battery and the materials other than the electrodes were the same as in Example 1, and also at current densities of 40 mA/cm 2 , 60 mA/cm 2 , 80 mA/cm 2 , 100 mA/cm 2 and 120 mA/cm 2 .
  • the carbon fiber paper is cut into a size of 30 mm ⁇ 30 mm, and the thickness thereof is about 200 ⁇ m. Then, it was placed in a suspension and fully impregnated so that the inner surface of the carbon fiber paper was uniformly coated, and then the coated carbon fiber paper was taken out and placed in a vacuum drying oven to be dried at room temperature.
  • a hydrofluoric acid solution having a concentration of 1.5 mol/L of the formulated material was subjected to pickling of the carbonized material to remove the micro-nanoparticle strontium carbonate as a hard template.
  • the acid washed material is repeatedly washed with deionized water, and then placed in a vacuum drying oven and dried at room temperature for use.
  • the novel composite electrode material is applied to an assembled all-vanadium flow battery.
  • the batteries were assembled in the order of a filter press in the order of the end plate-collector-electrode-separator-electrode-collector-end plate.
  • the separator is a perfluorosulfonic acid membrane.
  • the battery was tested for charge and discharge at different current densities. The results showed that the battery was capable of normal charge and discharge at a current density of 40 mA/cm 2 , 60 mA/cm 2 , 80 mA/cm 2 , 100 mA/cm 2 and 120 mA/cm 2 , and the curve was smooth.
  • the energy conversion efficiency of the battery reaches 85.2%; and at a high rate of 120 mA/cm 2 , the energy conversion efficiency of the battery can still reach 77.8%.
  • an all-vanadium flow battery was assembled using the currently untreated untreated carbon fiber paper of the same size as an electrode material.
  • the assembly of the battery and the materials other than the working electrode were the same as in Example 1, and also at current densities of 40 mA/cm 2 , 60 mA/cm 2 , 80 mA/cm 2 , 100 mA/cm 2 and 120 mA/cm 2 .
  • the carbon cloth was cut into a size of 30 mm ⁇ 30 mm, and the thickness thereof was about 250 ⁇ m. Then, it was placed in a suspension and fully impregnated so that the inner surface of the carbon cloth was uniformly coated, and then the coated carbon cloth was taken out and placed in a vacuum drying oven to be dried at room temperature.
  • a hydrochloric acid solution having a concentration of 0.8 mol/L of the formulated material was subjected to pickling of the carbonized material to remove the micro-nanoparticle strontium carbonate as a hard template.
  • the acid washed material is repeatedly washed with deionized water, and then placed in a vacuum drying oven and dried at room temperature for use.
  • the novel composite electrode material is applied to an assembled all-vanadium flow battery.
  • the batteries were assembled in the order of a filter press in the order of the end plate-collector-electrode-separator-electrode-collector-end plate.
  • the separator is a perfluorosulfonic acid membrane.
  • the battery was tested for charge and discharge at different current densities. The results showed that the battery was capable of normal charge and discharge at a current density of 40 mA/cm 2 , 60 mA/cm 2 , 80 mA/cm 2 , 100 mA/cm 2 and 120 mA/cm 2 , and the curve was smooth.
  • the energy conversion efficiency of the battery reached 80.1%; and at a high magnification of 120 mA/cm 2 , the energy conversion efficiency of the battery was 70.3%.
  • an all-vanadium flow battery was assembled using an untreated conventionally sized carbon cloth of the same size as an electrode material.
  • the assembly of the battery and the materials other than the working electrode were the same as in Example 1, and also at current densities of 40 mA/cm 2 , 60 mA/cm 2 , 80 mA/cm 2 , 100 mA/cm 2 and 120 mA/cm 2 .

Abstract

一种复合电极材料、其制备方法及其在全钒液流电池中的应用。该制备方法包括以下步骤:将有机碳源前驱体溶于水或有机溶剂或其混合物中;加入一定量的微纳米球形颗粒材料作为硬模板;将三维碳基底材料置于悬浮液中充分浸渍,然后将其置于管式炉里进行碳化,最后将材料酸洗以除去作为硬模板的颗粒,并进行反复水洗、干燥。该复合电极材料的表面呈均匀多孔的形貌,孔道贯通,孔径尺寸为微纳米级别,具有较高的比表面积和孔隙率,同时表面含有一定数量的含氧官能团如羟基、羧基、内酯基等。该复合电极材料可同时用作全钒液流电池电极材料,具有较强的电催化活性,明显降低了VO 2+/VO 2 +氧化还原电对电极反应的电荷传递阻抗及由此产生的极化过电位。

