CN108199054B - 一种用于燃料电池中甲烷蒸汽重整的催化剂的制备方法 - Google Patents

一种用于燃料电池中甲烷蒸汽重整的催化剂的制备方法 Download PDF

Info

Publication number
CN108199054B
CN108199054B CN201810007229.6A CN201810007229A CN108199054B CN 108199054 B CN108199054 B CN 108199054B CN 201810007229 A CN201810007229 A CN 201810007229A CN 108199054 B CN108199054 B CN 108199054B
Authority
CN
China
Prior art keywords
catalyst
equal
temperature
time
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810007229.6A
Other languages
English (en)
Other versions
CN108199054A (zh
Inventor
刘阳
华波
麦景红
曾斌
刘卫东
彭国建
谢昊
杜勇
杨娟
郭游博
杨丽芸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Research and Desigin Institute of Chemical Industry
Original Assignee
Southwest Research and Desigin Institute of Chemical Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Research and Desigin Institute of Chemical Industry filed Critical Southwest Research and Desigin Institute of Chemical Industry
Priority to CN201810007229.6A priority Critical patent/CN108199054B/zh
Publication of CN108199054A publication Critical patent/CN108199054A/zh
Priority to PCT/CN2018/111868 priority patent/WO2019134423A1/zh
Application granted granted Critical
Publication of CN108199054B publication Critical patent/CN108199054B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

本发明属于催化剂技术领域,尤其涉及一种用于燃料电池中,特别是用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,经过球磨混料、粉料成型、预处理、载体煅烧和浸渍分解等步骤。本发明采用浸渍法制备工艺,先制备催化剂载体,再在载体上负载活性组分,这样制备的催化剂平均孔径大、结构稳定,从而进一步提高催化剂的抗碱金属中毒的能力,提高了活性稳定性延长催化剂使用寿命。

Description

一种用于燃料电池中甲烷蒸汽重整的催化剂的制备方法
技术领域
本发明属于催化剂技术领域,尤其涉及一种用于燃料电池中,特别是用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法。
背景技术
熔融碳酸盐燃料电池(“MCFC”)是通过阴极、阳极以及阴极和阳极之间的电解液母板之间的电化学反应产生电力的高温燃料电池。在这类电池中,以载体材料(例如由LiAlO2/Al2O3构成的膜载体)中浸满的碱金属碳酸盐混合熔融物的熔融共晶(例如碳酸锂和碳酸钾组成的熔融共晶)作为电解液。燃料电池工作所需的氢气可通过甲烷蒸汽重整反应在电池中直接产生。甲烷的蒸汽重整反应如下例所示:CH4+H2O→CO+3H2(1)CO+H2O→CO2+H2(2)第一个反应具有强吸热性,并能直接消耗由电化学反应释放的热量。该反应为需要使用重整催化剂的催化反应,可以利用天然气(也可选择甲烷、石油气、石脑油、重油或原油)作为燃料电池工作的起始物料。
目前,燃料电池工作所需氢气来自两个部分,一部分为燃料电池外部的预重整器进行部分重整,产生的部分氢气一旦进入电池即可立即使用,另一部分甲烷蒸汽重整在燃料电池中进行,被称为直接内部重整(DIR)。熔融碳酸盐燃料电池在580℃至675℃下工作期间,观察到部分电解液以碱金属化合物(如KOH、NaOH或LiOH)的形式蒸发。这些碱金属离子可以沉积在重整催化剂上,经不良的毒化使催化剂去活,催化剂中毒是影响电池组寿命的关键因素之一。所以传统催化剂即使初始活性好,但存在着中毒后活性下降较快,活性的稳定性差的技术问题,更不用说存着有些催化剂在活性上不高的情况。
美国专利US 2016/0006040 Al中公开了一种具有单相钙钛矿氧化物的均相催化剂,其中至少取代ABO3钙钛矿型氧化物位点A和/或位点B的一个掺杂元素,使得与液态熔融碳酸盐电解质的润湿性可能降低。所述催化剂可具有较高催化活性,抑制液态熔融碳酸盐电解质漏泄和蒸发引起的催化剂中毒,长时间保持高反应活性,实现高甲烷转化率,并可生产出具有高氢气比例的合成气体。
该专利的催化剂采用固态混合法制备,该制备法制备的催化剂结构不稳定,在还原后强度和比表面下降较快,随着催化剂强度和比表面下降,催化剂活性迅速下降,从而导致活性稳定性较差。
美国专利US 2013/0116118 Al中公开了一种用于燃料电池中甲烷蒸汽重整,特别是用于熔融碳酸盐燃料电池中甲烷直接内部重整的催化剂组合物和由其制成的催化剂材料,以及生产该催化剂化合物的方法。活率低,同时对碱金属离子具有高稳定性。
该专利的催化剂采用沉淀法制备,该制备法制备的催化剂结构不稳定,在还原后强度和比表面下降较快,随着催化剂强度和比表面下降,催化剂活性迅速下降,从而导致活性稳定性较差。
发明内容
为了解决以上技术问题,本发明提供一种用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,该制备方法为浸渍法制备工艺,可获得稳定的骨架结构,在还原前后强度、孔结构和比表面变化小,从而保证催化剂的活性稳定性延长催化剂使用寿命,同时在传统的浸渍法基础上引入预处理工艺,该工艺可以使不同氧化物间形成新的稳定的晶相结构,生成新的孔隙,比传统法获得更大和更多的孔,大孔径不容易被电解液的碱金属堵塞,从而能持续提供重整反应的活性通道,提高催化剂的活性稳定性。
解决以上技术问题的本发明中的一种用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,其特征在于:包括以下步骤:
(1)球磨混料:将配比好的铝、锆和镧的三种氧化物粉末破碎、混合;将不同物料均匀混合,并进一步破碎,有利于在预处理和煅烧时生成稳定的晶相。
(2)粉料成型:将步骤1中粉料制成小颗粒,再压制成规定形状的颗粒,符合燃料电池装置装填尺寸要求。规定形状由燃料电池装置所决定,必须满足燃料电池装置装填尺寸的要求,过大或过小的尺寸都无法装入燃料电池装置中。
(3)预处理:将步骤(2)制备的规定形状的颗粒,经预处理过程中形成新的稳定的孔隙结构及晶相结构。
(4)载体煅烧:将步骤(3)预处理的颗粒高温煅烧形成载体;
(5)浸渍分解:将步骤(4)载体放入硝酸镍溶液中浸渍,将活性组分附着在载体上,再干燥和高温分解即可。
所述步骤(1)中,混合时间为1-12h,优选为1-8h,特别优选为6-8h。混合时间过短不利于多组分物料的混合,制备的产品不均匀,活性不稳定,混合时间过长物料会出现板结,不利于下一道工序的成型。
所述步骤(2)中,小颗粒大小为10-500目,优选为60-400目,特别优选120-320目;颗粒大小主要影响成型后产品的均匀性,120-320目的颗粒更有利于进入压制模具中。过大或过小的颗粒进入模具所压制的产品都不均匀。
所述步骤(3)中,在温度50-700℃,优选为100-600℃,特别优选为200-500℃。压力在0.01-2.0Mpa下,优选为0.1-1.5Mpa,特别优选为1-1.5Mpa,停留时间1-24h,优选为5-12h,特别优选为6-8h的预处理,使铝、锆和镧的三种氧化物相互作用,生成新的晶相结构,同时,在预处理过程中形成新的稳定的孔隙结构。
在一定温度压力和时间下,使不同氧化物间形成新的稳定的晶相结构,同时生成新的孔隙,从而获得更大和更多的孔,大孔径不容易被电解液的碱金属堵塞,丰富的孔隙能持续提供重整反应的活性通道,提高催化剂的活性稳定性。
所述步骤(4)中,煅烧温度>675℃,优选为煅烧温度≥700℃,特别优选为煅烧温度≥750℃,且煅烧温度≤1400℃,优选煅烧温度≤1350℃,特别优选煅烧温度≤1300℃,煅烧时间≥30min,优选煅烧时间≥40min,特别优选煅烧时间≥50min,并且煅烧时间≤10h,优选煅烧时间≤8h,特别优选煅烧时间≤6h。
煅烧温度主要影响载体的强度和比表面,温度小于700℃时,比表面高,但强度过低在使用过程中易粉化,影响使用寿命,煅烧温度大于1400℃,强度高,但比表面高过低,使用活性过低。煅烧时间对孔结构的形成有影响。
所述步骤(4)中,载体比表面积>70m2/g。比表面是保证提供足够的活性表面。
所述步骤(5)中,浸渍温度为60-90℃,优选浸渍温度为70-90℃,特别优选浸渍温度为80-90℃, 浸渍时间≥5分钟,优选浸渍时间≥10分钟,特别优选浸渍时间≥15分钟,并且浸渍时间≤2小时,优选浸渍时间≤1.6小时,特别优选浸渍时间≤1.5个小时。
合适的浸渍温度和时间使浸渍溶液能完全进入载体的孔隙中,同时,保证溶液分布的均匀性。
所述步骤(5)中,硝酸镍溶液浓度为0.l-l mol/L。
溶液浓度越低每次负载在载体上的活性组分越少,根据需要负载的活性组分量选择溶液浓度。
所述步骤(5)中浸渍完后将载体取出,升高的温度进行干燥处理,其中干燥温度≥90℃,优选干燥温度≥100℃,特别优选干燥温度≥110℃,干燥时间为10min-10h,优选干燥时间为20min-8h,特别优选干燥时间为30min-4h。
干燥温度和时间是保证吸附在载体上的硝酸镍溶液的游离水、结晶水完全脱出,为下一步分解做准备。
所述步骤(5)中分解温度>150℃,优选分解温度≥200℃,特别优选分解温度≥250℃,且分解温度≤700℃,优选分解温度≤650℃,特别优选分解温度≤600℃,分解时间≥30min,优选分解时间≥40min,特别优选分解时间≥50min,并且分解时间≤10h,优选分解时间≤8h,特别优选分解时间≤6h。
合适的分解温度和时间使硝酸镍能完全分解为氧化镍。
本发明中通过化学分析对氧化镍检测,所述步骤(5)中载体氧化镍质量百分含量含量若<40%,则重复(5)步骤。若氧化镍含量小于40%,在使用过程中参与催化反应的活性中心减少,活性下降较快,使用寿命缩短。
制备出的催化剂可包括以下质量百分比的组分:
氧化镍35-60%、氧化铝30-50%、氧化锆1-15%、氧化镧1-15%,总质量含量为100%;或催化剂包括以下质量百分比的组分:氧化镍35-55%、氧化铝35-50%、氧化锆6-10%、氧化镧4-5%,总质量含量为100%。
或氧化镍37-42%、氧化铝42-48%、氧化锆6-12%、氧化镧3.5-5%,总质量含量为100%;或也可包括以下质量百分比的组分:氧化镍40-42%、氧化铝43-47%、氧化锆7-11%、氧化镧4-5%,总质量含量为100%;或包括以下质量百分比的组分:氧化镍40%、氧化铝46%、氧化锆9%和氧化镧4.5%,其余为杂质。
所述镧可由其它稀土元素替代,其它稀土元素为铈、镨、钕、钷、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥、钇或钪中的任何一种。
本发明用于燃料电池中甲烷蒸汽重整的催化剂的制备方法,采用浸渍法制备工艺,先制备催化剂载体,再在载体上负载活性组分,这样制备的催化剂平均孔径大、结构稳定,有较高的热稳定性和抗毒性。制得的催化剂平均孔径200-300 Å,孔容0.200-0.400ml/g,比表面积大于45 m2/g,900℃烧失重低于5%。
附图说明
下面结合附图及具体实施方式对本发明做更进一步详细说明:
图1和图2为本发明中不同催化剂孔径大小对比图
图3为本发明中甲烷转化率对比图
图4为本发明中对比样中毒前后对比图
图5为本发明中自制样中毒前后对比图
具体实施方式
下面结合说明书附图和具体实施方式对本发明进行进一步说明:
下列实施例中催化剂是以铝、锆和镧的氧化物制成的规整颗粒状载体,再负载上镍的氧化物,最后形成以镍、铝、锆和镧的氧化物形成的规整颗粒状催化剂,其中催化剂所用原料为氧化铝粉、氧化锆粉、氧化镧粉和硝酸镍溶液,其氧化铝粉、氧化锆粉和氧化镧粉的质量比例为7-11:43-47:4-5,硝酸镍溶液浓度0.l-lmol/L。制备出的颗粒状催化剂可为直径1-3mm,高度0.5-5mm的圆柱体颗粒状催化剂。
实施例1
用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,具体包括以下步骤:
(1)球磨混料:将铝、锆和镧的三种氧化物粉根据催化剂的最终需求组成的比例,加入球磨机中,通过球磨将三种氧化物粉进一步破碎并充分混合,混合时间为1小时。
(2)粉料成型:将步骤(1)制备的粉料通过制粒机制成颗粒均匀的细小颗粒物料,粒度10目,再将细小颗粒物料加入到旋转式压片机或液压成型压片机中,压制成规定形状的颗粒。
(3)预处理:将步骤(2) 制备的规定形状的颗粒,在温度50℃,压力在0.01Mpa下,停留时间1小时;
(4)载体煅烧:将步骤(4)预处理的规定形状的颗粒,经高温煅烧,煅烧温度高于使用温度680℃,煅烧时间为30分钟。通过调整煅烧时间和煅烧温度来控制煅烧后载体的比表面积、孔径大小,比表面积大于72 m2/g。
(5)浸渍分解:将步骤(4)制备的载体,放入到硝酸镍溶液中浸渍,浸渍温度为60℃, 浸渍时间为5分钟,硝酸镍溶液浓度0.l mol/L。浸渍完后将载体取出,升高的温度进行干燥处理,其中温度为90℃,时间为10分钟。再对干燥完成后的载体进一步升高温度,将硝酸盐通过高温分解,去除硝酸根,留下镍的氧化物。分解温度155℃,时间为30分钟。通过化学分析对氧化镍检测,若氧化镍含量小于40%(质量百分含量),重复(5)步骤。
本发明中方法制备的催化剂孔径大且孔结构稳定,大孔径不容易被电解液的碱金属堵塞,能持续提供重整反应的活性通道;铝、镧和锆共同作用,使载体晶粒错位,活性中心增多,提高了催化剂的整体活性。
实施例2
用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,具体包括以下步骤:
(1)球磨混料:将铝、锆和镧的三种氧化物根据催化剂的最终需求组成的比例,加入球磨机中,通过球磨将三种氧化物进一步破碎并充分混合,混合时间为12小时。
(2)粉料成型:将步骤(1)制备的粉料通过制粒机制成颗粒均匀的细小颗粒物料,粒度500目,再将细小颗粒物料加入到旋转式压片机或液压成型压片机中,压制成规定形状的颗粒。
(3)预处理:将步骤(2) 制备的规定形状的颗粒,在温度700℃,压力在2.0Mpa下,停留时间24h;
(4)载体煅烧:将步骤(3)预处理的规定形状的颗粒,经高温煅烧,煅烧温度700℃,煅烧时间为40分钟。通过调整煅烧时间和煅烧温度来控制煅烧后载体的比表面积、孔径大小,通常要求比表面积大于75 m2/g。
(5)浸渍分解:将步骤(4)制备的载体,放入到硝酸镍溶液中浸渍,浸渍温度为70℃,浸渍时间为10分钟, 硝酸镍溶液浓度0.6mol/L。浸渍完后将载体取出,升高的温度进行干燥处理,其中温度为100℃,时间为20分钟。对干燥完成后的载体进一步升高温度,将硝酸盐通过高温分解,去除硝酸根,留下镍的氧化物。分解温度200℃,时间为40分钟。通过化学分析对氧化镍检测,若氧化镍含量小于40%(质量百分含量),重复(5)步骤。
实施例3
用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,具体包括以下步骤:
(1)球磨混料:将铝、锆和镧的三种氧化物根据催化剂的最终需求组成的比例,加入球磨机中,通过球磨将三种氧化物进一步破碎并充分混合,混合时间为6小时。
(2)粉料成型:将步骤1制备的粉料通过制粒机制成颗粒均匀的细小颗粒物料,粒度60目,再将细小颗粒物料加入到旋转式压片机或液压成型压片机中,压制成规定形状的颗粒。
(3)预处理:将步骤(2) 制备的规定形状的颗粒,在温度100℃,压力在0.1Mpa,停留时间为5h;
(4)载体煅烧:将步骤3预处理的规定形状的颗粒,经高温煅烧,煅烧温度750℃,煅烧时间为10小时。通过调整煅烧时间和煅烧温度来控制煅烧后载体的比表面积、孔径大小,通常要求比表面积大于80 m2/g。
(5)浸渍分解:将步骤(4)制备的载体,放入到硝酸镍溶液中浸渍,浸渍温度为80℃, 浸渍时间为1.6小时, 硝酸镍溶液浓度lmol/L。浸渍完后将载体取出,升高的温度进行干燥处理,其中温度为110℃,时间为2小时。对干燥完成后的载体进一步升高温度,将硝酸盐通过高温分解,去除硝酸根,留下镍的氧化物。分解温度250℃,时间为50分钟。
通过化学分析对氧化镍检测,若氧化镍含量小于40%(质量百分含量),重复(5)步骤。
本发明中方法制备的催化剂孔径大且孔结构稳定,大孔径不容易被电解液的碱金属堵塞,能持续提供重整反应的活性通道;铝、镧和锆共同作用,使载体晶粒错位,活性中心增多,提高了催化剂的整体活性。
实施例4
用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,具体包括以下步骤:
(1)球磨混料:将铝、锆和镧的三种氧化物根据催化剂的最终需求组成的比例,加入球磨机中,通过球磨将三种氧化物进一步破碎并充分混合,混合时间为8小时。
(2)粉料成型:将步骤1制备的粉料通过制粒机制成颗粒均匀的细小颗粒物料,粒度为400目,再将细小颗粒物料加入到旋转式压片机或液压成型压片机中,压制成规定形状的颗粒。
(3)预处理:将步骤(2) 制备的规定形状的颗粒,在温度600℃,压力在1.5Mpa,停留时间12h;
(4)载体煅烧:将步骤3预处理的规定形状的颗粒,经高温煅烧,煅烧温度1400℃,,煅烧时间1小时。通过调整煅烧时间和煅烧温度来控制煅烧后载体的比表面积、孔径大小,通常要求比表面积76 m2/g。
(5)浸渍分解:将步骤3制备的载体,放入到硝酸镍溶液中浸渍,浸渍温度为90℃,浸渍时间为1小时, 硝酸镍溶液浓度0.5mol/ L。浸渍完后将载体取出,升高的温度进行干燥处理,其中温度为130℃,时间为4小时。对干燥完成后的载体进一步升高温度,将硝酸盐通过高温分解,去除硝酸根,留下镍的氧化物。分解温度700℃,时间为6小时。
通过化学分析对氧化镍检测,若氧化镍含量小于40%(质量百分含量),重复(5)步骤。
实施例5
