CN107887049A - 一种太阳能电池正极浆料用超细银浆的制备方法 - Google Patents

一种太阳能电池正极浆料用超细银浆的制备方法 Download PDF

Info

Publication number
CN107887049A
CN107887049A CN201711175870.2A CN201711175870A CN107887049A CN 107887049 A CN107887049 A CN 107887049A CN 201711175870 A CN201711175870 A CN 201711175870A CN 107887049 A CN107887049 A CN 107887049A
Authority
CN
China
Prior art keywords
preparation
solar cell
sizing agent
ultra
cell anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201711175870.2A
Other languages
English (en)
Inventor
王耀斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Shengmai Petroleum Co Ltd
Original Assignee
Shaanxi Shengmai Petroleum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Shengmai Petroleum Co Ltd filed Critical Shaanxi Shengmai Petroleum Co Ltd
Priority to CN201711175870.2A priority Critical patent/CN107887049A/zh
Publication of CN107887049A publication Critical patent/CN107887049A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及半导体材料制备方法技术领域,具体涉及一种太阳能电池正极浆料用超细银浆的制备方法。一种太阳能电池正极浆料用超细银浆的制备方法,将4.25g AgNO3和13.125g抗坏血酸溶于50mL去离子水中,配成AgNO3和抗坏血酸溶液,并将0.425g的聚乙二醇4000溶于AgNO3溶液;将反应液的pH值调至3;将抗坏血酸溶液滴加到硝酸银的混合溶液中使之反应l0~20min;反应完全后,沉淀、过滤,用去离子水和无水乙醇分别清洗,干燥,过500目筛,得到银粉。将银粉与玻璃粉研磨混合;将有机载体制成浆料;刷印到硅片上;空气中放置5~10min.待其流平后干燥后保温。本发明选用化学还原法制备太阳能电池正极浆料,本方法操作简单,设备要求不高,易于大范围推广。

Description

一种太阳能电池正极浆料用超细银浆的制备方法
技术领域
本发明涉及半导体材料制备方法技术领域,具体涉及一种太阳能电池正极浆料用超细银浆的制备方法。
背景技术
银粉因其良好的导热导电性能,广泛用于电子浆料。在选择银粉时,要考虑银粉的松装密度、比表面积和抗腐蚀等性能,但这些性能都依赖银粉的粒度和形貌。传统厚膜银浆中银粉的粒度一般要求在微米级以上,但太阳能电池正极栅线非常窄,对银粉性能要求更苛刻。若银粉粒度太大,印刷时不能完全通过丝网,烧结膜容易出现孔洞,从而影响导电性;若银粉粒度过小,会降低银浆中的银含量。
银粉的制备方法很多,主要有电子束照射法、直流电弧热等离子法。、微波等离子体法、机械化学合成法、喷雾热分解法和电解法等,但是这些方法具有耗能大、需要特殊的设备和对环境要求苛刻等缺点。而液相化学还原法由于设备简单,工艺条件易于控制,且成本低,易于批量生产,成为目前广泛使用的方法。但液相还原法制备银粉过程中,银粉颗
粒比表面积大,极易团聚。
发明内容
本发明旨在提出一种太阳能电池正极浆料用超细银浆的制备方法。
本发明的技术方案在于:
一种太阳能电池正极浆料用超细银浆的制备方法,采用如下步骤:
步骤1:银粉的制备:
将4.25g AgNO3和13.125g抗坏血酸分别溶于50mL去离子水中,配成AgNO3和抗坏血酸溶液,并将0.425g的聚乙二醇4000溶于AgNO3溶液;将反应液的pH值调至3;在磁力搅拌条件下将抗坏血酸溶液滴加到硝酸银的混合溶液中使之反应l0~20min;反应完全后,沉淀、过滤,用去离子水和无水乙醇分别清洗,干燥,过500目筛,得到银粉;
步骤2:银浆的制备:
(1)将银粉与玻璃粉研磨混合;
(2)将有机载体加入并研磨均匀,制成浆料;
(3)将调制的浆料刷印到硅片上;
(4)将印刷好的试样在空气中放置5~10min.待其流平后干燥后保温。
优选地,所述的步骤1中干燥温度为60℃,干燥时间2h。
优选地,所述的将PH值调为3采用浓硝酸或者浓氨水。
优选地,所述的银粉与玻璃粉的混合质量比87.5:12.5。
或者优选地,所述的步骤2(4)中干燥温度为150℃,干燥时间30min。
或者优选地,所述的步骤2(4)中保温时的温度为400℃,保温时间30min。
本发明的技术效果在于:
本发明选用化学还原法制备太阳能电池正极浆料,本方法操作简单,设备要求不高,易于大范围推广。
具体实施方式
一种太阳能电池正极浆料用超细银浆的制备方法,采用如下步骤:
步骤1:银粉的制备:
将4.25g AgNO3和13.125g抗坏血酸分别溶于50mL去离子水中,配成AgNO3和抗坏血酸溶液,并将0.425g的聚乙二醇4000溶于AgNO3溶液;将反应液的pH值调至3;在磁力搅拌条件下将抗坏血酸溶液滴加到硝酸银的混合溶液中使之反应l0~20min;反应完全后,沉淀、过滤,用去离子水和无水乙醇分别清洗,干燥,过500目筛,得到银粉;
步骤2:银浆的制备:
(1)将银粉与玻璃粉研磨混合;
(2)将有机载体加入并研磨均匀,制成浆料;
(3)将调制的浆料刷印到硅片上;
(4)将印刷好的试样在空气中放置5~10min.待其流平后干燥后保温。
其中,步骤1中干燥温度为60℃,干燥时间2h。将PH值调为3采用浓硝酸或者浓氨水。银粉与玻璃粉的混合质量比87.5:12.5。步骤2(4)中干燥温度为150℃,干燥时间30min。步骤2(4)中保温时的温度为400℃,保温时间30min。

Claims (6)

1.一种太阳能电池正极浆料用超细银浆的制备方法,其特征在于:采用如下步骤:
步骤1:银粉的制备:
将4.25g AgNO3和13.125g抗坏血酸分别溶于50mL去离子水中,配成AgNO3和抗坏血酸溶液,并将0.425g的聚乙二醇4000溶于AgNO3溶液;将反应液的pH值调至3;在磁力搅拌条件下将抗坏血酸溶液滴加到硝酸银的混合溶液中使之反应l0~20min;反应完全后,沉淀、过滤,用去离子水和无水乙醇分别清洗,干燥,过500目筛,得到银粉;
步骤2:银浆的制备:
(1)将银粉与玻璃粉研磨混合;
(2)将有机载体加入并研磨均匀,制成浆料;
(3)将调制的浆料刷印到硅片上;
(4)将印刷好的试样在空气中放置5~10min.待其流平后干燥后保温。
2.如权利要求1一种太阳能电池正极浆料用超细银浆的制备方法,其特征在于:所述的步骤1中干燥温度为60℃,干燥时间2h。
3.如权利要求1一种太阳能电池正极浆料用超细银浆的制备方法,其特征在于:所述的将PH值调为3采用浓硝酸或者浓氨水。
4.如权利要求1一种太阳能电池正极浆料用超细银浆的制备方法,其特征在于:所述的银粉与玻璃粉的混合质量比87.5:12.5。
5.如权利要求1一种太阳能电池正极浆料用超细银浆的制备方法,其特征在于:所述的步骤2(4)中干燥温度为150℃,干燥时间30min。
6.如权利要求1一种太阳能电池正极浆料用超细银浆的制备方法,其特征在于:所述的步骤2(4)中保温时的温度为400℃,保温时间30min。
CN201711175870.2A 2017-11-22 2017-11-22 一种太阳能电池正极浆料用超细银浆的制备方法 Withdrawn CN107887049A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711175870.2A CN107887049A (zh) 2017-11-22 2017-11-22 一种太阳能电池正极浆料用超细银浆的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711175870.2A CN107887049A (zh) 2017-11-22 2017-11-22 一种太阳能电池正极浆料用超细银浆的制备方法

Publications (1)

Publication Number Publication Date
CN107887049A true CN107887049A (zh) 2018-04-06

Family

ID=61778212

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711175870.2A Withdrawn CN107887049A (zh) 2017-11-22 2017-11-22 一种太阳能电池正极浆料用超细银浆的制备方法

Country Status (1)

Country Link
CN (1) CN107887049A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109215829A (zh) * 2018-09-03 2019-01-15 苏州晶银新材料股份有限公司 一种太阳能电池用正面电极银浆、银粉及其制备方法
CN112777935A (zh) * 2019-11-11 2021-05-11 江西佳银科技有限公司 一种含纳米银玻璃粉及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109215829A (zh) * 2018-09-03 2019-01-15 苏州晶银新材料股份有限公司 一种太阳能电池用正面电极银浆、银粉及其制备方法
CN109215829B (zh) * 2018-09-03 2020-12-15 苏州晶银新材料股份有限公司 一种太阳能电池用正面电极银浆、银粉及其制备方法
CN112777935A (zh) * 2019-11-11 2021-05-11 江西佳银科技有限公司 一种含纳米银玻璃粉及其制备方法

Similar Documents

Publication Publication Date Title
CN103551586B (zh) 一种导电银浆用微米球形银粉的制备方法
CN101554664B (zh) 一种纳米级银粉的制备方法
CN107661986A (zh) 一种大批量制备高分散高球形度超细银粉的方法
CN102248177B (zh) 激光诱导球型银粉制备方法
CN107887049A (zh) 一种太阳能电池正极浆料用超细银浆的制备方法
CN106216710A (zh) 一种高振实密度高结晶度金属银粉的制备方法
CN109698040B (zh) 一种水基电子浆料及其制备方法
CN107331437A (zh) 石墨烯低温固化银浆料组合物及其制备方法
CN110834100A (zh) 一种片状多孔银粉的制备方法
JP6811080B2 (ja) 銀被覆銅粉およびその製造方法
CN103476199A (zh) 基于铜自催化和化学镀铜的印制电路加成制备方法
Wang et al. Preparation of micro-sized and monodisperse crystalline silver particles used for silicon solar cell electronic paste
CN105880632A (zh) 一种抗氧化片状银粉的制备方法
CN102133636A (zh) 抗迁移片状银包铜粉的制备方法
CN109321948B (zh) 一种快速绿色电化学制备银纳米棒的方法
KR20170105013A (ko) 은 피복 구리분 및 그의 제조 방법
CN109822106A (zh) 一种片状银粉的制备方法及其应用
CN105161219A (zh) 一种uv光固化银包镍导电浆料的制备方法
CN103194117B (zh) 一种免烧结超细银纳米油墨的制备方法及其应用
WO2017135138A1 (ja) 銀被覆銅粉およびその製造方法
CN104658699A (zh) 一种太阳能电池正极浆料用超细银浆的制备方法
CN101591176A (zh) 一种合成Gd3Ga5O12(GGG)透明陶瓷纳米晶的方法
US20170107382A1 (en) Antioxidant conductive copper paste and method for preparing the same
CN115180690B (zh) 一种氮掺杂石墨烯包覆金属铜纳米催化剂及其制备方法
CN103194118A (zh) 一种免烧结超细银纳米油墨的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20180406