WO2018218736A1 - 具有bog结构的硅铝沸石分子筛及其制备方法 - Google Patents

具有bog结构的硅铝沸石分子筛及其制备方法 Download PDF

Info

Publication number
WO2018218736A1
WO2018218736A1 PCT/CN2017/092339 CN2017092339W WO2018218736A1 WO 2018218736 A1 WO2018218736 A1 WO 2018218736A1 CN 2017092339 W CN2017092339 W CN 2017092339W WO 2018218736 A1 WO2018218736 A1 WO 2018218736A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
bog
silica
zeolite molecular
bog structure
Prior art date
Application number
PCT/CN2017/092339
Other languages
English (en)
French (fr)
Inventor
姜久兴
黄沁彤
张传奇
滕春霖
仇江珍
Original Assignee
中山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大学 filed Critical 中山大学
Publication of WO2018218736A1 publication Critical patent/WO2018218736A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume

Definitions

  • the invention relates to the technical field of inorganic materials, in particular to a silicoalumina molecular sieve having a BOG structure and a preparation method thereof.
  • Boggsite mineral is a new type of high-silicon natural zeolite molecular sieve discovered in 1990 in the basalt of Oregon, USA.
  • the 12-membered ring channel in the a-axis direction and the 10-member ring channel in the b-axis direction penetrate each other to form a two-dimensional channel structure. It is worth noting that both types of holes are connected to the outside, and the 12-cell is close to a circle.
  • the diameter of the ring tunnel is at Left and right, the diameter of the 10-member ring channel is Between (BOG type structure). Based on the above information, it is expected that the Burgs stone will have excellent separation performance and catalytic performance.
  • the world reserves of Bergs Stone are very rare, and there are also applications where development difficulties and low purity cannot be industrialized.
  • the Corma research group of Spain synthesized the BOG molecular sieve ITQ-47 by using the phosphazene ligand P1-tert-butyl as an organic template.
  • the ITQ-47 molecular sieve has the same structure as the Bergs stone, the ITQ-47 is a silica-boron molecular sieve, and the Burgs stone is a silica-alumina molecular sieve.
  • the post-treatment method can realize the deboration and aluminum supplementation of the ITQ-47 molecular sieve, but the substitution amount of aluminum is limited.
  • the synthetic ITQ-47 zeolite molecular sieve uses a phosphazene ligand P1-tert-butyl templating agent and cerium oxide, both of which are expensive and not suitable for large-scale production.
  • ITQ-47 is a silica-boron molecular sieve.
  • the substitution of boron atoms in the zeolite molecular sieve skeleton will only lead to a weak Lewis acid center, and the catalytic application is very limited. .
  • aluminum In order to improve the strength of the acid center, it is necessary to remove the boron by post-treatment. aluminum.
  • the limited content of Al introduced by this method will also reduce the hydrothermal stability of the zeolite molecular sieve material, thereby affecting the catalytic performance and adsorption performance of the material.
  • the process of ITQ-47 in the release agent requires high-temperature calcination, and the phosphorus species in the organic template will be converted into phosphorus pentoxide remaining in the pores, which needs to be completely removed by further washing.
  • an object of the present invention is to provide a method for preparing a silica-alumina molecular sieve having a BOG structure.
  • a preparation method of a silicalite zeolite molecular sieve having a BOG structure comprising the following steps:
  • SiO 2 : Na 2 O: Al 2 O 3 : H 2 O 1: 0.2 to 1.0: 0.005 to 0.1: 10 to 40;
  • step (3) The product of the step (2) is suction filtered and dried to obtain the silicalite zeolite molecular sieve having the BOG structure.
  • the seed crystal is selected from the group consisting of Bourges, ITQ-47, or a silicalite molecular sieve having a BOG structure.
  • the seed crystal is used in an amount of from 3 to 20% by mass of the SiO 2 .
  • the source of aluminum is selected from one or more of the group consisting of aluminum nitrate, aluminum sulfate, sodium metaaluminate, aluminum isopropoxide, aluminum sol, or aluminum hydroxide.
  • the silicon source is selected from the group consisting of at least one of white carbon, water glass, silica sol, sodium silicate, or tetraethyl orthosilicate.
  • the mixture obtained in the step (1) is placed in a reaction vessel and crystallized at 115 to 140 ° C for 5 to 18 days.
  • Another object of the present invention is to provide a silicalite molecular sieve having a BOG structure.
  • the silica-alumina molecular sieve having the BOG structure prepared by the above preparation method.
  • the preparation method of the above-mentioned silica-alumina molecular sieve with BOG structure eliminates the use of expensive organic templating agent, shortens the crystallization time and lowers the crystallization temperature; directly synthesizes the silica-alumina molecular sieve with BOG structure by the first one-step method, Conducive to its industrial application.
  • the silicoalulite molecular sieve obtained by the above preparation method maintains good crystallinity and purity and has good catalytic reaction activity.
  • the above preparation method reduces unnecessary loss in the production process, and the product has potential application value for some important catalytic reactions.
  • the inorganic raw materials used in the above preparation methods are all environmentally friendly and low in price; since no organic templating agent is introduced during the synthesis process, no roasting is required, and the pores are unblocked, which does not cause environmental pollution and high energy consumption.
  • Example 1 is an XRD pattern of the silicalite zeolite molecular sieve having a BOG structure obtained in Example 1;
  • Example 2 is an SEM image of the silicalite zeolite molecular sieve having the BOG structure obtained in Example 1;
  • Example 3 is an adsorption-desorption isotherm curve of the silica-alumina molecular sieve having the BOG structure obtained in Example 1.
  • Example 1 Synthesis of silica-alumina zeolite molecular sieve (SYSU-4 zeolite molecular sieve) having BOG structure by using ITQ-47 as an induced seed crystal
  • the molar ratio of the reaction raw materials is as follows: SiO 2 : 0.025NaAlO 2 : 0.54 NaOH: 25H 2 O, the amount of seed crystal ITQ-47 is 5% of the mass of SiO 2 , the product is suction filtered, and dried to obtain a BOG structure.
  • Aluminosilicate molecular sieves are described in detail below.
  • Example 2 Synthesis of silica-alumina molecular sieve with BOG structure by using IRQ-47 as seed crystal at 115 °C
  • the molar ratio of the reaction raw materials is as follows: SiO 2 : 0.05NaAlO 2 : 0.56 NaOH: 15H 2 O, the amount of seed crystal ITQ-47 is 5% of the mass of SiO 2 , the product is suction filtered, and dried to obtain a BOG structure.
  • Aluminosilicate molecular sieves are described in detail below.
  • Example 3 Synthesis of silicalite zeolite molecular sieve with BOG structure by using 20% ITQ-47 as seed crystal, sodium hydroxide and potassium hydroxide as alkali source
  • the molar ratio of the reaction raw materials is as follows: SiO 2 : 0.04NaAlO 2 : 0.5 NaOH: 0.05 KOH: 20H 2 O, and the amount of seed crystal ITQ-47 is 20% by mass of SiO 2 , and the product is suction filtered and dried to obtain Silicoalulite molecular sieve with BOG structure.
  • Example 4 Synthesis of a silicalite zeolite molecular sieve having a BOG structure using Al 2 (SO 4 ) 3 ⁇ 18H 2 O as an aluminum source
  • the molar ratio of the reaction raw materials is as follows: SiO 2 : 0.04 Al 2 (SO 4 ) 3 ⁇ 18H 2 O: 0.6 NaOH: 25H 2 O, the amount of seed crystal ITQ-47 is 5% by mass of SiO 2 , and the product is suction filtered. Drying can obtain a silicalite molecular sieve having a BOG structure.
  • Example 5 Synthesis of silicalite zeolite molecular sieve with BOG structure by seeding tetraethyl orthosilicate as silicon source
  • the molar ratio of the reaction raw materials is as follows: TEOS: 0.033NaAlO 2 : 0.52 NaOH: 20H 2 O, the amount of seed crystal ITQ-47 is 5% by mass of SiO 2 , the product is suction filtered, and dried to obtain a BOG structure. Silicoalulite molecular sieves.
  • Example 6 Synthesis of silicalite zeolite molecular sieve with BOG structure by using silica sol as silicon source seeding method
  • the molar ratio of the reaction raw materials is as follows: LUDOX: 0.033NaAlO 2 : 0.5 NaOH: 20H 2 O, the amount of seed crystal ITQ-47 is 5% by mass of SiO 2 , the product is suction filtered, and dried to obtain a BOG structure. Silicoalulite molecular sieves.
  • Example 7 Synthesis of silicalite zeolite molecular sieve with BOG structure by sodium silicate as silicon source seeding method
  • deionized water was uniformly mixed with 0.5 g of Al 2 (SO 4 ) 3 ⁇ 18H 2 O, then 4.26 g of Na 2 SiO 3 ⁇ 9H 2 O was added under stirring, and stirring was continued until the solution became uniform and 1.8 g of silicon was added dropwise.
  • Sol (LUDOX, aq40% w) finally added 0.045 g of ITQ-47 molecular sieve to make the seed crystals evenly stirred, and the reaction raw materials were added into a polytetrafluoroethylene stainless steel reaction vessel, and crystallized at 140 ° C for 5 days.
  • the molar ratio of the reaction raw materials is as follows: Na 2 SiO 3 ⁇ 9H 2 O: 0.5 Al 2 (SO 4 ) 3 ⁇ 18H 2 O: 0.8 LUDOX: 25H 2 O, the amount of seed crystal ITQ-47 is SiO 2 mass 5%, the product was suction filtered and dried to obtain a silicalite zeolite molecular sieve having a BOG structure.
  • Example 8 Synthesis of a silicalite zeolite molecular sieve having BOG structure by using ITQ-47 as an induced seed crystal at a lower aluminum content
  • the molar ratio of the reaction raw materials is as follows: SiO 2 : 0.02NaAlO 2 : 0.5 NaOH: 25H 2 O, the amount of seed crystal ITQ-47 is 5% of the mass of SiO 2 , the product is suction filtered, and dried to obtain a BOG structure.
  • Aluminosilicate molecular sieves are described in detail below.
  • Example 9 Synthesis of a silicalite zeolite molecular sieve having BOG structure with 3% ITQ-47 as the induced seed crystal at a higher aluminum content
  • the reaction raw materials are as follows: SiO 2 : 0.067NaAlO 2 : 0.5 NaOH: 15H 2 O, the amount of seed crystal ITQ-47 is 3% of the mass of SiO 2 , the product is suction filtered, and dried to obtain a BOG structure. Silicoalulite molecular sieves.
  • Example 10 Synthesis of silicalite zeolite molecular sieve with BOG structure by using SYSU-4 as seed crystal
  • the reaction raw materials are as follows: SiO 2 : 0.025NaAlO 2 : 0.52 NaOH: 20H 2 O, and the seed crystal ITQ-47 is added in an amount of 5% by mass of SiO 2 .
  • the product is suction filtered and dried to obtain a BOG structure.
  • Silicoalulite molecular sieves Silicoalulite molecular sieves.
  • silicalite zeolite molecular sieve having the BOG structure obtained in Example 1 was subjected to the following performance test:
  • the N 2 adsorption was measured with a Micromeritics ASAP 2020 and the sample was degassed at 300 °C.
  • the sample was subjected to N 2 adsorption and desorption test at 77 K, and the relative pressure range was 0 ⁇ P / P 0 ⁇ 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

提供一种具有BOG结构的硅铝沸石分子筛及其制备方法。该制备方法包括如下步骤:(1)将铝源、硅源、碱源和水混合得到硅铝凝胶,然后加入晶种搅拌均匀;(2)将步骤(1)得到的混合物置于反应釜中,于110-140℃条件下晶化5-20天;(3)将步骤(2)的产物抽滤,烘干,即得具有BOG结构的硅铝沸石分子筛。该制备方法摒除了昂贵的有机模板剂的使用,而且缩短了晶化时间并降低了晶化温度;首次一步法直接合成具有BOG结构的硅铝沸石分子筛,有利于工业化应用。

Description

具有BOG结构的硅铝沸石分子筛及其制备方法 技术领域
本发明涉及无机材料技术领域,特别是涉及一种具有BOG结构的硅铝沸石分子筛及其制备方法。
背景技术
伯格斯石(Boggsite)矿物是1990年在美国俄勒冈州的玄武岩中发现的一种新型高硅天然沸石分子筛。该分子筛中a轴方向的12元环孔道与b轴方向的10元环孔道相互贯通形成二维孔道结构,值得注意的是这两种孔道都与外界相连通,其中接近于圆形的12元环孔道的直径在
Figure PCTCN2017092339-appb-000001
左右,10元环孔道的直径在
Figure PCTCN2017092339-appb-000002
之间(BOG型结构)。综合以上信息,可以预见伯格斯石将具有优异的分离性能和催化性能。然而,伯格斯石世界储量非常稀少,同时还存在开发困难和纯度低等问题无法实现工业化的应用。
2010年西班牙Corma研究组通过采用磷腈配体P1-叔丁基作为有机模版剂,合成出了BOG型分子筛ITQ-47。ITQ-47分子筛虽然具有与伯格斯石相同的结构,但ITQ-47是硅硼分子筛,而伯格斯石是硅铝分子筛。通过后处理方法可实现对ITQ-47分子筛进行了脱硼补铝,但铝的取代量是有限的,通过固体核磁等表征手段证明Al元素能部分地引入到ITQ-47分子筛的骨架中,从而提高了分子筛材料的酸强度。同时,他们并考察了Al-ITQ-47作为酸催化剂在苯与丙烯制备异丙苯的催化性能。相比工业生产中使用的Beta分子筛,尽管Al-ITQ-47比Beta分子筛的催化转化率要低,但它对异丙苯表现出更高的择形催化的效果。
但合成ITQ-47沸石分子筛使用了磷腈配体P1-叔丁基模板剂和二氧化锗,二者的价格都十分昂贵,不适合大规模的生产。
人工合成的ITQ-47分子筛虽然具有与伯格斯石相同的结构,但ITQ-47是硅硼分子筛,硼原子在沸石分子筛骨架中的取代只会带来弱的Lewis酸中心,催化应用非常有限。欲提高酸中心强度,需要通过后处理的方式脱硼补 铝。但通过该种方法引入Al的含量有限,还会降低沸石分子筛材料的水热稳定性,从而影响材料的催化性能和吸附性能。ITQ-47在脱模版剂的过程需要高温煅烧,有机模板剂中的磷物种会转变成五氧化二磷残留在孔道中,需要通过进一步洗涤才能完全去除。
发明内容
基于此,本发明的目的是提供一种具有BOG结构的硅铝分子筛的制备方法。
具体的技术方案如下:
一种具有BOG结构的硅铝沸石分子筛的制备方法,包括如下步骤:
(1)将铝源、硅源、碱源和水混合得到硅铝凝胶,然后加入晶种搅拌均匀;
所述硅铝凝胶中原料的摩尔比满足:SiO2:Na2O:Al2O3:H2O=1:0.2~1.0:0.005~0.1:10~40;
(2)将步骤(1)得到的混合物置于反应釜中,于110~140℃条件下晶化5~20天;
(3)将步骤(2)的产物抽滤,烘干,即得所述具有BOG结构的硅铝沸石分子筛。
在其中一些实施例中,所述硅铝凝胶中原料的摩尔比满足:SiO2:Na2O:Al2O3:H2O=1:0.25~0.35:0.01~0.035:15~35。
在其中一些实施例中,所述晶种选自伯格斯石、ITQ-47或具有BOG结构的硅铝沸石分子筛。
在其中一些实施例中,所述晶种的用量为SiO2质量的3~20%。
在其中一些实施例中,所述铝源选自:硝酸铝、硫酸铝、偏铝酸钠、异丙醇铝、铝溶胶或氢氧化铝中的一种或几种。
在其中一些实施例中,所述硅源选自:白炭黑、水玻璃、硅溶胶、硅酸钠或正硅酸乙酯中的至少一种。
在其中一些实施例中,所述碱源为氢氧化钠、氢氧化钾或氢氧化锂中的 一种或几种(当所用硅源为硅酸钠或水玻璃时,无需额外加入碱源,只需满足SiO2:Na2O:Al2O3:H2O=1:0.2~1.0:0.005~0.1:10~40)。
在其中一些实施例中,步骤(2)中,将步骤(1)得到的混合物置于反应釜中,于115~140℃条件下晶化5~18天。
本发明的另一目的是提供一种具有BOG结构的硅铝沸石分子筛。
上述制备方法制备得到的具有BOG结构的硅铝沸石分子筛。
上述具有BOG结构的硅铝沸石分子筛的制备方法摒除了昂贵的有机模板剂的使用,而且缩短了晶化时间并降低了晶化温度;首次一步法直接合成具有BOG结构的硅铝沸石分子筛,有利于其工业化应用。上述制备方法得到的硅铝沸石分子筛保持了良好的结晶度和纯度,具有良好的催化反应活性。上述制备方法减少了在生产过程中不必要的损耗,产品对于一些重要的催化反应具有潜在的应用价值。上述制备方法所采用的无机原料均对环境友好,价格低廉;由于在合成过程中没有引入任何有机模板剂,无需焙烧,其孔道就是畅通的,不会导致环境污染和较高的能耗。
附图说明
图1为实施例1得到具有BOG结构的硅铝沸石分子筛的XRD图;
图2为实施例1得到具有BOG结构的硅铝沸石分子筛的SEM图;
图3为实施例1得到具有BOG结构的硅铝沸石分子筛的吸脱附等温曲线。
具体实施方式
为了便于理解本发明,下面将对本发明进行更全面的描述。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组 合。
实施例1:以ITQ-47为诱导晶种合成具有BOG结构的硅铝沸石分子筛(SYSU-4沸石分子筛)
首先将0.031g NaAlO2溶于去离子水,再向其中加入0.32g NaOH,搅拌得到澄清溶液之后加入0.9g白炭黑,室温下继续搅拌直到形成均匀的硅铝凝胶,最后加入0.045g ITQ-47分子筛(可根据现有技术合成得到)晶种搅拌均匀,将反应原料转移到聚四氟乙烯不锈钢反应釜中,130℃条件下晶化10天。
反应原料的摩尔配比如下:SiO2:0.025NaAlO2:0.54NaOH:25H2O,晶种ITQ-47的添加量为SiO2质量的5%,产物抽滤,烘干即可得到具有BOG结构的硅铝沸石分子筛。
实施例2:以ITQ-47为诱导晶种115℃合成具有BOG结构的硅铝沸石分子筛
首先将0.061g NaAlO2溶于去离子水,再向其中加入0.336g NaOH,搅拌得到澄清溶液之后加入0.9g白炭黑,室温下继续搅拌直到形成均匀的硅铝凝胶,最后加入0.045g ITQ-47分子筛晶种搅拌均匀,将反应原料转移到聚四氟乙烯不锈钢反应釜中,115℃条件下晶化18天。
反应原料的摩尔配比如下:SiO2:0.05NaAlO2:0.56NaOH:15H2O,晶种ITQ-47的添加量为SiO2质量的5%,产物抽滤,烘干即可得到具有BOG结构的硅铝沸石分子筛。
实施例3:以20%ITQ-47为诱导晶种,氢氧化钠和氢氧化钾为碱源合成具有BOG结构的硅铝沸石分子筛
首先将0.049g NaAlO2溶于去离子水,再向其中加入0.3g NaOH和0.042g KOH,搅拌得到澄清溶液之后加入0.9g白炭黑,室温下继续搅拌直到形成均匀的硅铝凝胶,最后加入0.18g ITQ-47分子筛晶种搅拌均匀,将反应原料转移到聚四氟乙烯不锈钢反应釜中,135℃条件下晶化7天。
反应原料的摩尔配比如下:SiO2:0.04NaAlO2:0.5NaOH:0.05KOH:20H2O, 晶种ITQ-47的添加量为SiO2质量的20%,产物抽滤,烘干即可得到具有BOG结构的硅铝沸石分子筛。
实施例4:以Al2(SO4)3·18H2O为铝源合成具有BOG结构的硅铝沸石分子筛
将0.3g NaOH溶于5mL去离子水,搅拌得到澄清溶液之后加入0.9g白炭黑,室温下继续搅拌直到形成均匀的硅凝胶;0.4g Al2(SO4)3·18H2O溶于2mL去离子水,缓慢加入0.12g浓缩NaOH溶液(50%w),并将得到的混合物加入前面的硅凝胶中搅匀,最后加入0.045g ITQ-47分子筛晶种搅拌均匀。将反应原料转移到聚四氟乙烯不锈钢反应釜中,125℃条件下晶化15天。
反应原料的摩尔配比如下:SiO2:0.04Al2(SO4)3·18H2O:0.6NaOH:25H2O,晶种ITQ-47的添加量为SiO2质量的5%,产物抽滤,烘干即可得到具有BOG结构的硅铝沸石分子筛。
实施例5:以正硅酸四乙酯为硅源晶种法合成具有BOG结构的硅铝沸石分子筛
将去离子水和0.041g NaAlO2混合均匀后,向其中加入0.31g NaOH,在搅拌下加入3.13g正硅酸四乙酯,继续剧烈搅拌直到溶液均匀形成硅铝凝胶,再加入0.045g ITQ-47分子筛晶种搅拌均匀,将反应原料转移到聚四氟乙烯不锈钢反应釜中,125℃条件下晶化14天。
反应原料的摩尔配比如下:TEOS:0.033NaAlO2:0.52NaOH:20H2O,晶种ITQ-47的添加量为SiO2质量的5%,产物抽滤,烘干即可得到具有BOG结构的硅铝沸石分子筛。
实施例6:以硅溶胶为硅源晶种法合成具有BOG结构的硅铝沸石分子筛
将去离子水和0.041g NaAlO2混合均匀后,向其中加入0.3g NaOH,在搅拌下加入2.25g硅溶胶(LUDOX,aq 40%w),继续剧烈搅拌直到溶液均匀形成硅铝凝胶,再加入0.045g ITQ-47分子筛晶种搅拌均匀,将反应原料转移 到聚四氟乙烯不锈钢反应釜中,130℃条件下晶化10天。
反应原料的摩尔配比如下:LUDOX:0.033NaAlO2:0.5NaOH:20H2O,晶种ITQ-47的添加量为SiO2质量的5%,产物抽滤,烘干即可得到具有BOG结构的硅铝沸石分子筛。
实施例7:以硅酸钠为硅源晶种法合成具有BOG结构的硅铝沸石分子筛
首先将去离子水与0.5g Al2(SO4)3·18H2O混合均匀,之后在搅拌下加入4.26g Na2SiO3·9H2O,继续搅拌直到溶液变均匀后滴加1.8g硅溶胶(LUDOX,aq40%w),最后加入0.045g ITQ-47分子筛做晶种搅拌均匀,将反应原料加入聚四氟乙烯不锈钢反应釜中,140℃条件下晶化5天。
反应原料的摩尔配比如下:Na2SiO3·9H2O:0.5Al2(SO4)3·18H2O:0.8LUDOX:25H2O,晶种ITQ-47的添加量为SiO2质量的5%,产物抽滤,烘干即可得到具有BOG结构的硅铝沸石分子筛。
实施例8:在较低铝含量的情况下以ITQ-47为诱导晶种合成具有BOG结构的硅铝沸石分子筛
首先将0.025g NaAlO2溶于去离子水,再向其中加入0.3g NaOH,搅拌得到澄清溶液之后加入0.9g白炭黑,室温下继续搅拌直到形成均匀的硅铝凝胶,最后加入0.045g ITQ-47搅拌均匀,将反应原料转移到聚四氟乙烯不锈钢反应釜中,120℃条件下晶化16天。
反应原料的摩尔配比如下:SiO2:0.02NaAlO2:0.5NaOH:25H2O,晶种ITQ-47的添加量为SiO2质量的5%,产物抽滤,烘干即可得到具有BOG结构的硅铝沸石分子筛。
实施例9:在较高铝含量的情况下以3%ITQ-47为诱导晶种合成具有BOG结构的硅铝沸石分子筛
首先将0.082g NaAlO2溶于去离子水,再向其中加入0.3g NaOH,搅拌得到澄清溶液之后加入0.9g白炭黑,室温下继续搅拌直到形成均匀的硅铝凝 胶,最后加入0.027g ITQ-47分子筛晶种搅拌均匀,将反应原料转移到聚四氟乙烯不锈钢反应釜中,125℃条件下晶化12天。
反应原料的配比如下:SiO2:0.067NaAlO2:0.5NaOH:15H2O,晶种ITQ-47的添加量为SiO2质量的3%,产物抽滤,烘干即可得到具有BOG结构的硅铝沸石分子筛。
实施例10:以SYSU-4为晶种合成具有BOG结构的硅铝沸石分子筛
首先将0.031g NaAlO2溶于去离子水,再向其中加入0.31g NaOH,搅拌得到澄清溶液之后加入0.9g白炭黑,室温下继续搅拌直到形成均匀的硅铝凝胶,最后加入0.045g SYSU-4搅拌均匀,将反应原料转移到聚四氟乙烯不锈钢反应釜中,130℃条件下晶化10天。
反应原料的配比如下:SiO2:0.025NaAlO2:0.52NaOH:20H2O,晶种ITQ-47的添加量为SiO2质量的5%,产物抽滤,烘干即可得到具有BOG结构的硅铝沸石分子筛。
性能试验
将实施例1得到的具有BOG结构的硅铝沸石分子筛进行如下性能试验:
1、进行X射线衍射,如图1所示,分析衍射图谱,可知材料成分为Al-BOG。
2、进行扫描电镜观察外观形貌,如图2所示,可知SYSU-4围绕晶种ITQ-47生长,两者的形貌相似,但SYSU-4的粒径更小。
3、进行吸脱附试验,试验步骤如下:
用Micromeritics ASAP 2020测量N2吸附,在300℃对样品脱气。样品在77K下进行N2吸脱附测试,相对压力范围为0<P/P0<1。
结果如图3所示,可知BET比表面积为522.29m2/g;微孔孔容为0.20cm3/g。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (9)

  1. 一种具有BOG结构的硅铝沸石分子筛的制备方法,其特征在于,包括如下步骤:
    (1)将铝源、硅源、碱源和水混合得到硅铝凝胶,然后加入晶种搅拌均匀;
    所述硅铝凝胶中原料的摩尔比满足:SiO2:Na2O:Al2O3:H2O=1:0.2~1.0:0.005~0.1:10~40;
    (2)将步骤(1)得到的混合物置于反应釜中,于110~140℃条件下晶化5~20天;
    (3)将步骤(2)的产物抽滤,烘干,即得所述具有BOG结构的硅铝沸石分子筛。
  2. 根据权利要求1所述的具有BOG结构的硅铝沸石分子筛的制备方法,其特征在于,所述硅铝凝胶中原料的摩尔比满足:SiO2:Na2O:Al2O3:H2O=1:0.2~0.6:0.01~0.05:10~35。
  3. 根据权利要求1所述的具有BOG结构的硅铝沸石分子筛的制备方法,其特征在于,所述晶种选自伯格斯石、ITQ-47或具有BOG结构的硅铝沸石分子筛。
  4. 根据权利要求1所述的具有BOG结构的硅铝沸石分子筛的制备方法,其特征在于,所述晶种的用量为SiO2质量的3~20%。
  5. 根据权利要求1-4任一项所述的具有BOG结构的硅铝沸石分子筛的制备方法,其特征在于,所述铝源选自:硝酸铝、硫酸铝、偏铝酸钠、异丙醇铝、铝溶胶或氢氧化铝中的一种或几种。
  6. 根据权利要求1-4任一项所述的具有BOG结构的硅铝沸石分子筛的制备方法,其特征在于,所述硅源选自:白炭黑、水玻璃、硅溶胶、硅酸钠或正硅酸乙酯中的至少一种。
  7. 根据权利要求1-4任一项所述的具有BOG结构的硅铝沸石分子筛的制备方法,其特征在于,所述碱源为氢氧化钠、氢氧化钾或氢氧化锂中的一种或几种。
  8. 根据权利要求1-4任一项所述的具有BOG结构的硅铝沸石分子筛的制备方法,其特征在于,步骤(2)中,将步骤(1)得到的混合物置于反应釜中,于115~140℃条件下晶化5~18天。
  9. 权利要求1-8任一项所述的制备方法制备得到的具有BOG结构的硅铝沸石分子筛。
PCT/CN2017/092339 2017-06-02 2017-07-10 具有bog结构的硅铝沸石分子筛及其制备方法 WO2018218736A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710408832.0A CN106976889B (zh) 2017-06-02 2017-06-02 具有bog结构的硅铝沸石分子筛及其制备方法
CN201710408832.0 2017-06-02

Publications (1)

Publication Number Publication Date
WO2018218736A1 true WO2018218736A1 (zh) 2018-12-06

Family

ID=59344572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092339 WO2018218736A1 (zh) 2017-06-02 2017-07-10 具有bog结构的硅铝沸石分子筛及其制备方法

Country Status (2)

Country Link
CN (1) CN106976889B (zh)
WO (1) WO2018218736A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106976889B (zh) * 2017-06-02 2019-02-15 中山大学 具有bog结构的硅铝沸石分子筛及其制备方法
US11932547B2 (en) * 2022-03-10 2024-03-19 Chevron U.S.A. Inc. Organotemplate-free synthesis of molecular sieve SSZ-122

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101125663A (zh) * 2007-08-31 2008-02-20 吉林大学 一种zsm-34沸石的合成方法
EP2543637A1 (en) * 2010-03-05 2013-01-09 Consejo Superior De Investigaciones Científicas (CSIC) Itq-47 material, method for obtaining same and use thereof
CN103274427A (zh) * 2013-06-18 2013-09-04 北京北大先锋科技有限公司 一种p型分子筛的制备方法
CN103896303A (zh) * 2012-12-25 2014-07-02 大连理工大学 一种直接合成高硅铝比超细NaY分子筛的方法
CN106542537A (zh) * 2016-10-25 2017-03-29 浙江大学 以万能凝胶合成高硅沸石分子筛的方法
CN106976889A (zh) * 2017-06-02 2017-07-25 中山大学 具有bog结构的硅铝沸石分子筛及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2327753T3 (es) * 2004-04-14 2009-11-03 Institut Francais Du Petrole Catalizador que comprende un zaolita 10mr y una zeolita 12mr y su utilizacion en un procedimiento de transalquilacion de hidrocarburos alquilaromaticos.
FR2895283B1 (fr) * 2005-12-22 2008-02-01 Inst Francais Du Petrole Catalyseur comprenant une zeolithe euo, une zeolithe 10mr et une zeolithe 12mr et son utilisation en isomerisation des composes c8 aromatiques
US9725377B2 (en) * 2013-03-14 2017-08-08 Exxonmobil Chemical Patents Inc. Hydroalkylation catalyst and process for use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101125663A (zh) * 2007-08-31 2008-02-20 吉林大学 一种zsm-34沸石的合成方法
EP2543637A1 (en) * 2010-03-05 2013-01-09 Consejo Superior De Investigaciones Científicas (CSIC) Itq-47 material, method for obtaining same and use thereof
CN103896303A (zh) * 2012-12-25 2014-07-02 大连理工大学 一种直接合成高硅铝比超细NaY分子筛的方法
CN103274427A (zh) * 2013-06-18 2013-09-04 北京北大先锋科技有限公司 一种p型分子筛的制备方法
CN106542537A (zh) * 2016-10-25 2017-03-29 浙江大学 以万能凝胶合成高硅沸石分子筛的方法
CN106976889A (zh) * 2017-06-02 2017-07-25 中山大学 具有bog结构的硅铝沸石分子筛及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PLUTH, J.J. ET AL.: "Crystal structure of Boggsite, a new high-silica zeolite with the first three-dimensional channel system bounded by both 12 and 10 rings", AMERICAN MINERALOGIST, vol. 75, 31 December 1990 (1990-12-31), pages 501 - 507, XP055632640 *

Also Published As

Publication number Publication date
CN106976889A (zh) 2017-07-25
CN106976889B (zh) 2019-02-15

Similar Documents

Publication Publication Date Title
WO2019144253A1 (zh) 一种中空单晶Beta分子筛的制备方法
WO2018000660A1 (zh) 一种绿色合成zsm-5分子筛的方法
CN102530980B (zh) 一种多级孔道沸石及其制备和应用
KR20110042740A (ko) 나노 크기의 결정성 zsm-5 핵을 사용한 zsm-5의 제조 방법
CN108002396B (zh) 一种以TPABr为模板剂合成Silicalite-1分子筛的方法
WO2018205841A1 (zh) 中孔NaY型沸石分子筛的制备方法
CN106219569B (zh) 一种无二次模板一步制备多级孔沸石的方法
WO2018218736A1 (zh) 具有bog结构的硅铝沸石分子筛及其制备方法
CN113135578B (zh) 一种硅锗isv沸石分子筛的制备方法
JPH1067512A (ja) 大表面積および制御された細孔分布を有する微小−中間細孔材料の製造法
CN103043681A (zh) 一种纳米层状zsm-5沸石分子筛的制备方法
CN107020145B (zh) 一种介孔im-5分子筛及制备方法
CN115490243B (zh) 一种短b轴HZSM-5沸石分子筛及其制备方法和应用
CN102463135B (zh) Eu-1/mor复合分子筛及其制备方法
CN109694086B (zh) 纳米zsm-5沸石分子筛聚集体的制备方法
CN116553569A (zh) 一种混合碱体系中l沸石转晶制备ssz-13分子筛的方法
CN114014335B (zh) 一种硅锗utl型大孔分子筛及其制备方法
WO2022148416A1 (zh) Zsm-23分子筛及其制备方法
CN102502685B (zh) 一种介孔lta沸石的制备方法
CN112850742B (zh) 一种多级孔y型分子筛及其合成方法
CN111186846B (zh) 一种ith结构硅铝分子筛及其制备方法
CN103204505A (zh) 一种制备含铝层状水羟硅钠石的方法
CN115043414B (zh) 一种多级孔分子筛及其制备方法和应用
AU2021105922A4 (en) ZSM-5 molecular sieve/titanium dioxide composite material and preparation method thereof
CN108654682A (zh) 一种负载有ts-1沸石膜的多级孔道复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912041

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17912041

Country of ref document: EP

Kind code of ref document: A1