用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,具体包括以下步骤:
(1)球磨混料:将铝、锆和镧的三种氧化物根据催化剂的最终需求组成的比例,加入球磨机中,通过球磨将三种氧化物进一步破碎并充分混合,混合时间为7小时。
(2)粉料成型:将步骤1制备的粉料通过制粒机制成颗粒均匀的细小颗粒物料,粒度为120目,再将细小颗粒物料加入到旋转式压片机或液压成型压片机中,压制成规定形状的颗粒。
(3)预处理:将步骤(2) 制备的规定形状的颗粒,在温度200℃,压力在1Mpa,停留时间6h;
(4)载体煅烧:将步骤3预处理的规定形状的颗粒,经高温煅烧,煅烧温度为900℃,煅烧时间为4个小时。通过调整煅烧时间和煅烧温度来控制煅烧后载体的比表面积、孔径大小,通常要求比表面积大于85 m2/g。
(5)浸渍分解:将步骤4制备的载体,放入到硝酸镍溶液中浸渍,浸渍温度为85℃,浸渍时间为1小时,硝酸镍溶液浓度0.6mol/L。浸渍完后将载体取出,升高的温度进行干燥处理,其中温度为120℃,时间为3小时。对干燥完成后的载体进一步升高温度,将硝酸盐通过高温分解,去除硝酸根,留下镍的氧化物。分解温度500℃,时间为3小时。
通过化学分析对氧化镍检测,若氧化镍含量小于40%(质量百分含量),重复(5)步骤。
本发明中方法制备的催化剂孔径大且孔结构稳定,大孔径不容易被电解液的碱金属堵塞,能持续提供重整反应的活性通道;铝、镧和锆共同作用,使载体晶粒错位,活性中心增多,提高了催化剂的整体活性。
实施例6
用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,具体包括以下步骤:
(1)球磨混料:将铝、锆和镧的三种氧化物根据催化剂的最终需求组成的比例,加入球磨机中,通过球磨将三种氧化物进一步破碎并充分混合,混合时间为4小时。
(2)粉料成型:将步骤1制备的粉料通过制粒机制成颗粒均匀的细小颗粒物料,粒度为320目,再将细小颗粒物料加入到旋转式压片机或液压成型压片机中,压制成规定形状的颗粒。
(3)预处理:将步骤(2) 制备的规定形状的颗粒,在温度500℃,压力在1.5Mpa,停留时间8h;
(4)载体煅烧:将步骤3制备的规定形状的颗粒,经高温煅烧,煅烧温度为1100℃,煅烧时间为2个小时。通过调整煅烧时间和煅烧温度来控制煅烧后载体的比表面积、孔径大小,比表面积83 m2/g。
(5)浸渍分解:将步骤4制备的载体,放入到硝酸镍溶液中浸渍,浸渍温度为75℃,浸渍时间为1.5小时,硝酸镍溶液浓度0.4mol/L。浸渍完后将载体取出,升高的温度进行干燥处理,其中温度为95℃,时间为8小时。对干燥完成后的载体进一步升高温度,将硝酸盐通过高温分解,去除硝酸根,留下镍的氧化物。分解温度400℃,时间为2小时。
通过化学分析对氧化镍检测,若氧化镍含量小于40%(质量百分含量),重复(5)步骤。
实施例7
用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,具体包括以下步骤:
(1)球磨混料:将铝、锆和镧的三种氧化物根据催化剂的最终需求组成的比例,加入球磨机中,通过球磨将三种氧化物进一步破碎并充分混合,混合时间为10小时。
(2)粉料成型:将步骤1制备的粉料通过制粒机制成颗粒均匀的细小颗粒物料,粒度为200目,再将细小颗粒物料加入到旋转式压片机或液压成型压片机中,压制成规定形状的颗粒。
(3)预处理:将步骤(2) 制备的规定形状的颗粒,在温度300℃。压力在1.2Mpa,停留时间7h;
(4)载体煅烧:将步骤3预处理的规定形状的颗粒,经高温煅烧,煅烧温度为800℃,煅烧时间为6个小时。通过调整煅烧时间和煅烧温度来控制煅烧后载体的比表面积、孔径大小,比表面积71 m2/g。
(5)浸渍分解:将步骤3制备的载体,放入到硝酸镍溶液中浸渍,浸渍温度为65℃,浸渍时间为50分钟,硝酸镍溶液浓度0.2mol/L。浸渍完后将载体取出,升高的温度进行干燥处理,其中温度为105℃,时间为10小时。对干燥完成后的载体进一步升高温度,将硝酸盐通过高温分解,去除硝酸根,留下镍的氧化物。分解温度300℃,时间为10小时。
通过化学分析对氧化镍检测,若氧化镍含量小于40%(质量百分含量),重复(5)步骤。
实施例8
用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,具体包括以下步骤:
(1)球磨混料:将铝、锆和镧的三种氧化物根据催化剂的最终需求组成的比例,加入球磨机中,通过球磨将三种氧化物进一步破碎并充分混合,混合时间为7小时。
(2)粉料成型:将步骤1制备的粉料通过制粒机制成颗粒均匀的细小颗粒物料,粒度为260目,再将细小颗粒物料加入到旋转式压片机或液压成型压片机中,压制成规定形状的颗粒。
(3)预处理:将步骤(2) 制备的规定形状的颗粒,在温度400℃。压力在1.3Mpa,停留时间8h;
(4)载体煅烧:将步骤3预处理的规定形状的颗粒,经高温煅烧,煅烧温度为1300℃,煅烧时间为1.5个小时。通过调整煅烧时间和煅烧温度来控制煅烧后载体的比表面积、孔径大小,比表面积84 m2/g。
(5)浸渍分解:将步骤3制备的载体,放入到硝酸镍溶液中浸渍,浸渍温度为85℃,浸渍时间为30分钟,硝酸镍溶液浓度0.7mol/L。浸渍完后将载体取出,升高的温度进行干燥处理,其中温度为140℃,时间为30分钟。对干燥完成后的载体进一步升高温度,将硝酸盐通过高温分解,去除硝酸根,留下镍的氧化物。分解温度200℃,时间为8小时。
通过化学分析对氧化镍检测,若氧化镍含量小于40%(质量百分含量),重复(5)步骤。
试验一
设实验例(预处理样品)和对照组(未预处理样品),实验例为本发明用实施例1中方法制备出的催化剂,对照组是用其它内容如实施1的内容,但没有步骤(3),却无预处理步骤。
按照ASTM UOP578-02法,使用压汞法测定对比样和本发明中催化剂(自制催化剂样品,以下相同)孔径分布,使用140°的接触角及压力范围在0.6至60,000 psig,如图1。
从图1可以看出,经过预处理的产品孔径和孔隙分布都高于未经预处理的产品。
试验二
按照ASTM UOP578-02法,使用压汞法测定对比样和本发明中制备方法生产的催化剂(自制催化剂样品,以下相同)孔径分布,使用140°的接触角及压力范围在0.6至60,000psig,如图2。
对照样是根据美国专利US 2013/0116118 Al中的制备方法而制作出的催化剂:将420g包含镍、铝和锆氧化物的均匀混合物(BET表面积=160m2/g;NiO=72wt.%,Al2O3=19wt.%,ZrO2=9wt.%,d50=137μm)用作活性重整相(成分a)。加入180g包含γ-Al2O3 δ-A/2 O3和θ-Al2O3的氧化铝粉末(BET = 126 m2/g,d50=116 μm;)。随后将粉末混合物与3wt.%的石墨混合,并通过筒箍混合机充分混合。在压实机上压实获得的混合物,随后在液压偏心压机上处理,得到固体球粒(直径=2.5 mm;高度=2.5 mm)(基于氧化物的催化剂的总组成:50.4 wt.%的NiO,43.65wt.%的A12O3和5.95 wt.%的ZrO2)。
从图2检测可知,本发明与对比样比较具有更大的孔径,提供重整反应的活性通道,电解液的碱金属不易对孔径造成堵塞,使催化剂活性降低。
试验二催化剂中毒测试
取对比样品和本发明中方法制备的催化剂作中毒测试,其中对比样品为试验一中的对比样品,测试具体如下:。
反应管:Φ25×3mm;催化剂尺寸:Φ2×4mm测试粒度:原粒度;催化剂装填体积:3ml;催化剂装填高度:约1cm;电解质重量:31g;电解质粒度:<5mm;还原压力:常压;还原温度:入口550℃、中部550℃、出口550℃;还原气体流量:N2:1.25NL/min,75NL/h; H2:0.505NL/min,30.3NL/h;还原时间:4h;
测试压力:常压;测试温度:入口往下1cm650℃、入口650℃、出口650℃(以实际温度为准);测试气体流量:H2:1.01NL/min,60.6NL/h;H2O:8ml/min,480ml/h;CO2:0.25NL/min,15NL/h;CH4:2.5NL/min,150NL/h;N2:0.3NL/min,18NL/h;
测试入口气组成:
Figure 1
测试水碳比:3.98;测试水氢比:9.86;测试碳空速:10000h-1;
测试过程:在常压状态下,以N2对催化剂床层进行升温,当床层温度升至550℃时,通入H2进行还原;还原完成后,通过平流泵打入水,打入水催化剂床层在550℃稳定后通入CO2,后催化剂床层温度继续升温至650℃,稳定后关闭N2,通入CH4进行催化剂的初始活性测定。为了进行中毒研究,将反应器冷却至室温,并在惰性气体(N2)下,将测试气体通过电解质层再进入,当电解质层温度升至650℃后开始计时,中毒测试时4小时分析一次进出口组成,在整个测试期间(约800小时),定期测量甲烷转化率,结果如图3。
从图3中可以看出,本发明所述催化剂在整个测试期间具有较稳定甲烷转化活性。对比样催化剂的初始甲烷转化率略高于本发明所述催化剂的初始甲烷转化率,但是通过碱金属氢氧化物或碱金属碳酸盐蒸气中毒后,初始甲烷转化率下降,大约100小时之后,初始甲烷转化率低于本发明所述催化剂的甲烷转化率。
试验三
将对比样品和发明中方法制备的催化剂作使用前、还原后和中毒后的孔径和孔容测试并分析,按照ASTM UOP578-02法,使用压汞法测定孔径分布,使用140°的接触角及压力范围在0.6至60,000 psig,对比样品结果如图4,发明中催化剂结果如图5。
其中对比样品为试验一中的对比样。
从图5中可知,本发明所述催化剂的结构稳定,孔径在使用前、还原后和中毒后变化较小,特别在还原后和中毒后,孔径和孔分布基本无变化。而从图4中可以看出,对比样品在使用前、还原后和中毒孔径和孔分布后变化明显,说明该催化剂结构不稳定,受温度和碱金属的影响较大。本发明的催化剂稳定的结构,能长时间提供稳定的孔径和孔分布,更有利于活性的稳定性,提高催化剂的使用寿命。
用本发明中的制备方法制备出的催化剂孔径大且孔结构稳定,大孔径不容易被电解液的碱金属堵塞,能持续提供重整反应的活性通道;铝、镧和锆共同作用,使载体晶粒错位,活性中心增多,提高了催化剂的整体活性。
以上显示和描述了本发明的基本原理和主要特征以及本发明的优点,上述实施例和说明书所描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都将落入要求保护的本发明范围内。本发明要求保护的范围由所附的权利要求书及其等效物界定。

Claims (20)

1.一种用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,其特征在于:包括以下步骤:
(1)球磨混料:将配比好的铝、锆和镧的三种氧化物破碎、混合,混合时间为1-12h;
(2)粉料成型:将步骤1中粉料制成颗粒,再压制成规定形状的颗粒;
(3)预处理:将步骤(2)制备的规定形状的颗粒,经预处理过程中形成新的稳定的孔隙结构;预处理温度100-700℃,压力1-2.0Mpa,停留时间1-24h;
(4)载体煅烧:将步骤3中预处理后的规定形状的颗粒,高温煅烧形成载体;其中675℃<煅烧温度≤1400℃,30min≤煅烧时间≤10h;
(5)浸渍分解:将载体放入硝酸镍溶液中浸渍、干燥和高温分解即可;载体氧化镍质量百分含量含量若<40%,则重复浸渍;制得的催化剂孔径200-300 Å,孔容0.200-0.400ml/g。
2.根据权利要求1所述的一种用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,其特征在于:所述步骤(1)中混合时间为1-8h。
3.根据权利要求2所述的一种用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,其特征在于:所述步骤(1)中混合时间为6-8h。
4.根据权利要求1所述的一种用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,其特征在于:所述步骤(2)中,颗粒大小为10-500目。
5.根据权利要求4所述的一种用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,其特征在于:所述步骤(2)中,颗粒大小为60-400目。
6.根据权利要求5所述的一种用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,其特征在于:所述步骤(2)中,颗粒大小为120-320目。
7.根据权利要求1所述的一种用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,其特征在于:所述步骤(3)中,温度100-600℃,压力1-1.5Mpa,停留时间5-12h。
8.根据权利要求7所述的一种用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,其特征在于:所述步骤(3)中,温度200-500℃,停留时间6-8h。
9.根据权利要求1或7所述的一种用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,其特征在于:所述步骤(4)中,700℃≤煅烧温度≤1350℃,40min≤煅烧时间≤8h。
10.根据权利要求9所述的一种用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,其特征在于:所述步骤(4)中,750℃≤煅烧温度≤1300℃,50 min≤煅烧时间≤6h。
11.根据权利要求10所述的一种用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,其特征在于:所述步骤(4)中,载体比表面积>70m2/g;所述步骤(5)中,硝酸镍溶液浓度为0.l-l mol/L。
12.根据权利要求1所述的一种用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,其特征在于:所述步骤(5)中,浸渍温度为60-90℃,浸渍时间≥5分钟,并且浸渍时间≤2小时。
13.根据权利要求12所述的一种用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,其特征在于:所述步骤(5)中,浸渍温度为70-90℃,浸渍时间≥10分钟,并且浸渍时间≤1.6小时。
14.根据权利要求13所述的一种用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,其特征在于:所述步骤(5)中,浸渍温度为80-90℃, 浸渍时间≥15分钟,并且浸渍时间≤1.5小时。
15.根据权利要求1所述的一种用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,其特征在于:所述步骤(5)中浸渍完后将载体取出,升高的温度进行干燥处理,其中干燥温度≥90℃,干燥时间为10min-10h。
16.根据权利要求15所述的一种用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,其特征在于:所述步骤(5)中浸渍完后将载体取出,升高的温度进行干燥处理,其中干燥温度≥100℃,干燥时间为20min-8h。
17.根据权利要求16所述的一种用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,其特征在于:所述步骤(5)中浸渍完后将载体取出,升高的温度进行干燥处理,其中干燥温度≥110℃,干燥时间为30min-4h。
18.根据权利要求1所述的一种用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,其特征在于:所述步骤(5)中分解温度>150℃,且分解温度≤700℃,分解时间≥30min,并且分解时间≤10h。
19.根据权利要求18所述的一种用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,其特征在于:所述步骤(5)中分解温度≥200℃,且分解温度≤650℃,分解时间≥≥40min,并且分解时间≤8h。
20.根据权利要求19所述的一种用于熔融碳酸盐燃料电池中甲烷蒸汽重整的催化剂的制备方法,其特征在于:所述步骤(5)中分解温度≥250℃,且分解温度≤600℃,分解时间≥50min,并且分解时间≤6h。
CN201810007229.6A 2018-01-04 2018-01-04 一种用于燃料电池中甲烷蒸汽重整的催化剂的制备方法 Active CN108199054B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810007229.6A CN108199054B (zh) 2018-01-04 2018-01-04 一种用于燃料电池中甲烷蒸汽重整的催化剂的制备方法
PCT/CN2018/111868 WO2019134423A1 (zh) 2018-01-04 2018-10-25 用于燃料电池中甲烷蒸汽重整的催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810007229.6A CN108199054B (zh) 2018-01-04 2018-01-04 一种用于燃料电池中甲烷蒸汽重整的催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN108199054A CN108199054A (zh) 2018-06-22
CN108199054B true CN108199054B (zh) 2020-10-27

Family

ID=62587886

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810007229.6A Active CN108199054B (zh) 2018-01-04 2018-01-04 一种用于燃料电池中甲烷蒸汽重整的催化剂的制备方法

Country Status (2)

Country Link
CN (1) CN108199054B (zh)
WO (1) WO2019134423A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108199054B (zh) * 2018-01-04 2020-10-27 西南化工研究设计院有限公司 一种用于燃料电池中甲烷蒸汽重整的催化剂的制备方法
CN113215608A (zh) * 2021-04-25 2021-08-06 中国华能集团清洁能源技术研究院有限公司 一种双功能电极的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105102125A (zh) * 2013-02-27 2015-11-25 托普索公司 稳定的包含过渡态氧化铝的催化剂载体和催化剂
CN106799263A (zh) * 2017-03-03 2017-06-06 中国科学院上海高等研究院 一种用于甲烷三重整反应的高强度多级孔催化剂及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010101612A (ko) * 1999-01-21 2001-11-14 앤쥼 쉐이크 바쉬어+마틴 험프리스 니켈, 루테늄 및 란타늄을 담지한 촉매 담체
KR100903439B1 (ko) * 2007-10-15 2009-06-18 한국화학연구원 천연가스로부터 경질탄화수소의 직접 제조방법
CN101829577A (zh) * 2010-04-23 2010-09-15 浙江大学 一种复合催化剂及其制备和应用
CN102416331B (zh) * 2011-08-23 2013-09-25 神华集团有限责任公司 一种镍基催化剂制备方法、由其制备的催化剂及用途
CN103752319B (zh) * 2013-12-31 2016-08-17 南昌大学 抗积碳Ni基甲烷水蒸气重整制氢催化剂及其制备方法
CN105413734B (zh) * 2015-12-07 2020-05-26 西南化工研究设计院有限公司 一种用于甲烷-二氧化碳重整制还原气的镍系催化剂及其制备方法
CN105645989B (zh) * 2016-03-14 2018-05-01 西北工业大学 介孔氧化铝陶瓷的制备方法
CN108199054B (zh) * 2018-01-04 2020-10-27 西南化工研究设计院有限公司 一种用于燃料电池中甲烷蒸汽重整的催化剂的制备方法
CN108134102B (zh) * 2018-01-04 2020-10-09 西南化工研究设计院有限公司 一种用于燃料电池中甲烷蒸汽重整的催化剂

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105102125A (zh) * 2013-02-27 2015-11-25 托普索公司 稳定的包含过渡态氧化铝的催化剂载体和催化剂
CN106799263A (zh) * 2017-03-03 2017-06-06 中国科学院上海高等研究院 一种用于甲烷三重整反应的高强度多级孔催化剂及其制备方法

Also Published As

Publication number Publication date
CN108199054A (zh) 2018-06-22
WO2019134423A1 (zh) 2019-07-11

Similar Documents

Publication Publication Date Title
CN108134102B (zh) 一种用于燃料电池中甲烷蒸汽重整的催化剂
Elleuch et al. Electrochemical oxidation of graphite in an intermediate temperature direct carbon fuel cell based on two-phases electrolyte
US20110195342A1 (en) Solid oxide fuel cell reactor
KR100647309B1 (ko) 열 및 물질전달 특성이 우수한 연료가스 개질반응 촉매용담체 및 그의 제조방법
EP0098605B1 (en) Fuel cell catalyst member and method of making same
EP1265704A1 (en) Finely divided metal catalyst and method for making same
Liao et al. Ultrafine homologous Ni2P–Co2P heterostructures via space‐confined topological transformation for superior urea electrolysis
CN108199054B (zh) 一种用于燃料电池中甲烷蒸汽重整的催化剂的制备方法
DE2238137A1 (de) Elektrochemische zelle und elektromatrize fuer eine solche zelle
CN101143330B (zh) 一种纳米晶WC-Co-Ni催化剂
US9970118B2 (en) Method for preparing fuel electrode of solid oxide electrolysis cells embedded with bimetallic catalyst
Park et al. Recycling of sodium metaborate to borax
CN110729486A (zh) 一种单质钴复合氮掺杂碳高效氧还原/氧析出催化剂的制备方法
CN105148919A (zh) 一种烃类蒸汽转化过程异型催化剂、其合成方法、其成型方法及其应用
CA2573636C (en) Silver-gas diffusion electrode for use in air containing co2 and a method for producing the same
US20100140569A1 (en) Synthesis for catelysis of bifunctional perovskite compound
KR102068732B1 (ko) 연료 전지에서 메탄을 스팀 개질하기 위한 촉매 조성물
Luo et al. Functional ceramic support as an independent catalyst layer for direct liquid fuel solid oxide fuel cells.
KR101534607B1 (ko) 고체 산화물 재생 연료전지용 다공성 공기극 복합체, 이의 제조방법 및 이를 포함하는 고체 산화물 재생 연료전지
CN111916770B (zh) 一种高性能空气电极催化剂及其制备方法
JP7192613B2 (ja) 触媒担体用炭素材料、触媒担体用炭素材料の製造方法、燃料電池用触媒層、及び燃料電池
Fu et al. Fabrication of bi-layered proton conducting membrane for hydrocarbon solid oxide fuel cell reactors
KR20000051609A (ko) 용융 탄산염 연료 전지용 개질 촉매 및 그의 제조 방법
Lee et al. Enhancement of catalytic activity of Raney nickel by cobalt addition
Che Abdullah et al. Effect of H2/N2 mixtures on reduction of nickel oxide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: No. 5 high tech Zone Gaopeng road in Chengdu city of Sichuan Province in 610041

Applicant after: Haohua Chemical Technology Group Co.,Ltd.

Address before: No. 5 high tech Zone Gaopeng road in Chengdu city of Sichuan Province in 610041

Applicant before: SICHUAN TIANYI SCIENCE AND TECHNOLOGY Co.,Ltd.

CB02 Change of applicant information
TA01 Transfer of patent application right

Effective date of registration: 20200630

Address after: No. 5 high tech Zone Gaopeng road in Chengdu city of Sichuan Province in 610041

Applicant after: SOUTHWEST RESEARCH & DESIGN INSTITUTE OF CHEMICAL INDUSTRY

Address before: No. 5 high tech Zone Gaopeng road in Chengdu city of Sichuan Province in 610041

Applicant before: Haohua Chemical Technology Group Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant