CN102906599B - 用于全波场反演和逆时偏移中的地下参数估计的方法 - Google Patents

用于全波场反演和逆时偏移中的地下参数估计的方法 Download PDF

Info

Publication number
CN102906599B
CN102906599B CN201180009058.7A CN201180009058A CN102906599B CN 102906599 B CN102906599 B CN 102906599B CN 201180009058 A CN201180009058 A CN 201180009058A CN 102906599 B CN102906599 B CN 102906599B
Authority
CN
China
Prior art keywords
model
rho
seismic
factor
physical characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201180009058.7A
Other languages
English (en)
Other versions
CN102906599A (zh
Inventor
S·李
J·R·克雷布斯
J·E·安德森
A·鲍姆斯泰因
D·L·欣克利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Upstream Research Co
Original Assignee
Exxon Production Research Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Production Research Co filed Critical Exxon Production Research Co
Publication of CN102906599A publication Critical patent/CN102906599A/zh
Application granted granted Critical
Publication of CN102906599B publication Critical patent/CN102906599B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/282Application of seismic models, synthetic seismograms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/301Analysis for determining seismic cross-sections or geostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/30Analysis
    • G01V1/306Analysis for determining physical properties of the subsurface, e.g. impedance, porosity or attenuation profiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. for interpretation or for event detection
    • G01V1/36Effecting static or dynamic corrections on records, e.g. correcting spread; Correlating seismic signals; Eliminating effects of unwanted energy
    • G01V1/364Seismic filtering
    • G01V1/368Inverse filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/50Corrections or adjustments related to wave propagation
    • G01V2210/51Migration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/61Analysis by combining or comparing a seismic data set with other data
    • G01V2210/614Synthetically generated data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/62Physical property of subsurface
    • G01V2210/622Velocity, density or impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/66Subsurface modeling
    • G01V2210/663Modeling production-induced effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/67Wave propagation modeling
    • G01V2210/675Wave equation; Green's functions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/67Wave propagation modeling
    • G01V2210/679Reverse-time modeling or coalescence modelling, i.e. starting from receivers

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明涉及一种转换地震数据以获得例如体积弹性模量或密度的地下模型的方法。利用地震数据(101)和背景地下介质模型(102)计算(103)目标函数的梯度。在背景模型中计算源照明和接收器照明(104)。利用所述背景模型的速度计算地震分辨率体积(105)。通过源照明和接收器照明、地震分辨率体积和背景地下模型,梯度被转换为差异地下模型参数(106)。这些相同的因子可以用于补偿通过逆时偏移而偏移的地震数据,偏移的地震数据然后可以与地下体积弹性模量模型相关。对于迭代反演,将差异地下模型参数(106)用作预处理的梯度(107)。

Description

用于全波场反演和逆时偏移中的地下参数估计的方法
相关申请的交叉参考
本申请要求2010年2月10日提出申请、标题为“Methods for Subsurface Parameter Estimation in Full Wavefield Inversion and Reverse-Time Migration”的美国临时申请61/303,148的权益,其整个内容为全部目的以参考方式包括在本发明中。
技术领域
本发明一般涉及地球物理勘探领域,更具体地,涉及地震数据处理。具体地,本发明是一种用于在全波场反演和逆时偏移中进行地下参数估计的方法。
背景技术
勘探地震处理中的全波场反演(FWI)依赖于目标函数关于地下模型参数[12]的梯度的计算。通常以L2范数的形式给出目标函数E:
E = 1 2 ∫ ∫ ∫ | p ( r g , r s ; t ) - p b ( r g , r s ; t ) | 2 dt dS g dS s , - - - ( 1 )
其中p和pb是在接收器位置rg针对位于rs的***的背景地下模型中的测量压力(即震波振幅)和建模压力。在迭代反演过程中,背景介质一般是先前的反演过程产生的介质。在非迭代反演过程中或偏移中,背景介质一般利用传统的地震处理技术导出,例如偏移速度分析。目标函数对整个时间t、表面Sg和Ss积分,Sg和Ss由接收器和***(shot)的遍布范围(spread)限定。我们定义Kd(r)=K(r)-Kb(r)和ρd(r)=ρ(r)-ρb(r),其中K(r)和ρ(r)是真实的体积弹性模量和密度,而Kb(r)和ρb(r)是背景模型在地下位置r的体积弹性模量和密度。我们还将测量压力和建模压力之差定义为pd(rg,rs;t)-p(rg,rs;t)-pb(rg,rs;t)。
测量压力p满足波方程 
ρ ▿ · ( 1 ρ ▿ p ) - ρ K p · · = - q ( t ) δ ( r - r s ) - - - ( 2 )
( ρ b + ρ d ) ▿ · ( 1 ρ b + ρ d ▿ ( p b + p d ) ) - ρ b + ρ d K b + K d ( p · · b + p · · d ) = - q ( t ) δ ( r - r s ) , - - - ( 3 ) ,
其中q(t)是震源特征(source signature)。通过扩展微扰项和仅仅保留一阶波恩(Born)近似项,可以导出压力pd的波恩散射方程,
ρ b ▿ · ( 1 ρ b ▿ p d ) - ρ b K b p · · d = - [ ρ b K d K b 2 p · · b - ρ b ▿ · ( ρ d ρ b 2 ▿ p b ) ] , - - - ( 4 )
由此,pd满足
p d ( r g , r s ; t ) = ∫ [ ρ b ( r ′ ) K d ( r ′ ) K b 2 ( r ′ ) p · · b ( r ′ , r g ; t ) - ρ b ( r ′ ) ▿ · ( ρ d ( r ′ ) ρ b 2 ( r ′ ) ▿ p b ( r ′ , r s ; t ) ) ] * g b ( r g , r ′ ; t ) d V ′ , - - - ( 5 )
其中V’是r’跨越的体积,而gb是背景介质中的格林函数。
可以利用方程(5)并通过考虑由于随无穷小体积dV的微小(fractional)变化δKb和δρb而产生的微小变化δpb,可以导出pb的梯度方程,
∂ p b ∂ K b ( r ) = ρ b ( r ) dV K b 2 ( r ) g b ( r g , r ; t ) * p · · b ( r , r s ; t ) , - - - ( 6 )
∂ p b ∂ ρ b ( r ) = F - 1 { dV ρ b ( r ) ▿ G b ( r g , r ; f ) · ▿ P b ( r , r s ; f ) ] , - - - ( 7 )
其中Pb=F{pb},Pd=F{pd},Gb=F{gb},并且F和F-1是傅里叶变换运算符和逆傅里叶变换运算符。
利用方程6和7并利用相互关系ρb(r)Gb(rg,r)-ρb(rg)Gb(r,rg),
∂ E ∂ K b ( r ) = - ∫ ∫ ∫ p d ∂ p b ∂ K b ( r ) dt dS g dS s
= - ρ b ( r ) dV K b 2 ( r ) ∫ ∫ ∫ ( i 2 πf ) 2 P b ( r , r s ; f ) G b ( r g , r ; f ) P d * ( r g , r s ; f ) df dS g dS s - - - ( 8 )
= - ρ b ( r ) dV K b 2 ( r ) ∫ ∫ p · b ( r , r s ; t ) ∫ ρ b ( r g ) ρ b ( r ) g b ( r , r g ; - t ) * p · d ( r g , r s ; t ) dS g dt dS s ,
∂ E ∂ ρ b ( r ) = - ∫ ∫ ∫ p d ∂ p b ∂ ρ b ( r ) dt dS g dS s
= - dV ρ b ( r ) ∫ ∫ ∫ P d * ( r g , r s ; f ) ▿ P b ( r , r g ; f ) · ▿ G b ( r g , r ; f ) df dS g d S s - - - ( 9 )
= - dV ρ b ( r ) ∫ ∫ ▿ p b ( r , r s ; t ) · [ ∫ ▿ ( g b ( r , r g ; - t ) * ρ b ( r g ) ρ b ( r ) p d ( r g , r s ; t ) ) dS g ] dt dS s . ,
则可以使用方程8和9以迭代方式执行全波场反演。
逆时偏移(RTM)基于与FWI中的梯度计算相似的技术,其中前向传播场与逆时接收场交叉相关。通过这种方法,RTM克服了基于光线的偏移技术如基尔霍夫偏移的限制。在RTM中,给出了在地下位置r的偏移图像场M
M(r)=∫∫pb(r,rs;t)∫gb(r,rg;t)*p(rg,rs;t)dSg dt dSs,    (10)
这与FWI的梯度方程8很相似。
尽管方程8和9提供了用于将数据转换到地下模型的架构,但是该反演过程的收敛很缓慢。而且,由于波场的遍布范围,采用方程10的RTM在深部会遭受弱振幅。为了改善FWI的收敛或改善逆时偏移的振幅,已经通过利用目标函数的赫斯(Hessian)[9](即目标函数的二阶导数)进行了很多尝试。然而,赫斯的计算不仅仅在计算资源方面相当昂贵,针对现实的三维反演问题也需要相当大的存储空间。而且,采用完全赫斯矩阵的FWI可能导致非最优反演[2]。
任何人可以通过将赫斯的非对角项归并为对角项来执行更稳定的反演[2]。然而,这依然需要计算完全赫斯矩阵或赫斯矩阵的至少一些非对角项,这种计算的成本是昂贵的。尽管可以选择只使用赫斯函数的对角项[11],但是这仅仅在具有无限孔径的高频渐进区域[1,7]中是有效的。Plessix和Mulder试图通过首先计算近似对角赫斯,然后通过 对其按比例缩放来克服这些困难,其中z是深度,vp是压缩波速[7]。根据数值实验,他们已经确定最佳的缩放参数 然而,该方法并未提供具有修正单位(correct unit)的地下介质参数的定量反演,因为只应用了近似按比例缩放。而且,该方法应用于只考虑压缩波速改变的RTM,因此可能不适用于诸如密度和剪切波速的其他弹性参数在空间变化的FWI。
发明内容
在一个实施例中,本发明是用于根据从地下区域的地震勘测获取的地震数据的反演或者根据来自地震数据的地震图像的逆时偏移确定地下区域中的物理特性的模型的方法,所述方法包含确定针对物理特性的地震分辨率体积,以及将其用作在计算机上执行的用于
转换反演中的数据失配梯度或
补偿逆时偏移的地震图像
的计算中的乘数比例缩放因子,从而获得物理特性的模型或对假设的模型的更新。
在本发明方法的一些实施例中,将数据失配(misfit)梯度或逆时偏移的地震图像乘以除地震分辨率体积之外的额外缩放比例因子,其中额外的缩放比例因子包括源照明因子、接收器照明因子和背景介质特性因子。这将产生物理特性的模型或对具有修正单位的假设模型的更新。
对于从事本领域的技术人员来说,在本发明的任何实际应用中,地震数据的反演或偏移必须在被具体编程为执行上述操作的计算机上执行是显而易见的。
附图说明
通过参考下面的详细说明和附图将更好地理解本发明及其优点,在附图中:
图1是显示本发明方法的一个实施例中的基本步骤的流程图;
图2到图5关于本发明的第一示例应用,其中图2显示利用方程8计算的目标函数关于以Pa m4s为单位的体积弹性模量的梯度;
图3显示利用方程18和图2中的梯度计算的以Pa为单位的体积弹性模量更新<Kd(r)>;
图4显示利用方程24和图2中的梯度计算的以Pa为单位的体积弹性模量更新<Kd(r)>;
图5显示利用方程9计算的目标函数关于以Pa2m7s/kg为单位的密 度的梯度;
图6和图7关于本发明的第二示例应用,其中图6显示利用方程28和图5中的梯度计算的以kg/m3为单位的密度更新<ρd(r)>;和
图7显示利用方程34和图5中的梯度计算的以kg/m3为单位的密度更新<ρd(r)>。
将结合示例实施例描述本发明。然而,在这个意义上,下面的详细说明书具体到本发明的特定实施例或特定使用,这仅仅是为了说明的目的,而并不应理解为限制本发明的范围。相反,这是为了覆盖可以包含在本发明范围内的所有替代物、改进、和等价物,如所附权利要求所限定的。
具体实施方式
在本发明中,我们利用方程8和方程9导出Kd和ρd的反演方程。这是通过首先利用以下事实完成的:可以利用方程5中的波恩近似扩展方程8和9中的pd。忽视Kd和ρd之间的串扰(crosstalk)分量,方程8和9可以近似为:
&PartialD; E &PartialD; K b ( r ) &ap; - &rho; b ( r ) dV K b 2 ( r ) &Integral; &Integral; &Integral; &Integral; &rho; b ( r &prime; ) K d ( r &prime; ) K b 2 ( r &prime; ) [ g b ( r g , r &prime; ; t ) * p &CenterDot; &CenterDot; b ( r &prime; , r s ; t ) ] &times; [ g b ( r g , r ; t ) * p &CenterDot; &CenterDot; b ( r , r s ; t ) dt dS g dS s d V &prime; , - - - ( 11 )
&PartialD; E &PartialD; &rho; b ( r ) &ap; - dV &rho; b ( r ) &Integral; &Integral; &Integral; &Integral; &rho; d ( r &prime; ) &rho; b ( r &prime; ) [ &dtri; &prime; P b * ( r &prime; , r s ; f ) &CenterDot; &dtri; &prime; G b * ( r g , r &prime; ; f ) ] &times; [ &dtri; P b ( r , r s ; f ) &CenterDot; &dtri; G b ( r g , r ; f ) ] df dS g dS s d V &prime; . - - - ( 12 )
通过改变积分阶,在频域中可以将方程11重新记为
&PartialD; E &PartialD; K b ( r ) &ap; - &rho; b ( r ) dV K b 2 ( r ) &Integral; &Integral; ( 2 &pi;f ) 4 &rho; b ( r &prime; ) dV K d ( r &prime; ) K b 2 ( r &prime; )
&times; { &Integral; &rho; b ( r g ) &rho; b ( r ) G b ( r , r g ; f ) G b * ( r g , r &prime; ; f ) dS s } { &Integral; P b ( r , r s ; f ) P b * ( r &prime; , r s ; f ) dS s } dV &prime; df .
(13)
方程13中的第一积分项
&Integral; &rho; b ( r g ) &rho; b ( r ) G b ( r , r g ; f ) G b * ( r g , r &prime; ; f ) dS g - - - ( 14 )
是在r’的脉冲源产生的、在表面Sg之上测量的、之后反向传播至r的场的逆时反向传播的近似(例如,参见参考文献[8,3])。归因于该项的波场朝着位于r’的脉冲源反向传播,并且如果积分表面Sg包含点r’,则波场的表现与t=0时的空间△(delta)函数δ(r-r’)相似。该波场与归因于第二项∫Pb(r,rs;f)P’b(r’,rs;f)dSs的波场相关,从而在r=r’附近形成梯度。然后,在r=r’附近,第一项与第二项的相关性迅速衰减。本发明认识到,相关项的振幅不可忽略的区域可通过勘测的地震分辨率来确定。在本发明中,可以做出近似
&Integral; ( 2 &pi;f ) 4 { &Integral; &rho; b ( r g ) &rho; b ( r ) G b ( r , r g ; f ) G b * ( r g , r &prime; ; f ) dS g } { &Integral; P b ( r , r s ; f ) P b * ( r &prime; , r s ; f ) dS s } df - - - ( 15 )
&ap; I K ( r ) V K ( r ) &delta; ( r - r &prime; ) ,
其中
I K ( r ) = &Integral; ( 2 &pi;f ) 4 { &Integral; &rho; b ( r g ) &rho; b ( r ) G b ( r , r g ; f ) G b * ( r g , r ; f ) dS g } (16)
&times; { &Integral; P b ( r , r s ; f ) P b * ( r , r s ; f ) dS s } df ,
VK(r)是在地下位置r的地震分辨率。假设当非对角分量处于对角分量的地震分辨率体积内时非对角分量等于对角分量,则方程15相当于高斯-牛顿赫斯矩阵的质量集中,并且在分辨率体积以外的非对角分量等于零。换句话说,方程15相当于通过利用勘测的地震分辨率体积隐含地计算振幅有效的每个第i行中高斯-牛顿赫斯矩阵的非对角分量的数量Ni,然后将第i行的对角分量与Ni相乘。
可以将地震分辨率体积看作是r处在给定地震数据获取参数下地震成像***可以分解的最小体积。处于彼此所属的一个地震分辨率体积内的两个小目标通常不被分解,并且在地震成像***中呈现为一个目标。由于辐射方向图的差异,不同介质参数的分辨率体积是不同的。例如,由于体积弹性模量波动引起的目标产生单极辐射方向图,而由于密度波动引起的那些目标产生偶极子辐射方向图。例如利用相对廉价的射线近似法[6,4]可以计算体积弹性模量的地震分辨率体积VK(r)。从事本领域的技术人员可能知道估计分辨率体积的其他方式。例如,一个本领域技术人员能够通过在背景介质中分配点目标和通过研究目标在地震图像中的遍布凭经验估计分辨率体积。如果背景介质包含由于反演的迭代特性 引起的速度不连续,则背景介质可能需要光滑化以进行光线追踪。技术人员也可以进行简单的假设,即波数覆盖是均匀的。在这种情况下地震分辨率体积是半径为σ≈(5/18π)0.5vp(r)/fp的球体,其中fp是峰值频率[6]。本领域技术人员也可以使用符合雷达分辨率方程[5]的近似σ≈vp(r)T/4-vp(r)/4B,其中T和B是源波形的有效持续时间和有效带宽。
方程11可以通过方程15简化为
&PartialD; E &PartialD; K b ( r ) &ap; - &rho; b 2 ( r ) dV K b 4 ( r ) < K d ( r ) > I K ( r ) V K ( r ) , - - - ( 17 )
由此
< K d ( r ) > &ap; - K b 4 ( r ) &rho; b 2 ( r ) dV 1 I K ( r ) V K ( r ) &PartialD; E &PartialD; K b ( r ) , - - - ( 18 )
其中<Kd(r)>是Kd对在空间位置r的地震分辨率的空间平均值。
如果使用自由空间的格林函数(19)并假设Sg对向半个立体角,则方程16可以被进一步简化。
G ( r g , r ; f ) = 1 4 &pi; | r - r g | e ik | r - r g | , - - - ( 19 )
之后,方程16简化为
IK(r)≈IK,s(r)IK,b(r),    (20)
其中
I K , s ( r ) = &Integral; | p &CenterDot; &CenterDot; b ( r , r s ; t ) | 2 dt , - - - ( 21 )
并且
I K , g ( r ) = &Integral; &rho; b ( r g ) &rho; b ( r ) G b ( r , r g ; f ) G b * ( r g , r ; f ) dS g &ap; 1 8 &pi; &rho; b ( r g ) &rho; b ( r ) . - - - ( 22 )
可以认为项IK,s(r)是背景模型中的源照明,以及可以将IK,g(r)理解为接收器照明。本领域技术人员还能够根据勘测几何改变在每个地下位置r的积分的立体角。于是,方程11变为
&PartialD; E &PartialD; K b ( r ) &ap; - &rho; b 2 ( r ) dV K b 4 ( r ) < K d ( r ) > I K , s ( r ) I K , g ( r ) V K ( r ) - - - ( 23 )
< K d ( r ) > &ap; - K b 4 ( r ) &rho; b 2 ( r ) dV 1 I K , s ( r ) I K , g ( r ) V K ( r ) &PartialD; E &PartialD; K b ( r ) . - - - ( 24 )
方程18和24示出,本领域技术人员可通过按比例缩放源照明和接 收器照明、分辨率体积和背景介质特性的梯度将梯度 转换为介质参数<Kd(r)>。如果反演过程不是迭代的,那么技术人员应该能够使用方程24进行参数反演。如果反演过程是迭代的,技术人员可以使用方程24中的<Kd(r)>作为优化技术的预先处理的梯度,优化技术如最速下降法、共轭梯度(CG)法或牛顿CG法。重要的是,注意方程(18)和(24)产生具有修正单位的体积弹性模量,即,修正单位在尺寸上是修正的,因为已经考虑所有项,而并不像某些公开的方法那样为简化计算而忽略任何一项。所公开的将源照明、接收器照明、背景介质特性和地震分辨率体积中的一个或多个项忽略的方法将不会产生修正单位,因此在它们可用于迭代反演或非迭代反演之前将需要进行某种临时修复(ad hoc fix up)。
对于密度梯度,我们做出与方程15中相似的假设,
&Integral; &Integral; [ &dtri; &prime; P b * ( r &prime; , r s ; f ) &CenterDot; &dtri; &prime; G b * ( r g , r &prime; ; f ) ]
(25)
&times; [ &dtri; P b ( r , r s ; f ) &CenterDot; &dtri; G b ( r g , r ; f ) ] dS g dS s df &ap; I &rho; ( r ) V &rho; ( r ) &delta; ( r - r &prime; ) ,
其中
I &rho; ( r ) = &Integral; &Integral; &Integral; | &dtri; P b ( r , r s ; f ) &CenterDot; &dtri; G b ( r g , r ; f ) | 2 dS g dS s df , - - - ( 26 )
并且Vρ(r)是在地下位置r的密度ρ的地震分辨率。分辨率体积V ρ(r)与Vk(r)不同,因为当入射场和散射场几乎彼此垂直时波数会消失。这归因于先前讨论的密度波动的偶极子辐射方向图。像对于VK(r)一样,技术人员可以使用光线追踪计算分辨率体积Vρ(r),同时考虑这些消失的接近垂直的波数。可替代地,技术人员能够通过忽略波数覆盖的差异来假设vK(r)≈vp(r)。
然后,可以将梯度方程12重写为
&PartialD; E &PartialD; &rho; b ( r ) &ap; - dV &rho; b 2 ( r ) < &rho; d ( r ) > I &rho; ( r ) V &rho; ( r ) , - - - ( 27 )
因此
< &rho; d ( r ) > &ap; - &rho; b 2 ( r ) dV 1 I &rho; ( r ) V &rho; ( r ) &PartialD; E &PartialD; &rho; b ( r ) , - - - ( 28 )
其中<ρd(r)>是ρd(r)在地震分辨率体积Vρ(r)上的空间平均。
我们可以通过利用矢量恒等式(a·b)(c·d)=(a·d)(b·c)+(a×c)·(b×d)进一步 简化方程25从而获得
[ &dtri; &prime; P b * ( r &prime; , r s ; f ) &CenterDot; &dtri; &prime; G b * ( r g , r &prime; ; f ) ] [ &dtri; P b ( r , r s ; f ) - &dtri; G b ( r g , r ; f ) ]
= [ &dtri; &prime; P b * ( r &prime; , r s ; f ) &CenterDot; &dtri; P b ( r , r s ; f ) ] [ &dtri; &prime; G b * ( r g , r &prime; ; f ) &dtri; &dtri; G b ( r g , r ; f ) ] - - - ( 29 )
+ [ &dtri; &prime; P b * ( r &prime; , r s ; f ) &times; &dtri; G b ( r g , r ; f ) ] &CenterDot; [ &dtri; &prime; G b * ( r g , r &prime; ; f ) &times; &dtri; P b ( r , r s ; f ) ] .
方程29右侧的第二项是散射场的偶极子辐射方向图的修正项,因此当 和 彼此垂直时方程29右侧的第二项达到最大值。忽略该修正项,
[ &dtri; &prime; P b * ( r &prime; , r s ; f ) &CenterDot; &dtri; &prime; G b * ( r g , r &prime; ; f ) ] [ &dtri; P b ( r , r s ; f ) &CenterDot; &dtri; G b ( r g , r ; f ) ]
(30)
&ap; [ &dtri; &prime; P b * ( r &prime; , r s ; f ) &CenterDot; &dtri; P b ( r , r s ; f ) ] [ &dtri; &prime; G b * ( r g , r &prime; ; f ) &CenterDot; &dtri; G b ( r g , r ; f ) ] .
于是,方程12可以近似为
&PartialD; E &PartialD; &rho; b ( r ) &ap; - dV &rho; b ( r ) &Integral; &Integral; &rho; d ( r &prime; ) &rho; b ( r &prime; ) { &Integral; [ &dtri; &prime; G b * ( r g , r &prime; ; f ) &CenterDot; &dtri; G b ( r g , r ; f ) ] dS g }
(31)
&times; { &Integral; [ &dtri; &prime; P b * ( r &prime; , r s ; f ) &CenterDot; &dtri; P b ( r , r s ; f ) ] dS s } df dV &prime;
我们可以通过利用自由空间的格林函数来近似方程26中在Sg上的积分,
&Integral; &dtri; G b * ( r g , r ; f ) &CenterDot; &dtri; G b ( r g , r ; f ) dS g &ap; &rho; b ( r g ) &rho; b ( r ) &Integral; &dtri; G b * ( r g , r ; f ) &CenterDot; &dtri; G b ( r , r g ; f ) dS g &ap; &rho; b ( r g ) &rho; b ( r ) ( 2 &pi;f ) 2 8 &pi; v p 2 ( r )
(32)
在假设 和ρb(rg)是沿着Sg的常量的情况下,在半个立体角上进行积分。
之后,以上梯度方程可以改写为
&PartialD; E &PartialD; &rho; b ( r ) &ap; - dV &rho; b 2 ( r ) < &rho; d ( r ) > I &rho; , s ( r ) I &rho; , g ( r ) V &rho; ( r ) - - - ( 33 )
因此
< &rho; d ( r ) > &ap; - &rho; b 2 ( r ) dV 1 I &rho; , s ( r ) I &rho; , g ( r ) V &rho; ( r ) &PartialD; E &PartialD; &rho; b ( r ) , - - - ( 34 )
其中
I &rho; , s ( r ) = | &dtri; p &CenterDot; ( r , r s ; t ) | 2 dt dS s , - - - ( 35 )
I &rho; , g ( r ) = &rho; b ( r g ) &rho; b ( r ) 1 8 &pi; v p 2 ( r ) . - - - ( 36 )
类似<Kd(r)>的情形,方程28或34可以用作非迭代反演的反演公式,或用作迭代反演的预处理的梯度方程。重要的是,要注意到这些方程产生 具有修正单位的密度,即,修正单位在尺寸上是修正的,因为已经考虑所有项,而没有像某些公开的方案那样为了简化计算而忽视任何一项。这对于体积弹性模量的方程18和24也成立。所公开的将源照明、接收器照明、背景介质特性和地震分辨率体积中一个或多个项忽略的方案不会产生修正单位,因此,在用于迭代反演或非迭代反演之前需要进行某种临时修复。
由于FWI的第一迭代类似于RTM,因此可应用此处提供的方法以较少的改动分析RTM中的振幅项。包括RTM的地震偏移通常用于成像地下的结构,因此,通常丢弃偏移图像中的振幅信息。我们示出当利用此处提供的方法适当地按比例缩放时,RTM振幅表示地下的真实压缩波速和背景模型速度之差。
我们注意到,RTM方程10缺少方程8中入射场的双重微分。该双重微分表示在经典的瑞利(Rayleigh)散射区域[Refs.[10,13]]中高频分量比低频分量更加有效地散射。因此,我们可以将方程10视为方程8中的梯度计算操作,部分地忽略散射场的频率依赖,
&PartialD; E &PartialD; K b ( r ) &ap; - &rho; b dV ( i 2 &pi; f c ) 2 K b 2 ( r ) &Integral; &Integral; &Integral; P b ( r , r s ; f ) G b ( r , r g ; f ) P * ( r g , r s ; f ) df dS g dS s
(37)
&ap; - &rho; b dV ( i 2 &pi; f c ) 2 K b 2 ( r ) M ( r ) ,
其中fc是源波形的中心频率。频率依赖被部分忽略,因为虽然已经忽略前向场pb中的频率依赖,但是无法忽略接收场ps中暗含的频率依赖。在RTM中一般不考虑密度的空间变化,所以在方程37中假设ρb是常量。
现在可以将用于导出方程17和23的相同近似应用于方程10,
&PartialD; E &PartialD; K b ( r ) &ap; - &rho; b 2 I K , g ( r ) V K ( r ) dV < K d ( r ) > ( i 2 &pi; f c ) 2 K b 4 ( r ) &Integral; &Integral; ( i 2 &pi;f ) 2 P b ( r , r s ; f ) P b * ( r , r s ; f ) df dS s
(38)
该方程连同方程37产生
< K d ( r ) > &ap; K b 2 ( r ) &rho; b I K , g ( r ) V K ( r ) M ( r ) &Integral; &Integral; | p &CenterDot; b ( r , r s ; t ) | 2 dt dS s . - - - ( 39 )
方程39能够定量分析逆时偏移的图像中的振幅。更具体地,它能够将振幅反演为地下的差异体积弹性模量。
图1是示出了本发明的方法的一个实施例的基本步骤的流程图。
在步骤103中,利用输入的地震记录(101)和关于背景地下介质(102)的信息计算目标函数的梯度。在步骤104中,计算背景模型中的源照明和接收器照明。在步骤105中,利用背景模型的速度计算地震分辨率体积。在步骤106中,利用步骤104的源照明和接收器照明、步骤105的地震分辨率体积和背景地下模型(102)将步骤103的梯度转换为差异地下模型参数。如果要执行迭代反演过程,则在步骤107中将步骤106中的差异地下模型参数用作迭代反演过程的预处理的梯度。
示例
我们考虑以下情形:Kb=9MPa和ρb=1000kg/m3的均质介质中的30m×30m×30m“完美”波恩散射体。目标集中在(x,y,z)=(0,0,250m),其中x和y是两个水平坐标,z是深度。在图2到图7中可以看到目标是位于每个图形中心的小的方形3×3阵列。我们假设源和接收器共同位于x和y方向均具有10m间距的-500m≤x≤500m和-500m≤y≤500m区间内。我们假设源小波在1Hz到51Hz频带内在1m处具有1Pz/Hz的均匀振幅。
在第一示例中,我们假设目标具有给定的体积弹性模量波动Kd=900kPa。图2显示采用方程8时沿着y=0平面的梯度 已经利用方程5计算方程8中的散射场pd。图2中的梯度具有Pa m4s的单位,因此不能与Kd直接相关。如在以上的“背景技术”部分中所述的,这是在一些公开的根据目标函数的梯度计算模型更新的尝试中遇到的难题。
图3显示采用本发明的方程18时的<Kd(r)>。已经假设,地震分辨率体积VK(r)是半径为σ=vp(r)/4B=15m的球体。可以看到,图3是目标的模糊图像,因为<Kd(r)>是地震分辨率体积上的平均特性。图4是使用不太严谨的方程24时的<Kd(r)>。可以看到,图3和图4中的<Kd(r)>彼此良好地吻合。在图3中的目标中心的<Kd(r)>值是752kPa,在图4中是735kPa,两者均在900kPa的真实值的20%内。
第二示例是目标具有ρd=100kg/m3的密度波动的情况。图5显示采用方程9时沿着y=0平面的梯度 已经利用图5计算方程9中 的散射场。图5中的梯度具有Pa2m7s/kg的单位。如同第一实例,不同的单位阻止梯度与密度更新直接相关,再次图示了公开的方法中遇到的难题。
图6示出采用方程28时的<ρd(r)>。已经将地震分辨率体积Vρ(r)假设为与Vk(r)相同。图7是使用方程34时的<ρd(r)>。采用方程34得到的<ρd(r)>的估计将导致反演的准确性比利用方程28更低,因为方程31中忽略了偶极子照明项。
前述的专利申请针对本发明的特定实施例,目的在于对本发明进行图解说明。然而,对于本领域的技术人员来说,可以对本文中描述的实施例做出多种修改和变更是显而易见的。所有的修改和变更均在本发明的范围内,如所附权利要求所限定的。本领域技术人员将容易地认识到,在本发明的实际应用中,可以在计算机上或借助计算机执行本发明方法的至少某些步骤,即,本发明是计算机可实施的。
参考书目
[1]G.Beylkin,"Imaging of discontinuities in the inverse scattring problem by inversion of a causal generalized Radon transform,"J.Math.Phys.26,99-108(1985)。
[2]G.Chavent和R.-E.Plessix,"An optimal true-amplitude least-squares prestack depth-migration operator,"Geophysics 64(2),508-515(1999)。
[3]D.R.Jackson和D.R.Dowling,"Phase conjugation in underwater acoustics,"J.Acoust.Soc.Am.89(1),171-181(1991)。
[4]I.Lecomte,"Resolution and illumination analyses in PSDM:A ray-based approach,"The Leading Edge,pages 650—663(May 2008)。
[5]N.Levanon,Radar Principles,chapter 1,pages 1-18,John Wiley&Sons,New York 25(1988)。
[6]M.A.Meier和P.J.Lee,"Converted wave resolution,"Geophysics74(2),Q1-Q16(2009)。
[7]R.E.Plessix和W.A.Mulder,"Frequency-domain finite-difference amplitude-preserving migration,"Geophys.J.Int.157,975-987(2004)。
[8]R.P.Porter,"Generalized holography with application to inverse  scattering and inverse source problems,"Progress in Optics XXVII,E.Wolf,editor,pages 317-397,Elsevier(1989)。
[9]R.G.Pratt,C.Shin,和G.J.Hicks,"Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion,"Geophys.J.Int.133,341-362(1998)。
[10]J.W.S.Rayleigh,"On the transmission of light through an atmosphere containing small particles in suspension,and on the origin of the blue of the sky,"Phil.Mag.47,375-384(1899)。
[11]C.Shin,S.Jang,和D.-J.Min,"Waveform inversion using a logarithmic wavefield,"Geophysics 49,592-606(2001)。
[12]A.Tarantola,"Inversion of seismic reflection data in the acoustic approximation,"Geophysics 49,1259-1266(1984)。
[13]R.J.Urick,Principles of Underwater Sound,chapter 9,pages291-327,McGraw-Hill,New York,3rd edition(1983)。

Claims (21)

1.一种根据从地下区域的地震勘测获得的地震数据的反演或者根据来自所述地震数据的地震图像的逆时偏移确定地下区域的物理特性的模型的方法,所述方法包括:
确定针对所述物理特性的地震分辨率体积,并将其用作在计算机上执行的用于
转换反演中的数据失配梯度或
补偿逆时偏移的地震图像
的计算中的乘数比例缩放因子,从而获得所述物理特性的模型或假设的模型的更新。
2.根据权利要求1所述的方法,进一步包括用额外的比例缩放因子与数据失配梯度或逆时偏移的地震图像相乘以获得所述物理特性的模型或假设的模型的更新,其中所述额外的比例缩放因子包括源照明因子、接收器照明因子和背景介质特性因子。
3.根据权利要求1所述的方法,其中所述地震分辨率体积是通过光线追踪利用背景介质模型的速度和利用假设的地震小波的频率的函数确定的。
4.根据权利要求2所述的方法,其中所述模型是根据地震数据的反演确定的,所述方法进一步包括:
假设地下区域的初始模型,其指定所述地下区域中的离散单元位置处的模型参数;
形成数学的目标函数以测量所测量的地震数据和根据模型计算的地震数据之间的失配;
选择提供对初始模型的调整即更新的数学关系,其中所述调整会降低失配,所述数学关系使所述调整与所述目标函数的按比例缩放的梯度相关,所述梯度是关于所述模型参数的,所述比例缩放包含四个比例缩放因子,即
地震分辨率体积因子,
源照明因子,
接收器照明因子,和
背景介质特性因子,
所有这些因子在所述数学关系中表现为乘数因子,其对所述目标函数的梯度进行比例缩放,从而产生所述模型参数的调整;以及
利用计算机根据所述数学关系计算所述调整,然后,利用计算的调整更新所述初始模型。
5.根据权利要求4所述的方法,其中所述物理特性即所述模型参数是体积弹性模量或密度,或体积弹性模量和密度的组合。
6.根据权利要求4所述的方法,其中所述数学关系依赖于所述物理特性。
7.根据权利要求4所述的方法,其中当所述物理特性是体积弹性模量时,所述背景介质特性因子包括除以密度平方的体积弹性模量的四次方,以及当所述物理特性是密度时,所述背景介质特性因子包括密度的平方。
8.根据权利要求4所述的方法,其中当所述物理特性是体积弹性模量时,所述接收器照明因子近似为(1/8π)(ρb(rg)/ρb(r)),其中ρb(r)是在位置r的背景密度,rg是接收器的位置;以及当所述物理特性是密度时,接收器照明因子Iρ,g(r)近似为:
I &rho; , g ( r ) = &rho; b ( r g ) &rho; b ( r ) 1 8 &pi; v p 2 ( r ) ,
其中vp(r)是在位置r的速度。
9.根据权利要求4所述的方法,进一步包括重复所述方法进行至少一次迭代,其中来自先前迭代的更新的模型取代所述初始模型。
10.根据权利要求9所述的方法,其中所述目标函数的函数形式和所述数学关系的函数形式从一次迭代到下一次迭代不改变。
11.根据权利要求4所述的方法,其中对所述初始模型的调整是通过利用目标函数的赫斯最小化所述目标函数来计算的,其中所述目标函数的赫斯可产生赫斯矩阵,其中当处于地震分辨率体积外部时,所述赫斯矩阵的非对角元素被忽略。
12.根据权利要求11所述的方法,其中假设地震分辨率体积内的所述赫斯矩阵的非对角元素等于对应的对角元素,导致只计算对角元素。
13.根据权利要求2所述的方法,其中当所述物理特性是体积弹性模量时,通过自由空间中格林函数在所述地震勘测的接收器遍布范围所限定的表面上的积分近似所述接收器照明因子。
14.根据权利要求4所述的方法,其中当所述物理特性是密度时,通过自由空间中格林函数的梯度在所述地震勘测的接收器遍布范围所限定的表面上的积分近似所述接收器照明因子。
15.根据权利要求1所述的方法,其中基于均匀的波数覆盖的假设,将所述地震分辨率体积近似为球体。
16.根据权利要求4所述的方法,进一步包含在迭代优化技术中利用所述更新的模型预处理所述梯度。
17.根据权利要求2所述的方法,其中所述模型是根据来自所述地震数据的地震图像的逆时偏移确定的。
18.根据权利要求17所述的方法,其中所述物理特性是体积弹性模量。
19.根据权利要求17所述的方法,其中所述背景介质特性因子包含除以密度的体积弹性模量平方。
20.根据权利要求17所述的方法,其中通过(1/8π)(ρb(rg)/ρb(r))近似所述接收器照明因子,其中ρb(r)是在位置r的背景密度,rg是接收器的位置。
21.根据权利要求17所述的方法,其中偏移图像的地震振幅被转换为差异体积弹性模量或差异压缩波速。
CN201180009058.7A 2010-02-10 2011-01-05 用于全波场反演和逆时偏移中的地下参数估计的方法 Expired - Fee Related CN102906599B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US30314810P 2010-02-10 2010-02-10
US61/303,148 2010-02-10
PCT/US2011/020250 WO2011100077A1 (en) 2010-02-10 2011-01-05 Methods for subsurface parameter estimation in full wavefield inversion and reverse-time migration

Publications (2)

Publication Number Publication Date
CN102906599A CN102906599A (zh) 2013-01-30
CN102906599B true CN102906599B (zh) 2015-07-15

Family

ID=44353626

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180009058.7A Expired - Fee Related CN102906599B (zh) 2010-02-10 2011-01-05 用于全波场反演和逆时偏移中的地下参数估计的方法

Country Status (11)

Country Link
US (1) US8537638B2 (zh)
EP (1) EP2534505A4 (zh)
KR (1) KR101914923B1 (zh)
CN (1) CN102906599B (zh)
AU (1) AU2011215576B2 (zh)
BR (1) BR112012016649A2 (zh)
CA (1) CA2785751C (zh)
MY (1) MY155860A (zh)
RU (1) RU2545487C2 (zh)
SG (1) SG182262A1 (zh)
WO (1) WO2011100077A1 (zh)

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8694299B2 (en) 2010-05-07 2014-04-08 Exxonmobil Upstream Research Company Artifact reduction in iterative inversion of geophysical data
GB2497055A (en) * 2010-09-28 2013-05-29 Shell Int Research Earth model estimation through an acoustic full waveform inversion of seismic data
WO2012100153A1 (en) * 2011-01-20 2012-07-26 Northeastern University Real-time pavement profile sensing system using air-coupled surface wave
SG193232A1 (en) 2011-03-30 2013-10-30 Exxonmobil Upstream Res Co Convergence rate of full wavefield inversion using spectral shaping
US9158018B2 (en) 2011-04-05 2015-10-13 Westerngeco L.L.C. Waveform inversion using a response of forward modeling
US9625593B2 (en) * 2011-04-26 2017-04-18 Exxonmobil Upstream Research Company Seismic data processing
KR101352621B1 (ko) 2011-06-14 2014-01-17 서울대학교산학협력단 해저면 지형을 반영한 지하구조 영상화 방법
KR101355106B1 (ko) 2011-06-27 2014-01-22 서울대학교산학협력단 복소주파수 그룹을 기초로 하는 지하구조 영상화 방법
PT2732312T (pt) * 2011-07-12 2021-06-23 Eni Spa Análise de velocidade de migração de equação de onda usando distorção de imagem
ES2640824T3 (es) 2011-09-02 2017-11-06 Exxonmobil Upstream Research Company Utilización de la proyección sobre conjuntos convexos para limitar la inversión del campo de onda completa
US9176930B2 (en) * 2011-11-29 2015-11-03 Exxonmobil Upstream Research Company Methods for approximating hessian times vector operation in full wavefield inversion
RU2612896C2 (ru) 2012-03-08 2017-03-13 Эксонмобил Апстрим Рисерч Компани Ортогональное кодирование источника и приемника
US9229121B2 (en) 2012-03-13 2016-01-05 Seoul National University R&Db Foundation Seismic imaging system for acoustic-elastic coupled media using accumulated Laplace gradient direction
KR101374387B1 (ko) 2012-03-13 2014-03-17 서울대학교산학협력단 음향-탄성 결합 매질에서의 누적된 라플라스 그래디언트 방향을 이용한 지하 영상화 시스템
US20130311149A1 (en) * 2012-05-17 2013-11-21 Yaxun Tang Tomographically Enhanced Full Wavefield Inversion
KR101355107B1 (ko) 2012-06-29 2014-01-23 서울대학교산학협력단 잡음 제거를 통한 지하 매질구조 추정방법 및 그 장치
MY178811A (en) 2012-11-28 2020-10-20 Exxonmobil Upstream Res Co Reflection seismic data q tomography
CN103091711B (zh) * 2013-01-24 2015-09-23 中国石油天然气集团公司 基于时间域一阶弹性波动方程的全波形反演方法及装置
GB2510873A (en) 2013-02-15 2014-08-20 Total Sa Method of modelling a subsurface volume
GB2510872A (en) * 2013-02-15 2014-08-20 Total Sa Method of modelling a subsurface volume
CN104755961B (zh) * 2013-03-15 2018-05-04 雪佛龙美国公司 基于蒙特卡洛反向投影的波束反演
CN103278848B (zh) * 2013-04-22 2016-04-13 中山大学 基于mpi并行预条件迭代的地震成像正演方法
AU2014268976B2 (en) * 2013-05-24 2016-12-22 Exxonmobil Upstream Research Company Multi-parameter inversion through offset dependent elastic FWI
US10520623B2 (en) 2013-05-31 2019-12-31 Westerngeco L.L.C. Methods and systems for marine survey acquisition
US10459117B2 (en) 2013-06-03 2019-10-29 Exxonmobil Upstream Research Company Extended subspace method for cross-talk mitigation in multi-parameter inversion
US9702998B2 (en) 2013-07-08 2017-07-11 Exxonmobil Upstream Research Company Full-wavefield inversion of primaries and multiples in marine environment
CN104280768B (zh) * 2013-07-12 2017-03-15 中国石油天然气集团公司 一种适用于逆时偏移的吸收边界条件方法
DK3036566T3 (en) 2013-08-23 2018-07-23 Exxonmobil Upstream Res Co SIMILAR SOURCE APPLICATION DURING BOTH SEISMIC COLLECTION AND SEISMIC INVERSION
US10036818B2 (en) * 2013-09-06 2018-07-31 Exxonmobil Upstream Research Company Accelerating full wavefield inversion with nonstationary point-spread functions
US9600775B2 (en) * 2014-01-23 2017-03-21 Schlumberger Technology Corporation Large survey compressive designs
US9910189B2 (en) 2014-04-09 2018-03-06 Exxonmobil Upstream Research Company Method for fast line search in frequency domain FWI
US10267937B2 (en) 2014-04-17 2019-04-23 Saudi Arabian Oil Company Generating subterranean imaging data based on vertical seismic profile data and ocean bottom sensor data
US9562983B2 (en) * 2014-04-17 2017-02-07 Saudi Arabian Oil Company Generating subterranean imaging data based on vertical seismic profile data
US20150301208A1 (en) * 2014-04-22 2015-10-22 Westerngeco L.L.C. Seismic data processing
SG11201608175SA (en) * 2014-05-09 2016-11-29 Exxonmobil Upstream Res Co Efficient line search methods for multi-parameter full wavefield inversion
US10185046B2 (en) 2014-06-09 2019-01-22 Exxonmobil Upstream Research Company Method for temporal dispersion correction for seismic simulation, RTM and FWI
BR112016024506A2 (pt) 2014-06-17 2017-08-15 Exxonmobil Upstream Res Co inversão rápida de campo de onda viscoacústica e viscoelástica total
US10838092B2 (en) 2014-07-24 2020-11-17 Exxonmobil Upstream Research Company Estimating multiple subsurface parameters by cascaded inversion of wavefield components
US10422899B2 (en) 2014-07-30 2019-09-24 Exxonmobil Upstream Research Company Harmonic encoding for FWI
US9921324B2 (en) 2014-08-13 2018-03-20 Chevron U.S.A. Inc. Systems and methods employing upward beam propagation for target-oriented seismic imaging
US20160047924A1 (en) * 2014-08-14 2016-02-18 Christine Krohn Determination of Subsurface Properties in the Vicinity of a Well by Full Wavefield Inversion
US10386511B2 (en) 2014-10-03 2019-08-20 Exxonmobil Upstream Research Company Seismic survey design using full wavefield inversion
KR101549388B1 (ko) * 2014-10-17 2015-09-02 한국지질자원연구원 탄성파 다성분 자료에 대한 중합전 egs 구조보정 방법
US9977141B2 (en) 2014-10-20 2018-05-22 Exxonmobil Upstream Research Company Velocity tomography using property scans
EP3234659A1 (en) 2014-12-18 2017-10-25 Exxonmobil Upstream Research Company Scalable scheduling of parallel iterative seismic jobs
US10520618B2 (en) 2015-02-04 2019-12-31 ExxohnMobil Upstream Research Company Poynting vector minimal reflection boundary conditions
SG11201704620WA (en) 2015-02-13 2017-09-28 Exxonmobil Upstream Res Co Efficient and stable absorbing boundary condition in finite-difference calculations
AU2015383134B2 (en) 2015-02-17 2018-01-25 Exxonmobil Upstream Research Company Multistage full wavefield inversion process that generates a multiple free data set
EP3274740B1 (en) * 2015-03-26 2020-04-22 Services Petroliers Schlumberger Seismic waveform inversion
SG11201708665VA (en) 2015-06-04 2017-12-28 Exxonmobil Upstream Res Co Method for generating multiple free seismic images
US10838093B2 (en) 2015-07-02 2020-11-17 Exxonmobil Upstream Research Company Krylov-space-based quasi-newton preconditioner for full-wavefield inversion
CN108139499B (zh) 2015-10-02 2020-02-14 埃克森美孚上游研究公司 Q-补偿的全波场反演
BR112018004435A2 (pt) 2015-10-15 2018-09-25 Exxonmobil Upstream Res Co pilhas de ângulo de domínio de modelo de fwi com preservação de amplitude
US10768324B2 (en) 2016-05-19 2020-09-08 Exxonmobil Upstream Research Company Method to predict pore pressure and seal integrity using full wavefield inversion
US10877175B2 (en) 2016-12-02 2020-12-29 Bp Corporation North America Inc. Seismic acquisition geometry full-waveform inversion
MX2019006436A (es) 2016-12-02 2019-08-21 Bp Corp North America Inc Iluminacion de olas de buceo utilizando recolectores de migracion.
EP3548929B1 (en) 2016-12-02 2023-03-29 ExxonMobil Technology and Engineering Company Method for estimating petrophysical properties for single or multiple scenarios from several spectrally variable seismic and full wavefield inversion products
EP3413092B1 (en) 2017-06-08 2022-06-01 Total Se Method for evaluating a geophysical survey acquisition geometry over a region of interest, related process, system and computer program product
CN112444848B (zh) * 2019-08-29 2024-01-23 中国石油化工股份有限公司 一种全波形反演的方法及***
US11372123B2 (en) 2019-10-07 2022-06-28 Exxonmobil Upstream Research Company Method for determining convergence in full wavefield inversion of 4D seismic data
US20230194736A1 (en) * 2021-12-16 2023-06-22 Chevron U.S.A. Inc. System and method for robust seismic imaging
KR102630687B1 (ko) * 2023-07-04 2024-01-29 한국해양과학기술원 수신기-파동장의 방향성 전파를 이용한 수직 케이블탄성파 탐사자료의 역-시간 구조보정 장치 및 방법

Family Cites Families (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3812457A (en) 1969-11-17 1974-05-21 Shell Oil Co Seismic exploration method
US3864667A (en) 1970-09-11 1975-02-04 Continental Oil Co Apparatus for surface wave parameter determination
US3984805A (en) 1973-10-18 1976-10-05 Daniel Silverman Parallel operation of seismic vibrators without phase control
US4168485A (en) 1974-08-12 1979-09-18 Continental Oil Company Simultaneous use of pseudo-random control signals in vibrational exploration methods
US4545039A (en) 1982-09-09 1985-10-01 Western Geophysical Co. Of America Methods for seismic exploration
US4675851A (en) 1982-09-09 1987-06-23 Western Geophysical Co. Method for seismic exploration
US4575830A (en) 1982-10-15 1986-03-11 Schlumberger Technology Corporation Indirect shearwave determination
US4594662A (en) 1982-11-12 1986-06-10 Schlumberger Technology Corporation Diffraction tomography systems and methods with fixed detector arrays
US4562540A (en) 1982-11-12 1985-12-31 Schlumberger Technology Corporation Diffraction tomography system and methods
JPS59189278A (ja) * 1983-03-23 1984-10-26 橋本電機工業株式会社 ウイケツト型平板乾燥機
FR2543306B1 (fr) 1983-03-23 1985-07-26 Elf Aquitaine Procede et dispositif pour l'optimisation des donnees sismiques
JPS606032A (ja) * 1983-06-22 1985-01-12 Honda Motor Co Ltd 内燃エンジンの作動状態制御方法
US4924390A (en) 1985-03-04 1990-05-08 Conoco, Inc. Method for determination of earth stratum elastic parameters using seismic energy
US4715020A (en) 1986-10-29 1987-12-22 Western Atlas International, Inc. Simultaneous performance of multiple seismic vibratory surveys
FR2589587B1 (fr) 1985-10-30 1988-02-05 Inst Francais Du Petrole Procede de prospection sismique marine utilisant un signal vibratoire code et dispositif pour sa mise en oeuvre
US4707812A (en) 1985-12-09 1987-11-17 Atlantic Richfield Company Method of suppressing vibration seismic signal correlation noise
US4823326A (en) 1986-07-21 1989-04-18 The Standard Oil Company Seismic data acquisition technique having superposed signals
US4686654A (en) 1986-07-31 1987-08-11 Western Geophysical Company Of America Method for generating orthogonal sweep signals
US4766574A (en) 1987-03-31 1988-08-23 Amoco Corporation Method for depth imaging multicomponent seismic data
US4953657A (en) 1987-11-30 1990-09-04 Halliburton Geophysical Services, Inc. Time delay source coding
US4969129A (en) 1989-09-20 1990-11-06 Texaco Inc. Coding seismic sources
US4982374A (en) 1989-10-23 1991-01-01 Halliburton Geophysical Services, Inc. Method of source coding and harmonic cancellation for vibrational geophysical survey sources
GB9011836D0 (en) 1990-05-25 1990-07-18 Mason Iain M Seismic surveying
US5469062A (en) 1994-03-11 1995-11-21 Baker Hughes, Inc. Multiple depths and frequencies for simultaneous inversion of electromagnetic borehole measurements
GB2293010B (en) 1994-07-07 1998-12-09 Geco As Method of processing seismic data
US5583825A (en) 1994-09-02 1996-12-10 Exxon Production Research Company Method for deriving reservoir lithology and fluid content from pre-stack inversion of seismic data
US5924049A (en) 1995-04-18 1999-07-13 Western Atlas International, Inc. Methods for acquiring and processing seismic data
EP0766836B1 (en) 1995-04-18 2003-01-29 Western Atlas International, Inc. Uniform subsurface coverage at steep dips
US5719821A (en) 1995-09-29 1998-02-17 Atlantic Richfield Company Method and apparatus for source separation of seismic vibratory signals
US5721710A (en) 1995-09-29 1998-02-24 Atlantic Richfield Company High fidelity vibratory source seismic method with source separation
US5538825A (en) * 1995-10-02 1996-07-23 Xerox Corporation Printing plate preparation process
US5790473A (en) 1995-11-13 1998-08-04 Mobil Oil Corporation High fidelity vibratory source seismic method for use in vertical seismic profile data gathering with a plurality of vibratory seismic energy sources
US5822269A (en) 1995-11-13 1998-10-13 Mobil Oil Corporation Method for separation of a plurality of vibratory seismic energy source signals
US5715213A (en) 1995-11-13 1998-02-03 Mobil Oil Corporation High fidelity vibratory source seismic method using a plurality of vibrator sources
US5838634A (en) 1996-04-04 1998-11-17 Exxon Production Research Company Method of generating 3-D geologic models incorporating geologic and geophysical constraints
US5798982A (en) 1996-04-29 1998-08-25 The Trustees Of Columbia University In The City Of New York Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models
GB9612471D0 (en) 1996-06-14 1996-08-14 Geco As Method and apparatus for multiple seismic vibratory surveys
US5878372A (en) 1997-03-04 1999-03-02 Western Atlas International, Inc. Method for simultaneous inversion processing of well log data using a plurality of earth models
US6014342A (en) 1997-03-21 2000-01-11 Tomo Seis, Inc. Method of evaluating a subsurface region using gather sensitive data discrimination
US5999489A (en) 1997-03-21 1999-12-07 Tomoseis Inc. High vertical resolution crosswell seismic imaging
US5920838A (en) * 1997-06-02 1999-07-06 Carnegie Mellon University Reading and pronunciation tutor
US5920828A (en) 1997-06-02 1999-07-06 Baker Hughes Incorporated Quality control seismic data processing system
FR2765692B1 (fr) 1997-07-04 1999-09-10 Inst Francais Du Petrole Methode pour modeliser en 3d l'impedance d'un milieu heterogene
GB2329043B (en) 1997-09-05 2000-04-26 Geco As Method of determining the response caused by model alterations in seismic simulations
US5999488A (en) 1998-04-27 1999-12-07 Phillips Petroleum Company Method and apparatus for migration by finite differences
US6219621B1 (en) 1998-06-30 2001-04-17 Exxonmobil Upstream Research Co. Sparse hyperbolic inversion of seismic data
US6388947B1 (en) 1998-09-14 2002-05-14 Tomoseis, Inc. Multi-crosswell profile 3D imaging and method
US6574564B2 (en) 1998-10-01 2003-06-03 Institut Francais Du Petrole 3D prestack seismic data migration method
FR2784195B1 (fr) 1998-10-01 2000-11-17 Inst Francais Du Petrole Methode pour realiser en 3d avant sommation, une migration de donnees sismiques
US6225803B1 (en) 1998-10-29 2001-05-01 Baker Hughes Incorporated NMR log processing using wavelet filter and iterative inversion
US6021094A (en) 1998-12-03 2000-02-01 Sandia Corporation Method of migrating seismic records
US6754588B2 (en) 1999-01-29 2004-06-22 Platte River Associates, Inc. Method of predicting three-dimensional stratigraphy using inverse optimization techniques
US6549854B1 (en) 1999-02-12 2003-04-15 Schlumberger Technology Corporation Uncertainty constrained subsurface modeling
US6058073A (en) 1999-03-30 2000-05-02 Atlantic Richfield Company Elastic impedance estimation for inversion of far offset seismic sections
FR2792419B1 (fr) 1999-04-16 2001-09-07 Inst Francais Du Petrole Methode pour obtenir un modele optimal d'une caracteristique physique dans un milieu heterogene, tel que le sous-sol
GB9927395D0 (en) 1999-05-19 2000-01-19 Schlumberger Holdings Improved seismic data acquisition method
US6327537B1 (en) 1999-07-19 2001-12-04 Luc T. Ikelle Multi-shooting approach to seismic modeling and acquisition
FR2798197B1 (fr) 1999-09-02 2001-10-05 Inst Francais Du Petrole Methode pour former un modele d'une formation geologique, contraint par des donnees dynamiques et statiques
DK1746443T3 (en) 1999-10-22 2014-03-17 Fugro N V A method of calculating the elastic parameters and stone composition of subterranean formations using seismic data
FR2800473B1 (fr) 1999-10-29 2001-11-30 Inst Francais Du Petrole Methode pour modeliser en 2d ou 3d un milieu heterogene tel que le sous-sol decrit par plusieurs parametres physiques
US6480790B1 (en) 1999-10-29 2002-11-12 Exxonmobil Upstream Research Company Process for constructing three-dimensional geologic models having adjustable geologic interfaces
EP1248957A1 (en) 2000-01-21 2002-10-16 Schlumberger Holdings Limited System and method for estimating seismic material properties
CN1188711C (zh) 2000-01-21 2005-02-09 施鲁博格控股有限公司 用于地震波场分离的***和方法
US6826486B1 (en) 2000-02-11 2004-11-30 Schlumberger Technology Corporation Methods and apparatus for predicting pore and fracture pressures of a subsurface formation
FR2805051B1 (fr) 2000-02-14 2002-12-06 Geophysique Cie Gle Methode de surveillance sismique d'une zone souterraine par utilisation simultanee de plusieurs sources vibrosismiques
GB2359363B (en) 2000-02-15 2002-04-03 Geco Prakla Processing simultaneous vibratory seismic data
US6687659B1 (en) 2000-03-24 2004-02-03 Conocophillips Company Method and apparatus for absorbing boundary conditions in numerical finite-difference acoustic applications
US6317695B1 (en) 2000-03-30 2001-11-13 Nutec Sciences, Inc. Seismic data processing method
AU1176802A (en) 2000-10-17 2002-04-29 Westerngeco Llc Method of using cascaded sweeps for source coding and harmonic cancellation
WO2002047011A1 (en) 2000-12-08 2002-06-13 Ortoleva Peter J Methods for modeling multi-dimensional domains using information theory to resolve gaps in data and in theories
FR2818753B1 (fr) 2000-12-21 2003-03-21 Inst Francais Du Petrole Methode et dispositif de prospection sismique par emission simultanee de signaux sismisques obtenus en codant un signal par des sequences pseudo aleatoires
FR2821677B1 (fr) 2001-03-05 2004-04-30 Geophysique Cie Gle Perfectionnements aux procedes d'inversion tomographique d'evenements pointes sur les donnees sismiques migrees
US6751558B2 (en) 2001-03-13 2004-06-15 Conoco Inc. Method and process for prediction of subsurface fluid and rock pressures in the earth
US6927698B2 (en) 2001-08-27 2005-08-09 Larry G. Stolarczyk Shuttle-in receiver for radio-imaging underground geologic structures
US6545944B2 (en) 2001-05-30 2003-04-08 Westerngeco L.L.C. Method for acquiring and processing of data from two or more simultaneously fired sources
US6882958B2 (en) 2001-06-28 2005-04-19 National Instruments Corporation System and method for curve fitting using randomized techniques
GB2379013B (en) 2001-08-07 2005-04-20 Abb Offshore Systems Ltd Microseismic signal processing
US6593746B2 (en) 2001-08-27 2003-07-15 Larry G. Stolarczyk Method and system for radio-imaging underground geologic structures
US7069149B2 (en) 2001-12-14 2006-06-27 Chevron U.S.A. Inc. Process for interpreting faults from a fault-enhanced 3-dimensional seismic attribute volume
US7330799B2 (en) 2001-12-21 2008-02-12 Société de commercialisation des produits de la recherche appliquée-Socpra Sciences et Génie s.e.c. Method and algorithm for using surface waves
US6842701B2 (en) 2002-02-25 2005-01-11 Westerngeco L.L.C. Method of noise removal for cascaded sweep data
GB2387226C (en) 2002-04-06 2008-05-12 Westerngeco Ltd A method of seismic surveying
FR2839368B1 (fr) 2002-05-06 2004-10-01 Total Fina Elf S A Methode de decimation de traces sismiques pilotee par le trajet sismique
US6832159B2 (en) 2002-07-11 2004-12-14 Schlumberger Technology Corporation Intelligent diagnosis of environmental influence on well logs with model-based inversion
FR2843202B1 (fr) 2002-08-05 2004-09-10 Inst Francais Du Petrole Methode pour former un modele representatif de la distribution d'une grandeur physique dans une zone souterraine, affranchi de l'effet de bruits correles entachant des donnees d'exploration
WO2004034088A2 (en) 2002-10-04 2004-04-22 Paradigm Geophysical Corporation Method and system for limited frequency seismic imaging
GB2396448B (en) 2002-12-21 2005-03-02 Schlumberger Holdings System and method for representing and processing and modeling subterranean surfaces
US7027927B2 (en) * 2002-12-23 2006-04-11 Schlumberger Technology Corporation Methods for determining formation and borehole parameters using fresnel volume tomography
US6735527B1 (en) 2003-02-26 2004-05-11 Landmark Graphics Corporation 3-D prestack/poststack multiple prediction
US6999880B2 (en) 2003-03-18 2006-02-14 The Regents Of The University Of California Source-independent full waveform inversion of seismic data
WO2004095072A2 (en) 2003-03-27 2004-11-04 Exxonmobil Upstream Research Company Method to convert seismic traces into petrophysical property logs
EA007911B1 (ru) 2003-04-01 2007-02-27 Эксонмобил Апстрим Рисерч Компани Профилированный высокочастотный вибрационный источник
US7072767B2 (en) 2003-04-01 2006-07-04 Conocophillips Company Simultaneous inversion for source wavelet and AVO parameters from prestack seismic data
NO322089B1 (no) 2003-04-09 2006-08-14 Norsar V Daglig Leder Fremgangsmate for simulering av lokale prestakk dypmigrerte seismiske bilder
GB2400438B (en) 2003-04-11 2005-06-01 Westerngeco Ltd Determination of waveguide parameters
US6970397B2 (en) 2003-07-09 2005-11-29 Gas Technology Institute Determination of fluid properties of earth formations using stochastic inversion
US6882938B2 (en) 2003-07-30 2005-04-19 Pgs Americas, Inc. Method for separating seismic signals from two or more distinct sources
US6944546B2 (en) 2003-10-01 2005-09-13 Halliburton Energy Services, Inc. Method and apparatus for inversion processing of well logging data in a selected pattern space
US6901333B2 (en) 2003-10-27 2005-05-31 Fugro N.V. Method and device for the generation and application of anisotropic elastic parameters
US7046581B2 (en) 2003-12-01 2006-05-16 Shell Oil Company Well-to-well tomography
US20050128874A1 (en) 2003-12-15 2005-06-16 Chevron U.S.A. Inc. Methods for acquiring and processing seismic data from quasi-simultaneously activated translating energy sources
FR2872584B1 (fr) 2004-06-30 2006-08-11 Inst Francais Du Petrole Methode pour simuler le depot sedimentaire dans un bassin respectant les epaisseurs des sequences sedimentaires
US7646924B2 (en) 2004-08-09 2010-01-12 David Leigh Donoho Method and apparatus for compressed sensing
US7480206B2 (en) 2004-09-13 2009-01-20 Chevron U.S.A. Inc. Methods for earth modeling and seismic imaging using interactive and selective updating
GB2422433B (en) 2004-12-21 2008-03-19 Sondex Wireline Ltd Method and apparatus for determining the permeability of earth formations
US7373251B2 (en) 2004-12-22 2008-05-13 Marathon Oil Company Method for predicting quantitative values of a rock or fluid property in a reservoir using seismic data
US7230879B2 (en) 2005-02-12 2007-06-12 Chevron U.S.A. Inc. Method and apparatus for true relative amplitude correction of seismic data for normal moveout stretch effects
EP1859301B1 (en) 2005-02-22 2013-07-17 Paradigm Geophysical Ltd. Multiple suppression in angle domain time and depth migration
US7840625B2 (en) 2005-04-07 2010-11-23 California Institute Of Technology Methods for performing fast discrete curvelet transforms of data
WO2006122146A2 (en) 2005-05-10 2006-11-16 William Marsh Rice University Method and apparatus for distributed compressed sensing
US7405997B2 (en) 2005-08-11 2008-07-29 Conocophillips Company Method of accounting for wavelet stretch in seismic data
WO2007046711A1 (en) 2005-10-18 2007-04-26 Sinvent As Geological response data imaging with stream processors
US7373252B2 (en) 2005-11-04 2008-05-13 Western Geco L.L.C. 3D pre-stack full waveform inversion
FR2895091B1 (fr) 2005-12-21 2008-02-22 Inst Francais Du Petrole Methode pour mettre a jour un modele geologique par des donnees sismiques
GB2436626B (en) 2006-03-28 2008-08-06 Westerngeco Seismic Holdings Method of evaluating the interaction between a wavefield and a solid body
US7620534B2 (en) 2006-04-28 2009-11-17 Saudi Aramco Sound enabling computerized system for real time reservoir model calibration using field surveillance data
US20070274155A1 (en) 2006-05-25 2007-11-29 Ikelle Luc T Coding and Decoding: Seismic Data Modeling, Acquisition and Processing
US7725266B2 (en) 2006-05-31 2010-05-25 Bp Corporation North America Inc. System and method for 3D frequency domain waveform inversion based on 3D time-domain forward modeling
US7254091B1 (en) * 2006-06-08 2007-08-07 Bhp Billiton Innovation Pty Ltd. Method for estimating and/or reducing uncertainty in reservoir models of potential petroleum reservoirs
US7599798B2 (en) 2006-09-11 2009-10-06 Westerngeco L.L.C. Migrating composite seismic response data to produce a representation of a seismic volume
US8121823B2 (en) 2006-09-28 2012-02-21 Exxonmobil Upstream Research Company Iterative inversion of data from simultaneous geophysical sources
ATE543109T1 (de) 2007-01-20 2012-02-15 Spectraseis Ag Zeitumkehr-reservoir-lokalisierung
JP2009063942A (ja) 2007-09-10 2009-03-26 Sumitomo Electric Ind Ltd 遠赤外線カメラ用レンズ、レンズユニット及び撮像装置
US20090070042A1 (en) 2007-09-11 2009-03-12 Richard Birchwood Joint inversion of borehole acoustic radial profiles for in situ stresses as well as third-order nonlinear dynamic moduli, linear dynamic elastic moduli, and static elastic moduli in an isotropically stressed reference state
US20090083006A1 (en) 2007-09-20 2009-03-26 Randall Mackie Methods and apparatus for three-dimensional inversion of electromagnetic data
US20090164186A1 (en) * 2007-12-20 2009-06-25 Bhp Billiton Innovation Pty Ltd. Method for determining improved estimates of properties of a model
US8577660B2 (en) 2008-01-23 2013-11-05 Schlumberger Technology Corporation Three-dimensional mechanical earth modeling
EP2105765A1 (en) 2008-03-28 2009-09-30 Schlumberger Holdings Limited Simultaneous inversion of induction data for dielectric permittivity and electric conductivity
US8275592B2 (en) 2008-04-07 2012-09-25 Westerngeco L.L.C. Joint inversion of time domain controlled source electromagnetic (TD-CSEM) data and further data
US8494777B2 (en) 2008-04-09 2013-07-23 Schlumberger Technology Corporation Continuous microseismic mapping for real-time 3D event detection and location
US8345510B2 (en) 2008-06-02 2013-01-01 Pgs Geophysical As Method for aquiring and processing marine seismic data to extract and constructively use the up-going and down-going wave-fields emitted by the source(s)
US7616523B1 (en) 2008-10-22 2009-11-10 Pgs Geophysical As Method for combining pressure and motion seismic signals from streamers where sensors are not at a common depth
US20100142316A1 (en) 2008-12-07 2010-06-10 Henk Keers Using waveform inversion to determine properties of a subsurface medium

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Directional illumination analysis using beamlet decomposition and propagation;Ru-Shan Wu et al.;《GEOPHYSICS》;20060731;第71卷(第4期);第147-159页 *
冯伟,等.面向目标控制照明的合成波源偏移.《石油物探》.2004,第43卷(第3期),第223-227页. *

Also Published As

Publication number Publication date
CN102906599A (zh) 2013-01-30
KR20120125284A (ko) 2012-11-14
BR112012016649A2 (pt) 2016-04-05
KR101914923B1 (ko) 2018-11-05
CA2785751A1 (en) 2011-08-18
EP2534505A4 (en) 2017-11-15
MY155860A (en) 2015-12-15
AU2011215576B2 (en) 2014-09-25
SG182262A1 (en) 2012-08-30
US20110194379A1 (en) 2011-08-11
EP2534505A1 (en) 2012-12-19
RU2012138469A (ru) 2014-03-20
AU2011215576A1 (en) 2012-08-30
CA2785751C (en) 2016-06-21
RU2545487C2 (ru) 2015-04-10
US8537638B2 (en) 2013-09-17
WO2011100077A1 (en) 2011-08-18

Similar Documents

Publication Publication Date Title
CN102906599B (zh) 用于全波场反演和逆时偏移中的地下参数估计的方法
US11327196B2 (en) Marine surveys conducted with multiple source arrays
US6819628B2 (en) Wave migration by a krylov space expansion of the square root exponent operator, for use in seismic imaging
CN102282481B (zh) 基于地震能见度分析的数据采集和叠前偏移
Dellinger et al. Efficient 2.5-D true-amplitude migration
US10935680B2 (en) Generating geophysical images using directional oriented wavefield imaging
US9158018B2 (en) Waveform inversion using a response of forward modeling
AU2013206025B2 (en) Surface-related multiple elimination for depth-varying streamer
US8731838B2 (en) Fresnel zone fat ray tomography
US11327195B2 (en) Correction of source motion effects in seismic data recorded in a marine survey using a moving source
US11105945B2 (en) Processes and systems that attenuate source signatures and free-surface effects in recorded seismic data
US11994640B2 (en) Attenuation of low-frequency noise in continuously recorded wavefields
Wang et al. Near-surface site characterization based on joint iterative analysis of first-arrival and surface-wave data
Talukdar et al. Sub-basalt imaging of hydrocarbon-bearing Mesozoic sediments using ray-trace inversion of first-arrival seismic data and elastic finite-difference full-wave modeling along Sinor–Valod profile of Deccan Syneclise, India
US20220196867A1 (en) Mixed-phase source wavelet estimation from recorded seismic data
US10379245B2 (en) Method and system for efficient extrapolation of a combined source-and-receiver wavefield
US12000971B2 (en) Method and system for seismic processing using virtual trace bins based on offset attributes and azimuthal attributes
US11435490B2 (en) Seismic surveys using two-way virtual source redatuming
Shin et al. Understanding CMP stacking hyperbola in terms of partial derivative wavefield
US20240184008A1 (en) System and method for multiple prediction with angular dependent reflectivity
WO2022256666A1 (en) Method and system for reflection-based travel time inversion using segment dynamic image warping

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150715

Termination date: 20210105