CN108046287B - 一种纳米y沸石自组装体的制备方法 - Google Patents

一种纳米y沸石自组装体的制备方法 Download PDF

Info

Publication number
CN108046287B
CN108046287B CN201711272456.3A CN201711272456A CN108046287B CN 108046287 B CN108046287 B CN 108046287B CN 201711272456 A CN201711272456 A CN 201711272456A CN 108046287 B CN108046287 B CN 108046287B
Authority
CN
China
Prior art keywords
zeolite
nano
self
assembly
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201711272456.3A
Other languages
English (en)
Other versions
CN108046287A (zh
Inventor
马静红
焦宇
郝文明
李瑞丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201711272456.3A priority Critical patent/CN108046287B/zh
Publication of CN108046287A publication Critical patent/CN108046287A/zh
Application granted granted Critical
Publication of CN108046287B publication Critical patent/CN108046287B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • C01B39/205Faujasite type, e.g. type X or Y using at least one organic template directing agent; Hexagonal faujasite; Intergrowth products of cubic and hexagonal faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/084Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

一种纳米Y沸石自组装体的制备方法,属于无机非金属材料和催化剂制备领域,可解决现有纳米沸石的制备方法存在难于从反应体系中分离以及制备的沸石的性能难以满足石油炼制工业的要求的问题,按照9~11Na2O:0.6~2.0Al2O3:10SiO2:0.19~0.34表面活性剂:160~300 H2O的物料摩尔配比,在沸石合成体系中加入长链烷基三甲基溴化铵表面活性剂,并在较浓的配料体系中以及低的成胶、陈化和晶化温度下合成沸石。该方法的优点是,所制备的纳米Y沸石自组装体外比表面大,晶间中孔孔隙率和孔径分布可调,同时合成方法简单、绿色且节能。

