CN102571081A - Delay lock loop circuit - Google Patents

Delay lock loop circuit Download PDF

Info

Publication number
CN102571081A
CN102571081A CN2011104585491A CN201110458549A CN102571081A CN 102571081 A CN102571081 A CN 102571081A CN 2011104585491 A CN2011104585491 A CN 2011104585491A CN 201110458549 A CN201110458549 A CN 201110458549A CN 102571081 A CN102571081 A CN 102571081A
Authority
CN
China
Prior art keywords
delay
signal
voltage
output
type flip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011104585491A
Other languages
Chinese (zh)
Other versions
CN102571081B (en
Inventor
郑佳鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Beiling Co Ltd
Original Assignee
Shanghai Beiling Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Beiling Co Ltd filed Critical Shanghai Beiling Co Ltd
Priority to CN201110458549.1A priority Critical patent/CN102571081B/en
Publication of CN102571081A publication Critical patent/CN102571081A/en
Application granted granted Critical
Publication of CN102571081B publication Critical patent/CN102571081B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

The invention discloses a delay lock loop circuit. The delay lock loop circuit comprises a phase comparator, a charge pump, a voltage-controlled delay link and a filter capacitor, and further comprises a detection circuit, a voltage-controlled current source and a switch, wherein the detection circuit is configured to judge the size relationship between the delay time of the voltage-controlled delay link and the clock cycle of an input clock signal, and output a control signal for controlling the voltage-controlled current source and the switch; the voltage-controlled current source is configured to receive the control signal and regulate the magnitude of the output current according to the control signal; and the switch is positioned on the output line of the charge pump and configured to receive the control signal and switch on and off according to the control signal. The delay lock loop circuit added with the detection circuit can automatically detect the working state of the voltage-controlled delay link and regulate the delay time, and can be reset without an additional upper system.

Description

A kind of delay-locked loop circuit
Technical field
The present invention relates to a kind of delay lock loop (DLL) circuit, particularly a kind of can self-regulating delay-locked loop circuit.
Background technology
As shown in Figure 1, delay lock loop of the prior art (DLL) circuit comprises charge pump (CP) 2 that the phase relation that is used for comparison input clock signal Fref and feedback signal Fbck controls with the phase comparator (PD) 1 that generates anticipating signal up (the leading input clock signal of feedback signal) and delay signal dn (feedback signal lags input clock signal), by said anticipating signal up and delay signal dn, be connected to the output of charge pump 2 and the filter capacitor cap of d. c. voltage signal be provided and be used for this response d. c. voltage signal said input clock signal Fref is postponed to generate the voltage-controlled delay chain (VCDL) 3 of said feedback signal Fbck.
As shown in Figure 2, comprise the delay cell of a plurality of cascades in the voltage-controlled delay chain (VCDL) 3.During delay lock loop (DLL) circuit working; Phase comparator (PD) 1 is through the input clock signal Fref of relatively its input and the phase relation of feedback signal Fbck; And produce anticipating signal up and delay signal dn controls discharging and recharging of charge pump (CP) 2; Thereby change voltage Vctrl, finally change the time of delay of voltage-controlled delay chain (VCDL) 3, realize the purpose of the phase information of adjustment feedback signal Fbck.When delay lock loop (DLL) when circuit is stable, the phase difference of input clock signal Fref and feedback signal Fbck can be regarded as " 0 ".Generally speaking, need feedback signal Fbck to fall behind the whole one-period of input clock signal Fref (2pi phase place), just Td time of delay of voltage-controlled delay chain (VCDL) 3 equals the clock cycle Tref of an input clock signal Fref.
In delay lock loop (DLL) circuit, often run into following two problems:
If 1 delay lock loop (DLL) is when circuit is initialized, voltage Vctrl is high, can make that the time of delay of voltage-controlled delay chain is too small, may cause whole delay lock loop (DLL) circuit not lock;
If 2 delay lock loops (DLL) are when circuit is initialized; Voltage Vctrl is low excessively, can make that the time of delay of voltage-controlled delay chain is excessive, because the phase comparator of delay lock loop (DLL) circuit just compares phase relation; May make Td=N*Tref time of delay of voltage-controlled delay chain; Rather than the Td=Tref that requires, this situation can occur and be because during Td=N*Tref, also can make delay lock loop (DLL) circuit stable the time of delay of voltage-controlled delay chain.
The delay lock loop of prior art (DLL) circuit adopts the upper system of design separately to solve above-mentioned two problems usually; To guarantee that delay lock loop (DLL) circuit can operate as normal; When delay lock loop (DLL) when circuit working is made mistakes, need upper system to provide a reset signal delay lock loop (DLL) circuit is resetted, delay lock loop (DLL) circuit is operate as normal once more; This design to upper system has proposed requirement, and design difficulty increases.
Summary of the invention
The present invention is directed to the problems referred to above that exist in the prior art a kind of delay-locked loop circuit is provided; Can't adjust automatically when solving delay-locked loop circuit miswork of the prior art, can only rely on upper system to provide the problem that a reset signal just can make the circuit operate as normal.
In order to address the above problem; The invention provides a kind of delay-locked loop circuit; Comprise that the phase relation that is used for comparison input clock signal and feedback signal is to generate the phase comparator of anticipating signal and delay signal; Charge pump by said anticipating signal and delay signal control; The filter capacitor that is connected to the electric charge delivery side of pump and is used to provide d. c. voltage signal be used to respond this d. c. voltage signal said input clock signal is postponed to generate the voltage-controlled delay chain of said feedback signal; Said delay-locked loop circuit also comprises testing circuit; Voltage-controlled current source and switch; Wherein
Said testing circuit is configured to judge the magnitude relationship between clock cycle of time of delay and said input clock signal of said voltage-controlled delay chain, and output is used to control the control signal of said voltage-controlled current source and switch;
Said voltage-controlled current source is configured to receive said control signal, and according to the size of its output current of said control signal adjustment with lifting or reduce said d. c. voltage signal;
Said switch is positioned on the outlet line of said charge pump, and it is configured to receive said control signal, and the closed or disconnection according to said control signal.
As preferably; Said testing circuit concrete configuration for when said time of delay during more than or equal to 8/7 times of said clock cycle said control signal control said voltage-controlled current source and increase its output current and control said switch disconnection; Said control signal is controlled said voltage-controlled current source and is reduced its output current and control said switch and break off when be less than or equal to 6/7 times of said clock cycle said time of delay, when said time of delay greater than 6/7 times of the said clock cycle and during less than 8/7 times of said clock cycle during said clock cycle said control signal control said switch closure.
Preferred as further; Said voltage-controlled delay chain comprises the delay cell of 16 cascades; Said testing circuit comprises 5 d type flip flops; The Qn output of first d type flip flop connects the D input of its D input and second d type flip flop; The Q output of second d type flip flop connects the D input and the Rn reset terminal of the 3rd d type flip flop; The Q output of the 3rd d type flip flop connects the D input and the Rn reset terminal of the 4th d type flip flop; The Q output of the 4th d type flip flop connects the D input and the Rn reset terminal of the 5th d type flip flop; The output of the output of the output of the input of first delay cell, the 3rd delay cell, the output of the 7th delay cell, the 12 delay cell and the 16 delay cell is connected the ck input end of clock of said 5 d type flip flops respectively in the said voltage-controlled delay chain, and said testing circuit is exported the signal of Q output of said the 4th d type flip flop and the 5th d type flip flop with as said control signal, and the signal of the output of the 14 delay cell is as said feedback signal in the said voltage-controlled delay chain.
Compared with prior art; The present invention has following beneficial effect: delay-locked loop circuit of the present invention is through increasing said testing circuit; Can detect the operating state of said voltage-controlled delay chain automatically; When the time of delay of said voltage-controlled delay chain, Td was away from the clock cycle Tref of said input clock signal, testing circuit detected automatically and controls said voltage-controlled current source and switch is regulated and control delay-locked loop circuit, make said voltage-controlled delay chain time of delay Td to the clock cycle of said input clock signal Tref near; Avoid the employing upper system to give the reset signal trouble caused, reduced design difficulty; In addition, even said input clock signal changes, said testing circuit also can detect and make system restoration stable automatically.
Description of drawings
Fig. 1 is the structural representation of delay-locked loop circuit in the prior art.
Fig. 2 is the structural representation of voltage-controlled delay chain in the delay-locked loop circuit shown in Figure 1.
Fig. 3 is the structural representation of delay-locked loop circuit of the present invention.
Fig. 4 is the structural representation of testing circuit in the delay-locked loop circuit shown in Figure 3.
Fig. 5 is the signal waveforms when Td testing circuit shown in Figure 4 during much larger than Tref.
Fig. 6 is the signal waveforms when Td testing circuit shown in Figure 4 during much smaller than Tref.
Fig. 7 is the signal waveforms of testing circuit shown in Figure 4 when Td approximates Tref.
Embodiment
Below in conjunction with accompanying drawing specific embodiment of the present invention is elaborated.
As shown in Figure 3; Delay-locked loop circuit of the present invention removes and comprises that the phase relation that is used for comparison input clock signal Fref and feedback signal Fbck is to generate the phase comparator (PD) 1 of anticipating signal up and delay signal dn; Charge pump (CP) 2 by said anticipating signal up and delay signal dn control; The filter capacitor cap that is connected to the output of charge pump 2 and is used to provide said d. c. voltage signal be used to respond this d. c. voltage signal said input clock signal Fref is postponed generate outside the voltage-controlled delay chain (VCDL) 3 of said feedback signal Fbck; Also comprise testing circuit 4; Voltage-controlled current source 5 and switch 6; Wherein
Said testing circuit 4 is configured to judge the magnitude relationship between the clock cycle Tref of time of delay and said input clock signal Fref of said voltage-controlled delay chain (VCDL) 3, and output is used to control the control signal of said voltage-controlled current source 5 and switch 6;
Said voltage-controlled current source 5 is configured to receive said control signal, and according to the size of its output current of said control signal adjustment with lifting or reduce said d. c. voltage signal;
Said switch 6 is positioned on the outlet line of said charge pump (CP) 2, and it is configured to receive said control signal, and the closed or disconnection according to said control signal.
In the present embodiment; As embodiment preferred; Said testing circuit 4 concrete configurations for when said time of delay during more than or equal to 8/7 times of said clock cycle Tref said control signal control said voltage-controlled current source 5 and increase its output currents and control said switch 6 disconnections; Said control signal is controlled said voltage-controlled current source 5 and is reduced its output current and control said switch 6 and break off when be less than or equal to 6/7 times of said clock cycle Tref said time of delay, when said time of delay greater than 6/7 times of said clock cycle Tref and during less than 8/7 times of said clock cycle Tref during said clock cycle Tref said control signal control said switch 6 closures.
Like Fig. 3 and shown in Figure 4; Said voltage-controlled delay chain (VCDL) 3 comprises the delay cell of 16 cascades; Said testing circuit 4 comprises 5 d type flip flops; The Qn output of first d type flip flop 401 connects the D input of its D input and second d type flip flop 402; The Q output of second d type flip flop 402 connects the D input and the Rn reset terminal of the 3rd d type flip flop 403; The Q output of the 3rd d type flip flop 403 connects the D input and the Rn reset terminal of the 4th d type flip flop 404; The Q output of the 4th d type flip flop 404 connects the D input and the Rn reset terminal of the 5th d type flip flop 405; The output of the output of the output of the input of first delay cell, the 3rd delay cell, the output of the 7th delay cell, the 12 delay cell and the 16 delay cell is connected the ck input end of clock of said 5 d type flip flops respectively among said voltage-controlled delay chain (VCDL) 3; For said 5 d type flip flops provide clock input signal clk_0, clk_3, clk_7, clk_12 and clk_16, the signal samp16 of the signal samp12 of the Q output of said the 4th d type flip flop 404 of said testing circuit 4 outputs and the Q output of the 5th d type flip flop 405 is with as said control signal, and the signal of the output of the 14 delay cell is as said feedback signal Fbck among said voltage-controlled delay chain (VCDL) 3.Because the Q output of second d type flip flop 402 connects the Rn reset terminal of the 3rd d type flip flop 403; The Q output of the 3rd d type flip flop 403 connects the Rn reset terminal of the 4th d type flip flop 404; The Q output of the 4th d type flip flop 404 connects the Rn reset terminal of the 5th d type flip flop 405; Therefore, only behind the Q of second d type flip flop 402 output output high level signal, the 3rd d type flip flop 403 just begins the signal samp3 that imports its D input is sampled; Only behind the Q output output high level signal of the 3rd d type flip flop 403, the 4th d type flip flop 404 just begins the signal samp7 that imports its D input is sampled; Only behind the Q output output high level signal of the 4th d type flip flop 404, the 5th d type flip flop 405 just begins the signal samp 12 that imports its D input is sampled.
As shown in Figure 5; As Td >=8/7Tref; Be that Td is during much larger than Tref; After the 5th d type flip flop 405 begins the signal samp12 that imports its D input sampled; After promptly the rising edge of the clock signal clk_16 of the ck input end of clock of the Q output of the 4th d type flip flop 404 output high level signal and the 5th d type flip flop 405 arrives; The signal samp16 of the Q output of the signal samp 12 of the Q output of the 4th d type flip flop 404 and the 5th d type flip flop 405 is 0; Therefore Td is much larger than Tref when the signal samp 16 of the Q output of the signal samp12 of the Q output of the 4th d type flip flop 404 and the 5th d type flip flop 405 is 0 in definition, and the signal samp16 of Q output of signal samp12 and the 5th d type flip flop 405 of Q output of the 4th d type flip flop 404 controlled said voltage-controlled current source 5 and increased its output currents and control said switch 6 and break off this moment, voltage Vctrl is raise and the outlet line disconnection of charge pump (CP) 2.
As shown in Figure 6; As Td≤6/7Tref; Be that Td is during much smaller than Tref; After the 5th d type flip flop 405 begins the signal samp12 that imports its D input sampled; After promptly the rising edge of the clock signal clk_16 of the ck input end of clock of the Q output of the 4th d type flip flop 404 output high level signal and the 5th d type flip flop 405 arrives; The signal samp16 of the Q output of the signal samp 12 of the Q output of the 4th d type flip flop 404 and the 5th d type flip flop 405 is 1; Therefore Td is much smaller than Tref when the signal samp 16 of the Q output of the signal samp12 of the Q output of the 4th d type flip flop 404 and the 5th d type flip flop 405 is 1 in definition, and the signal samp16 of Q output of signal samp12 and the 5th d type flip flop 405 of Q output of the 4th d type flip flop 404 controlled said voltage-controlled current source 5 and reduced its output current and control said switch 6 and break off this moment, voltage Vctrl is reduced and the outlet line disconnection of charge pump (CP) 2.
As shown in Figure 7; As 6/7Tref<Td<8/7Tref; Be that Td is when approximating Tref; After the 5th d type flip flop 405 begins the signal samp12 that imports its D input sampled; After promptly the rising edge of the clock signal clk_16 of the ck input end of clock of the Q output of the 4th d type flip flop 404 output high level signal and the 5th d type flip flop 405 arrived, the signal samp12 of the Q output of the 4th d type flip flop 404 was that the signal samp16 of the Q output of 1, the five d type flip flop 405 is 0; Therefore definition when the signal samp12 of the Q output of the 4th d type flip flop 404 be that the signal samp16 of the Q output of 1 and the 5th d type flip flop 405 is when being 0; Td approximates Tref, and the said voltage-controlled current source 5 of signal controlling of Q output of signal samp12 and the 5th d type flip flop 405 of Q output of the 4th d type flip flop 404 kept its output currents and controlled said switch 6 closures this moment, voltage Vctrl is remained unchanged and the outlet line of charge pump (CP) 2 closed.
Delay-locked loop circuit of the present invention is through increasing said testing circuit 4; Can detect the operating state of said voltage-controlled delay chain (VCDL) 3 automatically; When the time of delay of said voltage-controlled delay chain (VCDL) 3, Td was away from the clock cycle Tref of said input clock signal Fref; Testing circuit 4 detects and control said voltage-controlled current source 5 automatically to be regulated and control with 6 pairs of delay-locked loop circuits of switch, make said voltage-controlled delay chain (VCDL) 3 time of delay Td to the clock cycle of said input clock signal Fref Tref near; In addition, even said input clock signal Fref changes, said testing circuit 4 also can detect and make system restoration stable automatically, has avoided the employing upper system to give the reset signal trouble caused.
Above embodiment is merely exemplary embodiment of the present invention, is not used in restriction the present invention, and protection scope of the present invention is defined by the claims.Those skilled in the art can make various modifications or be equal to replacement the present invention in essence of the present invention and protection range, this modification or be equal to replacement and also should be regarded as dropping in protection scope of the present invention.

Claims (3)

1. delay-locked loop circuit; Comprise that the phase relation that is used for comparison input clock signal and feedback signal is to generate the phase comparator of anticipating signal and delay signal; Charge pump by said anticipating signal and delay signal control; The filter capacitor that is connected to the electric charge delivery side of pump and is used to provide d. c. voltage signal be used to respond this d. c. voltage signal said input clock signal is postponed to generate the voltage-controlled delay chain of said feedback signal; It is characterized in that; Said delay-locked loop circuit also comprises testing circuit; Voltage-controlled current source and switch; Wherein
Said testing circuit is configured to judge the magnitude relationship between clock cycle of time of delay and said input clock signal of said voltage-controlled delay chain, and output is used to control the control signal of said voltage-controlled current source and switch;
Said voltage-controlled current source is configured to receive said control signal, and according to the size of its output current of said control signal adjustment with lifting or reduce said d. c. voltage signal;
Said switch is positioned on the outlet line of said charge pump, and it is configured to receive said control signal, and the closed or disconnection according to said control signal.
2. delay-locked loop circuit according to claim 1; It is characterized in that; Said testing circuit concrete configuration for when said time of delay during more than or equal to 8/7 times of said clock cycle said control signal control said voltage-controlled current source and increase its output current and control said switch disconnection; Said control signal is controlled said voltage-controlled current source and is reduced its output current and control said switch and break off when be less than or equal to 6/7 times of said clock cycle said time of delay, when said time of delay greater than 6/7 times of the said clock cycle and during less than 8/7 times of said clock cycle during said clock cycle said control signal control said switch closure.
3. delay-locked loop circuit according to claim 1 and 2; It is characterized in that; Said voltage-controlled delay chain comprises the delay cell of 16 cascades; Said testing circuit comprises 5 d type flip flops; The Qn output of first d type flip flop connects the D input of its D input and second d type flip flop; The Q output of second d type flip flop connects the D input and the Rn reset terminal of the 3rd d type flip flop; The Q output of the 3rd d type flip flop connects the D input and the Rn reset terminal of the 4th d type flip flop, and the Q output of the 4th d type flip flop connects the D input and the Rn reset terminal of the 5th d type flip flop, and the output of the output of the output of the input of first delay cell, the 3rd delay cell, the output of the 7th delay cell, the 12 delay cell and the 16 delay cell is connected the ck input end of clock of said 5 d type flip flops respectively in the said voltage-controlled delay chain; Said testing circuit is exported the signal of Q output of said the 4th d type flip flop and the 5th d type flip flop with as said control signal, and the signal of the output of the 14 delay cell is as said feedback signal in the said voltage-controlled delay chain.
CN201110458549.1A 2011-12-31 2011-12-31 Delay lock loop circuit Active CN102571081B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201110458549.1A CN102571081B (en) 2011-12-31 2011-12-31 Delay lock loop circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110458549.1A CN102571081B (en) 2011-12-31 2011-12-31 Delay lock loop circuit

Publications (2)

Publication Number Publication Date
CN102571081A true CN102571081A (en) 2012-07-11
CN102571081B CN102571081B (en) 2014-08-13

Family

ID=46415661

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110458549.1A Active CN102571081B (en) 2011-12-31 2011-12-31 Delay lock loop circuit

Country Status (1)

Country Link
CN (1) CN102571081B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103731098A (en) * 2012-10-15 2014-04-16 北京门马科技有限公司 Ring oscillator for frequency feedback
CN110086463A (en) * 2019-05-17 2019-08-02 湖北京邦科技有限公司 Delay circuit and semiconductor device including the delay circuit
CN110943736A (en) * 2018-09-21 2020-03-31 台湾积体电路制造股份有限公司 Phase deviation generator
CN118018011A (en) * 2024-04-09 2024-05-10 西安航天民芯科技有限公司 Locking detection circuit of adjustable delay phase-locked loop

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040135604A1 (en) * 2003-01-10 2004-07-15 Jong-Soo Lee Delay locked loops having blocking circuits therein that enhance phase jitter immunity and methods of operating same
CN1612483A (en) * 2003-10-31 2005-05-04 三星电子株式会社 Delay-locked loop circuit
CN202424687U (en) * 2011-12-31 2012-09-05 上海贝岭股份有限公司 Self-adjustable delay locking loop circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040135604A1 (en) * 2003-01-10 2004-07-15 Jong-Soo Lee Delay locked loops having blocking circuits therein that enhance phase jitter immunity and methods of operating same
CN1612483A (en) * 2003-10-31 2005-05-04 三星电子株式会社 Delay-locked loop circuit
CN202424687U (en) * 2011-12-31 2012-09-05 上海贝岭股份有限公司 Self-adjustable delay locking loop circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YONGSAM MOON,ETC.: "An All-Analog Multiphase Delay-Locked Loop Using a Replica Delay Line for Wide-Range Operation and Low-Jitter Performance", 《IEEE JOURNAL OF SOLID-STATE CIRCUITS》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103731098A (en) * 2012-10-15 2014-04-16 北京门马科技有限公司 Ring oscillator for frequency feedback
CN110943736A (en) * 2018-09-21 2020-03-31 台湾积体电路制造股份有限公司 Phase deviation generator
CN110943736B (en) * 2018-09-21 2023-12-01 台湾积体电路制造股份有限公司 phase deviation generator
CN110086463A (en) * 2019-05-17 2019-08-02 湖北京邦科技有限公司 Delay circuit and semiconductor device including the delay circuit
CN110086463B (en) * 2019-05-17 2024-06-07 湖北锐光科技有限公司 Delay circuit and semiconductor device including the same
CN118018011A (en) * 2024-04-09 2024-05-10 西安航天民芯科技有限公司 Locking detection circuit of adjustable delay phase-locked loop

Also Published As

Publication number Publication date
CN102571081B (en) 2014-08-13

Similar Documents

Publication Publication Date Title
US20060139108A1 (en) Controlling a voltage controlled oscillator in a bang-bang phase locked loop
US8698527B2 (en) Circuit and method for preventing false lock and delay locked loop using the same
US5892380A (en) Method for shaping a pulse width and circuit therefor
CN104113303B (en) 50% duty ratio clock generation circuit
TWI465046B (en) Delay lock loop with a charge pump, loop filter, and method of phase locking of a delay lock loop
CN1808907B (en) Phase-locked loops and its method, phase frequency detector and its method
CN104467819A (en) Delay-locked loop, voltage-controlled delay line and delay unit
CN202424687U (en) Self-adjustable delay locking loop circuit
KR101591679B1 (en) Delay-Locked Loop Based Forwarded Clock Receiver
US20140049329A1 (en) Divider-less phase locked loop (pll)
CN102571081B (en) Delay lock loop circuit
CN102158221A (en) Phase locked loop and rapid locking device thereof
US8570108B2 (en) Injection-locking a slave oscillator to a master oscillator with no frequency overshoot
CN101577544B (en) Phase-locked loop with collapse protection mechanism
CN101667830B (en) Phase-locked loop frequency synthesizer
CA2854589A1 (en) Rf system for a radio-frequency lamp
JP5815999B2 (en) Phase locked loop
CN102938645B (en) Voltage controller, frequency-control circuit and signal generation device using the same
TWI465045B (en) Delay lock loop and clock signal generating method
US9948312B2 (en) Phase lock loop with a digital charge pump
CN105610434A (en) Self-adaptive delay phase-locked loop
CN102347759B (en) Delay phase-locked loop system and method with self-calibration
US20120076180A1 (en) Phase-locked loop and radio communication device
CN103825611B (en) Deaccentuator and method
KR100715154B1 (en) Phase locked loop with high locking speed and clock locking method using the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant