CN106298269A - 硫化钴镍/氮掺杂碳纳米纤维复合材料、制备方法及应用 - Google Patents

硫化钴镍/氮掺杂碳纳米纤维复合材料、制备方法及应用 Download PDF

Info

Publication number
CN106298269A
CN106298269A CN201610669016.0A CN201610669016A CN106298269A CN 106298269 A CN106298269 A CN 106298269A CN 201610669016 A CN201610669016 A CN 201610669016A CN 106298269 A CN106298269 A CN 106298269A
Authority
CN
China
Prior art keywords
nitrogen
doped carbon
carbon nano
cobalt sulfide
fiber composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610669016.0A
Other languages
English (en)
Other versions
CN106298269B (zh
Inventor
刘天西
宁学良
缪月娥
周宇
王开
李斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201610669016.0A priority Critical patent/CN106298269B/zh
Publication of CN106298269A publication Critical patent/CN106298269A/zh
Application granted granted Critical
Publication of CN106298269B publication Critical patent/CN106298269B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/40Fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明属于过渡金属硫族化合物‑碳材料技术领域,具体为一种硫化钴镍/氮掺杂碳纳米纤维复合材料及其制备方法。本发明首先通过酸性溶液氧化法制备聚吡咯/细菌纤维素复合材料,然后将其在管式炉中高温碳化制得氮掺杂碳纳米纤维,再通过水热法在氮掺杂碳纳米纤维表面原位生长硫化钴镍纳米颗粒。本发明具有化学性质稳定、导电性高、比表面积大等优点;本发明中,硫化钴镍纳米颗粒均匀地负载于氮掺杂碳纳米纤维表面,有效抑制了硫化钴镍纳米颗粒的团聚,并充分利用了细菌纤维素独特的三维网络结构,具有电容量高、制备过程环保、成本低廉等特点。本发明所制备的硫化钴镍/氮掺杂碳纳米纤维复合材料可望成为一种理想的超级电容器电极材料。

Description

硫化钴镍/氮掺杂碳纳米纤维复合材料、制备方法及应用
技术领域
本发明涉及一种硫化钴镍/氮掺杂碳纳米纤维复合材料、该复合材料的制备方法以及该复合材料的应用。
背景技术
细菌纤维素是一种通过微生物发酵过程产生的天然纤维,不同于一些复杂设备和大型工厂需求的合成纤维,它具有价格低廉、机械强度高、来源丰富等优势。细菌纤维素的多孔结构和纳米级的孔径分布使其比表面大、孔隙率高,尤其是高温碳化后的纳米级碳纤维表面具有许多有效的反应活性位点,可作为一种良好的模板用于具有特定形貌或尺寸的纳米材料的可控合成。因此,这些特殊性质使其在能量转换与储存、电子传感器、高分子纳米复合材料等领域都具有极为广阔的应用前景,成为碳纳米材料领域中的研究热点之一。
导电聚合物(如聚吡咯)具有较高的导电性、良好的稳定性、可逆的氧化还原性、合成简便、无毒等特点,在电容器、电池、光电器件中有很好的应用前景。
硫化钴镍是一类典型的过渡金属硫族化合物,与同族的氧化钴镍相比,其导电性是氧化钴镍的100倍,电化学活性高于氧化钴镍,因此是一种理想的超级电容器电极材料。但是,硫化钴镍易于团聚,显著地抑制了其活性边缘的暴露,且在氧化还原反应过程中易发生严重的体积膨胀和收缩,导致其循环性能下降。因此,将硫化钴镍与其它高导电性的基底材料高效复合,获得兼具高活性和长循环寿命的复合电极材料具有重要意义。
发明内容
本发明的目的是提供一种成本低廉、电化学性能优异的硫化钴镍/氮掺杂碳纳米纤维复合材料及其制备方法。
为了达到上述目的,本发明的技术方案是提供了一种硫化钴镍/氮掺杂碳纳米纤维复合材料的制备方法,其特征在于,包括如下步骤:
(1)将细菌纤维素膜切成4×5cm2大小,取出50片4×5cm2大小的细菌纤维素分散于500mL去离子水中,配制浓度为1mol L-1的氢氧化钾溶液,然后逐滴加入到上述分散液中至溶液显中性;
(2)将呈中性的细菌纤维素取出,放入液氮冷却,后置于冷冻干燥机中冷冻干燥;
(3)称取500mg冷冻干燥后的细菌纤维素,分散于400mL一定浓度的盐酸溶液中,同时加入0.67g吡咯,浸泡12h;
(4)另称取一定量的三氯化铁,溶于400mL 1mol L-1的盐酸中;
(5)将步骤(4)制备得到的三氯化铁酸性溶液逐滴加入到细菌纤维素分散液中,随后在低温环境下搅拌反应一定时间,即得到聚吡咯/细菌纤维素复合材料;
(6)将聚吡咯/细菌纤维素复合材料从溶液中取出,多次洗涤后放入冻干机中冷冻干燥;
(7)将冷冻干燥后的聚吡咯/细菌纤维素复合材料在管式炉中高温碳化,得到氮掺杂碳纳米纤维材料;
(8)分别称取一定量的硝酸钴、硝酸镍、硫脲和六亚甲基四胺溶于去离子水中配得水热反应溶液;
(9)将制备得到的氮掺杂碳纳米纤维与上述反应溶液在一定温度下水热反应12小时,得到硫化钴镍/氮掺杂碳纳米纤维复合材料;
(10)将制备得到的硫化钴镍/氮掺杂碳纳米纤维复合材料用去离子水和乙醇反复洗涤多次,然后干燥,备用。
优选地,步骤(2)中所述冷冻干燥机的冷冻干燥时间为12~48h,优选为24-30h。
优选地,步骤(3)中所述盐酸浓度为0.5~1.5mol L-1,优选为0.9~1.1mol L-1
优选地,步骤(4)中所述三氯化铁的质量为1.62g,浓度为0.025mol L-1,三氯化铁与吡咯的摩尔比为1∶1。
优选地,步骤(5)所述低温环境的反应温度为0-5℃,优选为0-3℃。
优选地,步骤(6)中所述冷冻干燥的反应时间为8-12h,优选为9-10h。
优选地,步骤(7)中所述高温碳化的碳化温度为700-800℃,优选为740-760℃,同时选择氩气气氛。
优选地,步骤(8)中所述的硝酸钴、硝酸镍、硫脲和六亚甲基四胺的摩尔比为2∶1∶10∶10,其中硝酸钴的浓度为33.3mmol L-1
优选地,步骤(9)中所述水热反应的反应温度为150-190℃,优选为155-165℃。
本发明的另一个技术方案是提供了一种硫化钴镍/氮掺杂碳纳米纤维复合材料,其特征在于,通过上述的方法制备得到。
本发明的另一个技术方案是提供了一种上述的硫化钴镍/氮掺杂碳纳米纤维复合材料的应用,其特征在于,作为超级电容器的电极材料。
本发明通过简单的工艺设计,制备得到一种新型硫化钴镍/氮掺杂碳纳米纤维复合材料。该复合材料具有如下优势:氮掺杂碳纳米纤维本身具有很好的导电性,其三维网状的纳米结构有利于电解质进入,能显著增加电容器的倍率性能;硫化钴镍颗粒在氮掺杂碳纳米纤维表面的均匀生长,可增加硫化钴镍活性位点的暴露,极大提高材料的电容量。因此,将两者进行有效复合可以实现其良好的协同作用,以制备出性能优异的复合电极材料。
使用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和循环伏安曲线(CV)来表征本发明所获得的硫化钴镍/氮掺杂碳纳米纤维复合材料的结构形貌和电化学性能,其结果如下:
(1)SEM测试结果表明:氮掺杂碳纳米纤维的直径约为30nm,硫化钴镍纳米颗粒直径约为15nm,硫化钴镍纳米颗粒均匀地负载在氮掺杂碳纳米纤维的表面,较好地抑制了硫化钴镍自身的团聚问题。
(2)XRD测试结果表明:氮掺杂碳纳米纤维在2θ=24.1°有一个较宽的衍射峰;硫化钴镍在2θ=16.3°,26.8°,31.6°,38.3°,47.4°,50.5°和55.3°的衍射峰分别对应于立方晶型硫化钴镍的(111),(220),(311),(400),(422),(511)和(440)晶面。所制备的硫化钴镍/氮掺杂碳纳米纤维复合材料显示出了硫化钴镍的特征峰,说明硫化钴镍纳米颗粒已成功负载于氮掺杂碳纳米纤维表面。
(3)从CV曲线可以看出一对氧化还原峰,说明制备的硫化钴镍/氮掺杂碳纳米纤维复合材料具有赝电容特性。同时,在5A g-1电流密度下测试硫化钴镍/氮掺杂碳纳米纤维复合材料的循环稳定性,结果表明所制备的硫化钴镍/氮掺杂碳纳米纤维复合材料在5000圈循环后的电容量仍高达918.5F g-1
本发明的优点在于:
1、制备过程简单,易于操作,是一种有效快捷的制备方法。
2、实验设计巧妙:
第一、选择的基底是氮掺杂碳纳米纤维。其独特的三维网状结构提高了基底的表面积,并且提供了更多的位点供硫化钴镍纳米颗粒的生长。氮掺杂碳纳米纤维具有优异的导电性,其三维交织网状结构有利于氧化还原过程中电极材料内部的电子以及离子的快速传输,从而进一步提高电极材料的电容量;
第二、通过简单的水热方法实现了氮掺杂碳纳米纤维与硫化钴镍的复合,使得两者的优势得以充分发挥,从而构建了具有优异性能的复合材料。本发明制备的硫化钴镍/氮掺杂碳纳米纤维复合材料,有望作为一种理想的超级电容器电极材料。
附图说明
图1(a)是本发明聚吡咯/细菌纤维素复合材料的SEM图;
图1(b)是本发明硫化钴镍/氮掺杂碳纳米纤维复合材料的SEM图;
图2是硫化钴镍/氮掺杂碳纳米纤维复合材料(NiCo2S4/CBC-N)、纯的硫化钴镍(NiCo2S4)和氮掺杂碳纳米纤维(CBC-N)的XRD图谱;
图3是硫化钴镍/氮掺杂碳纳米纤维复合材料的CV曲线;
图4是硫化钴镍/氮掺杂碳纳米纤维复合材料的循环稳定性。
具体实施方式
下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
实施例1
本实施例公开的一种硫化钴镍/氮掺杂碳纳米纤维复合材料的制备方法包括以下步骤:
(1)将细菌纤维素膜切成4×5cm2大小,取出50片4×5cm2大小的细菌纤维素分散于500mL去离子水中,配制浓度为1mol L-1的氢氧化钾溶液,然后逐滴加入到上述分散液中至溶液显中性;
(2)将呈中性的细菌纤维素取出,放入液氮冷却后置于冷冻干燥机冷冻干燥24小时;
(3)称取500mg冷冻干燥后的细菌纤维素,分散于400mL1molL-1的盐酸中,同时加入0.67g吡咯,浸泡12h;
(4)另称取1.62g三氯化铁,溶于400mL 1mol L-1的盐酸中;
(5)将上述三氯化铁酸性溶液逐滴加入到细菌纤维素分散液中,随后在低温(0-3℃)环境下搅拌反应一定时间,即得到聚吡咯/细菌纤维素复合材料;
(6)反应一段时间后,将其从溶液中分离出来,多次洗涤后放入冻干机中冷冻干燥10h;
(7)将冷冻干燥后的聚吡咯/细菌纤维素复合材料在管式炉中于750℃高温碳化,得到氮掺杂碳纳米纤维材料;
(8)硝酸钴、硝酸镍、硫脲和六亚甲基四胺按摩尔比为2∶1∶10∶10配得水热反应溶液,其中硝酸钴的浓度为33.3mmol L-1
(9)将制备得到的氮掺杂碳纳米纤维材料与上述反应溶液在160℃水热反应12h,制备得到硫化钴镍/氮掺杂碳纳米纤维复合材料;
(10)将制备得到的硫化钴镍/氮掺杂碳纳米纤维复合材料用去离子水和乙醇反复洗涤多次,然后干燥,备用。
实施例2
本实施例与实施例1的区别在于:将实施例1中的硝酸钴的浓度变为3.33mmol L-1六水合硝酸镍、硫脲和六亚甲基四胺的浓度按比例减小。其余均同实施例1。
实施例3
本实施例与实施例1的区别在于:将实施例1中步骤(7)的碳化温度变为800℃。其余均同实施例1。

Claims (11)

1.一种硫化钴镍/氮掺杂碳纳米纤维复合材料的制备方法,其特征在于,包括如下步骤:
(1)将细菌纤维素膜切成4×5cm2大小,取出50片4×5cm2大小的细菌纤维素分散于500mL去离子水中,配制浓度为1mol L-1的氢氧化钾溶液,然后逐滴加入到上述分散液中至溶液显中性;
(2)将呈中性的细菌纤维素取出,放入液氮冷却,后置于冷冻干燥机中冷冻干燥;
(3)称取500mg冷冻干燥后的细菌纤维素,分散于400mL一定浓度的盐酸溶液中,同时加入0.67g吡咯,浸泡12h;
(4)另称取一定量的三氯化铁,溶于400mL 1mol L-1的盐酸中;
(5)将步骤(4)制备得到的三氯化铁酸性溶液逐滴加入到细菌纤维素分散液中,随后在低温环境下搅拌反应一定时间,即得到聚吡咯/细菌纤维素复合材料;
(6)将聚吡咯/细菌纤维素复合材料从溶液中取出,多次洗涤后放入冻干机中冷冻干燥;
(7)将冷冻干燥后的聚吡咯/细菌纤维素复合材料在管式炉中高温碳化,得到氮掺杂碳纳米纤维材料;
(8)分别称取一定量的硝酸钴、硝酸镍、硫脲和六亚甲基四胺溶于去离子水中配得水热反应溶液;
(9)将制备得到的氮掺杂碳纳米纤维与上述反应溶液在一定温度下水热反应12小时,得到硫化钴镍/氮掺杂碳纳米纤维复合材料;
(10)将制备得到的硫化钴镍/氮掺杂碳纳米纤维复合材料用去离子水和乙醇反复洗涤多次,然后干燥,备用。
2.如权利要求1所述的一种硫化钴镍/氮掺杂碳纳米纤维复合材料的制备方法,其特征在于,步骤(2)中所述冷冻干燥机的冷冻干燥时间为12~48h,优选为24-30h。
3.如权利要求1所述的一种硫化钴镍/氮掺杂碳纳米纤维复合材料的制备方法,其特征在于,步骤(3)中所述盐酸浓度为0.5~1.5mol L-1,优选为0.9~1.1mol L-1
4.如权利要求1所述的一种硫化钴镍/氮掺杂碳纳米纤维复合材料的制备方法,其特征在于,步骤(4)中所述三氯化铁的质量为1.62g,浓度为0.025mol L-1,三氯化铁与吡咯的摩尔比为1∶1。
5.如权利要求1所述的一种硫化钴镍/氮掺杂碳纳米纤维复合材料的制备方法,其特征在于,步骤(5)所述低温环境的反应温度为0-5℃,优选为0-3℃。
6.如权利要求1所述的一种硫化钴镍/氮掺杂碳纳米纤维复合材料的制备方法,其特征在于,步骤(6)中所述冷冻干燥的反应时间为8-12h,优选为9-10h。
7.如权利要求1所述的一种硫化钴镍/氮掺杂碳纳米纤维复合材料的制备方法,其特征在于,步骤(7)中所述高温碳化的碳化温度为700-800℃,优选为740-760℃,同时选择氩气气氛。
8.如权利要求1所述的一种硫化钴镍/氮掺杂碳纳米纤维复合材料的制备方法,其特征在于,步骤(8)中所述的硝酸钴、硝酸镍、硫脲和六亚甲基四胺的摩尔比为2∶1∶10∶10,其中硝酸钴的浓度为33.3mmol L-1
9.如权利要求1所述的一种硫化钴镍/氮掺杂碳纳米纤维复合材料的制备方法,其特征在于,步骤(9)中所述水热反应的反应温度为150-190℃,优选为155-165℃。
10.一种硫化钴镍/氮掺杂碳纳米纤维复合材料,其特征在于,通过如权利要求1所述的方法制备得到。
11.如权利要求10所述的硫化钴镍/氮掺杂碳纳米纤维复合材料的应用,其特征在于,作为超级电容器的电极材料。
CN201610669016.0A 2016-08-15 2016-08-15 硫化钴镍/氮掺杂碳纳米纤维复合材料、制备方法及应用 Expired - Fee Related CN106298269B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610669016.0A CN106298269B (zh) 2016-08-15 2016-08-15 硫化钴镍/氮掺杂碳纳米纤维复合材料、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610669016.0A CN106298269B (zh) 2016-08-15 2016-08-15 硫化钴镍/氮掺杂碳纳米纤维复合材料、制备方法及应用

Publications (2)

Publication Number Publication Date
CN106298269A true CN106298269A (zh) 2017-01-04
CN106298269B CN106298269B (zh) 2018-10-26

Family

ID=57671141

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610669016.0A Expired - Fee Related CN106298269B (zh) 2016-08-15 2016-08-15 硫化钴镍/氮掺杂碳纳米纤维复合材料、制备方法及应用

Country Status (1)

Country Link
CN (1) CN106298269B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108589264A (zh) * 2018-05-03 2018-09-28 东华大学 硫化铋纳米颗粒/氮掺杂碳纳米纤维杂化材料及其制备
CN108615614A (zh) * 2018-05-25 2018-10-02 重庆大学 一种N掺杂TiO2/MXene复合材料及其制备方法和应用
CN109136979A (zh) * 2018-08-08 2019-01-04 东华大学 中空锌掺杂氧化钴镍包覆的氮掺杂碳复合材料及其制备
CN109776851A (zh) * 2019-01-04 2019-05-21 浙江工业大学 一种细菌纤维素/金属硫化物复合凝胶及其制备方法和导电处理方法
CN109994324A (zh) * 2019-04-02 2019-07-09 新疆大学 一种镍钴硫化物/氮掺杂有序介孔碳核壳异质结构纳米棒材料及其制备方法和应用
WO2019179110A1 (zh) * 2018-03-19 2019-09-26 华南理工大学 一种细菌纤维素负载金属粒子与植物纤维复合制备的催化试纸及其方法
CN110289179A (zh) * 2019-05-29 2019-09-27 南京源恒能源科技有限公司 活性金属氧化物-碳化细菌纤维素电极材料的制备方法
CN111354935A (zh) * 2020-03-24 2020-06-30 东华大学 富缺陷硫化铼/氮掺杂生物质基碳纤维复合材料及其制备方法
CN111564318A (zh) * 2020-04-30 2020-08-21 梅火开 一种Ni2CoS4-石墨化多孔碳纳米纤维的超级电容器电极材料及其制法
CN111725489A (zh) * 2020-06-01 2020-09-29 华北科技学院 一种元素掺杂的导电复合碳化材料及其制备方法和应用
CN114371202A (zh) * 2020-10-14 2022-04-19 东华大学 一种碳纤维复合材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105148970A (zh) * 2015-08-18 2015-12-16 广东南海普锐斯科技有限公司 一种一维掺氮碳纳米线氧还原电催化剂及其制备和应用
CN105280896A (zh) * 2015-09-12 2016-01-27 复旦大学 硫化钴镍/碳纳米纤维复合材料及其制备方法和应用
CN105293590A (zh) * 2015-10-16 2016-02-03 复旦大学 硫化钴镍/石墨烯/碳纳米纤维复合材料及其制备方法
CN106229161A (zh) * 2016-08-01 2016-12-14 哈尔滨万鑫石墨谷科技有限公司 一种原位含氮聚合物氮掺杂活性纳米碳纤维及其制备方法和用途

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105148970A (zh) * 2015-08-18 2015-12-16 广东南海普锐斯科技有限公司 一种一维掺氮碳纳米线氧还原电催化剂及其制备和应用
CN105280896A (zh) * 2015-09-12 2016-01-27 复旦大学 硫化钴镍/碳纳米纤维复合材料及其制备方法和应用
CN105293590A (zh) * 2015-10-16 2016-02-03 复旦大学 硫化钴镍/石墨烯/碳纳米纤维复合材料及其制备方法
CN106229161A (zh) * 2016-08-01 2016-12-14 哈尔滨万鑫石墨谷科技有限公司 一种原位含氮聚合物氮掺杂活性纳米碳纤维及其制备方法和用途

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019179110A1 (zh) * 2018-03-19 2019-09-26 华南理工大学 一种细菌纤维素负载金属粒子与植物纤维复合制备的催化试纸及其方法
CN108589264A (zh) * 2018-05-03 2018-09-28 东华大学 硫化铋纳米颗粒/氮掺杂碳纳米纤维杂化材料及其制备
CN108615614A (zh) * 2018-05-25 2018-10-02 重庆大学 一种N掺杂TiO2/MXene复合材料及其制备方法和应用
CN109136979A (zh) * 2018-08-08 2019-01-04 东华大学 中空锌掺杂氧化钴镍包覆的氮掺杂碳复合材料及其制备
CN109776851A (zh) * 2019-01-04 2019-05-21 浙江工业大学 一种细菌纤维素/金属硫化物复合凝胶及其制备方法和导电处理方法
CN109994324A (zh) * 2019-04-02 2019-07-09 新疆大学 一种镍钴硫化物/氮掺杂有序介孔碳核壳异质结构纳米棒材料及其制备方法和应用
CN110289179A (zh) * 2019-05-29 2019-09-27 南京源恒能源科技有限公司 活性金属氧化物-碳化细菌纤维素电极材料的制备方法
CN111354935A (zh) * 2020-03-24 2020-06-30 东华大学 富缺陷硫化铼/氮掺杂生物质基碳纤维复合材料及其制备方法
CN111564318A (zh) * 2020-04-30 2020-08-21 梅火开 一种Ni2CoS4-石墨化多孔碳纳米纤维的超级电容器电极材料及其制法
CN111725489A (zh) * 2020-06-01 2020-09-29 华北科技学院 一种元素掺杂的导电复合碳化材料及其制备方法和应用
CN111725489B (zh) * 2020-06-01 2021-07-16 华北科技学院 一种元素掺杂的导电复合碳化材料及其制备方法和应用
CN114371202A (zh) * 2020-10-14 2022-04-19 东华大学 一种碳纤维复合材料及其制备方法和应用
CN114371202B (zh) * 2020-10-14 2023-05-02 东华大学 一种碳纤维复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN106298269B (zh) 2018-10-26

Similar Documents

Publication Publication Date Title
CN106298269B (zh) 硫化钴镍/氮掺杂碳纳米纤维复合材料、制备方法及应用
CN106098404B (zh) 一种硫化钴镍/氮掺杂碳纳米纤维复合材料及其制备和应用
CN105633372B (zh) 硫化镍纳米颗粒/氮掺杂纤维基碳气凝胶复合材料及其制备方法
Dahal et al. In-built fabrication of MOF assimilated B/N co-doped 3D porous carbon nanofiber network as a binder-free electrode for supercapacitors
Lyu et al. Recent development of biomass-derived carbons and composites as electrode materials for supercapacitors
Wang et al. A nanofibrillated cellulose/polyacrylamide electrolyte‐based flexible and sewable high‐performance Zn–MnO2 battery with superior shear resistance
CN105948045B (zh) 一种氮掺杂淀粉基活性炭微球材料的制备方法及其应用
CN105293590B (zh) 硫化钴镍/石墨烯/碳纳米纤维复合材料及其制备方法
CN105869912B (zh) 一种淀粉基均分散活性炭微球材料的制备方法及其应用
CN105355450B (zh) 一种氮掺杂碳纤维/氮掺杂石墨烯/细菌纤维素膜材料的制备方法及其应用
CN109037704A (zh) 一种氮掺杂3d多孔碳材料及其制备方法与应用
Thirumal et al. Cleaner production of tamarind fruit shell into bio-mass derived porous 3D-activated carbon nanosheets by CVD technique for supercapacitor applications
CN109776851A (zh) 一种细菌纤维素/金属硫化物复合凝胶及其制备方法和导电处理方法
CN105140042B (zh) 一种细菌纤维素/活性碳纤维/碳纳米管膜材料的制备方法及其应用
Xie et al. Self‐supporting CuCo2S4 microspheres for high‐performance flexible asymmetric solid‐state supercapacitors
CN106099108A (zh) 一种电池级石墨/活性炭复合材料的制备方法
Lin et al. Petal cell-derived MnO nanoparticle-incorporated biocarbon composite and its enhanced lithium storage performance
Bai et al. Two‐dimensional NiO@ C‐N nanosheets composite as a superior low‐temperature anode material for advanced lithium‐/sodium‐Ion batteries
Tawalbeh et al. Lignin/zirconium phosphate/ionic liquids-based proton conducting membranes for high-temperature PEM fuel cells applications
CN110047659A (zh) 一种生物质基柔性电极材料的制备方法
Farahpour et al. Single-pot hydrothermal synthesis of copper molybdate nanosheet arrays as electrode materials for high areal-capacitance supercapacitor
CN110473711A (zh) 一种超级电容器电极材料的制备方法
Yi et al. Co1-xS/Co3S4@ N, S-co-doped agaric-derived porous carbon composites for high-performance supercapacitors
Mu et al. Strong physisorption and superb thermal stability of carbon nanofibers carried CuxO-V2O5 enabling the flexible and long-cycling supercapacitor
Ibrahim et al. Covalent organic frameworks-derived nitrogen-doped carbon/reduced graphene oxide as electrodes for supercapacitor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181026

Termination date: 20210815