Description

一种纳米Y沸石自组装体的制备方法
技术领域
本发明涉及一种纳米Y沸石自组装体的制备方法。属于无机非金属材料和催化剂制备领域。具体而言涉及一种由纳米沸石晶粒自聚而成的具有多级孔结构的Y沸石自组装体的制备方法。
背景技术
Y型沸石是一种具有FAU骨架结构和三维笼状孔道结构的沸石分子筛材料,自上世纪60年代首次使用以来,就一直在石油炼制工业中扮演重要角色,已成为催化裂化(FCC)和加氢裂化两种炼油技术中催化剂的主力军。然而,随着原油重质化的加剧,油品原料中多环芳烃等大分子碳氢化合物含量的显著增加,沸石催化剂的应用受到限制。这是由于受沸石微孔孔道的限制(孔口直径0.74nm),Y沸石活性位对于原油中大分子的可接近性及其在沸石孔道中的扩散能力受到极大制约,从而导致催化剂利用率大大下降,并且在催化反应中很容易受到积炭的影响而失活。为了克服传统微米级微孔沸石的局限性,减小沸石晶粒尺寸以制备纳米Y沸石已被证明是一种有效的方法。纳米沸石的制备可通过增大沸石外表面积和缩短扩散距离来有效提高沸石活性位对大分子的可接近性并促进分子在沸石孔道内的扩散能力,从而改善传统微孔沸石的催化性能。然而,分散性纳米沸石由于其粒子的纳米化,在制备与使用过程中存在难于从反应体系中分离的问题而使其实际应用受到阻碍。如何保持纳米沸石的优越性,同时克服自身难于沉降且分离困难的缺陷,制备纳米沸石自组装体成为新的研究方向。Sh. Xu等研究了在合成体系中加入TMOAC ([(CH3O)3SiC3H6N(C2H5)2C16H33]Cl),在1.0Al2O3/4.4Na2O/9.8SiO2/0.8TMOAC/153H2O配料摩尔比下制备纳米Y沸石组装体, 所获得的材料的外表面积达158 m2/g,且由于纳米粒子的聚集产生了丰富的晶间中孔和大孔,但孔径分布很宽(RSC Adv., 2016, 6, 69822–69827);T. Tang等报道了在摩尔配料比为Al2O3/14.4Na2O/9.8SiO2/590H2O,75°C的晶化条件下合成了具有外表面积达111 m2/g,粒子尺寸为400~900 nm的纳米Y沸石组装体 (RSC Adv., 2017, 7, 7711–7717)。另外,CN 107055567 A公开了一种纳米Y沸石积聚体的制备方法,投料摩尔比为Al2O3:(9.0~10.8)SiO2:(14.5~15.5)Na2O:(580~680)H2O,晶化温度为70~80°C,制得的含晶间介孔的纳米Y沸石积聚体的粒径在400~900 nm,比表面积为650~780 m2/g,微孔孔容0.23~0.27 cm3/g,介孔孔容0 .16~0.25 cm3/g,介孔孔径4~9nm。
发明内容
本发明一种纳米Y沸石自组装体的制备方法,其目的在于提供一种由纳米沸石晶粒自聚而形成的具有多级孔结构的Y沸石自组装体的制备方法,通过该方法的实施制备粒径小且形貌均匀,结晶度高的纳米Y沸石自组装体,从而进一步提高该材料的总比表面积、外比表面积和中孔孔隙,以满足石油炼制工业中对沸石Y日益增加的性能的要求。
本发明采用如下技术方案:
一种纳米Y沸石自组装体的制备方法,是在沸石合成体系中加入长链烷基三甲基溴化铵表面活性剂,并在较浓的配料体系中以及低的成胶、陈化和晶化温度下合成沸石,其具体制备工艺如下:
按照Na2O: Al2O3:SiO2:表面活性剂: H2O的物料摩尔配比为9~11:0.6~2.0:10:0.19~0.34:160~300,首先将Al2O3质量分数为41%的偏铝酸钠和氢氧化钠加到去离子水中,得到混合物,并将混合物置于20~30°C水浴中搅拌,待二者充分溶解并溶液达到澄清后加入长链烷基三甲基溴化铵表面活性剂,继续搅拌直到表面活性剂完全溶解,获得溶液A;然后将溶液A缓慢加入到温度为0~5°C的含SiO2为6.228mol/L的水玻璃或含SiO2为8.533mol/L的硅溶胶中,并在恒温下充分搅拌以保证混合均匀,形成混合液B,并将混合液B置于20~30°C水浴中陈化18~24h;最后将陈化后的混合液B装入带有聚四氟乙烯内衬的反应釜中,并将反应釜放于烘箱中,在晶化温度为40~60°C下晶化15~20d,将所得产物过滤并用去离子水洗涤至中性,100~120°C干燥,450~500°C空气中焙烧5~6h,即得到粉末状纳米Y沸石自组装体。
所述长链烷基三甲基溴化铵表面活性剂是C12~ C16的烷基三甲基溴化铵中的一种。
本发明的有益效果如下:
1. 本发明的纳米Y沸石自组装体保留了纳米沸石的优点,克服了其分离困难的缺陷,使纳米沸石的实际应用成为可能,并且由于丰富的晶间中孔的存在,使其同时具有多级孔沸石的特征;且由于所制备的纳米沸石晶粒形貌规则,粒径小而均匀,从而制备的纳米Y沸石自组装体外比表面大,中孔孔径分布窄,并且中孔的孔隙度和孔径可通过改变长链烷基三甲基溴化铵表面活性剂的加入量和烷基链的长度进行调节。
2. 本发明的一种纳米Y沸石自组装体的制备方法,在合成体系中所加入的长链烷基三甲基溴化铵属于廉价且无毒的绿色表面活性剂;同时采用高浓度配料,低温晶化的方式合成沸石,避免了大量水的使用而造成的设备庞大和水的浪费问题,同时节约了能源。
附图说明
图1为本发明实施例1产物的XRD谱图;
图2为本发明N2吸附/脱附等温线及DFT孔径分布;
图3为本发明实施例1产物的20K倍率扫描电镜图;
图4为本发明实施例1产物的80K倍率扫描电镜图。
具体实施方式
实施例1,
按照9Na2O: 0.7Al2O3: 10SiO2: 0.19CTAB: 160H2O的物料摩尔配比,首先将1.09g偏铝酸钠和2.7g氢氧化钠加到13mL去离子水中,并将混合物置于30°C水浴中搅拌,待二者充分溶解并且溶液达到澄清后加入0.455g十六烷基三甲基溴化铵(CTAB),继续搅拌直到CTAB完全溶解,获得溶液A;然后将A溶液缓慢加入到温度为0℃体积为10mL的水玻璃中,并在恒温下充分搅拌以保证混合均匀,形成混合液B,并将B混合液置于30°C水浴中陈化24h;最后将陈化后的混合液装入带有聚四氟乙烯内衬的反应釜中,并将反应釜放于烘箱中,在晶化温度为55°C下晶化17d,将所得产物过滤并用去离子水洗涤至中性,100°C干燥,450°C空气中焙烧5h,即得到粉末状纳米Y沸石自组装体Y-1。
图1的XRD谱图显示该产物为高结晶度的FAU沸石,且衍射线有宽化现象,由谢乐公式计算其平均粒径为45nm,由晶胞参数计算骨架Si/Al为2.0, 证明了Y沸石的合成;图2的N2吸附/脱附等温线显示了产物中微孔和中孔共存的特征,DFT孔径分布分析表明,中孔孔径为2-6nm;BET表面积、外表面积和介孔孔容分别为830m2/g、233m2/g和0.259cm3/g;扫描电镜显示产物由粒径和形貌均匀的纳米晶粒堆积而成,晶间有丰富的中孔孔隙。
实施例2,
改变投料摩尔比为9Na2O: 0.6Al2O3: 10SiO2: 0.19CTAB:160H2O,偏铝酸钠加入量为0.855g,改变陈化时间为22h,50°C下晶化18d,焙烧时间为6h,其他条件同实施例1,得到的粉末状纳米Y沸石自组装体为Y-2,其结构性质见表1。
实施例3,
改变投料摩尔比为9Na2O:0.6Al2O3:10SiO2:0.32CTAB:160H2O,偏铝酸钠加入量为0.855g,CTAB加入量为0.65g,40°C下晶化20d,500°C焙烧6h,其他条件同实施例1,得到的粉末状纳米Y沸石自组装体为Y-3,其结构性质见表1。
实施例4,
改变投料摩尔比为9Na2O: 0.7Al2O3: 10SiO2: 0.19十四烷基三甲基溴化铵(TTAB): 200H2O,去离子水加入量为17.5mL,TTAB加入量为0.34g,20°C水浴搅拌,A溶液加入温度为3°C的水玻璃中,20°C陈化24h,55°C下晶化18d,105°C干燥,其他条件同实施例1,得到的粉末状纳米Y沸石自组装体为Y-4,其结构性质见表1。
实施例5,
改变投料摩尔比为9Na2O: 0.9Al2O3: 10SiO2: 0.19CTAB: 250H2O,偏铝酸钠加入量为1.40g,去离子水23.13mL,A溶液加入温度为5°C的水玻璃中,陈化时间为18h,60°C下晶化15d,120°C干燥,其他条件同实施例1,得到的粉末状纳米Y沸石自组装体为Y-5,其结构性质见表1。
实施例6,
改变投料摩尔比为9Na2O: 0.7Al2O3: 10SiO2: 0.27CTAB: 300H2O,氢氧化钠加入量为3.96g,去离子水加入量为28.75mL,CTAB加入量为0.6g,A溶液加入温度为5°C的7.3mL硅溶胶中,陈化22h,45°C下晶化17d,470°C空气中焙烧5h,其他条件同实施例1,得到粉末状纳米Y沸石自组装体Y-6,其结构性质见表1。
实施例7,
改变投料摩尔比为9Na2O: 0.9Al2O3: 10SiO2: 0.20CTAB: 160H2O,CTAB加入量为0.479g,25°C水浴搅拌,25°C下陈化20h,60°C下晶化16d,110°C干燥,475°C空气中焙烧,2.5h,其他条件同实施例1,得到粉末状纳米Y沸石自组装体Y-7,其结构性质见表1。
实施例8,
改变投料摩尔比为9Na2O: 1.5Al2O3: 10SiO2: 0.25CTAB: 160H2O,偏铝酸钠钠加入量为1.81g,CTAB加入量为0.600g,25°C水浴搅拌,25°C下陈化20h,60°C下晶化16d,110°C干燥,475°C空气中焙烧5.5h,其他条件同实施例1,得到粉末状纳米Y沸石自组装体Y-8,其结构性质见表1。
实施例9,
改变投料摩尔比为11Na2O: 0.7Al2O3: 10SiO2: 0.34DTAB: 160H2O,氢氧化钠加入量为3.5g,DTAB加入量为0.58g,25°C水浴搅拌,25°C下陈化20h,60°C下晶化16d,115°C干燥,475°C空气中焙烧6h,其他条件同实施例1,得到粉末状纳米Y沸石自组装体Y-9,其结构性质见表1。
实施例10,
改变投料摩尔比为10Na2O: 2.0Al2O3: 10SiO2: 0.19十二烷基三甲基溴化铵(DTAB): 160H2O,偏铝酸钠加入量为3.11g,氢氧化钠加入量为3.1g,DTAB加入量为0.385g,115°C干燥,其他条件同实施例1,得到的粉末状纳米Y沸石自组装体为Y-10,其结构性质见表1。
实施例11,
改变投料摩尔比为9Na2O: 1.1Al2O3: 10SiO2: 0.27DTAB: 160H2O,改变偏铝酸钠加入量为1.71g,氢氧化钠加入量为3.96g,DTAB加入量为0.75g,A溶液加入温度为5°C体积为7.3mL的硅溶胶中,其他条件同实施例1,得到粉末状纳米Y沸石自组装体Y-11,其结构性质见表1。
表1 各实施例制备的Y沸石结构性质
Figure 836346DEST_PATH_IMAGE001

Claims (2)

1.一种纳米Y沸石自组装体的制备方法,其特征在于:是在沸石合成体系中加入长链烷基三甲基溴化铵表面活性剂,并在较浓的配料体系中以及低的成胶、陈化和晶化温度下合成沸石,其具体制备工艺如下:
按照Na2O: Al2O3:SiO2:表面活性剂: H2O的物料摩尔配比为9~11:0.6~2.0:10:0.19~0.34:160~300,首先将Al2O3质量分数为41%的偏铝酸钠和氢氧化钠加到去离子水中,得到混合物,并将混合物置于20~30°C水浴中搅拌,待二者充分溶解并溶液达到澄清后加入长链烷基三甲基溴化铵表面活性剂,继续搅拌直到表面活性剂完全溶解,获得溶液A;然后将溶液A缓慢加入到温度为0~5°C的含SiO2为6.228mol/L的水玻璃或含SiO2为8.533mol/L的硅溶胶中,并在恒温下充分搅拌以保证混合均匀,形成混合液B,并将混合液B置于20~30°C水浴中陈化18~24h;最后将陈化后的混合液B装入带有聚四氟乙烯内衬的反应釜中,并将反应釜放于烘箱中,在晶化温度为40~60°C下晶化15~20d,将所得产物过滤并用去离子水洗涤至中性,100~120°C干燥,450~500°C空气中焙烧5~6h,即得到粉末状纳米Y沸石自组装体。
2.根据权利要求1所述的一种纳米Y沸石自组装体的制备方法,其特征在于:所述长链烷基三甲基溴化铵表面活性剂是C12~ C16的烷基三甲基溴化铵中的一种。
CN201711272456.3A 2017-12-06 2017-12-06 一种纳米y沸石自组装体的制备方法 Expired - Fee Related CN108046287B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711272456.3A CN108046287B (zh) 2017-12-06 2017-12-06 一种纳米y沸石自组装体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711272456.3A CN108046287B (zh) 2017-12-06 2017-12-06 一种纳米y沸石自组装体的制备方法

Publications (2)

Publication Number Publication Date
CN108046287A CN108046287A (zh) 2018-05-18
CN108046287B true CN108046287B (zh) 2020-12-04

Family

ID=62122273

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711272456.3A Expired - Fee Related CN108046287B (zh) 2017-12-06 2017-12-06 一种纳米y沸石自组装体的制备方法

Country Status (1)

Country Link
CN (1) CN108046287B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113086988B (zh) * 2019-12-23 2023-01-10 中国石油化工股份有限公司 一种y型分子筛及制备和其在裂化中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1488577A (zh) * 2003-08-07 2004-04-14 复旦大学 含y沸石次级结构单元的介孔分子筛及其制备方法
CN101691228A (zh) * 2009-10-12 2010-04-07 定州市荣鼎水环境生化技术有限公司 一种微介孔复合分子筛及其制备方法
CN105692644A (zh) * 2016-02-17 2016-06-22 苏州大学 一种制备多级孔沸石的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1488577A (zh) * 2003-08-07 2004-04-14 复旦大学 含y沸石次级结构单元的介孔分子筛及其制备方法
CN101691228A (zh) * 2009-10-12 2010-04-07 定州市荣鼎水环境生化技术有限公司 一种微介孔复合分子筛及其制备方法
CN105692644A (zh) * 2016-02-17 2016-06-22 苏州大学 一种制备多级孔沸石的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Y沸石纳米晶在碱性环境中的模板组装;石冈等;《化学反应工程与工艺》;20131031;第29卷(第5期);第470-480页 *

Also Published As

Publication number Publication date
CN108046287A (zh) 2018-05-18

Similar Documents

Publication Publication Date Title
CN107555446B (zh) 一种多级孔y型分子筛的制备方法
CN108910910B (zh) 一种zsm-35分子筛及其制备方法
CN107758691A (zh) 高硅cha型ssz‑13分子筛的制备方法
WO2011047528A1 (zh) 一种y-beta/mcm-41双微孔—介孔复合分子筛及制备方法
CN105621445B (zh) 一种NaY型分子筛及其制备方法
KR20110042740A (ko) 나노 크기의 결정성 zsm-5 핵을 사용한 zsm-5의 제조 방법
CN108862309B (zh) 一种具有纳微结构的NaY分子筛聚集体及其制备方法
CN102452666A (zh) 一种合成im-5分子筛的方法
CN106865566A (zh) 一种zsm‑5分子筛及其制备方法和应用
WO2018205841A1 (zh) 中孔NaY型沸石分子筛的制备方法
CN112794338B (zh) Zsm-5分子筛及其制备方法和应用
Chen et al. Synthesis of a multi-branched dandelion-like SAPO-11 by an in situ inoculating seed-induced-steam-assisted conversion method (SISAC) as a highly effective hydroisomerization support
CN108046287B (zh) 一种纳米y沸石自组装体的制备方法
CN107792864A (zh) 一种粒径可控p‑zsm‑5分子筛的制备方法
CN113058637B (zh) 一种烷烃双支链异构催化剂及其制备方法
CN112850741B (zh) 一种具有晶内介孔的小晶粒NaY分子筛的合成方法
CN109205636B (zh) Y/sapo-34/zsm-11/asa多级孔材料的制备方法
CN109304226B (zh) 一种多产重石脑油和航煤的加氢裂化催化剂及其制备方法和应用
JP5901817B2 (ja) 重質炭化水素油の接触分解、水素化分解触媒用ヘテロ接合多孔性結晶体
CN111847473A (zh) 一种程序升温法合成大晶粒Beta分子筛的方法
CN113830778B (zh) ZSM-5/β核壳型分子筛及其合成方法和应用
WO2018218736A1 (zh) 具有bog结构的硅铝沸石分子筛及其制备方法
CN105836756B (zh) 一种无模板剂体系制备单分散规整晶貌的zsm‑5分子筛的方法
CN112723374B (zh) 一种NaY分子筛及其合成方法
WO2020227888A1 (zh) 一种zsm-57分子筛及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201204