Description

复合电极材料、其制备方法及其在全钒液流电池中的应用 技术领域
本发明涉及大规模储能电池技术领域,尤其涉及一种复合电极材料、其制备方法及其在全钒液流电池中的应用。
背景技术
随着化石燃料的过度消耗和环境污染的日益加剧,各国政府正不断加大对风能和太阳能等可再生能源的投资研发力度,力争在化石能源耗竭之前找到行之有效的替代者。美国能源信息署推测,到2030年美国约40%的电力供应量将来自于可再生能源发电[钱伯章,美国可再生能源利用现状及预测,环球能源网,WWW.worldenergy.com.cn,2007-8.24]。2009年,我国政府在《中国新能源产业振兴规划》中向世界承诺,到2020年将使可再生能源消费占全部能源消费的15%[国家能源局公告,www.nea.gov.cn/2012-02/10/c_131402482.htm,2013-03-22]。届时,风电装机容量将由2010年的30GW上升至150GW,光伏发电装机容量也由2010年的1GW上升至20GW。然而,受季节、气候、昼夜温差等随机性变量的影响,风能、太阳能等可再生能源发电产生随机性波动而具有不连续、不稳定的特点。如果将这些低品位的电能直接并网,将会给电网带来冲击危害和谐波污染,为其大规模应用带来重大障碍,造成大面积“弃电”、“废电”等资源浪费的现象。据不完全统计数据,仅2012年,我国所浪费的风电资源已超过20TWh[http://finance.sina.com.cn/roll/20141119/205420864737.shtml]。这在电力供应日益紧张的今天,却造成风电和光伏发电极不合理的“相对过剩”以及相关企业的运营停滞和大面积亏损。
解决该问题的有效方案是在“可再生能源发电”和“电网”之间引入起规整、平滑作用的储能技术作为中介,以改变传统“即发即用”的电力供应模式。首先将低品位的电能存储起来,经整合后再以平滑、稳定的方式进行并网输出。在诸多储能技术中,全钒液流储能电池(Vanadium Flow Battery,VFB)因具有以下诸多优点:1)能量效率高、运行安全稳定、循环寿命长(充放电循环达13000次以上,使用寿命超过20年);2)选址自由,功率和容量相互独立,***设计灵活;3)无污染、电解液容易再生、维护简单及运营成本低等,被认为是用来解决太阳能、 风能等可再生能源发电***随机性和间歇性非稳态缺陷问题的最有前景的技术,在可再生能源发电和智能电网建设中有着重大需求[Journal of the Electrochemical Society,2011,158,R55]。除此以外,该项技术在电网“削峰填谷”、不间断应急电源、电动车充电站、通讯基站以及军事领域均有着重要的潜在应用价值。在美国2012年制定的储能技术发展规划中,全钒液流储能电池名列优先发展技术的首位。此项技术最早于1985年由澳大利亚新南威尔士大学的Marria Kacos教授及其合作者提出,他们采用不同价态的钒离子VO2+/VO2 +,V2+/V3+分别作为正、负极活性物质,在很大程度上避免了正负极电解质溶液的交叉污染。电池的标准电动势为1.26V,工作原理为:
正极:
Figure PCTCN2015090317-appb-000001
负极:
Figure PCTCN2015090317-appb-000002
目前已有若干个示范项目在不同地域运行,其核心技术主要被日本、美国、澳大利亚、加拿大和欧洲等发达国家所掌握。我国后来居上,自上世纪九十年代也开始进行各项技术攻关并积极推行示范运行,主要研究单位有中科院大连化学物理研究所、清华大学、中南大学等科研院校以及大连融科储能、北京普能等企业。近期,由中科院大连化学物理研究所研制的规模为5MW/10MWh的应用示范工程通过辽宁电力勘测设计院验收,成为迄今为止全球最大规模的全钒液流储能电池***。然而,要实现商业化普及应用,全钒液流储能技术电池还存在一系列问题亟待解决。提高全钒液流电流的充放电电流密度,减小电池模块的尺寸,进而降低生产制造成本是近年来该领域十分重要的研究方向。目前已公开报道全钒液流电池***在保持能量转换效率高于80%的条件下,其充放电电流密度大约为80~120mA/cm2。如果能够将该值提升至160~200mA/cm2而不降低能量转换效率,则可将电池模块的功率密度提高将近一倍,这必将大大推动全钒液流储能电池的商业化进程。
电极材料是液流储能电池中的关键材料之一,也是决定电池功率密度的重要因素。目前VFB用的主要电极材料为碳纤维毡或石墨毡。这种电极材料的主要特点是孔隙率高,活性面积相对较大,但其对于VO2+/VO2 +氧化还原电对的电极反应活性及可逆性较差,而成为限制电池功率密度提高的主要因素之一[Carbon,2012,50,2347-2374]。为了提高碳纤维材料的性能,通常需对其进行表面处理或修 饰,常用的方法主要包括表面氧化和金属包覆[Electrochimica Acta,1992,37,1253-1269]。氧化处理容易降低碳纤维的机械性能和导电性能,并且容易造成电极材料在充电过程中析氧过电位的下降;表面包覆的金属材料在强酸性、强氧化性电解液体系的长期运行中的稳定性问题难以解决,且所用的金属大多数为贵金属或其合金如Ir、Pt、Ru等,高成本也是其大规模应用的障碍。近年来,若干种新型的碳材料如碳纳米管[Carbon,2014,9,3463-3470]、石墨烯[Carbon,2014,9,693-700]、掺氮介孔碳[Journal of Power Sources,2010,195,4375-4379]、碳纳米壁[Nano Energy,2012,1,833-839]也被报道用作VFB正极材料。但这些材料的制备过程较为复杂,且均呈粉末状,难以直接利用(或使用大量的粘结剂使其负载在碳纤维毡基底上而降低其电子传导性能)。因此,开发一种比表面积大、催化活性高、循环性能稳定且价格低廉的电极材料仍是该领域中重要的研究课题。
发明内容
本发明的目的在于提供一种比表面积大、催化活性高、循环性能稳定且价格低廉的复合电极材料、其制备方法及其应用,以提高全钒液流电池的能量转化效率和功率密度,从而解决碳纤维织物(如碳毡、碳纸和碳布等)对于VO2+/VO2 +氧化还原电对的电催化活性低;以及其它修饰电极材料难以大规模应用的问题。
为了实现以上目的,在一个方面,本发明采用的技术方案是:一种制备用于全钒液流电池的复合电极材料的方法,该方法包括以下步骤:
1)将有机碳源前驱体溶于水、或有机溶剂、或水和有机溶剂的混合物中;
2)向上述溶液中加入微纳米颗粒状无机材料作为硬模板,然后将它们置于超声波洗槽中进行震荡,直至形成分散均匀的悬浮液;
3)将三维碳基底材料置于该悬浮液中进行充分浸渍,以使三维碳基底材料的内部表面被均匀包覆,然后将包覆的三维碳基底材料取出,并且放入真空干燥箱内在室温下进行干燥;
4)将以上经充分干燥的材料置于程序升温管式炉中,并向所述炉中通入惰性气体,然后将炉温升高至目标温度,从而对有机碳源前驱体进行碳化,然后将该炉自然冷却至室温;
5)使用酸溶液对经碳化的材料进行酸洗,以除去作为硬模板的微纳米颗粒状材料;
6)使用去离子水对经酸洗的材料进行反复洗涤,然后将其放入真空干燥箱内在室温下进行干燥,以备组装电池使用。
进一步地,步骤1)中的有机碳源前驱体为纤维素、淀粉、果糖、麦芽糖、半纤维素、***胶、卡拉胶、***糖、葡萄糖、蔗糖、聚乙烯醇、聚乙二醇和聚丙烯醇中的至少一种。
进一步地,步骤1)中的有机溶剂为甲醇、乙醇、正丙醇、异丙醇、丙酮、乙二醇和二甲亚砜中的至少一种。
进一步地,步骤2)中的硬模板材料为碳酸钙、氧化锌、碳酸钠、碳酸钾、碳酸铁、碳酸钡、碳酸锶、碳酸锌、碳酸镁、碳酸锂、氢氧化镁、氢氧化锌和氧化铁中的至少一种
进一步地,所述三维碳基底材料为碳纤维毡、石墨纤维毡、碳纤维纸、石墨纤维纸、泡沫碳和碳布中的至少一种。
进一步地,步骤4)中的所述惰性气体为氮气、氩气和氦气中的至少一种。
进一步地,步骤4)中的碳化过程的升温速率为1~20℃/min;所述目标温度为600~1500℃;并且碳化时间为0.5~20h。
进一步地,步骤5)中的酸溶液是将氢氟酸、硫酸、磷酸、硝酸、甲酸、盐酸、乙酸和苯磺酸中的至少一种溶于水中而获得的溶液。
进一步地,该酸溶液的摩尔浓度为0.1~3.0mol/L。
在另一个方面,本发明提供了一种通过以上所述的方法制备的复合电极材料。
在另一个方面,本发明提供了一种通过以上所述的方法制备的复合电极材料在全钒液流电池的电极材料中的应用。
在又一个方面,本发明提供了一种通过以上所述的方法制备的复合电极材料,或以该复合电极材料为载体进一步负载有其它催化剂的材料在全钒液流电池的电极材料中的应用。
通过本发明的方法制备的复合电极材料具有以下有益效果:
(1)该复合电极材料的表面呈均匀多孔的形貌,孔道贯通,孔径尺寸为微纳米级别,具有较高的比表面积和孔隙率,同时表面含有一定数量的含氧官能团如羟基、羧基、内酯基等。
(2)该复合电极材料可用作全钒液流电池的电极材料,具有较强的电催化活性,明显降低了VO2+/VO2 +氧化还原电对电极反应的电荷传递阻抗及由此产生的极化过电位,显著提高了电极反应的可逆性。
(3)在使用该复合电极材料制备复合电极的过程中,不需要黏结剂,并且制备的复合电极的导电性能好;制备过程简单易行且成本低廉,易于实现工业化生产。
(4)使用该复合电极材料制备的复合电极可用于全钒液流电池,大幅提高电池的能量转化效率及充放电电流密度,进而提高电池的功率密度,在完成相同储能任务的同时,能减小电池模块的体积和生产制造成本。有利于促进全钒液流电池的商业化。
附图说明
图1(a)和(b)为本发明的实施例1中所制备的新型复合电极材料的微观形貌。
图2为本发明的实施例1中所制备的新型复合电极材料在0.05mol/L VO2++0.05mol/L VO2 ++3mol/L H2SO4电解质溶液中的循环伏安曲线。
图3为使用本发明的实施例1中所制备的新型复合电极材料组装的全钒液流电池在80mA/cm2、100mA/cm2、120mA/cm2、140mA/cm2和160mA/cm2的电流密度下的充放电曲线。
图4为使用本发明的实施例2中所制备的新型复合电极材料组装的全钒液流电池在40mA/cm2、60mA/cm2、80mA/cm2、100mA/cm2和120mA/cm2的电流密度下的充放电曲线。
具体实施方式
为了使本发明的目的及优点更加清楚,现结合实施例对本发明所要求保护的技术方案作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用来解释本发明而并不用于限定本发明。
在本发明的一个实施方式中,本发明提供了一种制备用于全钒液流电池的复合电极材料的方法,该方法包括如下步骤:
1)将有机碳源前驱体溶于水、或有机溶剂、或水和有机溶剂的混合物中;
2)向上述溶液中加入微纳米颗粒状材料作为硬模板,并将它们置于超声波洗槽中进行震荡,直至形成分散均匀的悬浮液;
3)将三维碳基底材料置于悬浮液中进行充分浸渍,并使三维碳基底材料的内部表面被均匀包覆,然后将包覆的三维碳基底材料取出,并放入真空干燥箱内在室温下进行干燥;
4)将以上经充分干燥的材料置于程序升温管式炉中,并向炉中通入惰性气体,然后将炉的温度升高至目标温度,以对有机碳源前驱体进行碳化,然后将所述炉自然冷却至室温;
5)使用酸溶液对经碳化的材料进行酸洗,以除去作为硬模板的微纳米颗粒状材料;
6)使用去离子水对经酸洗的材料进行反复洗涤,然后将其放入真空干燥箱内在室温下干燥备用。
优选地,步骤1)中的有机碳源前驱体为纤维素、淀粉、果糖、麦芽糖、半纤维素、***胶、卡拉胶、***糖、葡萄糖、蔗糖、聚乙烯醇、聚乙二醇和聚丙烯醇中的至少一种。
优选地,步骤1)中的有机溶剂为甲醇、乙醇、正丙醇、异丙醇、丙酮、乙二醇和二甲亚砜中的至少一种。
优选地,步骤2)中的硬模板材料为碳酸钙、氧化锌、碳酸钠、碳酸钾、碳酸铁、碳酸钡、碳酸锶、碳酸锌、碳酸镁、碳酸锂、氢氧化镁、氢氧化锌和氧化铁中的至少一种。所述硬模板材料占悬浮液总质量分数的5%~40%。
优选地,在制备用于全钒液流电池的复合电极材料的方法中,该三维碳基底材料为碳纤维毡、石墨纤维毡、碳纤维纸、石墨纤维纸、泡沫碳和碳布中的至少一种。
优选地,在制备用于全钒液流电池的复合电极材料的方法中,步骤4)中的所述惰性气体为氮气、氩气和氦气中的至少一种。
优选地,在制备用于全钒液流电池的复合电极材料的方法中,步骤4)中的碳化过程的升温速率为1~20℃/min;所述目标温度为600~1500℃;并且碳化时间为0.5~20h。
优选地,步骤5)中的酸溶液是将氢氟酸、硫酸、磷酸、硝酸、甲酸、盐酸、乙酸和苯磺酸中的至少一种溶于水中而获得的溶液。
优选地,在制备用于全钒液流电池的复合电极材料的方法中,该酸溶液的物质的量浓度为0.1~3.0mol/L。
在另一个方面,本发明提供了一种通过以上所述的方法制备的复合电极材料。
在另一个方面,本发明提供了一种通过以上所述的方法制备的复合电极材料在全钒液流电池的电极材料中的应用。
在又一个方面,本发明提供了一种通过以上所述的方法制备的复合电极材料,或以该复合电极材料为载体进一步负载有其它催化剂的材料在全钒液流电池的电极材料中的应用。
实施例1
在本实施例中,在制备用于全钒液流电池的复合电极材料时,采用如下步骤:
1)将作为有机碳源前驱体的麦芽糖10g溶于总体积为100mL的水和乙醇中,其中水与乙醇的体积比为1:1。
2)向上述溶液中加入20g的微纳米颗粒状碳酸锌作为硬模板,碳酸锌的颗粒尺寸约为50~100nm,然后将它们置于超声波洗槽中进行震荡,直至形成分散均匀的悬浮液。
3)将碳纤维毡裁剪成30mm×30mm×5mm大小,然后将其置入该悬浮液中进行充分浸渍,以使碳纤维毡的内部表面被均匀包覆,然后将包覆的碳纤维毡取出,并放入真空干燥箱内在室温下进行干燥。
4)将以上经充分干燥的材料置于程序升温管式炉中,然后向炉中通入氮气作为保护气,在升温前首先对管式炉进行吹扫以置换管中的空气,然后以5℃/min的升温速率将炉的温度升高至1000℃并保温3h,以对该材料进行碳化,然后将所述炉自然冷却至室温。
5)配制物质的量浓度为1mol/L的盐酸溶液用于对经碳化的材料进行酸洗,以便除去作为硬模板的微纳米颗粒碳酸锌。
6)使用去离子水对经酸洗的材料进行反复洗涤,然后将其放入真空干燥箱内在室温下干燥,备用。
对制备好的新型复合电极材料进行形貌表征:采用场发射扫描电子显微镜观察其微观形貌,结果如图1(a)和(b)所示。如图1所示,电极材料的表面呈均匀的多孔结构,孔径尺寸约为50~100nm,而孔壁仅为几纳米,孔道贯通。这种结构将使电极材料具有较高的比表面积和孔隙率,因而便于电极活性物质的传递和吸附。
对制备好的新型复合电极材料进行电化学性能表征:首先构造由以所制备的新型复合电极材料为工作电极、以大面积石墨板为对电极、以饱和甘汞电极为参比电极组成的三电极体系电解池;然后配制电解质溶液:0.05mol/L VO2++0.05mol/L VO2 ++3mol/L H2SO4,在其中进行循环伏安扫描从而得到所制备的新型复合电极材料对于VO2+/VO2 +氧化还原电对的循环伏安曲线,如图2所示。通过氧化和还原过程的峰电流值的大小及比值、氧化和还原峰的电位差、以及氧化和还原峰电流随扫描速率的变化关系,可以看出,新型复合电极材料对于VO2+/VO2 +氧化还原电对均具有良好的电催化活性。在扫描速度为10mV/s时,VO2+/VO2 +氧化还原电对的氧化和还原峰的电位差仅为约100mV,而且随着扫描速率的增加,氧化和还原峰的位置基本不变,这表明其电极过程具有良好的可逆性。
此外,在本实施例中,将该新型复合电极材料应用于组装全钒液流电池。电池按照端板-集流板-电极-隔膜-电极-集流板-端板的顺序以压滤机的方式组装。其中,隔膜采用全氟磺酸膜。将该电池在不同的电流密度下进行充放电测试,结果 如图3所示。结果表明,该电池在80mA/cm2、100mA/cm2、120mA/cm2、140mA/cm2和160mA/cm2的电流密度下能够进行正常的充放电,且曲线平滑。在80mA/cm2的电流密度下,电池的能量转换效率高达86.5%;并且即使在160mA/cm2的高倍率条件下,电池的能量转换效率仍接近于80%。
对比例1
与实施例1相对比,使用目前常用的未经处理的相同尺寸的碳纤维毡作为电极材料来组装全钒液流电池。该电池的组装方式以及除工作电极以外的其它材料均与实施例1相同,并同样在80mA/cm2、100mA/cm2、120mA/cm2、140mA/cm2和160mA/cm2的电流密度下对电池进行充放电测试。结果显示,在80mA/cm2的电流密度下,电池的能量转换效率为82.2%;而在160mA/cm2的高倍率条件下,电池的能量转换效率仅为73.5%。
实施例2
在本实施例中,在制备用于全钒液流电池的复合电极材料时,采用如下步骤:
1)将作为有机碳源前驱体的5g果糖溶于总体积为100mL的水和二甲亚砜中,其中水与二甲亚砜的体积比为5:1。
2)向上述溶液中加入15g微纳米颗粒状碳酸镁作为硬模板,碳酸镁的颗粒尺寸约为100~300nm。然后将它们置于超声波洗槽中进行震荡,直至形成分散均匀的悬浮液。
3)将碳纤维纸裁剪成30mm×30mm大小,其厚度约为200μm。然后将其置入悬浮液中充分浸渍,以使碳纤维纸的内部表面被均匀包覆,然后将经包覆的碳纤维纸取出,并放入真空干燥箱内在室温下干燥。
4)将以上经充分干燥的材料置于程序升温管式炉中,并向炉中通入氮气作为保护气,在升温前首先对管式炉进行吹扫以置换管中的空气,然后以10℃/min的升温速率将炉的温度升高至700℃并保温4h,从而对该材料进行碳化,然后将炉自然冷却至室温。
5)配制物质的量浓度为0.5mol/L的硝酸溶液用于对经碳化的材料进行酸洗,以除去作为硬模板的微纳米颗粒碳酸镁。
6)使用去离子水对经酸洗的材料进行反复洗涤,然后将其放入真空干燥箱内在室温下干燥,备用。
在本实施例中,将该新型复合电极材料应用于组装全钒液流电池。电池按照端板-集流板-电极-隔膜-电极-集流板-端板的顺序以压滤机的方式组装。其中,隔膜采用全氟磺酸膜。在不同的电流密度下对电池进行充放电测试,结果如图4所示。结果表明,该电池在40mA/cm2、60mA/cm2、80mA/cm2、100mA/cm2和120mA/cm2的电流密度下能够进行正常的充放电,曲线平滑。在40mA/cm2的电流密度下,电池的能量转换效率高达81.4%;并且即使在120mA/cm2的高倍率条件下,电池的能量转换效率仍能达到70.9%。
对比例2
与实施例2相对比,使用目前常用的未经处理的相同尺寸的碳纤维纸作为电极材料来组装全钒液流电池。该电池的组装方式以及除工作电极以外的其它材料均与实施例1相同,并同样在40mA/cm2、60mA/cm2、80mA/cm2、100mA/cm2和120mA/cm2的电流密度下进行充放电测试。结果显示,在40mA/cm2的电流密度下,电池的能量转换效率为67.0%;而在120mA/cm2的高倍率条件下,电池无法完成正常的充放电。
实施例3
在本实施例中,在制备用于全钒液流电池的复合电极材料时,采用如下步骤:
1)将作为有机碳源前驱体的12g蔗糖溶于总体积为100mL的水和丙酮中。水与丙酮的体积比为4:1。
2)向上述溶液中加入25g的微纳米颗粒状碳酸钙作为硬模板,碳酸钙的颗粒尺寸约为50~200nm。然后将它们置于超声波洗槽中进行震荡,直至形成分散均匀的悬浮液。
3)将石墨纤维纸裁剪成30mm×30mm大小,其厚度约为250μm。然后将其置于悬浮液中充分浸渍,以使石墨纤维纸的内部表面被均匀包覆,然后将将包覆的石墨纤维纸取出,并放入真空干燥箱内在室温下干燥。
4)将以上经充分干燥的材料置于程序升温管式炉中,并向炉中通入氩气作为保护气,在升温前先对管式炉进行吹扫以置换管中的空气,然后以15℃/min的升 温速率将炉的温度升高至900℃并保温5h,从而对该材料进行碳化,然后将炉自然冷却至室温。
5)配制物质的量浓度为1.5mol/L的盐酸溶液用于对经碳化的材料进行酸洗,以除去作为硬模板的微纳米颗粒碳酸钙。
6)使用去离子水对经酸洗的材料进行反复洗涤,然后将其放入真空干燥箱内在室温下进行干燥,备用。
在本实施例中,将该新型复合电极材料应用于组装全钒液流电池。电池按照端板-集流板-电极-隔膜-电极-集流板-端板的顺序以压滤机的方式组装。其中,隔膜采用全氟磺酸膜。在不同的电流密度下对电池进行充放电测试。结果表明,该电池在40mA/cm2、60mA/cm2、80mA/cm2、100mA/cm2和120mA/cm2的电流密度下能够进行正常的充放电,曲线平滑。在40mA/cm2电流密度下,电池的能量转换效率高达83.1%;并且在120mA/cm2的高倍率条件下,电池的能量转换效率仍可达到72.4%。
对比例3
与实施例3相对比,使用目前常用的未经处理的相同尺寸的石墨纤维纸作为电极材料组装全钒液流电池。此电池的组装方式以及除工作电极以外的其它材料均与实施例1相同,并同样在40mA/cm2、60mA/cm2、80mA/cm2、100mA/cm2和120mA/cm2的电流密度下进行充放电测试。结果显示,在40mA/cm2的电流密度下,电池的能量转换效率为65.0%;而在120mA/cm2的高倍率条件下,电池也不能进行正常的充放电。
实施例4
在本实施例中,在制备用于全钒液流电池的复合电极材料时,采用如下步骤:
1)将作为有机碳源前驱体的5g醋酸纤维素溶于总体积为100mL的水和乙二醇中。水与乙二醇的体积比为4:1。
2)向上述溶液中加入5g微纳米颗粒状无机材料碳酸锂作为硬模板,碳酸锂的颗粒尺寸约为300~500nm。然后将它们置于超声波洗槽中进行震荡,直至形成分散均匀的悬浮液。
3)将泡沫碳裁剪成30mm×30mm×5mm大小,其内部孔径尺寸约为100~200μm,然后将泡沫碳置于悬浮液中充分浸渍,使其内部表面被均匀包覆,然后将其取出,并放入真空干燥箱内在室温下干燥。
4)将以上经充分干燥的材料置于程序升温管式炉中,并向炉中通入氮气作为保护气,在升温前先对管式炉进行吹扫以置换管中的空气,然后以10℃/min的升温速率将炉的温度升高至1100℃并保温2h,从而对该材料进行碳化,然后将炉自然冷却至室温。
5)配制物质的量浓度为2mol/L的硫酸溶液用于对经碳化的材料进行酸洗,以除去作为硬模板的微纳米颗粒碳酸锂。
6)使用去离子水对经酸洗的材料进行反复洗涤,然后将其放入真空干燥箱内在室温下干燥,备用。
在本实施例中,将此新型复合电极材料应用于组装全钒液流电池。电池按照端板-集流板-电极-隔膜-电极-集流板-端板的顺序以压滤机的方式组装。其中,隔膜采用全氟磺酸膜。在不同的电流密度下对电池进行充放电测试。结果表明,该电池在40mA/cm2、60mA/cm2、80mA/cm2、100mA/cm2和120mA/cm2的电流密度下能够进行正常的充放电,且曲线平滑。在40mA/cm2的电流密度下,电池的能量转换效率达到85.7%;并且在120mA/cm2的高倍率条件下,电池的能量转换效率仍可达到78.2%。
对比例4
与实施例4相对比,使用目前常用的未经处理的相同尺寸的泡沫碳作为电极材料来组装全钒液流电池。此电池的组装方式以及除工作电极以外的其它材料均与实施例1相同,并同样在40mA/cm2、60mA/cm2、80mA/cm2、100mA/cm2和120mA/cm2的电流密度下进行充放电测试。结果显示,在40mA/cm2的电流密度下,电池的能量转换效率为70.3%;而在120mA/cm2的高倍率条件下,电池的能量转换效率仅为60.1%。
实施例5
在本实施例中,在制备用于全钒液流电池的复合电极材料时,采用如下步骤:
1)将作为有机碳源前驱体的淀粉5g分散于总体积为100mL的水和正丙醇中。水与正丙醇的体积比为5:1。
2)向上述溶液中加入20g微纳米颗粒状无机材料氧化锌作为硬模板,氧化锌的颗粒尺寸约为500nm~1μm。然后将它们置于超声波洗槽中进行震荡,直至形成分散均匀的悬浮液。
3)将石墨纤维毡裁剪成30mm×30mm×5mm大小,然后将其置入悬浮液中充分浸渍,以使石墨纤维毡的内部表面被均匀包覆,然后将包覆的石墨纤维毡取出,并放入真空干燥箱内在室温下干燥。
4)将以上经充分干燥的材料置于程序升温管式炉中,并向炉中通入氦气作为保护气,在升温前先对管式炉进行吹扫以置换管中的空气,然后以2℃/min的升温速率将炉的温度升高至1200℃并保温1h,从而对该材料进行碳化,然后自然冷却至室温。
5)配制物质的量浓度为1.2mol/L的磷酸溶液对经碳化的材料进行酸洗,以除去作为硬模板的微纳米颗粒氧化锌。
6)用去离子水对经酸洗的材料进行反复洗涤,然后放入真空干燥箱内在室温下干燥,备用。
在本实施例中,将此新型复合电极材料应用于组装全钒液流电池。电池按照端板-集流板-电极-隔膜-电极-集流板-端板的顺序以压滤机的方式组装。其中,隔膜采用全氟磺酸膜。在不同的电流密度下对电池进行充放电测试。结果表明,该电池在40mA/cm2,60mA/cm2,80mA/cm2,100mA/cm2和120mA/cm2的电流密度下能够进行正常的充放电,且曲线平滑。在40mA/cm2的电流密度下,电池的能量转换效率达到89.6%;并且在120mA/cm2的高倍率条件下,电池的能量转换效率仍可达到82.6%。
对比例5
与实施例5相对比,使用目前常用的未经处理的相同尺寸的石墨纤维毡作为电极材料来组装全钒液流电池。此电池的组装方式以及除电极以外的其它材料均与实施例1相同,并同样在40mA/cm2、60mA/cm2、80mA/cm2、100mA/cm2和120mA/cm2的电流密度下进行充放电测试。结果显示,在40mA/cm2电流密度下, 电池的能量转换效率为81.2%;而在120mA/cm2的高倍率条件下,电池的能量转换效率仅为75.0%。
实施例6
在本实施例中,在制备用于全钒液流电池的复合电极材料时,采用如下步骤:
1)将作为有机碳源前驱体的***胶8g溶于总体积为100mL的水和丙酮中。水与丙酮的体积比为4:1。
2)向上述溶液中加入微纳米颗粒状无机材料氢氧化镁15g和碳酸钾10g作为硬模板,氢氧化镁和碳酸钾的颗粒尺寸均为100~200nm。然后将它们置于超声波洗槽中进行震荡,直至形成分散均匀的悬浮液。
3)将碳布裁剪成30mm×30mm大小,其厚度约为250μm。然后将其置入悬浮液中充分浸渍,以使碳布的内部表面被均匀包覆,然后将包覆的碳布取出,并放入真空干燥箱内在室温下干燥。
4)将以上经充分干燥的材料置于程序升温管式炉中,并向炉中通入氦气作为保护气,在升温前先对管式炉进行吹扫以置换管中的空气,然后以1℃/min的升温速率将炉的温度升高至650℃并保温1.5h,从而对该材料进行碳化,然后将炉自然冷却至室温。
5)配制物质的量浓度为0.5mol/L的甲酸溶液用于对经碳化的材料进行酸洗,以除去作为硬模板的微纳米颗粒氢氧化镁。
6)使用去离子水对经酸洗的材料进行反复洗涤,然后放入真空干燥箱内在室温下干燥,备用。
在本实施例中,将此新型复合电极材料应用于组装全钒液流电池。电池按照端板-集流板-电极-隔膜-电极-集流板-端板的顺序以压滤机的方式组装。其中,隔膜采用全氟磺酸膜。在不同的电流密度下对该电池进行充放电测试。结果表明,该电池在40mA/cm2、60mA/cm2、80mA/cm2、100mA/cm2和120mA/cm2的电流密度下能够进行正常的充放电,曲线平滑。在40mA/cm2的电流密度下,电池的能量转换效率达到75.6%;并且在120mA/cm2的高倍率条件下,电池的能量转换效率为65.8%。
对比例6
与实施例6相对比,使用目前常用的未经处理的相同尺寸的碳布作为电极材料来组装全钒液流电池。此电池的组装方式以及除工作电极以外的其它材料均与实施例1相同,并同样在40mA/cm2、60mA/cm2、80mA/cm2、100mA/cm2和120mA/cm2的电流密度下进行充放电测试。结果显示,在40mA/cm2的电流密度下,电池的能量转换效率为66.3%;而在120mA/cm2的高倍率条件下,电池无法进行正常的充放电。
实施例7
在本实施例中,在制备用于全钒液流电池的复合电极材料时,采用如下步骤:
1)将作为有机碳源前驱体的***糖5g溶于总体积为100mL的水和丁酮中。水与乙醇的体积比为3:1。
2)向上述溶液中加入8g微纳米颗粒状氢氧化锌作为硬模板,氢氧化锌颗粒尺寸约为10~50nm。然后将它们置于超声波洗槽中进行震荡,直至形成分散均匀的悬浮液。
3)将碳纤维毡裁剪成30mm×30mm×5mm大小,然后将其置入悬浮液中充分浸渍,以使碳纤维毡的内部表面被均匀包覆,然后将包覆的碳纤维毡取出,并放入真空干燥箱内在室温下干燥。
4)将以上经充分干燥的材料置于程序升温管式炉中,并向炉中通入氮气作为保护气,在升温前先对管式炉进行吹扫以置换管中的空气,然后以20℃/min的升温速率将炉的温度升高至1500℃并保温1h,从而对该材料进行碳化,然后将炉自然冷却至室温。
5)配制物质的量浓度为1.5mol/L的乙酸溶液对经碳化的材料进行酸洗,以除去作为硬模板的微纳米颗粒氢氧化锌。
6)使用去离子水对经酸洗的材料进行反复洗涤,然后将其放入真空干燥箱内在室温下干燥,备用。
在本实施例中,将此新型复合电极材料应用于组装全钒液流电池。电池按照端板-集流板-电极-隔膜-电极-集流板-端板的顺序以压滤机的方式组装。其中,隔 膜采用全氟磺酸膜。在不同的电流密度下对该电池进行充放电测试。结果表明,该电池在40mA/cm2、60mA/cm2、80mA/cm2、100mA/cm2和120mA/cm2的电流密度下能够进行正常的充放电,曲线平滑。在40mA/cm2的电流密度下,电池的能量转换效率达到88.3%;并且在120mA/cm2的高倍率条件下,电池的能量转换效率仍可达到83.5%。
对比例7
与实施例7相对比,使用目前常用的未经处理的相同尺寸的碳纤维毡作为电极材料来组装全钒液流电池。此电池的组装方式以及除工作电极以外的其它材料均与实施例1相同,并同样在40mA/cm2、60mA/cm2、80mA/cm2、100mA/cm2和120mA/cm2的电流密度下进行充放电测试。结果显示,在40mA/cm2的电流密度下,电池的能量转换效率为84.4%;而在120mA/cm2的高倍率条件下,电池的能量转换效率仅为78.2%。
实施例8
在本实施例中,在制备用于全钒液流电池的复合电极材料时,采用如下步骤:
1)将作为有机碳源前驱体的15g葡萄糖溶于总体积为100mL的水和甲醇中。水与甲醇的体积比为3:1。
2)向上述溶液中加入38g微纳米颗粒状无机材料氧化铁作为硬模板,氧化铁颗粒尺寸约为30~80nm。然后将它们置于超声波洗槽中进行震荡,直至形成分散均匀的悬浮液。
3)将碳布裁剪成30mm×30mm大小,其厚度约为250μm。然后将其置入悬浮液中充分浸渍,使碳布的内部表面被均匀包覆,然后将经包覆的碳布取出,并放入真空干燥箱内在室温下干燥。
4)将以上经充分干燥的材料置于程序升温管式炉中,并向炉中通入氦气作为保护气,在升温前先对管式炉进行吹扫以置换管中的空气,然后以12℃/min的升温速率升温至700℃并保温4h,从而对该材料进行碳化,然后将炉自然冷却至室温。
5)配制物质的量浓度为2.5mol/L的苯磺酸溶液对经碳化的材料进行酸洗,以除去作为硬模板的微纳米颗粒氧化铁。
6)使用去离子水对经酸洗的材料进行反复洗涤,然后将其放入真空干燥箱内在室温下干燥,备用。
在本实施例中,将此新型复合电极材料应用于组装全钒液流电池。电池按照端板-集流板-电极-隔膜-电极-集流板-端板的顺序以压滤机的方式组装。其中,隔膜采用全氟磺酸膜。在不同的电流密度下对该电池进行充放电测试。结果表明,该电池在40mA/cm2、60mA/cm2、80mA/cm2、100mA/cm2和120mA/cm2的电流密度下能够进行正常的充放电,曲线平滑。在40mA/cm2的电流密度下,电池的能量转换效率达到79.5%;并且在120mA/cm2的高倍率条件下,电池的能量转换效率为到67.6%。
对比例8
与实施例8相对比,使用目前常用的未经处理的相同尺寸的碳布作为电极材料来组装全钒液流电池。此电池的组装方式以及除电极以外的其它材料均与实施例1相同,并同样在40mA/cm2、60mA/cm2、80mA/cm2、100mA/cm2和120mA/cm2的电流密度下进行充放电测试。结果显示,在40mA/cm2的电流密度下,电池的能量转换效率为66.0%;而在120mA/cm2的高倍率条件下,电池无法进行正常的充放电。
实施例9
在本实施例中,在制备用于全钒液流电池的复合电极材料时,采用如下步骤:
1)将作为有机碳源前驱体的聚乙烯醇4g溶于总体积为100mL的水和乙醇中。水与乙醇的体积比为3:1。
2)向上述溶液中加入10g微纳米颗粒状碳酸钡作为硬模板,碳酸钡颗粒尺寸约为7~10μm。然后将它们置于超声波洗槽中进行震荡,直至形成分散均匀的悬浮液。
3)将碳纤维纸裁剪成30mm×30mm大小,其厚度约为200μm。然后将其置入悬浮液中充分浸渍,以使碳纤维纸的内部表面被均匀包覆,然后将将包覆的碳纤维纸取出,并放入真空干燥箱内在室温下干燥。
4)将以上经充分干燥的材料置于程序升温管式炉中,并向炉中通入氮气作为保护气,在升温前先对管式炉进行吹扫以置换管中的空气,然后以10℃/min的升 温速率将炉的温度升高至800℃并保温3h,从而对该材料进行碳化,然后自然冷却至室温。
5)配制物质的量浓度为1.5mol/L的氢氟酸溶液对经碳化的材料进行酸洗,以除去作为硬模板的微纳米颗粒碳酸钡。
6)使用去离子水对经酸洗的材料进行反复洗涤,然后将其放入真空干燥箱内在室温下干燥,备用。
在本实施例中,将此新型复合电极材料应用于组装全钒液流电池。电池按照端板-集流板-电极-隔膜-电极-集流板-端板的顺序以压滤机的方式组装。其中,隔膜采用全氟磺酸膜。在不同的电流密度下对该电池进行充放电测试。结果表明,该电池在40mA/cm2、60mA/cm2、80mA/cm2、100mA/cm2和120mA/cm2的电流密度下能够进行正常的充放电,曲线平滑。在40mA/cm2的电流密度下,电池的能量转换效率达到85.2%;并且在120mA/cm2的高倍率条件下,电池的能量转换效率仍可达到77.8%。
对比例9
与实施例9相对比,使用目前常用的未经处理的相同尺寸的碳纤维纸作为电极材料来组装全钒液流电池。此电池的组装方式以及除工作电极以外的其它材料均与实施例1相同,并同样在40mA/cm2、60mA/cm2、80mA/cm2、100mA/cm2和120mA/cm2的电流密度下进行充放电测试。结果显示,在40mA/cm2的电流密度下,电池的能量转换效率为67.0%;在120mA/cm2的高倍率条件下,电池无法进行正常的充放电。
实施例10
在本实施例中,在制备用于全钒液流电池的复合电极材料时,采用如下步骤:
1)将作为有机碳源前驱体的聚乙二醇7g分散于总体积为100mL的水和甲苯中。水与乙醇的体积比为3:1。
2)向上述溶液中加入15g微纳米颗粒状碳酸锶作为硬模板,碳酸锶颗粒尺寸约为1~5μm。然后将它们置于超声波洗槽中进行震荡,直至形成分散均匀的悬浮液。
3)将碳布裁剪成30mm×30mm大小,其厚度约为250μm。然后将其置入悬浮液中充分浸渍,以使碳布的内部表面被均匀包覆,然后将经包覆的碳布取出,并放入真空干燥箱内在室温下干燥。
4)将以上经充分干燥的材料置于程序升温管式炉中,并向炉中通入氦气作为保护气,在升温前先对管式炉进行吹扫以置换管中的空气,然后以12℃/min的升温速率将炉的温度升高至1400℃并保温3h,从而对该材料进行碳化,然后将炉自然冷却至室温。
5)配制物质的量浓度为0.8mol/L的盐酸溶液对经碳化的材料进行酸洗,以除去作为硬模板的微纳米颗粒碳酸锶。
6)使用去离子水对经酸洗的材料进行反复洗涤,然后将其放入真空干燥箱内在室温下干燥,备用。
在本实施例中,将此新型复合电极材料应用于组装全钒液流电池。电池按照端板-集流板-电极-隔膜-电极-集流板-端板的顺序以压滤机的方式组装。其中,隔膜采用全氟磺酸膜。在不同的电流密度下对该电池进行充放电测试。结果表明,该电池在40mA/cm2、60mA/cm2、80mA/cm2、100mA/cm2和120mA/cm2的电流密度下能够进行正常的充放电,曲线平滑。在40mA/cm2的电流密度下,电池的能量转换效率达到80.1%;并且在120mA/cm2的高倍率条件下,电池的能量转换效率为70.3%。
对比例10
与实施例10相对比,使用目前常用的未经处理的相同尺寸的碳布作为电极材料来组装全钒液流电池。此电池的组装方式以及除工作电极以外的其它材料均与实施例1相同,并同样在40mA/cm2、60mA/cm2、80mA/cm2、100mA/cm2和120mA/cm2的电流密度下进行充放电测试。结果显示,在40mA/cm2的电流密度下,电池的能量转换效率为67.4%;而在120mA/cm2的高倍率条件下,电池无法进行正常的充放电。
以上实施例仅是本发明的一些优选实施方式,但本发明的保护范围并不仅限于此。本领域技术人员应该理解,所有未背离本发明精神和范围的任何修改、替换都在本发明的保护范围之内。

Claims (10)

  1. 一种制备用于全钒液流电池的复合电极材料的方法,其特征在于,所述方法包括以下步骤:
    1)将有机碳源前驱体溶于水、或有机溶剂、或水和有机溶剂的混合物中;
    2)向上述溶液中加入微纳米颗粒状材料作为硬模板,然后将它们置于超声波洗槽中进行震荡,直至形成分散均匀的悬浮液;
    3)将三维碳基底材料置于所述悬浮液中进行充分浸渍,以使所述三维碳基底材料的内部表面被均匀包覆,然后将经包覆的三维碳基底材料取出,并放入真空干燥箱内在室温下进行干燥;
    4)将以上经干燥的材料置于程序升温管式炉中,并向所述炉中通入惰性气体,然后将所述炉的温度升高至目标温度,以将所述有机碳源前驱体碳化,然后将所述炉自然冷却至室温;
    5)使用酸溶液对经碳化的材料进行酸洗,以除去作为硬模板的所述微纳米颗粒状材料;
    6)使用去离子水对经酸洗的材料进行反复洗涤,以除去材料表面残留的酸和盐杂质,然后将其放入真空干燥箱内在室温下进行干燥备用。
  2. 根据权利要求1所述的方法,其特征在于,步骤1)中的所述有机碳源前驱体为纤维素、淀粉、果糖、麦芽糖、半纤维素、***胶、卡拉胶、***糖、葡萄糖、蔗糖、聚乙烯醇、聚乙二醇和聚丙烯醇中的至少一种。
  3. 根据权利要求1所述的方法,其特征在于,步骤1)中的所述有机溶剂为甲醇、乙醇、正丙醇、异丙醇、丙酮、乙二醇和二甲亚砜中的至少一种。
  4. 根据权利要求1所述的方法,其特征在于,步骤2)中的所述微纳米颗粒状材料为碳酸钙、氧化锌、碳酸钠、碳酸钾、碳酸铁、碳酸钡、碳酸锶、碳酸锌、碳酸镁、碳酸锂、氢氧化镁、氢氧化锌和氧化铁中的至少一种。
  5. 根据权利要求4所述的方法,其特征在于,所述微纳米颗粒状材料的尺寸在10nm~10μm之间,并且其用量占所述悬浮液总质量分数的5%~40%。
  6. 根据权利要求1所述的方法,其特征在于,步骤3)中的所述三维碳基底材料为碳纤维毡、石墨纤维毡、碳纤维纸、石墨纤维纸、泡沫碳和碳布中的至少一种。
  7. 根据权利要求1所述的方法,其特征在于,步骤4)中的碳化过程的升温速率为1~20℃/min,所述目标温度为600~1500℃,并且碳化时间为0.5~20h。
  8. 根据权利要求1所述的方法,其特征在于,步骤5)中的所述酸溶液是将氢氟酸、硫酸、磷酸、硝酸、甲酸、盐酸、乙酸和苯磺酸中的至少一种溶于水中而获得的溶液。
  9. 一种通过根据权利要求1-8中任一项所述的方法制备的复合电极材料。
  10. 一种通过根据权利要求1-8中任一项所述的方法制备的复合电极材料,或以所述复合电极材料为载体进一步负载有其它催化剂的材料在全钒液流电池的电极材料中的应用。
PCT/CN2015/090317 2015-09-22 2015-09-22 复合电极材料、其制备方法及其在全钒液流电池中的应用 WO2017049466A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/090317 WO2017049466A1 (zh) 2015-09-22 2015-09-22 复合电极材料、其制备方法及其在全钒液流电池中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/090317 WO2017049466A1 (zh) 2015-09-22 2015-09-22 复合电极材料、其制备方法及其在全钒液流电池中的应用

Publications (1)

Publication Number Publication Date
WO2017049466A1 true WO2017049466A1 (zh) 2017-03-30

Family

ID=58385533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090317 WO2017049466A1 (zh) 2015-09-22 2015-09-22 复合电极材料、其制备方法及其在全钒液流电池中的应用

Country Status (1)

Country Link
WO (1) WO2017049466A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112165846A (zh) * 2020-09-21 2021-01-01 山东理工大学 一种低频高效吸波四氧化三铁/大孔薄层碳磁性复合材料制备方法
CN112165845A (zh) * 2020-09-21 2021-01-01 山东理工大学 一种负载mof衍生碳的自支撑全碳电极的无毒制备方法
CN112210988A (zh) * 2020-10-16 2021-01-12 成都先进金属材料产业技术研究院有限公司 二氧化钒碳纤维毡复合材料及其制备方法和用途
CN113571715A (zh) * 2021-07-28 2021-10-29 长沙理工大学 一种宏量生物质改性电极材料及其制备方法
CN113948728A (zh) * 2021-11-08 2022-01-18 陕西科技大学 一种Co-N掺杂定向孔道碳纳米纤维电催化剂及其制备方法和应用
CN114044560A (zh) * 2021-11-17 2022-02-15 上海纳米技术及应用国家工程研究中心有限公司 一种用于电催化降解硝基苯的电极的制作方法及其产品和应用
CN114824231A (zh) * 2022-05-27 2022-07-29 蜂巢能源科技股份有限公司 一种正极材料及其制备方法
CN115304036A (zh) * 2022-09-02 2022-11-08 湖州师范学院 一种高循环稳定性的镍钴硒化物基纳米阵列电极材料制备方法
CN115403041A (zh) * 2022-09-15 2022-11-29 中国地质大学(北京) 一种半纤维素基中空多孔碳及其制备方法和其在锌离子储能器件中的应用
CN115584046A (zh) * 2022-11-25 2023-01-10 杭州德海艾科能源科技有限公司 钒电池用全氟磺酸/己酮糖复合离子交换膜及其制备方法
CN117913301A (zh) * 2024-03-18 2024-04-19 中海储能科技(北京)有限公司 一种金属碳化物纳米材料修饰改性电池碳布电极的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102024954A (zh) * 2009-09-16 2011-04-20 比亚迪股份有限公司 一种钒电池石墨毡电极及其制备方法和含有该电极的钒电池
CN102683706A (zh) * 2012-01-20 2012-09-19 石家庄学院 石墨毡改性电极的制备方法和全钒液流电池的制备方法
CN102867967A (zh) * 2011-07-05 2013-01-09 中国科学院大连化学物理研究所 一种全钒液流储能电池用电极材料及其应用
CN103050702A (zh) * 2011-10-17 2013-04-17 中国科学院大连化学物理研究所 原位掺杂有催化活性组分的碳材料在锂-空气电池中应用
US20140113200A1 (en) * 2011-07-25 2014-04-24 Fraser Seymour Functionalized Carbon Electrode, Related Material, Process for Production, and Use Thereof
CN104192819A (zh) * 2014-07-14 2014-12-10 上海应用技术学院 一种棒状的磷掺杂介孔碳及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102024954A (zh) * 2009-09-16 2011-04-20 比亚迪股份有限公司 一种钒电池石墨毡电极及其制备方法和含有该电极的钒电池
CN102867967A (zh) * 2011-07-05 2013-01-09 中国科学院大连化学物理研究所 一种全钒液流储能电池用电极材料及其应用
US20140113200A1 (en) * 2011-07-25 2014-04-24 Fraser Seymour Functionalized Carbon Electrode, Related Material, Process for Production, and Use Thereof
CN103050702A (zh) * 2011-10-17 2013-04-17 中国科学院大连化学物理研究所 原位掺杂有催化活性组分的碳材料在锂-空气电池中应用
CN102683706A (zh) * 2012-01-20 2012-09-19 石家庄学院 石墨毡改性电极的制备方法和全钒液流电池的制备方法
CN104192819A (zh) * 2014-07-14 2014-12-10 上海应用技术学院 一种棒状的磷掺杂介孔碳及其制备方法和应用

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112165845A (zh) * 2020-09-21 2021-01-01 山东理工大学 一种负载mof衍生碳的自支撑全碳电极的无毒制备方法
CN112165846A (zh) * 2020-09-21 2021-01-01 山东理工大学 一种低频高效吸波四氧化三铁/大孔薄层碳磁性复合材料制备方法
CN112210988A (zh) * 2020-10-16 2021-01-12 成都先进金属材料产业技术研究院有限公司 二氧化钒碳纤维毡复合材料及其制备方法和用途
CN113571715A (zh) * 2021-07-28 2021-10-29 长沙理工大学 一种宏量生物质改性电极材料及其制备方法
CN113571715B (zh) * 2021-07-28 2022-10-18 长沙理工大学 一种宏量生物质改性电极材料及其制备方法
CN113948728A (zh) * 2021-11-08 2022-01-18 陕西科技大学 一种Co-N掺杂定向孔道碳纳米纤维电催化剂及其制备方法和应用
CN114044560B (zh) * 2021-11-17 2023-11-28 上海纳米技术及应用国家工程研究中心有限公司 一种用于电催化降解硝基苯的电极的制作方法及其产品和应用
CN114044560A (zh) * 2021-11-17 2022-02-15 上海纳米技术及应用国家工程研究中心有限公司 一种用于电催化降解硝基苯的电极的制作方法及其产品和应用
CN114824231A (zh) * 2022-05-27 2022-07-29 蜂巢能源科技股份有限公司 一种正极材料及其制备方法
CN115304036A (zh) * 2022-09-02 2022-11-08 湖州师范学院 一种高循环稳定性的镍钴硒化物基纳米阵列电极材料制备方法
CN115304036B (zh) * 2022-09-02 2024-03-26 湖州师范学院 一种高循环稳定性的镍钴硒化物基纳米阵列电极材料制备方法
CN115403041B (zh) * 2022-09-15 2023-11-21 中国地质大学(北京) 一种半纤维素基中空多孔碳及其制备方法和其在锌离子储能器件中的应用
CN115403041A (zh) * 2022-09-15 2022-11-29 中国地质大学(北京) 一种半纤维素基中空多孔碳及其制备方法和其在锌离子储能器件中的应用
CN115584046A (zh) * 2022-11-25 2023-01-10 杭州德海艾科能源科技有限公司 钒电池用全氟磺酸/己酮糖复合离子交换膜及其制备方法
CN115584046B (zh) * 2022-11-25 2023-02-28 杭州德海艾科能源科技有限公司 钒电池用全氟磺酸/己酮糖复合离子交换膜及其制备方法
CN117913301A (zh) * 2024-03-18 2024-04-19 中海储能科技(北京)有限公司 一种金属碳化物纳米材料修饰改性电池碳布电极的方法

Similar Documents

Publication Publication Date Title
WO2017049466A1 (zh) 复合电极材料、其制备方法及其在全钒液流电池中的应用
Jiang et al. Promoting vanadium redox flow battery performance by ultra-uniform ZrO2@ C from metal-organic framework
Huang et al. Atomic modulation and structure design of carbons for bifunctional electrocatalysis in metal–air batteries
CN106549162B (zh) 复合电极材料、其制备方法及其在全钒液流电池中的应用
Su et al. A perspective on carbon materials for future energy application
CN106602092B (zh) 一种单壁碳纳米管空心球氧还原催化剂的制备方法及应用
CN110970628B (zh) 一种纳米碳纤维和金属复合电极及其应用
CN104269565B (zh) 一种多壁碳纳米管负载Ni0.85Se复合材料的制备方法及其应用
CN106299394A (zh) 一种高活性碳纤维毡电极材料及其制备方法和应用
CN106229153A (zh) 一种碳布负载氧化镍包覆氧化铁纳米棒复合材料的制备方法
CN103259023A (zh) 一种氢燃料电池电极材料制备方法
CN114628696B (zh) 一种多孔碳载钴基双功能氧催化剂的制备方法
CN113725444B (zh) 一种钌/碳纳米管柔性正极材料及其制备方法和应用
CN115832328A (zh) 一种多孔碳电极及其制备方法、液流电池
Huang et al. Porous single-crystal Ni5P4 nanosheets arrays coated with PANI layer for high efficiency hydrogen evolution at high current density in acid electrolyte
CN115094440B (zh) 钴/四氧化三铁/碳纳米管/c多孔微球制氢催化剂的制备方法
CN113555569B (zh) 一种催化剂前驱体、金属碳基催化剂及其制备方法和应用
CN103681004B (zh) 一种高比电容的SnO2/C多孔微球及其制备方法
CN110342589A (zh) 一种钴酸镍纳米花状复合材料及其制备方法
CN109326454B (zh) 交叉的金属纳米线阵列超级电容器电极材料及其制备方法
CN109192998A (zh) 一种钴-氮共掺杂复合纳米碳材料及其制备方法和应用
CN109428088A (zh) 一种高活性碳纤维毡电极材料及其制备方法和应用
CN113871645A (zh) 一种负载均匀的碳纳米管载铂电催化剂的制备方法
CN104064781B (zh) 一种用β-PbO2粒子修饰碳纤维的方法及其应用
CN111261877B (zh) 一种担载型空心球炭材料及其制备方法与在电催化中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15904353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15904353

Country of ref document: EP

Kind code of ref document: A1