CN113058637B - 一种烷烃双支链异构催化剂及其制备方法 - Google Patents

一种烷烃双支链异构催化剂及其制备方法 Download PDF

Info

Publication number
CN113058637B
CN113058637B CN202110353533.8A CN202110353533A CN113058637B CN 113058637 B CN113058637 B CN 113058637B CN 202110353533 A CN202110353533 A CN 202110353533A CN 113058637 B CN113058637 B CN 113058637B
Authority
CN
China
Prior art keywords
beta
molecular sieve
sba
crystallization
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110353533.8A
Other languages
English (en)
Other versions
CN113058637A (zh
Inventor
鲍晓军
张航
王廷海
王鹏照
岳源源
崔勍焱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202110353533.8A priority Critical patent/CN113058637B/zh
Publication of CN113058637A publication Critical patent/CN113058637A/zh
Application granted granted Critical
Publication of CN113058637B publication Critical patent/CN113058637B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/005Mixtures of molecular sieves comprising at least one molecular sieve which is not an aluminosilicate zeolite, e.g. from groups B01J29/03 - B01J29/049 or B01J29/82 - B01J29/89
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • C10G45/64Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/60Synthesis on support
    • B01J2229/62Synthesis on support in or on other molecular sieves

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明涉及一种烷烃双支链异构化催化剂及其制备方法。所述的催化剂是在Beta/SBA‑15复合载体材料表面负载Pt制备而成,Beta/SBA‑15复合载体材料采用球磨晶化的方法制备,在球磨的条件下将Beta分子筛纳米晶和SBA‑15分子筛基质混合,并加热至Beta分子筛的晶化温度完成晶化过程,经过滤、洗涤和干燥得到Beta分子筛在SBA‑15介孔孔道内组装的复合载体材料。所述的金属Pt是以本质是领域常用的过量浸渍法负载至Beta/SBA‑15复合载体材料表面。本发明的Pt/(Beta/SBA‑15)催化剂用于烷烃异构化反应中表现出更高的烷烃异构转化率和液体收率,特别有利于双支链烷烃的生成。

Description

一种烷烃双支链异构催化剂及其制备方法
技术领域
本发明涉及一种烷烃双支链异构催化剂及其制备方法,采用球磨晶化法将Beta分子筛组装至SBA-15的介孔孔道中得到Beta-SBA-15复合载体材料,然后将金属Pt负载于复合载体表面,得到Pt/(Beta-SBA-15)烷烃双支链异构化催化剂。该催化剂具有烷烃异构转化率高、裂化副产物低和双支链异构选择性好的优点。
背景技术
为控制汽车尾气排放造成的大气污染,我国加快了车用汽油质量升级的步伐,相继于2013年1月、2017年1月和2019年1月实施了国IV(烯烃含量<28 v%、芳烃含量40 v%)、国V(烯烃含量<24 v%、芳烃含量<40 v%)和国VI(A) (烯烃含量<18 v%、芳烃含量<35 v%)清洁汽油标准,并将于2023年1月实施更为严格的国VI(B)标准(烯烃含量<15 v%、芳烃含量<35v%)。汽油质量标准持续降低烯烃含量的要求限制了高烯烃含量的FCC汽油的调和比,而降低芳烃含量的要求则限制了高芳烃含量的重整汽油的调和比。因此,烷烃异构化技术是解决未来汽油清洁化大幅降烯烃和芳烃含量的理想工艺,催化剂作为异构化工艺的核心,具有双支链异构化功能催化剂的开发是近年来研究的热点。
烷烃异构化遵循金属-酸催化机理,即烷烃首先在金属位上脱氢生成烯烃中间体,生成的烯烃中间体在酸性中心上经碳正离子历程完成碳-碳重排生成异构中间体,最后异构中间体在金属位上加氢饱和成为异构烷烃。为解决微孔分子筛较小的孔径很难被用于大分子异构化的问题,将微孔分子筛与介孔或大孔材料进行组装一直是异构化催化剂研究的重点。CN 106800300 A公开了一种磷酸硅铝复合分子筛及其制备方法。该复合分子筛具有SAPO-11及一种硅磷酸铝盐的混合晶相。与纯SAPO-11分子筛相比,该复合分子筛具有更强的酸性和更多的B酸量。CN 111804330A公开了一种硫酸根/氧化锆@SAPO-11复合材料及烃类异构化催化剂,该复合材料制备的异构化催化剂具有很高的异构化转化率和双支链异构化选择性,可以提高汽油的辛烷值。近年来发展的纳米组装技术为微介孔复合分子筛的制备提供了一条理想途径,但现有的组装技术水平难以实现Beta分子筛在介孔分子筛表面的原位可控生长,所制备的复合载体往往仅是微孔分子筛和介孔分子筛在物理程度上简单复合,甚至会出现两相分离难以复合的现象。
本发明提供了一种烷烃双支链异构化催化剂及其制备方法,首先在球磨晶化条件下得到一种Beta-SBA-15复合载体材料,然后将金属Pt负载于复合载体表面,得到Pt/(Beta-SBA-15)烷烃双支链异构化催化剂。该催化剂具有烷烃异构转化率高、双支链异构选择性好的优点。
发明内容
本发明的目的在于提供一种烷烃双支链异构催化剂及其制备方法,其催化剂的制备是以球磨晶化方法合成的Beta-SBA-15复合分子筛为载体,采用过量浸渍的方法将活性金属Pt负载到复合分子筛载体材料表面,最终得到得Pt/(Beta-SBA-15)烷烃双支链异构化催化剂。
为了实现上述目的,本发明采用如下技术方案:
一种烷烃双支链异构催化剂的制备方法,包括以下步骤:
(1)介孔分子筛基质的制备:所述的分子筛包含SBA-15、MCM-41或MCM-22等介孔结构的分子筛;
(2)微孔分子筛纳米晶的制备:所述的分子筛包含ZSM-5、Y、Beta或SAPO-11类的微孔分子筛;
(3)步骤(1)所述的介孔结构的分子筛采用本技术领域所述的常规制备方法,将硅源、铝源和模板剂混合后调节pH值至合适的范围,在本领域常用的预晶化温度和晶化时间下完成制备过程,降温后得到介孔分子筛基质。为提高组装效果,介孔分子筛基质的结晶度控制大于50%;
(4)采用步骤(2)所述的微孔分子筛常用的制备方法,将硅源、铝源、模板剂或磷源混合,调节pH值至合适的范围,在本领域常用的预晶化温度和晶化温度条件下完成制备过程,降温后得到分子筛纳米晶前躯体。为提高组装效果,微孔分子筛纳米晶的结晶度控制10-99%;
(5)将步骤(3)和步骤(4)得到的产品加入球磨机中,在步骤(4)所述的条件下进行晶化最终完成微孔分子筛与介孔分子筛的组装过程,经过滤、洗涤和交换后得到最终的复合分子筛产品。
(6)采用过量浸渍法将金属Pt负载至复合分子筛表面,经干燥焙烧后得到烷烃双支链异构化催化剂。
具体的,一种烷烃双支链异构催化剂,由Beta-SBA-15复合载体和活性金属组分Pt组成,记为Pt/Beta-SBA-15催化剂,其中Beta-SBA-15复合载体由Beta分子筛和SBA-15分子筛复合而成,Pt/Beta-SBA-15催化剂中Beta分子筛所占比例为5-95 wt%,Pt含量为0.3-1.0wt%。
Pt/Beta-SBA-15烷烃双支链异构化催化剂的制备方法,包括以下步骤:
(1)球磨晶化法合成Beta-SBA-15复合载体材料:将SBA-15介孔分子筛基质加入到Beta微孔分子筛纳米晶前躯体浆液中,调节混合浆液的pH值至Beta分子筛的晶化条件,加入到带加热的球磨晶化釜中,升温至Beta分子筛的晶化温度完成晶化过程,经过滤、洗涤、干燥和焙烧得到Beta-SBA-15复合载体材料;
(2)金属Pt在复合载体表面的负载:采用过量浸渍法将金属Pt负载至Beta-SBA-15复合载体材料表面,经干燥焙烧后得到Pt/Beta-SBA-15烷烃双支链异构化催化剂。
进一步的,Beta微孔分子筛纳米晶前躯体浆液的合成方法包括:将异丙醇铝、去离子水、四乙基氢氧化铵、正硅酸乙酯混合,搅拌均匀,调节pH值至11.8,继续搅拌6 h得到初始溶胶-凝胶浆液,该浆液的组分摩尔比为(9-25)TEAOH:Al2O3:(30-100)SiO2:1000H2O,将浆液转移至聚四氟反应釜中,在130℃的条件水热晶化40 h,得到Beta微孔分子筛纳米晶前躯体浆液。
进一步的,SBA-15介孔分子筛基质的合成方法包括:在40℃的条件下,将三嵌段共聚物P123、十六烷基三甲基溴化铵、盐酸和去离子水混合,直至搅拌均匀,然后加入正硅酸乙酯继续搅拌24 h,最后转移到带有聚四氟乙烯内衬的不锈钢反应釜中,在100℃的条件下晶化72 h之后降温,经过滤、洗涤、干燥和焙烧得到纯硅的SBA-15介孔分子筛基质。
进一步的,SBA-15介孔分子筛基质的孔径在3-30 nm范围内可调。
进一步的,步骤(2)中所述的浸渍方法,Pt的前躯体为[PtCl6]2-、或[Pt(NH3)4]2+氨络合物。
进一步的,步骤(1)中,pH值(10.5-12.5)、晶化温度(160-180 oC)、晶化时间(48-120 h)是指Beta分子筛的晶化条件。
进一步的,步骤(1)中,球磨速度在1000-15000 r/min范围。
Beta/SBA-15复合载体材料采用球磨晶化的方法制备,包括三个步骤:Beta分子筛纳米晶的合成;SBA-15分子筛基质的合成;最后在球磨的条件下将Beta分子筛纳米晶和SBA-15分子筛基质混合,并加热至Beta分子筛的晶化温度完成晶化过程,经过滤、洗涤和干燥得到Beta分子筛在SBA-15介孔孔道内组装的复合载体材料。
与现有技术相比,本发明的优点在于:
将微孔分子筛与介孔分子筛组装是梯级孔复合材料合成普遍采用的方法,现有文献普遍采用将微孔分子筛纳米晶前躯体在晶化过程中组装到介孔分子筛基质孔道内部,由于微孔分子筛纳米晶前躯体具有一定的黏度,使得其很难进入到介孔分子筛基质的孔道内部进行晶化,从而导致较多的微孔分子筛在介孔分子筛基质外部生长,最终使得组装效率较低。本发明将球磨方法引入到晶化过程,球磨方法的引入使得微孔分子筛纳米晶在球的撞击力和剪切力的作用下更加容易进入到介孔分子筛基质的孔道内部,并且球的高速撞击容易在介孔分子筛表面形成新的“生长点”,解决现有组装方法存在大部分微孔分子筛独立生长的问题。因此,球磨过程的转速是影响组装效果的关键因素之一,球磨转速越快,微孔分子筛和介孔分子筛之间收到的撞击几率越高、撞击力和剪切力越大,但当球磨转速过高时又容易导致介孔分子筛结构的坍塌,控制球磨转速在一定范围内是实现高效组装的重要参数。
本发明的Pt/(Beta/SBA-15)催化剂用于烷烃异构化反应中表现出更高的烷烃异构转化率和液体收率,特别有利于双支链烷烃的生成,这主要得益于球磨组装方法合成的Beta/SBA-15复合载体材料与常规组装方法具有更低的传质阻力,由微孔Beta分子筛提供强酸性中心和介孔SBA-15提供双支链异构体的传质通道,使得最终生成的双支链异构体能够快速从催化剂孔道内扩散出去,避免其在酸性位上过渡停留进而发生裂化副反应。
附图说明
图1为Beta及组装后Beta/SBA-15(本发明C-4样品)复合材料的XRD谱图;
图2为氮气吸附-脱附表征,(a)吸附-脱附曲线,(b)孔径分布曲线,其中Beta/SBA-15分子筛为本发明C-4样品。
图1为组装分子筛的XRD谱图,组装后的Beta/SBA-15出现了明显的Beta特征衍射峰,但与纯Beta分子筛相比,与SBA-15组装后的Beta/SBA-15复合分子筛的XRD衍射峰强度明显降低,这主要是因为Beta分子筛组装到SBA-15分子筛孔道内部所致。然后采用氮气吸附-脱附方法对孔的联通性进行表征,如图2所示,本发明的Beta/SBA-15分子筛在P/P0小于0.2的区域出现了明显的微孔吸附,这主要归因于微孔Beta分子筛;在P/P0=0.5-0.8的区域出现了明显的介孔滞后环,但是Beta/SBA-15复合分子筛的滞后环出现在更低相对压力下,这主要是因为部分Beta分子筛组装到SBA-15的介孔内部,使得SBA-15的介孔孔径变小所致,这与图2中(b)的孔经分布一致,说明Beta分子筛组装到SBA-15介孔孔道内部。
具体实施方式
本发明所述的烷烃双支链异构催化剂及其制备方法,包括两个步骤:(1)采用球磨晶化法制备得到Beta-SBA-15复合载体材料;(2)将金属Pt负载于复合载体表面,得到Pt/(Beta-SBA-15)烷烃双支链异构化催化剂,金属Pt的负载方法为本领域研究人员所熟知的方法。
实施例1
Pt/(Beta-SBA-15)烷烃双支链异构化催化剂的制备方法,包括如下步骤:
(1)介孔SBA-15分子筛基质的制备。在40℃的条件下,将20 g 三嵌段共聚物P123、40 g十六烷基三甲基溴化铵、450 mL 2 mol/L的盐酸和300 mL去离子水混合,直至搅拌均匀;然后加入42.8 g正硅酸乙酯继续搅拌24 h;最后将其加入到带有聚四氟乙烯内衬的不锈钢反应釜中,在100℃的条件下晶化72 h之后降温,经过滤、洗涤、干燥和焙烧得到纯硅的SBA-15介孔分子筛。
(2)微孔Beta分子筛纳米晶前躯体浆液的制备。将0.49 g异丙醇铝、24.6 g去离子水、9.57 g四乙基氢氧化铵(35%)、13.15 g正硅酸乙酯搅拌均匀,调节浆液的pH值至11.8,继续搅拌6 h得到初始溶胶-凝胶浆液,该浆液的组分摩尔比为18TEAOH:Al2O3:50SiO2:1000H2O。将浆液转移至聚四氟反应釜中,在130℃的条件水热晶化40 h,得到最终的Beta分子筛纳米晶前躯体浆液。这里的第一次晶化是得到Beta分子筛纳米晶,此时纳米晶的尺寸较小,有利于进入到SBA-15分子筛的介孔孔道内部。
(3)将步骤(1)得到的介孔SBA-15分子筛基质加入到步骤(2)的Beta分子筛纳米晶前躯体浆液中,调节混合浆液的pH值至11.8,加入到带加热的球磨机中在170℃、球磨转速7000 r/min的条件下球磨晶化80 h。经过滤、洗涤、干燥和焙烧得到Beta-SBA-15复合载体材料。这里的二次晶化是将Beta分子筛纳米晶继续生长成更大尺寸的颗粒。
(4)金属Pt在复合载体表面的负载。将10 g Beta-SBA-15复合载体材料加入40 gPt质量分数为0.125%的H2PtCl4溶液中,采用过量浸渍法得到Pt负载量为0.5 wt%的Pt/(Beta-SBA-15)烷烃双支链异构化催化剂,名称为C-1。最终催化剂的质量组成为:介孔SBA-15分子筛:微孔Beta分子筛:金属Pt=76.1:23.4:0.5。
实施例2
与实施例1中的合成步骤和方法相同,有所区别的是将实施例1步骤(4)中H2PtCl4溶液换为(NH3)4Pt(NO3)2溶液。最终产品名称为C-2。最终催化剂的质量组成为:介孔SBA-15分子筛:微孔Beta分子筛:金属Pt=76.1:23.4:0.5。
实施例3
与实施例1中的合成步骤和方法相同,有所区别的是将实施例1步骤(4)中H2PtCl4溶液((CH3)2NCH2CH2N(CH3)2)2Pt(NO3)2溶液。最终产品名称为C-3。最终催化剂的质量组成为:介孔SBA-15分子筛:微孔Beta分子筛:金属Pt=76.1:23.4:0.5。
实施例4
与实施例1中的合成步骤和方法相同,有所区别的是将实施例1步骤(3)中的球磨速度由7000 r/min变为12000 r/min。产品名称为C-4。最终催化剂的质量组成为:介孔SBA-15分子筛:微孔Beta分子筛:金属Pt=76.1:23.4:0.5。
实施例5
与实施例1中的合成步骤和方法相同,有所区别的是将实施例1步骤(2)中的所有物料的质量减半。产品名称为C-5。最终催化剂的质量组成为:介孔SBA-15分子筛:微孔Beta分子筛:金属Pt=86.25:13.25:0.5。
实施例5是将微孔Beta分子筛减半,而介孔SBA-15数量不变。联通性是衡量微孔与介孔分子筛组装效果的重要指标,微孔与介孔的组装比例和组装位置是影响联通性的重要因素,将微孔Beta分子筛减半的目的是优化微孔与介孔的比例。
对比例1
采用CN 106800300 A中所述的实施例1方法制备的催化剂,产品名称D-1。
表1 产品物性参数
Figure DEST_PATH_IMAGE002
注:结晶度是指微孔分子筛的结晶度
表2 正庚烷异构化反应效果
(温度290℃、压力3.0 MPa、空速3.0 h-1、氢油比250:1)
Figure DEST_PATH_IMAGE004
微孔分子筛的数量和组装位置是影响复合分子筛联通性的两个重要参数,合适的微孔分子筛含量和较好的组装位置有利于降低复合分子筛的传质阻力。实施例5所制备的C-5样品表现出了最高的双支链异构化转化率,但是较低的微孔含量使得介孔的联通性变差,继而导致裂化副反应的加剧;C-4样品虽然转化率略低,但是其裂化副反应也最低,这主要得益于C-4样品微孔分子筛和介孔分子筛的比例较优,并且增加了球磨速度后使得微孔与介孔的组装效率更高,C-4样品最低的传质阻力是裂化副反应最低的主要原因。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (6)

1.一种烷烃双支链异构催化剂的制备方法,其特征在于,所述烷烃双支链异构催化剂由Beta-SBA-15复合载体和活性金属组分Pt组成,记为Pt/Beta-SBA-15催化剂,其中Beta-SBA-15复合载体由微孔Beta分子筛和介孔SBA-15分子筛复合而成,Pt/Beta-SBA-15催化剂中,Beta分子筛所占比例为5-95 wt%,Pt含量为0.3-1.0 wt%;
所述的烷烃双支链异构化催化剂的制备方法,包括以下步骤:
(1)球磨晶化法合成Beta-SBA-15复合载体材料:将SBA-15介孔分子筛基质加入到Beta微孔分子筛纳米晶前驱体 浆液中,调节混合浆液的pH值至Beta分子筛的晶化条件,加入到带加热的球磨晶化釜中,升温至Beta分子筛的晶化温度完成晶化过程,经过滤、洗涤、干燥和焙烧得到Beta-SBA-15复合载体材料;
(2)金属Pt在复合载体表面的负载:采用过量浸渍法将金属Pt负载至Beta-SBA-15复合载体材料表面,经干燥焙烧后得到Pt/Beta-SBA-15烷烃双支链异构化催化剂;
步骤(1)中,球磨速度在1000-15000 r/min范围。
2.根据权利要求1所述的烷烃双支链异构化催化剂的制备方法,其特征在于,Beta微孔分子筛纳米晶前驱体 浆液的合成方法包括:将异丙醇铝、去离子水、四乙基氢氧化铵、正硅酸乙酯混合,搅拌均匀,调节pH值至11.8,继续搅拌6 h得到初始溶胶-凝胶浆液,该浆液的组分摩尔比为(9-25)TEAOH:Al2O3:(30-100)SiO2:1000H2O,将浆液转移至聚四氟反应釜中,在130℃的条件水热晶化40 h,得到Beta微孔分子筛纳米晶前驱体 浆液。
3.根据权利要求1所述的烷烃双支链异构化催化剂的制备方法,其特征在于,SBA-15介孔分子筛基质的合成方法包括:在40℃的条件下,将三嵌段共聚物P123、十六烷基三甲基溴化铵、盐酸和去离子水混合,直至搅拌均匀,然后加入正硅酸乙酯继续搅拌24 h,最后转移到带有聚四氟乙烯内衬的不锈钢反应釜中,在100℃的条件下晶化72 h之后降温,经过滤、洗涤、干燥和焙烧得到纯硅的SBA-15介孔分子筛基质。
4.根据权利要求1所述的烷烃双支链异构化催化剂的制备方法,其特征在于,SBA-15介孔分子筛基质的孔径在3-30 nm范围内。
5.根据权利要求1所述的烷烃双支链异构化催化剂的制备方法,其特征在于,步骤(2)中所述的浸渍法,Pt的前驱体 为[PtCl6]2-、或[Pt(NH3)4]2+氨络合物。
6.根据权利要求1所述的烷烃双支链异构化催化剂的制备方法,其特征在于,步骤(1)中,pH值为10.5-12.5、晶化温度为160-180℃、晶化时间为48-120 h,为Beta分子筛的晶化条件。
CN202110353533.8A 2021-04-01 2021-04-01 一种烷烃双支链异构催化剂及其制备方法 Active CN113058637B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110353533.8A CN113058637B (zh) 2021-04-01 2021-04-01 一种烷烃双支链异构催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110353533.8A CN113058637B (zh) 2021-04-01 2021-04-01 一种烷烃双支链异构催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN113058637A CN113058637A (zh) 2021-07-02
CN113058637B true CN113058637B (zh) 2022-07-26

Family

ID=76565241

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110353533.8A Active CN113058637B (zh) 2021-04-01 2021-04-01 一种烷烃双支链异构催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN113058637B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113694962B (zh) * 2021-09-30 2023-06-13 中化泉州石化有限公司 一种用于加氢裂化尾油的异构脱蜡催化剂及其制备方法
CN114618571A (zh) * 2022-03-10 2022-06-14 福州大学 一种烷烃异构化催化剂及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5554274A (en) * 1992-12-11 1996-09-10 Mobil Oil Corporation Manufacture of improved catalyst
CN102941115B (zh) * 2012-09-24 2015-03-18 中国石油天然气股份有限公司 一种正构烃类加氢异构化催化剂的制备方法及应用
CN110498725B (zh) * 2018-05-16 2022-03-11 中国石油化工股份有限公司 一种固体酸催化的烷基化方法
CN112138704A (zh) * 2019-06-28 2020-12-29 中国石油化工股份有限公司 二次煅烧球磨法制备异丁烷脱氢催化剂的方法和由该方法得到的异丁烷脱氢催化剂及应用
CN110292947A (zh) * 2019-07-16 2019-10-01 浙江工业大学 一种mcm-41/sapo-11复合分子筛负载贵金属催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN113058637A (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
CN113058637B (zh) 一种烷烃双支链异构催化剂及其制备方法
CN108046288B (zh) 一种制备用于甲醇制丙烯的多级孔zsm-5分子筛的方法
CN107344110B (zh) 用于生产低直链烷烃含量加氢裂化尾油的催化剂及其制备方法和应用
CN109433249B (zh) 一种y型分子筛结构导向剂改性氧化铝的方法及其应用
CN112830499B (zh) 一种单分散ssz-32分子筛、其制备方法和应用
US20210001313A1 (en) Method of synthesis of nano-sized beta zeolites containing mesopores and uses thereof
CN108069437B (zh) 一种Beta分子筛及其合成方法和应用
CN103121687A (zh) 核壳分子筛srz-1及其制备方法
CN114618571A (zh) 一种烷烃异构化催化剂及其制备方法
CN113058636B (zh) 一种催化裂化催化剂及其制备方法
CN114130426B (zh) 一种加氢lco多产低碳烯烃的催化裂解催化剂及其制备方法与应用
CN115991484A (zh) 介微孔复合分子筛及其制备、正构烷烃临氢异构化催化剂及其制备与应用
CN116078425A (zh) 一种金属杂化共生分子筛及其水热合成方法
CN113830778B (zh) ZSM-5/β核壳型分子筛及其合成方法和应用
CN114425419B (zh) 一种加氢lco多产烯烃和芳烃的催化裂解催化剂及其制备方法与应用
CN108046287B (zh) 一种纳米y沸石自组装体的制备方法
CN112717981B (zh) 一种加氢裂化催化剂及其制备方法和应用
CN108101727B (zh) 一种乙醇脱水制乙烯的方法
CN116060113B (zh) 一种直馏柴油加氢改质催化剂及其制备方法和应用
CN113060742B (zh) 一种微孔分子筛与介孔分子筛的组装方法
CN107344114B (zh) 一种改性y/zsm-48复合分子筛及其制备方法和应用
CN112142066B (zh) 一种双模板剂合成zsm-48分子筛的方法
CN112441598B (zh) 一种介孔Beta分子筛的制备方法
US20230212019A1 (en) Methods of Synthesis of Mesoporous Nano-Sized Beta Zeolites by Desilication and Uses Thereof
CN107115886B (zh) 一种两段晶化法合成的Y/ZrO2复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant