CN107008479B - 金属/α-MoC1-x负载型单原子分散催化剂、其合成方法与应用 - Google Patents

金属/α-MoC1-x负载型单原子分散催化剂、其合成方法与应用 Download PDF

Info

Publication number
CN107008479B
CN107008479B CN201610462928.0A CN201610462928A CN107008479B CN 107008479 B CN107008479 B CN 107008479B CN 201610462928 A CN201610462928 A CN 201610462928A CN 107008479 B CN107008479 B CN 107008479B
Authority
CN
China
Prior art keywords
moc
catalyst
metal
carrier
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610462928.0A
Other languages
English (en)
Other versions
CN107008479A (zh
Inventor
马丁
林丽利
姚思宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201610462928.0A priority Critical patent/CN107008479B/zh
Priority to EP17814715.3A priority patent/EP3482826A4/en
Priority to US16/311,160 priority patent/US11141716B2/en
Priority to PCT/CN2017/089332 priority patent/WO2017219977A1/zh
Priority to JP2018566830A priority patent/JP6730696B2/ja
Publication of CN107008479A publication Critical patent/CN107008479A/zh
Application granted granted Critical
Publication of CN107008479B publication Critical patent/CN107008479B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • B01J35/23
    • B01J35/30
    • B01J35/391
    • B01J35/396
    • B01J35/40
    • B01J35/61
    • B01J35/612
    • B01J35/613
    • B01J35/615
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/32Freeze drying, i.e. lyophilisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • C01B3/326Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0213Preparation of the impregnating solution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1229Ethanol
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

本发明实施例公开了一种金属/α‑MoC1‑x负载型单原子分散催化剂及其合成方法与应用,该催化剂以α‑MoC1‑x为载体,且有质量分数1‑100%的金属以单原子形式分散于载体α‑MoC1‑x上。本发明提供的催化剂在醇类水相重整制氢反应中适应的醇/水比例较宽,在各个比例均可取得优异的产氢性能,且其催化性能远优于氧化物载体负载的金属。尤其是当金属为Pt时,本发明提供的Pt/α‑MoC1‑x负载型单原子分散催化剂在醇类水相重整制氢中催化性能远好于现有技术中Pt以层状分布于α‑MoC1‑x载体上的Pt/α‑MoC1‑x负载型催化剂;在190℃时,本发明提供的催化剂的产氢活性能够达到20000h‑1以上。

Description

金属/α-MoC1-x负载型单原子分散催化剂、其合成方法与应用
技术领域
本发明涉及金属催化领域,特别涉及金属/α-MoC1-x负载型单原子分散催化剂、合成方法与应用。
背景技术
使用化石能源产生的废气和固体颗粒远远地超过了环境的自动净化能力,清洁能源的开发不仅是解决能源问题的根本,也是解决环境问题的关键。氢能源是被大家公认的清洁、高热值的能源。氢能最有效的利用形式是氢能燃料电池,相比于内燃机燃烧反应,氢能燃料电池将化学能高效地转化为电能,利用率提高了40%~50%。但是由于储氢技术的落后,目前无论是以气体的形式储氢还是以液体的形式储氢,都存在压力过高,体积太大,安全系数低的问题。而如果将氢气以化学的形式储存于液体燃料(甲醇、甲酸、氨气)中,再通过一定的催化反应将储存的氢气原位释放出来供燃料电池使用,这个方法能够有效的解决燃料电池储氢困难的问题,从而推动氢能燃料电池的发展。
甲醇是最被看好的储氢液体材料,首先甲醇能够进行大规模工业化,其产值超过化石能源,同时甲醇具有高H/C比,储氢能力强,另外甲醇不含C-C键,易释放氢气并且副产物少。目前甲醇产氢的方法是通过重整,重整中研究较多的是甲醇的水蒸气重整和水相重整。对于水蒸气重整,目前的研究主要集中在 Cu基催化剂和贵金属(第VIII族)催化剂:Cu基催化剂反应温度在250~300℃,反应活性较高,但是催化剂易被水氧化,停止反应时,重整中的气体(H2O和 CH3OH)冷凝就会使催化剂失去40%甚至更多的活性;贵金属催化剂一般以氧化物作载体,但是在氧化物负载的贵金属催化剂上,甲醇更易发生分解反应,导致CO含量超过50%甚至更高,CO含量远远超过了燃料电池的耐受力(<100℃为低温氢燃料电池,CO含量需小于50ppm;100~200℃为高温氢燃料电池,CO 含量需小于5%)。水蒸气重整不仅要通过气化炉汽化反应物,由于CO含量偏高,还要再通过水蒸气迁移或选择性氧化对氢气进行纯化,整套装置繁琐复杂。水相甲醇重整直接将甲醇和水在溶液中进行反应,不需要对反应物进行汽化,同时在水相中反应能够大大降低CO的含量,这样就可省去对生成的氢气进行纯化,由此使甲醇水相重整与氢燃料电池一体化装置更加紧凑简单。但传统的Cu基催化剂在液相中无法稳定存在,氧化物负载的贵金属催化剂活性极低,不符合使用的要求。
发明内容
为解决传统的水相重整催化剂活性低的问题,本发明提供一种金属 /α-MoC1-x负载型单原子分散催化剂、其合成方法与应用。技术方案如下:
本发明首先提供了一种金属/α-MoC1-x负载型单原子分散催化剂,以α-MoC1-x为载体,以金属为活性组分,且1-100%的所述金属是以单原子形式分散于载体α-MoC1-x上的。
在本发明的一种具体实施方式中,有10-100%的金属,优选90-100%的金属,更优选100%的金属是以单原子形式分散于载体α-MoC1-x上的。
在本发明的一种具体实施方式中,基于所述载体的总质量,所述金属负载量为0.01-50质量%,优选为0.01-10质量%,更优选为0.01-2质量%,最优选为 0.05-0.2质量%。
在本发明的一种具体实施方式中,所述金属选自于铂、钌、钯、镍、铜及钴中的至少一种。
本发明还提供了上述金属/α-MoC1-x负载型单原子分散催化剂的制备方法,包括以下步骤:
步骤1)合成载体α-MoC1-x
此步骤中的载体α-MoC1-x为α相碳化钼,面心立方结构,x=0-0.9,优选为 0-0.5;载体的尺寸为1nm-30nm,比表面积在5-250m2/g之间。其合成方法为现有技术,本发明在此不进行限定,本领域普通技术人员可以通过现有的方法来实现载体α-MoC1-x的合成,举例而言,载体α-MoC1-x可以由以下方法合成:
A)将三氧化钼在氨气反应气氛中程序升温至500-900℃,保持0.5-50小时,然后在氨气反应气氛中降至室温;其中,升温速度为1-50℃/分钟,每克钼源对应的氨气通量为5-800mL/分钟。
B)将反应气氛切换成甲烷和氢气,程序升温至500-900℃,保持0.5-50小时,然后在甲烷和氢气的氛围中降至室温;其中,升温速度为1-50℃/分钟,每克钼源对应的甲烷和氢气的通量为5-800mL/分钟,甲烷和氢气的体积比为1:9-9:1;
C)将反应气氛切换成钝化气氛,程序升温至500-900℃,保持0.5-50小时,然后在钝化气氛中降至室温;其中,升温速度为1-50℃/分钟,每克钼源对应的钝化气氛的通量为5-400mL/分钟,钝化气氛包含有氧气和氩气,且氧气体积占钝化气氛体积的0.1-1%。
步骤2)将金属前体盐溶解,得到金属前体盐溶液。
在具体实施方式中,将金属前体盐溶解可以为将金属前体盐溶解于任意的可挥发溶剂中,优选为水,可以理解的是,此时金属前体盐为水溶性盐。所说的金属前体盐中的金属优选选自于元素周期表中第Ⅷ族的金属元素,更优选选自于铂、钌、钯、镍、铜及钴中的至少一种。
在本发明的一种具体实施方式中,金属前体盐优选选自于氯亚铂酸钾、氯亚铂酸钠、乙酰丙酮铂、氯铂酸、氯化钯、醋酸钯及镍、铜、钴的氯化物、硝酸盐、乙酰丙酮化合物中的至少一种。
步骤3),将步骤2)中的金属前体盐溶液与步骤1)中的载体α-MoC1-x混合并干燥,其中,金属前体盐和载体α-MoC1-x的用量比例关系为:以金属前体盐中的金属元素质量计,金属前体盐中的金属元素质量为载体α-MoC1-x质量的0.01%~55%,优选为0.01%~12%,更优选为0.06%~0.25%,通过调整金属前体盐和载体α-MoC1-x的用量比例,可以调整产物的负载量。
在具体实施方式中,将金属前体盐溶液与载体α-MoC1-x混合可以先将载体α-MoC1-x浸没于溶剂优选为水中,然后将金属前体盐溶液加至其中,搅拌均匀后再进行干燥处理,去除挥发性的溶剂,此步骤的干燥处理可以采用本领域常用的干燥方式,本发明在此不进行限定,例如可以采用旋转蒸发的方式来实现。
步骤4)将步骤3)所得的固体进行冷冻干燥,得到催化剂前体,此步骤主要的目的在于防止催化剂前体被深度氧化,并且冷冻干燥能减少水分蒸发对前体盐在催化剂上分布的影响。具体实施方式中,此步骤可以采用冷冻干燥机冻干过夜来实现,冷冻干燥机为现有的常用设备,本发明在此不进行限定。
步骤5)将所得的催化剂前体在同时含有碳源与氢源的碳化气氛围中碳化,即得到金属/α-MoC1-x负载型单原子分散催化剂。
在具体实施过程中,碳源选自于烷烃、烯烃及醇中的至少一种,优选为甲烷或乙烷;氢源优选为氢气;碳源与氢源的体积比为0.1:9-9:1,碳化程序升温的速度为1-50℃/分钟,优选为1-30℃/分钟,更优选为1-10℃/分钟,最优选为5-10℃/分钟;碳化的最高温度为490-900℃,优选为590-700℃。碳化过程中,在200~300℃保持0.1-50小时,优选为0.1-10小时,更优选为0.5-3小时,最优选为1-2小时;在碳化的最高温度下保持0.1-100小时,优选为0.1-10小时,优选为0.5-3小时,更优选为1-2小时。
发明人通过实验出人意料地发现,本发明制备出的金属/α-MoC1-x负载型单原子分散催化剂,该催化剂以α-MoC1-x为载体,以金属为活性组分,并且有部分或全部金属在载体上呈现出单原子分散的形式。且随着金属负载量的减小,金属单原子分散的量也会逐渐增大;例如,在本发明的具体实施方式中,当金属的负载量为10%时,约有10%的金属是以单原子形式分散于载体上,随着金属负载量的减小,金属单原子分散的量也会逐渐增大,当金属的负载量小于等于0.2%时,金属全部以单原子形式分散于载体α-MoC1-x上。在本发明中,通过调整金属前体盐和载体α-MoC1-x的用量比例,控制金属的负载量为0.01%~10%,优选为 0.01-2%,更优选为0.05-0.2%,则可以实现10%-100%的金属以单原子形式分散于载体α-MoC1-x上,更优选金属全部以单原子形式分散于载体α-MoC1-x上。对于最终催化剂上金属元素的负载量,可以通过ICP(电感耦合等离子体光谱仪)来确定。
本发明提供的金属/α-MoC1-x负载型单原子分散催化剂,可以应用于醇类水相重整制氢反应中,在具体实施方式中,醇类可以为甲醇、乙醇、甘油、乙二醇,优选为甲醇。在应用本发明提供的催化剂进行催化反应时,反应温度为 50-280℃,优选为190℃。本发明提供的催化剂在醇类水相重整制氢反应中适应的醇/水比例较宽,在各个比例均可取得优异的产氢性能,醇类与水比例可以从 0.1:9到10:1。
需要说明的是,在本发明中所说的术语“约”例如在修饰最终的负载量时,其通常是指本领域允许的误差范围内,例如±10%,例如±5%,例如±2%。
在本发明中,所说的“负载量”指的是作为活性组分的金属负载于载体上的质量百分数,例如当提及负载量为10%时,应理解为有占载体质量10%的金属负载于载体上。
在本发明中,在描述金属单原子分散的量时,所用的百分数均为质量百分数。
本发明提供的金属/α-MoC1-x负载型单原子分散催化剂,以α-MoC1-x为载体,以金属为活性组分,且1-100%的所述金属是以单原子形式分散于所述载体α-MoC1-x上的,本发明提供的催化剂在醇类水相重整制氢反应中适应的醇/水比例较宽,在各个比例均可取得优异的产氢性能,且其催化性能远优于氧化物载体负载的金属。尤其是当金属为Pt时,本发明提供的Pt/α-MoC1-x负载型单原子分散催化剂在醇类水相重整制氢中催化性能远好于现有技术中Pt以层状分布于α-MoC1-x载体上的Pt/α-MoC1-x负载型催化剂;在190℃时,本发明提供的催化剂的产氢活性能够达到20000h-1以上。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1制备的载体α-MoC1-x及实施例2、5、6、7、8、9制备的催化剂的XRD图,其中,图1中(a)为实施例1制备的载体α-MoC1-x的XRD图;图1中(b)为实施例2制备的催化剂的XRD图,图1中(c)为实施例5制备的催化剂的XRD图,图1中(d)为实施例6制备的催化剂的XRD图,图1中(e)为实施例7制备的催化剂的XRD图,图1中(f)为实施例8制备的催化剂的XRD图,图1中(g)为实施例9制备的催化剂的XRD图;
图2A为实施例2制备的催化剂在催化反应前的扫描透射电子显微镜图;
图2B为实施例2制备的催化剂在催化反应后的扫描透射电子显微镜图;
图3为实施例2制备的催化剂的X-射线吸收精细结构谱(XAFS)表征结果,其中,图3中(a)为催化反应前的催化剂中Pt L3吸收边的EXAFS拟合图,图3 中(b)为催化反应后的催化剂中Pt L3吸收边的EXAFS拟合图,图3中(c)为反应前、反应后的催化剂中Pt L3吸收边的XANES图,图3中(d)为反应前、反应后的催化剂中Mo K吸收边的XANES图;
图4为实施例3制备的催化剂的扫描透射电子显微镜图;
图5为实施例4制备的催化剂的扫描透射电子显微镜图;
图6为实施例10制备的催化剂的扫描透射电子显微镜图,其中a图和b图分别为不同比例尺下的扫描透射电子显微镜图;
图7为实施例2制备的催化剂在多次重复催化反应中的催化效果图;
图8为实施例7及对比例3制备的催化剂在不同温度下的催化反应活性图;
图9为实施例2制备的催化剂的甲醇与水的摩尔比优化图;
图10为实施例7制备的催化剂的甲醇与水的摩尔比优化图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
制备载体α-MoC1-x
将1g三氧化钼研磨至小于60目,置于石英管中,在氨气反应气氛中程序升温至700℃,保持1小时,然后在氨气反应气氛中降至室温;其中,升温速度为10℃/分钟,氨气的通量为20mL/分钟;
将反应气氛切换成甲烷和氢气,程序升温至700℃,保持1小时,然后在甲烷和氢气的氛围中降至室温;其中,升温速度为10℃/分钟,甲烷和氢气的通量为20mL/分钟,甲烷和氢气的体积比为3:7;
将反应气氛切换成钝化气氛,程序升温至700℃,保持1小时,然后在钝化气氛中降至室温;其中,升温速度为10℃/分钟,钝化气氛的通量为20mL/分钟,钝化气氛包含有氧气和氩气,且氧气体积占钝化气氛体积的0.5%。最终得到0.7g α-MoC1-x。通过元素分析测定,所制备的载体α-MoC1-x具体为α-MoC0.8
实施例2
Pt/α-MoC0.8负载型单原子分散催化剂的合成(负载量0.2%)
将按实施例1的方法制备的载体α-MoC0.8(0.2g)放入烧瓶中,加入10mL 去离子水,使载体全部处于液面下。将铂前体盐六水合氯铂酸1g溶解于10mL 水中,制得Pt溶液;取25μL的Pt溶液加入到装有载体α-MoC0.8的烧瓶中,搅拌2个小时,用旋转蒸发仪将烧瓶中的水蒸发,再将该样品置于冷冻干燥机中冻干过夜。然后将该催化剂前体在CH4/H2的气氛中碳化(甲烷与氢气的体积比为3:17),以10℃/分钟的速率升温至300℃,在300℃保持一个小时,再以 10℃/分钟的速率升至590℃,并保持120分钟。最终通过ICP(电感耦合等离子体光谱仪)确定负载量约为0.2%。
实施例3
Pt/α-MoC0.8负载型单原子分散催化剂的合成(负载量0.05%)
将按实施例1的方法制备的载体α-MoC0.8(0.2g)放入烧瓶中,加入10mL 去离子水,使载体全部处于液面下。将铂前体盐六水合氯铂酸1g溶解于10mL 水中,制得Pt溶液;取5μLPt溶液加入到装有载体α-MoC0.8的烧瓶中,搅拌2 个小时,用旋转蒸发仪将烧瓶中的水蒸发,再将该样品置于冷冻干燥机中冻干过夜。然后将该催化剂前体在CH4/H2的气氛中碳化(甲烷与氢气的体积比为3: 17),以10℃/分钟的速率升温至300℃,在300℃保持1个小时,再以10℃/分钟的速率升至590℃,并保持120分钟。最终通过ICP确定负载量约为0.05%。
实施例4
Pt/α-MoC0.8负载型单原子分散催化剂的合成(负载量2%)
将按实施例1的方法制备的载体α-MoC0.8(0.2g)放入烧瓶中,加入10mL 去离子水,使载体全部处于液面下。将铂前体盐六水合氯铂酸1g溶解于10mL 水中,制得Pt溶液;取150μL的Pt溶液加入到装有载体α-MoC0.8的烧瓶中,搅拌2个小时,用旋转蒸发仪将烧瓶中的水蒸发,再将该样品置于冷冻干燥机中冻干过夜。然后将该催化剂前体在CH4/H2的气氛中碳化(甲烷与氢气的体积比为1:9),以5℃/分钟的速率升温至200℃,在200℃保持2个小时,再以5℃ /分钟的速率升至700℃,并保持60分钟。最终通过ICP确定负载量约为2%。
实施例5
Pd/α-MoC0.8催化剂的合成(负载量2%)
将按实施例1的方法制备的载体α-MoC0.8(0.2g)放入烧瓶中,加入10mL 去离子水,使载体全部处于液面下。将前体盐氯化钯1g溶解于10mL,2mol/L 的盐酸中,制得Pd溶液;取8μL的Pd溶液加入到装有载体α-MoC0.8的烧瓶中,搅拌2个小时,用旋转蒸发仪将烧瓶中的水蒸发,再将该样品置于冷冻干燥机中冻干过夜。然后将该催化剂前体在CH4/H2的气氛中碳化(甲烷与氢气的体积比为9:1),以10℃/分钟的速率升温至300℃,在300℃保持一个小时,再以10℃/分钟的速率升至590℃,并保持120分钟。最终通过ICP确定负载量约为2%。
实施例6
Ru/α-MoC0.8催化剂的合成(负载量2%)
将按实施例1的方法制备的载体α-MoC0.8(0.2g)放入烧瓶中,加入10mL 去离子水,使载体全部处于液面下。将前体盐氯化钌1g溶解于10mL水中,制得Ru溶液;取10μL的Ru溶液加入到装有载体α-MoC0.8的烧瓶中,搅拌2个小时,用旋转蒸发仪将烧瓶中的水蒸发,再将该样品置于冷冻干燥机中冻干过夜。然后将该催化剂前体在C2H6/H2的气氛中碳化(甲烷与氢气的体积比为3: 17),以10℃/分钟的速率升温至300℃,在300℃保持一个小时,再以10℃/分钟的速率升至490℃,并保持10小时。最终通过ICP确定负载量约为2%。
实施例7
Ni/α-MoC0.8催化剂的合成(负载量2%)
将按实施例1的方法制备的载体α-MoC0.8(0.2g)放入烧瓶中,加入10mL 去离子水,使载体全部处于液面下。将硝酸镍1g溶解于10mL水中,制得Ni 溶液;取25μL的Ni溶液加入到装有载体α-MoC0.8的烧瓶中,搅拌2个小时,用旋转蒸发仪将烧瓶中的水蒸发,再将该样品置于冷冻干燥机中冻干过夜。然后将该催化剂前体在CH4/H2的气氛中碳化(甲烷与氢气的体积比为3:17),以 10℃/分钟的速率升温至300℃,在300℃保持一个小时,再以10℃/分钟的速率升至590℃,并保持120分钟。最终通过ICP确定负载量约为2%。
实施例8
Cu/α-MoC0.8催化剂的合成(负载量2%)
实施例8与实施例7的区别在于将硝酸铜1g溶解于10mL水中,制得Cu 溶液;取25μL的Cu溶液加入到装有载体α-MoC0.8的烧瓶中进行浸渍。最终通过ICP确定负载量约为2%。
实施例9
Co/α-MoC0.8催化剂的合成(负载量2%)
实施例8与实施例7的区别在于将硝酸钴1g溶解于10mL水中,制得Cu 溶液;取25μL的Co溶液加入到装有载体α-MoC0.8的烧瓶中进行浸渍。最终通过ICP确定负载量约为2%。
实施例10
Pt/α-MoC0.8负载型单原子分散催化剂的合成(负载量10%)
将按实施例1的方法制备的载体α-MoC0.8(0.2g)放入烧瓶中,加入10mL 去离子水,使载体全部处于液面下。将铂前体盐六水合氯铂酸1g溶解于10mL 水中,,制得Pt溶液;取610μL的Pt溶液加入到装有载体α-MoC0.8的烧瓶中,搅拌2个小时,用旋转蒸发仪将烧瓶中的水蒸发,再将该样品置于冷冻干燥机中冻干过夜。然后将该催化剂前体在CH4/H2的气氛中碳化(甲烷与氢气的体积比为0.1:9),以10℃/分钟的速率升温至200℃,在200℃保持10个小时,再以30℃/分钟的速率升至900℃,并保持10分钟。最终通过ICP确定负载量约为 10%。
对比例1
Pt/α-MoC1-x催化剂的合成(七钼酸铵)(负载量2%)
取1g七钼酸铵溶于10mL去离子水中,搅拌至全部溶解,将铂前体盐六水合氯铂酸1g溶解于10mL水中,取氯铂酸水溶液加入钼酸铵溶液中,搅拌2小时至沉淀完全,在100℃油浴中蒸发至干,研磨后置于60℃烘箱中3小时,然后将催化剂前体置于马弗炉中煅烧,程序升温至500℃并保留120分钟。再将该催化剂前体在20%CH4/H2的气氛中碳化,程序升温至700℃并保留120分钟。在此对比例中制得的催化剂中,Pt是以分散的纳米粒子形式存在。
对比例2
Pt/Al2O3催化剂的合成(负载量2%)
将铂前体盐六水合氯铂酸1g溶解于10mL水中,取650μL铂前体盐再加入150μL水混合至800μL后加入至0.8g Al2O3(等体积浸渍体积800μL),搅拌至干再置于60℃烘箱中3小时,然后将催化剂前体置于马弗炉中煅烧,程序升温至500℃并保留120分钟。再将该催化剂前体前体在H2的气氛中还原,程序升温至500℃,在500℃保留120分钟。
对比例3
Ni/Mo2C催化剂的合成(负载量2%)
取1g七钼酸铵溶于10mL去离子水中,搅拌至全部溶解,将前体盐六水合硝酸镍1g溶解于10mL水中,取25μL的硝酸镍水溶液加入七钼酸铵溶液中,搅拌2小时至沉淀完全,在100℃油浴中蒸发至干,研磨后置于60℃烘箱中3 小时,然后将催化剂前体置于马弗炉中煅烧,升温程序为以10℃/分钟至500℃并保留120分钟。再将该催化剂前体在20%CH4/H2的气氛中碳化,以5℃/分钟升温至300℃,再以1℃/分钟升至700℃并保留120分钟。其合成方法参见文献 Ma,Y.,et al.,International Journal of Hydrogen Energy,2014.39(1):p.258-266。
对比例4
Ni/Al2O3催化剂的合成(负载量2%)
将六水合硝酸镍1g溶解于10mL水中,取100μL的硝酸镍加入至0.8g Al2O3中,搅拌至干再置于60℃烘箱中3小时,然后将催化剂前体置于马弗炉中煅烧,升温程序为以10℃/分钟升至500℃并保留120分钟。再将该催化剂前体在H2的气氛中还原,以5℃/分钟升温至500℃,在500℃保留120分钟。
对比例5
按照申请号为201510053793.8,发明名称为“Pt/α-MoC1-x负载型催化剂及其合成与应用”的中国专利申请中实施例1的记载,制备出Pt/α-MoC1-x负载型催化剂,其中,Pt以层状形式分布于α-MoC1-x载体上。
表征与测试
XRD表征
将实施例1制备的载体α-MoC0.8及实施例2、5、6、7、8、9制备的催化剂进行XRD表征以观察其相结构;XRD样品制备方法如下:将上述碳化的催化剂用0.5%O2/Ar的钝化气钝化8小时,研磨后即可用于XRD测试。结果如图1 所示,从图1中可以看出载体α-MoC0.8均为α相,而且实施例2、5、6、7、8、 9中的金属也不是以分散的纳米粒子形式存在。
实施例2制备的Pt/α-MoC0.8负载型单原子分散催化剂中Pt元素单原子证明
透射电子显微镜表征
透射电子显微镜样品制备方法如下:分别将实施例2所获得的催化剂及进行甲醇水相制氢反应后的实施例2催化剂置于手套箱中,研磨后,将固体导入除氧的无水乙醇中分散,取数滴分散液滴加在透射电子显微镜用超薄碳膜上,待风干后送入透射电子显微镜进行测试,结果如图2A及2B所示,其中,实施例 2所获得的催化剂反应前如图2A所示,反应后如图2B所示。从图2中可以看出,无论是反应前还是反应后,Pt原子均以单原子形式分布于α-MoC0.8载体上(图中圆圈里的点状物即为Pt原子),说明实施例2制备的催化剂稳定性好,经过催化反应后也不会团聚。
为了进一步证明实施例2所制备的催化剂中Pt原素均以单原子形式分布于α-MoC0.8载体上,分别将实施例2所获得的催化剂及进行甲醇水相制氢反应后的实施例2催化剂进行X-射线吸收精细结构谱(XAFS)表征,获得其X-射线吸收精细结构谱,并对扩展边进行解析及拟合(EXAFS)。XAFS是用于描绘体相结构强有力的工具,将X射线能量调整至与所研究样品的元素内一致,然后监测吸收的X射线数量与其能量的函数关系。采用足够的精确度,光谱会展现出小的振荡,那是局部环境对目标元素基本吸收概率影响的结果。对扩展边(EXAFS)进行解析和拟合,能得到吸收原子与邻近原子的间距、这些原子的数量和类型以及吸收元素的氧化状态,这些都是确定局部结构的参数。
结果如图3及表1所示,其中,图3中(a)为反应前的催化剂中Pt L3吸收边的EXAFS拟合图,图3中(b)为反应后的催化剂中Pt L3吸收边的EXAFS拟合图,图3中(c)为反应前、反应后的催化剂中Pt L3吸收边的XANS图,图3(d) 为反应前、反应后的催化剂中Mo吸收K边的XANS图。
表1.反应前反应后催化剂的Pt L3吸收边EXAFS数据拟合
从表1中可以看到Pt-Pt的配位数(C.N.Pt-Pt)为0,即在整个催化剂结构中Pt 的周围0.3nm的空间范围内没有另一个Pt原子的存在,由此从微观和宏观上证明了实施例2所制备的催化剂中Pt是单原子分散的。
实施例3制备的0.05%Pt/α-MoC0.8负载型单原子分散催化剂中Pt单原子证明
对实施例3制备的催化剂进行透射电子显微镜表征,结果如图4所示;从图4中可以看出,Pt原子均以单原子形式分布于α-MoC0.8载体上。
实施例4制备的2%Pt/α-MoC0.8负载型单原子分散催化剂中Pt单原子证明
对实施例4制备的催化剂进行透射电子显微镜表征,结果如图5及表2所示;从图5中可以看出,Pt原子以单原子的形式均匀地存在于α-MoC0.8载体上 (如圆圈内所示),几乎看不到Pt粒子的存在,结合EXAFS拟合分析,Pt单原子的量约负载于载体上的总Pt质量的90%。
表2 2%Pt/α-MoC0.8负载型单原子分散催化剂的Pt L3吸收边EXAFS数据拟合
实施例10制备的10%Pt/α-MoC0.8负载型单原子分散催化剂中Pt单原子证明
对实施例10制备的催化剂进行透射电子显微镜表征,结果如图6及表3所示;从图6中的a图可以看出,负载量达到10%时,催化剂上出现了较多的Pt颗粒,从图6中的b图可以看出,是催化剂上还存着一部分的Pt单原子。同样结合XAFS拟合数据,Pt-Mo的配位数为2.7,这主要是由Pt单原子与载体碳化钼相互作用贡献的,Pt-Pt的配位数为5.2,这主要是由Pt颗粒贡献的。Pt单原子的量约负载于载体上的总Pt质量的10%。
表3 10%Pt/α-MoC0.8负载型单原子分散催化剂的Pt L3边EXAFS数据拟合
醇类水相重整制氢中催化性能测试
将实施例2-9及对比例1-5制备的负载型催化剂用于甲醇水相重整反应,反应条件为:封闭体系反应,在反应体系中加入一定比例的甲醇和水(按催化剂最优的比例进行反应),在2MPa N2(10%Ar为内标)保护气下反应,降至室温后用气相色谱对气相产物进行检测。各催化剂的反应性能如下面的表4所示。
其中,实施例2-6,对比例1-2及对比例5活性评价条件:n(甲醇):n(水)= 1:1,反应温度190℃,反应1小时,活性用ATOF(Aver TOF;平均转换频率:每小时每摩尔金属上转化的反应物摩尔数)来表示。
实施例7-9,对比例3-4活性评价条件:n(甲醇):n(水)=1:1,反应温度240℃,反应3小时,活性用μmol/g/s来表示。
表4.催化剂的甲醇水相重整产氢反应性能比较
从表4中可以看出,本发明各实施例所制备的催化剂的催化活性明显高于对比例中所制备的催化剂。同时,本发明催化剂不仅产氢速率相当高并且CO选择性很低,远远低于高温氢燃料电池对CO的耐受,克服了氧化物载体负载的 Pt催化剂催化活性低,CO选择性高的弱点;尤其是实施例2、3制备的催化剂,其TOF活性高达惊人的22557h-1和23150h-1;另外,应用实施例2的催化剂重复进行催化反应(反应条件与表4中相同),每次反应结束后通过气相色谱检测反应釜中气体的组成,通过内标的含量来确定各个组分的物质的量,最后计算得到反应速率,结果如图7所示,从图7中可以看出本发明制备的催化剂具有较好的稳定性,能够重复多次催化反应。
为考察本发明提供的Ni\Cu\Co催化剂的最佳反应温度,具体地,以实施例 7及对比例3制备的催化剂为例,在n(甲醇):n(水)=1:1、反应3小时的条件下,在不同温度下进行催化反应,结果如图8所示,从图8中可以看出,随着温度的升高,实施例7制备的Ni/α-MoC0.8在这个反应中活性增加的很显著,在 240℃时活性最高。
为考察本发明提供的催化剂的最佳醇水比,以实施例2及7为例进行了醇水比优化试验,具体地,实施例2的反应温度为190℃,反应时间1小时,实施例7的反应温度为240℃,反应3小时。结果如图9及图10所示,可以看出,实施例2及7的最佳醇水比均为n(甲醇):n(水)=1:1。
本发明所制备的各催化剂,不仅对甲醇的催化效果显著,对其它的醇类也有很好的催化性能。如表5所示,为利用本发明的实施例对乙醇、乙二醇、丙三醇的水相重整制氢结果。
具体地,将实施例2及实施例7制备的负载型催化剂用于水相醇类重整反应,反应条件为:封闭体系反应,在反应体系中加入一定比例的(乙醇、乙二醇、丙三醇)醇和水(按催化剂最优的比例进行反应),在2MPa N2(10%Ar为内标)保护气下反应,降至室温后用气相色谱对气相产物进行检测。各催化剂的反应性能如下面的表5所示。
其中,实施例2的活性评价条件:n(醇):n(水)=1:1,反应温度210℃,反应1小时,活性用ATOF来表示。
实施例7活性评价条件:n(醇):n(水)=1:1,反应温度210℃,反应3小时,活性用μmol/g/s来表示。
表5.实施例2、实施例7的催化剂催化水相醇类重整产氢的反应性能
从表5可以看出,本发明提供的催化剂除甲醇外,对其它的醇类也有着优异的催化性能。
综上所述,由本发明提供的金属/α-MoC1-x负载型单原子分散催化剂的制备方法制备出的催化剂,金属以单原子形式均匀地分散于载体α-MoC1-x上,能够更有效地提高催化剂表面“-O-H”的覆盖度,“-O-H”有利于金属催化“-C-H”断裂从而促进醇类重整反应发生并抑制分解反应。
以上对本发明所提供的金属/α-MoC1-x负载型单原子分散催化剂、其合成与应用进行了详细介绍。本文中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其中心思想。应当指出,对于本领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护。

Claims (22)

1.一种金属/α-MoC1-x负载型单原子分散催化剂,其特征在于,以α-MoC1-x为载体,以金属为活性组分,且10-100 %的所述金属是以单原子形式分散于所述载体α-MoC1-x上的;所述载体α-MoC1-x中,x=0-0.9;基于所述载体的总质量,所述金属负载量为0.05-0.2质量%;所述金属选自于铂、钌、钯、镍、铜及钴中的至少一种。
2.如权利要求1所述的催化剂,其特征在于,90-100 %的金属是以单原子形式分散于所述载体α-MoC1-x上的。
3.如权利要求1所述的催化剂,其特征在于,所述载体α-MoC1-x 中,x为0-0.5。
4.如权利要求1所述的催化剂,其特征在于,载体α-MoC1-x的尺寸为1nm-30nm。
5.如权利要求1所述的催化剂,其特征在于,载体α-MoC1-x的比表面积在5-250 m2/g之间。
6.一种金属/α-MoC1-x负载型单原子分散催化剂的制备方法,其特征在于,包括以下步骤:
1)合成载体α-MoC1-x,所述载体α-MoC1-x中,x=0-0.9;
2)将金属前体盐溶解,得到金属前体盐溶液;
3)将步骤2)中的金属前体盐溶液与步骤1)中的载体α-MoC1-x 混合并干燥,其中,金属前体盐和载体α-MoC1-x的用量比例关系为:以金属前体盐中的金属元素质量计,金属前体盐中的金属元素质量为载体α-MoC1-x质量的0.01%~55%;
4)将步骤3)所得的固体进行冷冻干燥,得到催化剂前体;
5)将所得的催化剂前体在同时含有碳源与氢源的碳化气氛中碳化,即得到金属/α-MoC1-x负载型单原子分散催化剂;
其中,所述金属前体盐中的金属选自于铂、钌、钯、镍、铜及钴中的至少一种;
步骤5)中,碳源选自于烷烃、烯烃及醇中的至少一种;氢源为氢气;碳源与氢源的体积比为0.1:9-9:1,碳化程序升温的速度为1-50℃/分钟;碳化的最高温度为490-900℃。
7.如权利要求6所述的方法,其特征在于,所述金属前体盐为水溶性盐。
8.如权利要求7所述的方法,其特征在于,所述金属前体盐选自于氯亚铂酸钾、氯亚铂酸钠、乙酰丙酮铂、氯铂酸、氯化钯、醋酸钯及镍、铜、钴的氯化物、硝酸盐、乙酰丙酮化合物中的至少一种。
9.如权利要求6所述的方法,其特征在于,金属前体盐中的金属质量为载体α-MoC1-x质量的0.01%~12%。
10.如权利要求9所述的方法,其特征在于,金属前体盐中的金属质量为载体α-MoC1-x质量的0.06%~0.25%。
11.如权利要求6所述的方法,其特征在于,步骤5)中,碳源为甲烷或乙烷。
12.如权利要求6所述的方法,其特征在于,步骤5)中,碳化程序升温的速度为1-30℃/分钟。
13.如权利要求6所述的方法,其特征在于,步骤5)中,碳化程序升温的速度为1-10℃/分钟。
14.如权利要求6所述的方法,其特征在于,在步骤5)的碳化过程中,在 200~300℃保持0.1-50小时;然后在碳化的最高温度下保持0.1-100小时。
15.如权利要求14所述的方法,其特征在于,在步骤5)的碳化过程中,在200~300℃保持0.5-3小时,然后在碳化的最高温度下保持0.5-3小时。
16.如权利要求14所述的方法,其特征在于,在步骤5)的碳化过程中,在200~300℃保持1-2小时,然后在碳化的最高温度下保持1-2小时。
17.如权利要求1-5中任一项所述的金属/α-MoC1-x负载型单原子分散催化剂在醇类水相重整制氢反应中的应用。
18.如权利要求17所述的应用,其特征在于,所述醇类包括:甲醇、乙醇、甘油及乙二醇。
19.如权利要求18所述的应用,其特征在于所述醇类为甲醇。
20.如权利要求17-19中任一项所述的应用,其特征在于,醇类水相重整制氢反应的反应温度为50-280℃。
21.如权利要求20所述的应用,其特征在于,醇类水相重整制氢反应的反应温度为190℃。
22.如权利要求21所述的应用,其特征在于,醇类水相重整制氢反应中醇类与水的比例为从0.1:9到10:1。
CN201610462928.0A 2016-06-23 2016-06-23 金属/α-MoC1-x负载型单原子分散催化剂、其合成方法与应用 Active CN107008479B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201610462928.0A CN107008479B (zh) 2016-06-23 2016-06-23 金属/α-MoC1-x负载型单原子分散催化剂、其合成方法与应用
EP17814715.3A EP3482826A4 (en) 2016-06-23 2017-06-21 MONOATOMIC DISPERSION CATALYST OF THE CHARGED METAL / A-MOC1-X TYPE, METHOD OF SYNTHESIS, AND APPLICATIONS
US16/311,160 US11141716B2 (en) 2016-06-23 2017-06-21 Metal/alpha-MoC1-X load-type single-atomic dispersion catalyst, synthesis method and applications
PCT/CN2017/089332 WO2017219977A1 (zh) 2016-06-23 2017-06-21 金属/α-MoC1-x负载型单原子分散催化剂、合成方法与应用
JP2018566830A JP6730696B2 (ja) 2016-06-23 2017-06-21 金属/α−MoC1−x担持型単原子分散触媒、その合成方法および使用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610462928.0A CN107008479B (zh) 2016-06-23 2016-06-23 金属/α-MoC1-x负载型单原子分散催化剂、其合成方法与应用

Publications (2)

Publication Number Publication Date
CN107008479A CN107008479A (zh) 2017-08-04
CN107008479B true CN107008479B (zh) 2019-10-18

Family

ID=59439432

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610462928.0A Active CN107008479B (zh) 2016-06-23 2016-06-23 金属/α-MoC1-x负载型单原子分散催化剂、其合成方法与应用

Country Status (5)

Country Link
US (1) US11141716B2 (zh)
EP (1) EP3482826A4 (zh)
JP (1) JP6730696B2 (zh)
CN (1) CN107008479B (zh)
WO (1) WO2017219977A1 (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107626294B (zh) * 2017-10-23 2020-04-17 清华大学 一种金属单原子位点催化剂的制备方法
CN108325546A (zh) * 2018-02-07 2018-07-27 广东工业大学 一种双功能电化学催化剂
GB201811606D0 (en) * 2018-07-16 2018-08-29 Univ College Cardiff Consultants Ltd Gold catalyst
CN111036253A (zh) * 2018-10-15 2020-04-21 中国石油化工股份有限公司 加氢催化剂及其制备方法以及甘油加氢方法
CN111250121B (zh) * 2018-11-30 2021-07-16 中国科学院大连化学物理研究所 超高分散的高负载量Pd/α-MoC负载型催化剂合成与应用
CN109939710B (zh) * 2019-04-09 2022-02-22 浙江工业大学 一种Pd再分散的Pd/MCx负载型催化剂及其制备方法和应用
CN109954507B (zh) * 2019-04-16 2021-09-10 宁夏大学 Ni-Rh/αβ-MoXC复合催化剂及制备和应用
CA3143287A1 (en) * 2019-06-14 2020-12-17 University Of Maryland, College Park Systems and methods for high temperature synthesis of single atom dispersions and multi-atom dispersions
CN110420657B (zh) * 2019-09-05 2022-11-15 西南石油大学 一种镍铈/石墨相氮化碳复合型催化剂及其制备方法与应用
CN110694616B (zh) * 2019-10-28 2020-08-11 湖南大学 一种普适性制备负载型金属单原子/金属纳米颗粒的方法
CN111048793B (zh) * 2019-12-27 2021-06-22 苏州擎动动力科技有限公司 铂基八面体催化剂的制备方法
CN111389437B (zh) * 2020-04-10 2021-06-11 天津大学 碳化钼负载单原子加氢催化剂、其制备方法及其在炔烃半加氢中的应用
CN113527061B (zh) * 2020-04-14 2023-10-10 中国石油化工股份有限公司 甘油加氢***和方法
CN113527062B (zh) * 2020-04-14 2023-10-13 中国石油化工股份有限公司 由甘油制备1,3-丙二醇的方法及其***
CN114522681B (zh) * 2020-11-23 2023-10-13 中国科学院大连化学物理研究所 一种提高贵金属孤原子在氢气气氛中稳定性的方法
CN114534754B (zh) * 2020-11-25 2023-06-27 中国科学院大连化学物理研究所 一种α-MoC1-x负载Pt-Cu双金属水煤气变换催化剂制备方法及其应用
EP4260936A1 (en) * 2020-12-11 2023-10-18 Beijing Guanghe Hydrogen Energy Technology Co., Ltd. Method for producing hydrogen molecules by means of energy radiation
CN114682283B (zh) * 2020-12-31 2023-06-16 北京单原子催化科技有限公司 碳氮包覆负载型金属单原子催化剂、制备方法及其应用
CN114713254B (zh) * 2021-01-04 2023-01-10 北京大学 一种金属/α-MoC负载型催化剂的制备方法、产品和用途
CN113231090B (zh) * 2021-05-08 2022-08-02 广东工业大学 一种Cu-Mo2C催化剂及其制备方法和应用
CN114768818B (zh) * 2022-03-10 2023-08-15 天津大学 水热氧解耦催化剂、制备方法和应用
CN114984973B (zh) * 2022-06-24 2023-06-27 北京化工大学 金属氮/氧化物负载过渡金属单原子催化剂及其制备方法和应用
CN115739143A (zh) * 2022-11-30 2023-03-07 中国科学院大连化学物理研究所 一种Pt/α-MoC-CeO2催化剂及其制备方法和在甲醇水蒸汽制氢中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102728849A (zh) * 2012-05-08 2012-10-17 清华大学 一种自支撑的、单原子层厚的贵金属纳米片及其制备方法
CN103566935A (zh) * 2013-01-08 2014-02-12 湖南大学 一种具有高催化性能单原子分散催化剂的制备方法
CN104707636A (zh) * 2015-02-02 2015-06-17 北京大学 Pt/α-MoC1-x负载型催化剂及其合成与应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7576027B2 (en) * 1999-01-12 2009-08-18 Hyperion Catalysis International, Inc. Methods of making carbide and oxycarbide containing catalysts
US20020172641A1 (en) 2001-03-26 2002-11-21 N.V. Union Miniere S.A. Method of using molybdenum carbide catalyst
JP2005138006A (ja) 2003-11-05 2005-06-02 Toyota Motor Corp 触媒物質、それを用いた燃料電池用電極触媒、及び水性ガスシフト触媒
KR101110073B1 (ko) * 2009-09-01 2012-02-15 포항공과대학교 산학협력단 연료전지용 전극촉매, 및 이 전극촉매를 포함하는 막 전극 접합체와 연료전지
US8350098B2 (en) * 2011-04-04 2013-01-08 Celanese International Corporation Ethanol production from acetic acid utilizing a molybdenum carbide catalyst
CZ2011540A3 (cs) * 2011-08-30 2012-10-31 Vysoká Škola Bánská -Technická Univerzita Ostrava Zpusob prípravy vláknitých a lamelárních mikrostruktur a nanostruktur rízeným vakuovým vymrazováním kapalinové disperze nanocástic
CN104860806B (zh) * 2014-02-21 2016-06-29 中国科学院大连化学物理研究所 碳化钼纳米带在苯甲醇脱氢制苯甲醛反应中的应用
US9579636B1 (en) * 2014-02-26 2017-02-28 Stc.Unm Method for synthesis of functional ceramic materials
US9694351B1 (en) * 2014-02-26 2017-07-04 Stc.Unm Highly dispersed and durable heterogeneous catalysts
CN105540588B (zh) 2015-12-08 2017-10-27 大连理工大学 α型碳化钼及其金属改性α型碳化物催化剂在二氧化碳加氢制一氧化碳反应中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102728849A (zh) * 2012-05-08 2012-10-17 清华大学 一种自支撑的、单原子层厚的贵金属纳米片及其制备方法
CN103566935A (zh) * 2013-01-08 2014-02-12 湖南大学 一种具有高催化性能单原子分散催化剂的制备方法
CN104707636A (zh) * 2015-02-02 2015-06-17 北京大学 Pt/α-MoC1-x负载型催化剂及其合成与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
甲醇重整制氢的密度泛函理论研究;顾向奎;《NSTL国家科技图书文献中心》;20131010;摘要 *

Also Published As

Publication number Publication date
US20190193060A1 (en) 2019-06-27
JP6730696B2 (ja) 2020-07-29
EP3482826A1 (en) 2019-05-15
CN107008479A (zh) 2017-08-04
WO2017219977A1 (zh) 2017-12-28
US11141716B2 (en) 2021-10-12
EP3482826A4 (en) 2019-07-24
JP2019518600A (ja) 2019-07-04

Similar Documents

Publication Publication Date Title
CN107008479B (zh) 金属/α-MoC1-x负载型单原子分散催化剂、其合成方法与应用
CN106876728B (zh) 高密度过渡金属单原子负载石墨烯基催化剂及其制备方法
CN104707636B (zh) Pt/α‑MoC1‑x负载型催化剂及其合成与应用
Nguyen-Thanh et al. Cobalt–polypyrrole–carbon black (Co–PPY–CB) electrocatalysts for the oxygen reduction reaction (ORR) in fuel cells: composition and kinetic activity
Bonde et al. Hydrogen evolution on nano-particulate transition metal sulfides
Negro et al. Interplay between nitrogen concentration, structure, morphology, and electrochemical performance of PdCoNi “core–shell” carbon nitride electrocatalysts for the oxygen reduction reaction
Chen et al. Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production
Sakamoto et al. Electrooxidation of hydrazine hydrate using Ni–La catalyst for anion exchange membrane fuel cells
Shviro et al. Bifunctional electrocatalysis on Pd‐Ni core–shell nanoparticles for hydrogen oxidation reaction in alkaline medium
Tan et al. Pd-around-CeO 2− x hybrid nanostructure catalyst: three-phase-transfer synthesis, electrocatalytic properties and dual promoting mechanism
Cao et al. Ionic liquid-assisted one-step preparation of ultrafine amorphous metallic hydroxide nanoparticles for the highly efficient oxygen evolution reaction
Feng et al. Co@ C Nanoparticle Embedded Hierarchically Porous N‐Doped Hollow Carbon for Efficient Oxygen Reduction
Khalid et al. Nano-flocks of a bimetallic organic framework for efficient hydrogen evolution electrocatalysis
Zhang et al. Quasi‐paired Pt atomic sites on Mo2C promoting selective four‐electron oxygen reduction
Jiang et al. Complete and rapid conversion of hydrazine monohydrate to hydrogen over supported Ni–Pt nanoparticles on mesoporous ceria for chemical hydrogen storage
Moura Souza et al. Niobium: a promising Pd co-electrocatalyst for ethanol electrooxidation reactions
Feng et al. Highly dispersed ruthenium nanoparticles on Y2O3 as superior catalyst for ammonia decomposition
CN107159287A (zh) Pt/α‑MoC1‑x负载型催化剂在催化加氢反应中的应用
Yarmiayev et al. Enhancement of Palladium HOR Activity in Alkaline Conditions through Ceria Surface Doping
Fan et al. Sacrificial W facilitates self‐reconstruction with abundant active sites for water oxidation
Zhang et al. Trends in Hydrogen Evolution Activity of Metal‐Modified Molybdenum Carbides in Alkaline and Acid Electrolytes
Priamushko et al. Incorporation of Cu/Ni in Ordered Mesoporous Co‐Based Spinels to Facilitate Oxygen Evolution and Reduction Reactions in Alkaline Media and Aprotic Li− O2 Batteries
Han et al. Polyacrylamide‐Mediated Silver Nanoparticles for Selectively Enhancing Electroreduction of CO2 towards CO in Water
Crabb et al. Effect of Ru surface composition on the CO tolerance of Ru modified carbon supported Pt catalysts
CN110534754A (zh) 一种包裹Fe3C纳米晶的碳纳米管及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant