CN102239583B - 制造由硅或硅基材料构成的结构化粒子的方法及其在锂可充电电池中的用途 - Google Patents

制造由硅或硅基材料构成的结构化粒子的方法及其在锂可充电电池中的用途 Download PDF

Info

Publication number
CN102239583B
CN102239583B CN200980148870.0A CN200980148870A CN102239583B CN 102239583 B CN102239583 B CN 102239583B CN 200980148870 A CN200980148870 A CN 200980148870A CN 102239583 B CN102239583 B CN 102239583B
Authority
CN
China
Prior art keywords
ion
silicon
particle
solution
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200980148870.0A
Other languages
English (en)
Other versions
CN102239583A (zh
Inventor
M·格林
F-M·刘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nexeon Ltd
Original Assignee
Nexeon Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexeon Ltd filed Critical Nexeon Ltd
Publication of CN102239583A publication Critical patent/CN102239583A/zh
Application granted granted Critical
Publication of CN102239583B publication Critical patent/CN102239583B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/08Etching, surface-brightening or pickling compositions containing an inorganic acid containing a fluorine compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/12Etching of semiconducting materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30608Anisotropic liquid etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明了提供蚀刻硅以形成柱体的方法,所述柱体尤其用作Li离子电池中的活性阳极材料,该方法在工业规模下的运行简单,因为其使用仅含少量需要控制浓度的成分的蚀刻浴,并且其在运行上比之前的方法廉价。该蚀刻溶液包含:5至10M、例如6至8M?HF,0.01至0.1M?Ag+离子,0.02至0.2M?NO3 -离子,和任选地,SiF6 2-离子,碱金属或铵离子,和附带的添加物和杂质。在蚀刻过程中追加NO3 -离子,例如以碱金属或铵的硝酸盐形式添加,以使硝酸根离子浓度保持在上述范围内。

Description

制造由硅或硅基材料构成的结构化粒子的方法及其在锂可充电电池中的用途
技术领域
本发明涉及制造具有蚀刻在其表面上的柱体的硅(例如硅粒子)的方法,涉及通过将柱体与下方硅分离来制造硅纤维的方法,涉及含有此类粒子或纤维作为其活性材料的电极、电化电池和锂可充电电池阳极。
背景技术
近来便携电子器件(例如移动电话和笔记本电脑)的应用增加和在混合动力电动汽车中使用可充电电池的新兴趋势导致需要更小、更轻、更持久的可充电电池,为上述和其它电池供电器件提供动力。在90年代,锂可充电电池、尤其是锂离子电池变得普遍,就出售数量而言,如今占据便携电子器件市场并开始用于新的成本敏感的用途。但是,随着在上述器件中加入功耗越来越大的功能(例如移动电话上的照相机),需要每单位质量和每单位体积储存更多能量的改进的和更低成本的电池。
图1显示了包括石墨基阳极的常规锂离子可充电电池组电池的基本组成。该电池组电池包括单电池,但也可以包括多于一个电池。
电池组电池通常包含铜集电极作为阳极10和铝集电极作为阴极12,它们可适当外连接至负荷或连接至充电源。石墨基复合阳极层14覆盖集电极10,含锂的金属氧化物基复合阴极层16覆盖集电极12。在石墨基复合阳极层14和含锂的金属氧化物基复合阴极层16之间提供多孔塑料隔片或隔板20;液体电解质材料分散在多孔塑料隔片或隔板20、复合阳极层14和复合阴极层16内。在一些情况下,可以将多孔塑料隔片或隔板20换成聚合物电解质材料,在这样的情况下,在复合阳极层14和复合阴极层16内都存在聚合物电解质材料。
当电池组电池完全充电时,锂已从含锂的金属氧化物经由电解质传输至石墨基的层,在此其与石墨反应产生化合物LiC6。作为复合阳极层中的电化学活性材料的石墨具有372mAh/g的最大容量。要指出,术语“阳极”和“阴极”在该电池组接在负荷两端的意义上使用。
已知的是,可以使用硅作为可充电锂离子电化学电池组电池的活性阳极材料(参见例如InsertionElectrodeMaterialsforRechargeableLithiumBatteries,M.Winter,J.O.Besenhard,M.E.Spahr,和P.NovakinAdv.Mater.1998,10,No.10)。通常相信,在用作锂离子可充电电池中的活性阳极材料时,硅可提供明显高于目前使用的石墨的容量。硅在通过与电化电池中的锂反应来转化成化合物Li21Si5时具有4,200mAh/g的最大容量,明显高于石墨的最大容量。因此,如果可以将锂可充电电池中的石墨换成硅,可以实现每单位质量和每单位体积储存能量的所需提高。
但是,在锂离子电化电池中使用硅或硅基活性阳极材料的许多现有方法无法在所需的充放电周期数内表现出不变容量,因此在商业上不可行。
业内公开的一种方法使用具有直径10微米的粒子的粉末形式的硅,其在一些情况下被制成含或不含电子添加剂并含有适当的粘合剂(例如聚偏二氟乙烯)的复合材料;将这种阳极材料涂布到铜集电极上。但是,这种电极***在经受反复充放电周期时无法表现出不变容量。据信,这种容量损失是由于硅粉物质的部分机械分离,这种分离与锂嵌入基质硅/从基质硅中脱出相关的体积膨胀/收缩造成的。这又造成硅粒子与铜集电极和硅粒子相互之间的电分离。此外,体积膨胀/收缩造成单粒子破碎,以造成球形单元本身内的电接触损失。
业内已知的用于解决连续周期过程中大的体积变化问题的另一方法是使构成硅粉的硅粒子的尺寸非常小,即在1至10纳米的范围内。这种策略不防止在硅粉经受与锂嵌入/脱出相关的体积膨胀/收缩时球形单元与铜基电极之间和球形单元本身之间的电分离。重要的是,纳米级单元的大表面积可导致产生含锂的表面膜,其将大的不可逆容量引入锂离子电池组电池。此外,大量的小硅粒子在规定的硅质量下产生大量的粒子间接触,并且它们各自具有接触阻力并因此可能造成该硅料的电阻太高。
因此,上述问题阻碍了硅粒子在锂可充电电池(具体而言,锂离子电池)中成为商业上可行的石墨替代品。
在Ohara等人在JournalofPowerSources136(2004)303-306中描述的另一方法中,硅以薄膜形式蒸发到镍箔集电极上,这种结构然后用于形成锂离子电池的阳极。但是,尽管这种方法产生良好的容量保持率,但这仅是非常薄的膜(即~50纳米)的情况,因此这些电极结构未产生可用的每单位面积容量。
Kasavajjula等人(J.PowerSources(2006),doi:10.1016/jpowsour.2006.09.84)已提供了用于锂离子二次电池的纳米硅基和块状硅基嵌入阳极的综述,其经此引用并入本文。
英国专利申请GB2395059A中描述的另一方法使用一种硅电极,其包含在硅基底上制成的硅柱的规则或不规则阵列。这些结构化硅电极在经受反复充放电周期时表现出良好的容量保持率,本发明人认为这种良好的容量保持率是由于硅柱在该柱不破碎或破坏的情况下从基质硅中吸收与锂嵌入/脱出相关的体积膨胀/收缩的能力。但是,上述出版物中所述的结构化硅电极是使用高纯单晶硅片制成的,因此该电极昂贵。
从US-7033936中获知硅基材料的选择性蚀刻以制造这样的硅柱。根据该文献,通过如下制造掩模来制造柱体:在硅基底表面上沉积半球形氯化铯岛,用薄膜覆盖包括这些岛在内的基底表面,并从该表面上除去半球形结构(包括覆盖它们的薄膜)以形成具有暴露区域的掩模,所述暴露区域原为半球所在之处。然后使用反应性离子蚀刻在该暴露区域中蚀刻基底,并除去抗蚀剂(例如通过物理溅射),以在未蚀刻区域中、即在半球位置之间的区域中留下硅柱阵列。
在PengK-Q,Yan,Y-J,GaoS-P和ZhuJ.,Adv.Materials,14(2002),1164-1167,Adv.FunctionalMaterials,(2003),13,No2,2月,127-132和Adv.Materials,16(2004),73-76中描述了另一化学方法。Peng等人展示了通过化学方法在硅上制造纳米柱的方式。根据这种方法,使用下述溶液在50℃蚀刻硅片,该硅片可以是n型或p型的且{111}面暴露于溶液:5MHF和20mMAgNO3。这些论文中假定的机制是,在初始阶段(成核)中,分立的银纳米簇无电沉积在硅表面上。在第二(蚀刻)阶段中,银纳米簇和它们周围的硅区域充当局部电极,它们造成银纳米簇周围区域中的硅电解氧化,形成SiF6阳离子,其从蚀刻点扩散开,从而以柱形式留下银纳米簇下方的硅。
K.Peng等人,Angew.Chem.Int.Ed.,44(2005),2737-2742;和K.Peng等人,Adv.Funct.Mater.,16(2006),387-394涉及蚀刻硅片的方法,其类似于Peng等人之前的论文中描述的方法,但成核/银纳米粒子沉积步骤和蚀刻步骤在不同的溶液中进行。在第一(成核)步骤中,将硅片在4.6MHF和0.01MAgNO3的溶液中放置1分钟。然后第二(蚀刻)步骤在不同的溶液中,即在4.6MHF和0.135MFe(NO3)3中进行30或50分钟。这两个步骤都在50℃进行。在这些论文中,为蚀刻步骤提出与之前的论文不同的机制,即除去银(Ag)纳米粒子下方的硅,且纳米粒子逐渐沉到块状硅中,从而在并非直接在银纳米粒子下方的区域中留下硅柱。
为了提高在硅片上生长的柱体的均匀性和密度以及生长速度,在WO2007/083152中已提出在醇的存在下进行该方法。
WO2009/010758公开了硅粉而非硅片的蚀刻,以制造用在锂离子电池中的硅材料。所得蚀刻粒子(其实例显示在图2中)在其表面上含有柱体,且整个所得粒子可用在电池的阳极材料中;或者,柱体可以从粒子上脱离以形成硅纤维,且只使用该硅纤维制造阳极。所用的蚀刻方法与WO2007/083152中公开的相同。
发明内容
本发明的第一方面提供蚀刻硅以形成柱体的方法;该方法在工业规模下的运行简单,因为该方法能使硅在单个浴中成核和蚀刻,即,该方法不要求将硅从浴移到另一浴,该方法使用仅含少量需要控制浓度的成分的蚀刻浴,并且该方法在运行上比之前的方法成本低。
在本发明方法中形成的柱体具有良好品质;当蚀刻的硅为颗粒形式时,该方法的产物可以是“带柱粒子”,即,具有在其表面上形成的柱体的粒子,或当蚀刻的硅为块状或颗粒形式时,该方法的产物可以是纤维,即,已与该粒子或块状硅的下方硅分离的柱体。带柱粒子和纤维的最重要用途是形成用于锂离子电池的阳极材料,且该方法提供了优异的阳极材料。
本发明的方法包括:
用溶液处理硅,该溶液包含:
5至10MHF、例如6至8MHF
0.01至0.1MAg+离子
0.02至0.2MNO3 -离子,和
追加NO3 -离子,例如以碱金属硝酸盐或硝酸铵形式,以使硝酸根离子的浓度保持在上述范围内;和
将被蚀刻的硅与溶液分离。
附图描述
图1是显示电池组电池的部件的示意图;
图2是带柱粒子的电子显微图。
优选实施方案的具体描述
在下列描述中,参考蚀刻粒状硅以形成被蚀刻的硅粒子来描述本发明。但是,相同的情况也适用于块状材料形式的硅,例如硅片。
蚀刻硅颗粒的方法在两个阶段中进行——成核和蚀刻。在成核中,银岛根据下述反应无电沉积在硅颗粒上:
4Ag++4e-→4Ag(金属)
成核通常花费最多大约1分钟。
蚀刻优先沿某些晶体面发生,并将硅蚀刻成柱。根据下述公式蚀刻硅:
Si+6F-→SiF6 2-+4e-半反应(1)
通过半反应(1)生成的电子经硅传导至沉积的银,在此发生逆反应,其中溶液中的银离子被还原成单质银:
4Ag++4e-→4Ag(金属)半反应(2)
沉积的单质银形成从最初沉积的银岛延伸出的枝状物。这些枝状物与相同粒子上和其它粒子上的枝状物连结,并因此形成网垫。枝状物的互连加速了电解过程,因为存在更多可发生还原半反应(2)的位点,并可使电荷离域。在该过程中释放一些气体,这使该网垫浮起。
尽管该过程可以被搅动,但不需要这样做,且如果搅动弄碎网垫,则这样做是不利的。
粒状硅原材料可包括未掺杂的硅、p型或n型掺杂硅或混合物,例如硅-铝掺杂硅。优选地,硅具有一定的掺杂,因为这提高了硅在蚀刻过程中的电导率。我们已经发现,具有1019至1020个载流子/cc的p掺杂硅表现良好。通过研磨被掺杂的硅,例如来自IC工业的硅,并然后筛分磨碎材料以获得所需尺寸的颗粒,可以获得这种材料。
或者,所述颗粒可以是相对低纯度的冶金级硅,它可以购得;由于缺陷的密度相对较高(与半导体工业中所用的硅片相比),冶金级硅特别合适。这造成低的电阻,并因此造成高的电导率,当带柱粒子或纤维用作可充电电池中的阳极材料时,这是有利的。可以如上所述将这种硅研磨和分级。这种硅的一个实例是来自挪威Elkem的“Silgrain”,如果必要,可以将其研磨和筛分,以产生在是带柱粒子的情况下平均粒径为5至500微米、例如15至500微米、优选15至40微米的粒子,在制造纤维的情况下平均粒径为50至500微米的粒子。该颗粒的横截面可以是规则的或不规则的。
当制造硅纤维时,可以将除去纤维后留下的颗粒再循环。
所述颗粒可具有90.00质量%或更大、优选99.0%至99.99%的硅纯度。该硅可以被任何材料掺杂,例如被锗、磷、铝、银、硼和/或锌掺杂。
用于蚀刻的颗粒可以是结晶的,例如微晶尺寸等于或大于所需柱高的单晶或多晶。多晶粒子可包含任何数量的晶体,例如两个或更多个。
该方法可以在0℃至70℃的温度进行,但在室温下进行是最容易的,因为只有非常昂贵的容器才能在趋向于上述范围顶端的温度耐受高腐蚀性HF。由于该原因,温度通常不超过40℃。如果必要,在该方法的过程中可能必须冷却反应混合物,因为该方法是放热的。
反应容器的优选材料是聚丙烯,但也可以使用其它耐HF的材料。
在硅已被充分蚀刻以提供高度为1至100微米、例如3至100微米、更优选5至40微米的轮廓清晰的柱体时,应终止该方法。带柱粒子的柱高通常为5至15微米,在制造纤维时更大,例如10至50微米。该方法的最佳持续时间取决于溶液中的材料浓度、硅的电导率、温度和与被蚀刻的颗粒硅的量相比所用蚀刻溶液的量。
柱体通常从其底部(即它们与下方硅接合之处)开始逐渐变细,柱体在其底部的直径通常为大约0.08至0.70微米,例如0.1至0.5微米,例如0.2至0.4微米,例如0.3微米。柱体因此通常具有大于10∶1的纵横比。柱体可以是基本圆形横截面的,但它们不需要如此。
柱体表面密度可用于规定粒子表面上的柱体密度。在本文中,这被定义为F=P/[R+P],其中:F是柱体表面密度;P是粒子被柱体占据的总表面积;R是粒子未被柱体占据的总表面积。
柱体表面密度越大,硅粒子电极每单位面积的锂容量越大,且可用于制造纤维的可收取的柱体量越大。
例如,使用来自挪威Elken的具有400微米蚀刻前平均粒径的上述硅粉,在整个表面上产生柱高为大约10至50微米、直径为大约0.2至0.5微米、且柱体表面密度F为10至50%、更通常30%的柱体。在另一实例中,蚀刻前平均粒径为大约63至80微米的颗粒被发现产生了高度为大约10至15微米、覆盖率为大约30%、且直径为大约0.2至0.5微米的柱体。
成核阶段和枝状物生长要求溶液中存在银,但一旦完成这些阶段,蚀刻仅要求溶液中存在可被还原的离子。这可以是银(半反应2),但同样不需要如此,因为银是昂贵的,优选使用一些其它逆反应。在WO2007/083152中,本申请人建议添加硝酸铁以提供三价铁离子,其可以在逆反应中被还原成亚铁离子。但是,我们已经发现,将三价铁离子添加到反应混合物中增加了该方法的复杂性和成本。
WO2007/083152还提议使用氢离子提供逆反应,但氢和氟离子浓缩在溶液中,降低了氢离子用于此用途的可供性。
我们已经发现,最佳逆反应是溶液中硝酸根离子的还原。选择硝酸根离子是因为既然以硝酸银形式添加银,其已存在于该溶液中,且因为其它阴离子可能使银沉淀。尽管WO2007/083152建议在蚀刻步骤过程中添加硝酸根离子,但这是硝酸银或硝酸铁形式。前者昂贵,而在后者中,三价铁离子也被还原并具有上述缺点。我们因此以碱金属硝酸盐或硝酸铵、特别是硝酸钠或硝酸铵形式将硝酸根添加到蚀刻溶液中,因为这些材料具有高的溶解度,但也比硝酸铁廉价,并具有在该溶液中无害的惰性阳离子(Na+和NH4 +)。
相应地,溶液基本不含铁离子(三价铁或亚铁)。“基本不含”是指不足以对该方法产生实质影响的浓度,通常应小于0.05重量%和小于5mM,例如小于2mM。
WO2007/083152的一个特征在于,醇应存在于成核阶段,并且应以1至40%的量存在。WO2007/083152的方法在芯片或晶片上进行,我们已经发现,在硅颗粒上进行的本方法中,醇的存在是不必要的,且其存在使该方法复杂化,因为其是在控制该溶液中的浓度时必须考虑的另一成分。相应地,根据本发明的一个实施方案,本发明中所用的溶液基本不含醇,这意味着任何醇的量小于对该方法具有实质影响的浓度,并且可小于0.5体积%。
本发明中最初使用的溶液具有5至10M、例如6至8M、例如6.5M至7.5M、和通常大约7M或7.5M的HF浓度。在该方法的过程中不需要追加HF,但如果与溶液体积相比蚀刻大量的材料,则这是可以的。
为了沉积银岛和枝状物,Ag+的浓度可以为0.01M至0.1M,例如0.02M至0.06M,通常大约0.03M。优选地,Ag+离子的量不足以参与该方法中所有硅的蚀刻,而是应限于仅足以形成岛和枝状物的量。然后由硝酸根离子的还原提供与蚀刻半反应相反的半反应。优选地,在蚀刻反应开始后不向溶液中加入银。
如前所示,NO3 -可提供硅蚀刻(半反应(1))的逆反应,并可以以0.02M至0.2M、例如0.04M至0.08M、例如大约0.06M的浓度存在。银通常以其硝酸盐形式添加到蚀刻溶液中,因为其它盐通常不可溶。这将提供所需的一些硝酸根离子,任何余量可通过在该方法过程中添加碱金属或铵的硝酸盐(例如钠、钾或铵的硝酸盐)来补偿。
一旦开始蚀刻,将在该溶液中存在SiF6 2-
溶液的组成可以通过添加碱(优选NaOH或NH4OH)来调节,因为它们相对廉价且这些离子高度可溶,或者可以用硝酸酸化。
除水之外,所述溶液根据本发明的一个实施方案可不含其它成分。这种溶液在该方法开始时基本由下述物质构成:
5至10、例如6至8MHF
0.01至0.1MAg+离子
0.02至0.2MNO3 -离子
水、氢和羟基离子
和任选地,
SiF6 2-离子
碱金属或铵离子,和
附带的添加物和杂质。
相对于硅颗粒量,所用蚀刻溶液的量应足以蚀刻所需柱体。我们已经发现,对于20克硅颗粒,3升蚀刻溶液提供了良好结果,但在按比例上调或下调量时,可能需要调节相对比例。
本发明的另一些方面提供通过本发明方法制成的带柱粒子或纤维,和含有这种粒子或纤维以及集电极的复合电极,尤其是阳极,所述集电极可任选地由铜制成。所述复合电极可如下制造:制备含有由上述方法制成的带柱粒子或纤维的溶剂基浆料,将该浆料涂布到集电极上,并蒸发溶剂以制造复合膜。
本发明进一步提供一种电化电池,例如可充电电池,其含有如上定义的电极和阴极,该阴极包含能够释放和再吸收锂离子的含锂化合物作为其活性材料,尤其是锂基金属氧化物或磷酸盐,LiCoO2或LiMnxNixCo1-2xO2或LiFePO4,尤其是二氧化钴锂。
硅纤维可以如下制造:通过刮削、搅动(尤其是通过超声振动)或化学蚀刻中的一项或多项,从第一方面的粒子上分离柱体。
本发明的结构化粒子和纤维提供可充电电池中硅与锂的良好可逆反应。特别地,通过将粒子或纤维布置在复合结构(即粒子或纤维、聚合物粘合剂和导电添加剂的混合物)中,或通过将粒子或纤维粘合在集电极上,该充放电过程变得可逆和可重复,并实现了良好的容量保持率。本发明人认为,这种良好的可逆性是由于构成结构化硅粒子的一部分的硅柱和硅纤维在该柱体不破碎或破坏的情况下从基质硅中吸收与锂嵌入/脱出相关的体积膨胀/收缩的能力。
重要的是,本发明中所述的方法可以使用低纯度的冶金级硅作为原料硅颗粒,因此与使用硅片作为原料的现有技术相比,降低了制造用在可充电电池的电极中的硅粒子和纤维的成本。如上所述,硅颗粒可以主要是n型或p型的,并可以在任何暴露的晶面上蚀刻。由于该蚀刻沿晶面进行,因此所得柱体是单晶。由于这种结构特征,这些柱体基本直立,有助于大于10∶1的长径比。
总而言之,本发明提供了本发明人认为是蚀刻带柱硅粒子或硅纤维(尤其是可用在可充电锂离子电池中的那些)的最佳条件。
现在参照一个或多个下述非限制性实施例举例说明本发明:
实施例1-为了获得带柱粒子
反应在8升体积的聚乙烯容器中进行。提供具有孔的盖子,该孔用于引入成分和搅动器。使用下述反应物:
反应在室温(10至25℃)进行。在反应室中将35毫升AgNO3/HNO3溶液与3升7MHF溶液混合,然后加入溶解在30毫升水中的5.1克NaOH。所得溶液含有0.0299MAgNO3
借助漏斗经由容器盖中的孔加入20克筛过的Si粉(<40微米),然后经盖中的孔使用棒温和手工搅动物料1分钟。
使该反应混合物静置40分钟。在前1至2分钟内在蚀刻溶液表面上形成硅+银的“网垫”。
在40分钟后,加入15克NaNO3(或13克NH4NO3)。将NaNO3或NH4NO3溶解在50毫升水中,然后经漏斗加入。然后在已完成NaNO3或NH4NO3添加后将该溶液搅动大约1分钟。使该混合物再静置50分钟。然后在该方法开始后90分钟,在蚀刻几乎完全时,开始将用过的蚀刻溶液泵入储存室,这花费大约4至5分钟,因此总蚀刻时间为大约95分钟。
现在用3至4升水洗涤该网垫3次。前两次洗涤使得水接触5分钟,而第三次洗涤为1分钟洗涤。硅和银的湿网垫应立即用硝酸处理,以除去银。将被蚀刻的硅进一步洗涤并湿储存。洗涤水含有银,并可被搁置以回收银内容物。
实施例2-为了获得纤维
反应容器和反应物与实施例1中相同。该反应仍在室温进行,因为反应混合物不会变得非常热。
在反应室中将40毫升AgNO3/HNO3溶液与3升7MHF溶液混合,然后加入溶解在30毫升水中的5.9克NaOH。最终溶液含有0.033MAgNO3
在容器顶部经漏斗加入20克Si粉(J272.1),经盖中的孔使用棒温和手工搅动该物料1分钟。使该反应混合物静置40分钟。在前1至2分钟内在蚀刻溶液表面上形成硅+银的“网垫”。
在40分钟的最后,加入14克NaNO3(或12克NH4NO3)。将NaNO3或NH4NO3溶解在50毫升水中,然后在顶部经漏斗加入。在加料后搅动该溶液大约1分钟。使该混合物再静置50分钟。然后在该方法开始后90分钟,在蚀刻几乎完全时,开始将用过的蚀刻溶液泵入储存室,这花费大约4至5分钟,因此总蚀刻时间为大约95分钟。现在用3至4升水洗涤该网垫3至4次。前两次洗涤使得水接触5分钟,而第三次洗涤为1分钟洗涤。
由硅和银构成的湿网垫应立即用硝酸处理5至10分钟,以除去银。将硅进一步洗涤并湿储存。洗涤水含有银,并可被搁置以回收银内容物。
将粒子置于烧杯或任何适当的容器中,用惰性液体(例如乙醇或水)覆盖粒子,并对它们施以超声搅动,由此可以通过超声振动从附有柱体的所得粒子上收取纤维。据发现,在几分钟内,液体看起来浑浊,通过电子显微镜检查可以看出,在该阶段,已从粒子上除去柱体。
可以在两阶段法中从粒子上除去柱体。在第一阶段,将粒子在水中洗涤数次,如果必要,在低真空***中干燥以除去水。在第二阶段,在超声浴中搅动粒子以分离柱体。将它们悬浮在水中,然后使用离心机分离以收集硅纤维。
实施例3-制造阳极
使用带柱粒子或纤维作为锂离子电化电池的复合阳极中的活性材料。为了制造复合阳极,将带柱粒子或纤维与聚偏二氟乙烯混合,并用流延溶剂(例如正甲基吡咯烷酮)制浆。然后将该浆料施用或涂布到金属板或金属箔或其它导电基底上,例如用刮刀或以任何其它适当方式物理地施用或涂布,以产生具有所需厚度的涂膜,然后使用可利用50℃至140℃的升高温度的适当干燥***从该薄膜中蒸发流延溶剂,以留下不含或基本不含流延溶剂的复合膜。所得复合膜具有多孔结构,其中硅基带柱粒子或纤维的质量通常为70%至95%。该复合膜具有10至30%、优选大约20%的孔体积百分比。
此后可以以任何适当的方式进行锂离子电池组电池的制造,例如遵循图1中所示的一般结构,但使用含硅的活性阳极材料而非石墨活性阳极材料。例如,用多孔隔板18覆盖硅粒子基复合阳极层,在最终结构中加入电解质以充满所有可用的孔体积。电解质的添加是在将电极置于适当的外壳中后进行的,并可以包括阳极的真空填充,以确保孔隙体积被液体电解质充满。
容量保持率得到提高,因为硅带柱粒子或纤维的柱状结构能够顺应与锂的嵌入/脱出(充电和放电)相关的体积膨胀。
可以制造大片硅基阳极,然后卷绕,或如锂离子电池组电池的石墨基阳极的当前情况那样压印,这意味着可以用现有制造能力改造本文所述的方法。

Claims (18)

1.蚀刻颗粒形式的硅以形成带柱粒子的方法,其中所述颗粒形式的硅具有5至500微米的平均粒径,该方法包括:
用蚀刻溶液处理硅,所述蚀刻溶液包含:
5至10MHF
0.01至0.1MAg+离子
0.02至0.2MNO3 -离子,和
以碱金属或铵的硝酸盐形式或以硝酸的形式追加NO3 -离子,以使硝酸根离子的浓度保持在上述范围内;和
将被蚀刻的硅与溶液分离,
其中在蚀刻反应开始后不向溶液中加入银。
2.权利要求1的方法,其中所述追加的NO3 -离子以碱金属硝酸盐或硝酸铵的形式添加。
3.权利要求1的方法,其中所述颗粒形式的硅具有15至500微米的平均粒径。
4.权利要求1的方法,其中所述颗粒形式的硅具有15至40微米的平均粒径。
5.权利要求1至4任一项的方法,其中所述溶液基本不含三价铁或亚铁离子,即三价铁或亚铁离子的浓度小于0.05重量%。
6.权利要求1至4任一项的方法,其中所述溶液基本不含醇,即任何醇的量小于0.5体积%。
7.权利要求1至4任一项的方法,其中所述溶液基本由下述物质构成:
5至10MHF
0.01至0.1MAg+离子
0.02至0.2MNO3 -离子
水、氢和羟基离子。
8.权利要求1至4任一项的方法,其在单浴中进行。
9.权利要求1至4任一项的方法,其中最初使用的溶液具有6.5至9M的HF浓度。
10.权利要求1至4任一项的方法,其包括下述步骤:通过添加碱或硝酸来调节组成。
11.权利要求1至4任一项的方法,其中所述硅具有90.00质量%或更高的纯度。
12.权利要求1至4任一项的方法,其中所述柱体具有1至100微米的高度。
13.权利要求1至4任一项的方法,其中所述柱体在其底部具有0.08至0.70微米的直径。
14.权利要求10的方法,其中所述碱选自NaOH或NH4OH。
15.权利要求1至4任一项的方法,其中所述溶液基本由下述物质构成:
5至10MHF
0.01至0.1MAg+离子
0.02至0.2MNO3 -离子
水、氢和羟基离子
SiF6 2-离子
碱金属或铵离子,和
附带的添加物和杂质。
16.电极,含有通过如权利要求1至15任一项所述的方法制成的带柱粒子作为其活性材料之一。
17.如权利要求16所述的电极,其中所述带柱粒子被合并到集电极上的复合膜中。
18.电化电池,含有阴极以及如权利要求16或17所述的电极作为阳极,该阴极包含能够释放和再吸收锂离子的含锂化合物作为其活性材料。
CN200980148870.0A 2008-10-10 2009-10-02 制造由硅或硅基材料构成的结构化粒子的方法及其在锂可充电电池中的用途 Expired - Fee Related CN102239583B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0818645A GB2464158B (en) 2008-10-10 2008-10-10 A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
GB0818645.4 2008-10-10
PCT/GB2009/002348 WO2010040985A1 (en) 2008-10-10 2009-10-02 A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries

Publications (2)

Publication Number Publication Date
CN102239583A CN102239583A (zh) 2011-11-09
CN102239583B true CN102239583B (zh) 2016-01-13

Family

ID=40083866

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980148870.0A Expired - Fee Related CN102239583B (zh) 2008-10-10 2009-10-02 制造由硅或硅基材料构成的结构化粒子的方法及其在锂可充电电池中的用途

Country Status (8)

Country Link
US (1) US9184438B2 (zh)
EP (1) EP2335307A1 (zh)
JP (1) JP5535222B2 (zh)
KR (1) KR101419280B1 (zh)
CN (1) CN102239583B (zh)
GB (1) GB2464158B (zh)
TW (1) TWI460908B (zh)
WO (1) WO2010040985A1 (zh)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2395059B (en) 2002-11-05 2005-03-16 Imp College Innovations Ltd Structured silicon anode
GB0601319D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd A method of fabricating pillars composed of silicon-based material
GB0601318D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd Method of etching a silicon-based material
GB0709165D0 (en) 2007-05-11 2007-06-20 Nexeon Ltd A silicon anode for a rechargeable battery
GB0713896D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Method
GB0713898D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd A method of fabricating structured particles composed of silcon or a silicon-based material and their use in lithium rechargeable batteries
GB0713895D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Production
GB2464157B (en) 2008-10-10 2010-09-01 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material
GB2464158B (en) 2008-10-10 2011-04-20 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
GB2470056B (en) 2009-05-07 2013-09-11 Nexeon Ltd A method of making silicon anode material for rechargeable cells
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
GB2470190B (en) 2009-05-11 2011-07-13 Nexeon Ltd A binder for lithium ion rechargeable battery cells
GB201005979D0 (en) 2010-04-09 2010-05-26 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
GB201009519D0 (en) 2010-06-07 2010-07-21 Nexeon Ltd An additive for lithium ion rechargeable battery cells
KR20120001589A (ko) 2010-06-29 2012-01-04 고려대학교 산학협력단 실리콘 태양전지의 전면전극 형성용 유리상 형성제, 이를 포함한 금속 잉크 및 이를 이용한 실리콘 태양전지
GB201014706D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Porous electroactive material
GB201014707D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Electroactive material
KR101114492B1 (ko) * 2011-04-15 2012-02-24 세진이노테크(주) 리튬 이차전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차전지
GB2492167C (en) * 2011-06-24 2018-12-05 Nexeon Ltd Structured particles
JP2014528893A (ja) * 2011-08-15 2014-10-30 ダウ コーニング コーポレーションDow Corning Corporation ケイ素粉末を含む組成物及びケイ素粉末の結晶化度を制御する方法
GB2500163B (en) * 2011-08-18 2016-02-24 Nexeon Ltd Method
GB201117279D0 (en) * 2011-10-06 2011-11-16 Nexeon Ltd Etched silicon structures, method of forming etched silicon structures and uses thereof
GB201122315D0 (en) * 2011-12-23 2012-02-01 Nexeon Ltd Etched silicon structures, method of forming etched silicon structures and uses thereof
KR20140133529A (ko) 2012-01-30 2014-11-19 넥세온 엘티디 에스아이/씨 전기활성 물질의 조성물
GB2499984B (en) 2012-02-28 2014-08-06 Nexeon Ltd Composite particles comprising a removable filler
GB2502625B (en) 2012-06-06 2015-07-29 Nexeon Ltd Method of forming silicon
GB2507535B (en) 2012-11-02 2015-07-15 Nexeon Ltd Multilayer electrode
CN102969488B (zh) * 2012-12-05 2015-09-23 奇瑞汽车股份有限公司 一种无定形多孔硅及其制备方法、含该材料的锂离子电池
KR20160003007A (ko) * 2013-04-25 2016-01-08 솔베이(소시에떼아노님) 플루오린화수소산과 질산의 혼합물을 정제하기 위한 역삼투
US20140346618A1 (en) 2013-05-23 2014-11-27 Nexeon Limited Surface treated silicon containing active materials for electrochemical cells
CN105814724A (zh) 2013-10-15 2016-07-27 耐克森有限公司 用于电化学电池单元的强化的电流收集基板组件
KR101567203B1 (ko) 2014-04-09 2015-11-09 (주)오렌지파워 이차 전지용 음극 활물질 및 이의 방법
KR101604352B1 (ko) 2014-04-22 2016-03-18 (주)오렌지파워 음극 활물질 및 이를 포함하는 리튬 이차 전지
CN104009211B (zh) * 2014-05-13 2017-04-12 昆明理工大学 一种多孔硅纳米纤维/碳复合材料的制备方法
KR101550781B1 (ko) 2014-07-23 2015-09-08 (주)오렌지파워 2 차 전지용 실리콘계 활물질 입자의 제조 방법
GB2533161C (en) 2014-12-12 2019-07-24 Nexeon Ltd Electrodes for metal-ion batteries
CN107068993B (zh) * 2017-01-17 2019-05-10 北京工商大学 一种三维复合Co3O4-Si-C负极材料的制备方法
CN108459054B (zh) * 2017-02-20 2020-06-19 天津大学 一种硅纳米线—聚吡咯复合材料的制备方法
NO345463B1 (en) * 2017-04-06 2021-02-15 Elkem Materials Silicon powder for use in anodes for lithium-ion batteries and method for production of silicon powder
CN107394176B (zh) * 2017-07-31 2020-07-24 中国地质大学(北京) 硅碳复合材料、制备方法和应用及锂离子电池负极材料
US10590562B2 (en) 2017-12-06 2020-03-17 West Chester University Regenerative electroless etching
KR102181378B1 (ko) 2018-10-11 2020-11-20 한양대학교 산학협력단 다공성 규소-저마늄 전극 소재의 제조방법 및 이를 이용한 이차전지
CN109490218A (zh) * 2018-10-11 2019-03-19 湖北兴福电子材料有限公司 一种金属离子在检测多晶硅蚀刻速率上的应用
KR102177630B1 (ko) 2018-11-02 2020-11-11 한양대학교 산학협력단 규소 기반 다공성 화합물, 이의 제조방법 및 이를 이용한 이차전지
CN110143593A (zh) * 2019-04-29 2019-08-20 浙江大学 多孔硅粉的制备方法、多孔硅粉以及其应用
CN110512079A (zh) * 2019-08-12 2019-11-29 青海黄河上游水电开发有限责任公司光伏产业技术分公司 一种分离晶硅电池银电极的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1821446A (zh) * 2006-03-21 2006-08-23 无锡尚德太阳能电力有限公司 一种用于制备多晶硅绒面的酸腐蚀溶液及其使用方法

Family Cites Families (258)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB980513A (en) * 1961-11-17 1965-01-13 Licentia Gmbh Improvements relating to the use of silicon in semi-conductor devices
US3351445A (en) 1963-08-07 1967-11-07 William S Fielder Method of making a battery plate
GB1014706A (en) 1964-07-30 1965-12-31 Hans Ohl Improvements in or relating to devices for controlling the dosing of a plurality of different pourable substances for the production of mixtures
US4002541A (en) 1972-11-03 1977-01-11 Design Systems, Inc. Solar energy absorbing article and method of making same
SU471402A1 (ru) * 1973-03-02 1975-05-25 Предприятие П/Я Г-4671 Травильный раствор
SU544019A1 (ru) * 1975-07-22 1977-01-25 Одесский Ордена Трудового Красного Знамени Государственный Университет Им.И.И.Мечникова Травитель дл полупроводниковых материалов
JPS52122479A (en) * 1976-04-08 1977-10-14 Sony Corp Etching solution of silicon
US4436796A (en) 1981-07-30 1984-03-13 The United States Of America As Represented By The United States Department Of Energy All-solid electrodes with mixed conductor matrix
JPS63215041A (ja) * 1987-03-04 1988-09-07 Toshiba Corp 結晶欠陥評価用エツチング液
US4950566A (en) 1988-10-24 1990-08-21 Huggins Robert A Metal silicide electrode in lithium cells
JPH08987B2 (ja) 1989-02-10 1996-01-10 日産自動車株式会社 アルミニウム合金の表面処理方法
DE4116910A1 (de) * 1991-05-21 1992-11-26 Jenoptik Jena Gmbh Verfahren zur erzeugung oxidkeramischer oberflaechenschichten auf leichtmetall-gusslegierungen
JP2717890B2 (ja) 1991-05-27 1998-02-25 富士写真フイルム株式会社 リチウム二次電池
DE4202454C1 (zh) 1992-01-29 1993-07-29 Siemens Ag, 8000 Muenchen, De
JP3216311B2 (ja) 1993-03-26 2001-10-09 松下電器産業株式会社 リチウム電池
US5660948A (en) 1995-09-26 1997-08-26 Valence Technology, Inc. Lithium ion electrochemical cell
US5907899A (en) 1996-06-11 1999-06-01 Dow Corning Corporation Method of forming electrodes for lithium ion batteries using polycarbosilanes
JP3713900B2 (ja) 1996-07-19 2005-11-09 ソニー株式会社 負極材料及びこれを用いた非水電解液二次電池
JPH1046366A (ja) 1996-08-02 1998-02-17 Toyota Motor Corp アルミニウム合金用エッチング液およびエッチング方法
US6022640A (en) 1996-09-13 2000-02-08 Matsushita Electric Industrial Co., Ltd. Solid state rechargeable lithium battery, stacking battery, and charging method of the same
JP3296543B2 (ja) 1996-10-30 2002-07-02 スズキ株式会社 めっき被覆アルミニウム合金、及びそのシリンダーブロック、めっき処理ライン、めっき方法
JP3620559B2 (ja) 1997-01-17 2005-02-16 株式会社ユアサコーポレーション 非水電解質電池
US6337156B1 (en) 1997-12-23 2002-01-08 Sri International Ion battery using high aspect ratio electrodes
JP4399881B2 (ja) 1998-12-02 2010-01-20 パナソニック株式会社 非水電解質二次電池
JP3624088B2 (ja) 1998-01-30 2005-02-23 キヤノン株式会社 粉末材料、電極構造体、それらの製造方法、及びリチウム二次電池
JPH11283603A (ja) 1998-03-30 1999-10-15 Noritake Co Ltd 電池用セパレーター及びその製造方法
US6235427B1 (en) 1998-05-13 2001-05-22 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery containing silicic material
JP4728458B2 (ja) 1998-06-12 2011-07-20 宇部興産株式会社 非水二次電池
JP2948205B1 (ja) 1998-05-25 1999-09-13 花王株式会社 二次電池用負極の製造方法
JP2000022162A (ja) * 1998-07-06 2000-01-21 Advanced Display Inc 液晶表示装置の製法
US6063995A (en) 1998-07-16 2000-05-16 First Solar, Llc Recycling silicon photovoltaic modules
KR100276656B1 (ko) 1998-09-16 2001-04-02 박찬구 박막형 복합 재료 양극으로 구성된 고체형 이차 전지
EP1052712B1 (en) 1998-12-02 2010-02-24 Panasonic Corporation Non-aqueous electrolyte secondary cell
DE19922257A1 (de) 1999-05-14 2000-11-16 Siemens Ag Verfahren zum Einbringen von Schlitzen in Siliziumscheiben
EP1208002A4 (en) 1999-06-03 2006-08-02 Penn State Res Found MATERIALS WITH NETWORK OF SURFACE POROSITY COLUMNS DEPOSITED IN THIN FILM
GB9919479D0 (en) 1999-08-17 1999-10-20 Imperial College Island arrays
JP3702223B2 (ja) 1999-10-22 2005-10-05 三洋電機株式会社 リチウム電池用電極材料の製造方法
EP1231653B1 (en) 1999-10-22 2010-12-08 Sanyo Electric Co., Ltd. Electrode for lithium cell and lithium secondary cell
US7192673B1 (en) 1999-10-22 2007-03-20 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
CN1257567C (zh) 1999-10-22 2006-05-24 三洋电机株式会社 锂电池和可再充电锂电池中用的电极
JP2003514353A (ja) 1999-11-08 2003-04-15 ネオフォトニクス・コーポレイション 特定サイズの粒子を含む電極
JP2000348730A (ja) 2000-01-01 2000-12-15 Seiko Instruments Inc 非水電解質二次電池
US6353317B1 (en) 2000-01-19 2002-03-05 Imperial College Of Science, Technology And Medicine Mesoscopic non-magnetic semiconductor magnetoresistive sensors fabricated with island lithography
US7335603B2 (en) 2000-02-07 2008-02-26 Vladimir Mancevski System and method for fabricating logic devices comprising carbon nanotube transistors
CN1236509C (zh) 2000-03-13 2006-01-11 佳能株式会社 可充电锂电池电极材料、电极结构体、电池、及其相应生产方法
JP2001291514A (ja) 2000-04-06 2001-10-19 Sumitomo Metal Ind Ltd 非水電解質二次電池用負極材料とその製造方法
US6399246B1 (en) 2000-05-05 2002-06-04 Eveready Battery Company, Inc. Latex binder for non-aqueous battery electrodes
US6334939B1 (en) 2000-06-15 2002-01-01 The University Of North Carolina At Chapel Hill Nanostructure-based high energy capacity material
JP4137350B2 (ja) 2000-06-16 2008-08-20 三星エスディアイ株式会社 リチウム二次電池用の負極材料及びリチウム二次電池用の電極及びリチウム二次電池並びにリチウム二次電池用の負極材料の製造方法
NL1015956C2 (nl) 2000-08-18 2002-02-19 Univ Delft Tech Batterij en werkwijze voor het vervaardigen van een dergelijke batterij.
CN1280930C (zh) 2000-09-01 2006-10-18 三洋电机株式会社 再充电式锂电池的负电极及其制造方法
JP4212263B2 (ja) 2000-09-01 2009-01-21 三洋電機株式会社 リチウム二次電池用負極及びその製造方法
US20040061928A1 (en) 2000-09-25 2004-04-01 William Stewart Artificially structured dielectric material
WO2002047185A2 (en) 2000-12-06 2002-06-13 Huggins Robert A Improved electrodes for lithium batteries
KR100545613B1 (ko) 2001-01-18 2006-01-25 산요덴키가부시키가이샤 리튬 이차 전지
JP2002279974A (ja) 2001-03-19 2002-09-27 Sanyo Electric Co Ltd 二次電池用電極の製造方法
US7141859B2 (en) * 2001-03-29 2006-11-28 Georgia Tech Research Corporation Porous gas sensors and method of preparation thereof
JP2002313319A (ja) 2001-04-09 2002-10-25 Sanyo Electric Co Ltd リチウム二次電池用電極及びリチウム二次電池
US6887623B2 (en) 2001-04-09 2005-05-03 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
JP2002313345A (ja) 2001-04-13 2002-10-25 Japan Storage Battery Co Ltd 非水電解質二次電池
EP1258937A1 (en) 2001-05-17 2002-11-20 STMicroelectronics S.r.l. Micro silicon fuel cell, method of fabrication and self-powered semiconductor device integrating a micro fuel cell
JP4183401B2 (ja) 2001-06-28 2008-11-19 三洋電機株式会社 リチウム二次電池用電極の製造方法及びリチウム二次電池
US7070632B1 (en) 2001-07-25 2006-07-04 Polyplus Battery Company Electrochemical device separator structures with barrier layer on non-swelling membrane
KR100382767B1 (ko) 2001-08-25 2003-05-09 삼성에스디아이 주식회사 리튬 2차 전지용 음극 박막 및 그의 제조방법
JP2003109589A (ja) * 2001-09-28 2003-04-11 Mitsubishi Materials Corp リチウム電池用負極活物質材料及びその製造方法並びに該材料を用いた負極
EP1313158A3 (en) 2001-11-20 2004-09-08 Canon Kabushiki Kaisha Electrode material for rechargeable lithium battery, electrode comprising said electrode material, rechargeable lithium battery having said electrode , and process for the production thereof
US7252749B2 (en) 2001-11-30 2007-08-07 The University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
JP4035760B2 (ja) 2001-12-03 2008-01-23 株式会社ジーエス・ユアサコーポレーション 非水電解質二次電池
US20030135989A1 (en) 2002-01-19 2003-07-24 Huggins Robert A. Electrodes for alkali metal batteries
WO2003063271A1 (en) 2002-01-19 2003-07-31 Huggins Robert A Improved electrodes for alkali metal batteries
JP4199460B2 (ja) 2002-01-23 2008-12-17 パナソニック株式会社 角形密閉式電池
WO2003078688A1 (en) * 2002-03-15 2003-09-25 Canon Kabushiki Kaisha Porous material and process for producing the same
US7147894B2 (en) 2002-03-25 2006-12-12 The University Of North Carolina At Chapel Hill Method for assembling nano objects
JP2004071305A (ja) 2002-08-05 2004-03-04 Hitachi Maxell Ltd 非水電解質二次電池
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US20070264564A1 (en) 2006-03-16 2007-11-15 Infinite Power Solutions, Inc. Thin film battery on an integrated circuit or circuit board and method thereof
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US20080003496A1 (en) 2002-08-09 2008-01-03 Neudecker Bernd J Electrochemical apparatus with barrier layer protected substrate
US6916679B2 (en) 2002-08-09 2005-07-12 Infinite Power Solutions, Inc. Methods of and device for encapsulation and termination of electronic devices
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
JP2004095264A (ja) 2002-08-30 2004-03-25 Mitsubishi Materials Corp リチウムイオン二次電池用負極及び該負極を用いて作製したリチウムイオン二次電池
AU2003261909A1 (en) 2002-09-05 2004-03-29 National Institute Of Advanced Industrial Science And Technology Carbon fine powder coated with metal oxide, metal nitride or metal carbide, process for producing the same, and supercapacitor and secondary battery using the carbon fine powder
WO2004025757A2 (en) 2002-09-10 2004-03-25 California Institute Of Technology High-capacity nanostructured silicon and lithium alloys thereof
US7051945B2 (en) 2002-09-30 2006-05-30 Nanosys, Inc Applications of nano-enabled large area macroelectronic substrates incorporating nanowires and nanowire composites
JP4614625B2 (ja) 2002-09-30 2011-01-19 三洋電機株式会社 リチウム二次電池の製造方法
GB2395059B (en) 2002-11-05 2005-03-16 Imp College Innovations Ltd Structured silicon anode
CA2411695A1 (fr) 2002-11-13 2004-05-13 Hydro-Quebec Electrode recouverte d'un film obtenu a partir d'une solution aqueuse comportant un liant soluble dans l'eau, son procede de fabrication et ses utilisations
JP4088957B2 (ja) 2002-11-19 2008-05-21 ソニー株式会社 リチウム二次電池
JP3664252B2 (ja) 2002-11-19 2005-06-22 ソニー株式会社 負極およびそれを用いた電池
JP4025995B2 (ja) 2002-11-26 2007-12-26 信越化学工業株式会社 非水電解質二次電池負極材及びその製造方法並びにリチウムイオン二次電池
AU2003294586A1 (en) 2002-12-09 2004-06-30 The University Of North Carolina At Chapel Hill Methods for assembly and sorting of nanostructure-containing materials and related articles
US7491467B2 (en) 2002-12-17 2009-02-17 Mitsubishi Chemical Corporation Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
US20040214085A1 (en) 2003-01-06 2004-10-28 Kyou-Yoon Sheem Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery
JP3827642B2 (ja) 2003-01-06 2006-09-27 三星エスディアイ株式会社 リチウム二次電池用負極活物質及びその製造方法並びにリチウム二次電池
CN100349311C (zh) 2003-01-06 2007-11-14 三星Sdi株式会社 可再充电锂电池的负极活性材料和可再充电锂电池
US7244513B2 (en) * 2003-02-21 2007-07-17 Nano-Proprietary, Inc. Stain-etched silicon powder
JP2004281317A (ja) 2003-03-18 2004-10-07 Matsushita Electric Ind Co Ltd 非水電解質二次電池用電極材料とその製造方法、ならびにそれを用いた非水電解質二次電池
US20040185346A1 (en) 2003-03-19 2004-09-23 Takeuchi Esther S. Electrode having metal vanadium oxide nanoparticles for alkali metal-containing electrochemical cells
US6969690B2 (en) 2003-03-21 2005-11-29 The University Of North Carolina At Chapel Hill Methods and apparatus for patterned deposition of nanostructure-containing materials by self-assembly and related articles
CN1322611C (zh) 2003-03-26 2007-06-20 佳能株式会社 电极材料、具有该材料的构造体和具有该构造体的二次电池
JP4027255B2 (ja) 2003-03-28 2007-12-26 三洋電機株式会社 リチウム二次電池用負極及びその製造方法
US20040241548A1 (en) 2003-04-02 2004-12-02 Takayuki Nakamoto Negative electrode active material and non-aqueous electrolyte rechargeable battery using the same
CN100347885C (zh) 2003-05-22 2007-11-07 松下电器产业株式会社 非水电解质二次电池及其制造方法
WO2004109839A1 (ja) 2003-06-09 2004-12-16 Sanyo Electric Co., Ltd. リチウム二次電池及びその製造方法
US7094499B1 (en) 2003-06-10 2006-08-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Carbon materials metal/metal oxide nanoparticle composite and battery anode composed of the same
JP4610213B2 (ja) 2003-06-19 2011-01-12 三洋電機株式会社 リチウム二次電池及びその製造方法
US7318982B2 (en) 2003-06-23 2008-01-15 A123 Systems, Inc. Polymer composition for encapsulation of electrode particles
JP4095499B2 (ja) 2003-06-24 2008-06-04 キヤノン株式会社 リチウム二次電池用の電極材料、電極構造体及びリチウム二次電池
CN1823439B (zh) 2003-07-15 2013-07-17 伊藤忠商事株式会社 集电结构体以及电极结构体
KR100595896B1 (ko) 2003-07-29 2006-07-03 주식회사 엘지화학 리튬 이차 전지용 음극 활물질 및 그의 제조 방법
KR100496306B1 (ko) 2003-08-19 2005-06-17 삼성에스디아이 주식회사 리튬 금속 애노드의 제조방법
KR100497251B1 (ko) 2003-08-20 2005-06-23 삼성에스디아이 주식회사 리튬 설퍼 전지용 음극 보호막 조성물 및 이를 사용하여제조된 리튬 설퍼 전지
US7479351B2 (en) 2003-10-09 2009-01-20 Samsung Sdi Co., Ltd. Electrode material for a lithium secondary battery, lithium secondary battery, and preparation method for the electrode material for a lithium secondary battery
DE10347570B4 (de) 2003-10-14 2015-07-23 Evonik Degussa Gmbh Anorganische Separator-Elektroden-Einheit für Lithium-Ionen-Batterien, Verfahren zu deren Herstellung, Verwendung in Lithium-Batterien und Lithium-Batterien mit der anorganischen Separator-Elektroden-Einheit
JP4497899B2 (ja) 2003-11-19 2010-07-07 三洋電機株式会社 リチウム二次電池
US7816032B2 (en) 2003-11-28 2010-10-19 Panasonic Corporation Energy device and method for producing the same
KR100578870B1 (ko) 2004-03-08 2006-05-11 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 그의 제조 방법 및 그를포함하는 리튬 이차 전지
US7521153B2 (en) 2004-03-16 2009-04-21 Toyota Motor Engineering & Manufacturing North America, Inc. Corrosion protection using protected electron collector
US7468224B2 (en) 2004-03-16 2008-12-23 Toyota Motor Engineering & Manufacturing North America, Inc. Battery having improved positive electrode and method of manufacturing the same
US7348102B2 (en) 2004-03-16 2008-03-25 Toyota Motor Corporation Corrosion protection using carbon coated electron collector for lithium-ion battery with molten salt electrolyte
JP4623283B2 (ja) 2004-03-26 2011-02-02 信越化学工業株式会社 珪素複合体粒子及びその製造方法並びに非水電解質二次電池用負極材
US7790316B2 (en) 2004-03-26 2010-09-07 Shin-Etsu Chemical Co., Ltd. Silicon composite particles, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
US8231810B2 (en) 2004-04-15 2012-07-31 Fmc Corporation Composite materials of nano-dispersed silicon and tin and methods of making the same
US7781102B2 (en) 2004-04-22 2010-08-24 California Institute Of Technology High-capacity nanostructured germanium-containing materials and lithium alloys thereof
CN101010780B (zh) 2004-04-30 2012-07-25 纳米***公司 纳米线生长和获取的体系和方法
KR100821630B1 (ko) 2004-05-17 2008-04-16 주식회사 엘지화학 전극 및 이의 제조방법
US20060019115A1 (en) 2004-05-20 2006-01-26 Liya Wang Composite material having improved microstructure and method for its fabrication
GB2414231A (en) 2004-05-21 2005-11-23 Psimedica Ltd Porous silicon
EP1765754B1 (de) 2004-07-01 2015-12-09 Basf Se Verfahren zur herstellung von acrolein, oder acrylsäure oder deren gemisch aus propan
FR2873854A1 (fr) 2004-07-30 2006-02-03 Commissariat Energie Atomique Procede de fabrication d'une electrode lithiee, electrode lithiee susceptible d'etre obtenue par ce procede et ses utilisations
US20060088767A1 (en) 2004-09-01 2006-04-27 Wen Li Battery with molten salt electrolyte and high voltage positive active material
US20060051670A1 (en) 2004-09-03 2006-03-09 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary cell negative electrode material and metallic silicon power therefor
US7635540B2 (en) 2004-11-15 2009-12-22 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same
US7955735B2 (en) 2004-11-15 2011-06-07 Panasonic Corporation Non-aqueous electrolyte secondary battery
US7939218B2 (en) 2004-12-09 2011-05-10 Nanosys, Inc. Nanowire structures comprising carbon
JP4824394B2 (ja) 2004-12-16 2011-11-30 パナソニック株式会社 リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池
KR100738054B1 (ko) 2004-12-18 2007-07-12 삼성에스디아이 주식회사 음극 활물질, 그 제조 방법 및 이를 채용한 음극과 리튬전지
JP4229062B2 (ja) 2004-12-22 2009-02-25 ソニー株式会社 リチウムイオン二次電池
JPWO2006067891A1 (ja) 2004-12-22 2008-06-12 松下電器産業株式会社 複合負極活物質およびその製造法ならびに非水電解質二次電池
JP4095621B2 (ja) 2005-03-28 2008-06-04 アドバンスド・マスク・インスペクション・テクノロジー株式会社 光学画像取得装置、光学画像取得方法、及びマスク検査装置
JP4739788B2 (ja) * 2005-03-30 2011-08-03 三洋電機株式会社 リチウム二次電池の製造方法
JP2006290938A (ja) 2005-04-06 2006-10-26 Nippon Brake Kogyo Kk 摩擦材
CA2506104A1 (en) 2005-05-06 2006-11-06 Michel Gauthier Surface modified redox compounds and composite electrode obtain from them
US7569202B2 (en) 2005-05-09 2009-08-04 Vesta Research, Ltd. Silicon nanosponge particles
US7700236B2 (en) 2005-09-09 2010-04-20 Aquire Energy Co., Ltd. Cathode material for manufacturing a rechargeable battery
US20080138710A1 (en) 2005-05-10 2008-06-12 Ben-Jie Liaw Electrochemical Composition and Associated Technology
TWI254031B (en) 2005-05-10 2006-05-01 Aquire Energy Co Ltd Manufacturing method of LixMyPO4 compound with olivine structure
US7781100B2 (en) 2005-05-10 2010-08-24 Advanced Lithium Electrochemistry Co., Ltd Cathode material for manufacturing rechargeable battery
US7799457B2 (en) 2005-05-10 2010-09-21 Advanced Lithium Electrochemistry Co., Ltd Ion storage compound of cathode material and method for preparing the same
US7887954B2 (en) 2005-05-10 2011-02-15 Advanced Lithium Electrochemistry Co., Ltd. Electrochemical composition and associated technology
FR2885734B1 (fr) 2005-05-13 2013-07-05 Accumulateurs Fixes Materiau nanocomposite pour anode d'accumulateur au lithium
JP2006351516A (ja) 2005-05-16 2006-12-28 Toshiba Corp 負極活物質及び非水電解質二次電池
FR2885913B1 (fr) 2005-05-18 2007-08-10 Centre Nat Rech Scient Element composite comprenant un substrat conducteur et un revetement metallique nanostructure.
JP4603422B2 (ja) 2005-06-01 2010-12-22 株式会社タカギセイコー 樹脂製タンクの表面処理方法
WO2006129415A1 (ja) 2005-06-03 2006-12-07 Matsushita Electric Industrial Co., Ltd. 非水電解質二次電池およびその負極の製造方法
US7682741B2 (en) 2005-06-29 2010-03-23 Panasonic Corporation Composite particle for lithium rechargeable battery, manufacturing method of the same, and lithium rechargeable battery using the same
KR100684733B1 (ko) 2005-07-07 2007-02-20 삼성에스디아이 주식회사 리튬 이차 전지
JP4876468B2 (ja) 2005-07-27 2012-02-15 パナソニック株式会社 非水電解質二次電池
US8080334B2 (en) 2005-08-02 2011-12-20 Panasonic Corporation Lithium secondary battery
CN100438157C (zh) 2005-08-29 2008-11-26 松下电器产业株式会社 用于非水电解质二次电池的负极、其制造方法以及非水电解质二次电池
US7524529B2 (en) 2005-09-09 2009-04-28 Aquire Energy Co., Ltd. Method for making a lithium mixed metal compound having an olivine structure
KR100738057B1 (ko) 2005-09-13 2007-07-10 삼성에스디아이 주식회사 음극 전극 및 이를 채용한 리튬 전지
US20070065720A1 (en) 2005-09-22 2007-03-22 Masaki Hasegawa Negative electrode for lithium ion secondary battery and lithium ion secondary battery prepared by using the same
JP2007123242A (ja) 2005-09-28 2007-05-17 Sanyo Electric Co Ltd 非水電解質二次電池
CN101288200B (zh) 2005-10-13 2012-04-18 3M创新有限公司 电化学电池的使用方法
KR100759556B1 (ko) 2005-10-17 2007-09-18 삼성에스디아이 주식회사 음극 활물질, 그 제조 방법 및 이를 채용한 음극과 리튬전지
KR100749486B1 (ko) 2005-10-31 2007-08-14 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 그의 제조 방법 및 그를포함하는 리튬 이차 전지
US20070099084A1 (en) 2005-10-31 2007-05-03 T/J Technologies, Inc. High capacity electrode and methods for its fabrication and use
JP2007128766A (ja) 2005-11-04 2007-05-24 Sony Corp 負極活物質および電池
US20070117018A1 (en) 2005-11-22 2007-05-24 Huggins Robert A Silicon and/or boron-based positive electrode
KR100949330B1 (ko) 2005-11-29 2010-03-26 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 그를 포함하는 리튬 이차전지
JP2007165079A (ja) 2005-12-13 2007-06-28 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極とそれを用いた非水電解質二次電池
US7906238B2 (en) 2005-12-23 2011-03-15 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
JP4692290B2 (ja) * 2006-01-11 2011-06-01 セイコーエプソン株式会社 マスクおよび成膜方法
KR100763892B1 (ko) 2006-01-20 2007-10-05 삼성에스디아이 주식회사 음극 활물질, 그 제조 방법, 및 이를 채용한 음극과 리튬전지
GB0601318D0 (en) * 2006-01-23 2006-03-01 Imp Innovations Ltd Method of etching a silicon-based material
GB0601319D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd A method of fabricating pillars composed of silicon-based material
US7717968B2 (en) 2006-03-08 2010-05-18 Yevgen Kalynushkin Electrode for energy storage device and method of forming the same
US7972731B2 (en) 2006-03-08 2011-07-05 Enerl, Inc. Electrode for cell of energy storage device and method of forming the same
US7776473B2 (en) 2006-03-27 2010-08-17 Shin-Etsu Chemical Co., Ltd. Silicon-silicon oxide-lithium composite, making method, and non-aqueous electrolyte secondary cell negative electrode material
JP5178508B2 (ja) 2006-03-30 2013-04-10 三洋電機株式会社 リチウム二次電池
KR101328982B1 (ko) 2006-04-17 2013-11-13 삼성에스디아이 주식회사 음극 활물질 및 그 제조 방법
CN100563047C (zh) 2006-04-25 2009-11-25 立凯电能科技股份有限公司 适用于制作二次电池的正极的复合材料及其所制得的电池
JP5003047B2 (ja) * 2006-04-28 2012-08-15 東ソー株式会社 エッチング用組成物及びエッチング方法
KR101483123B1 (ko) 2006-05-09 2015-01-16 삼성에스디아이 주식회사 금속 나노결정 복합체를 포함하는 음극 활물질, 그 제조방법 및 이를 채용한 음극과 리튬 전지
JP2007305546A (ja) 2006-05-15 2007-11-22 Sony Corp リチウムイオン電池
KR100863733B1 (ko) 2006-05-15 2008-10-16 주식회사 엘지화학 바인더로서 폴리우레탄을 물리적으로 혼합한폴리아크릴산이 포함되어 있는 전극 합제 및 이를 기반으로하는 리튬 이차전지
US20070269718A1 (en) 2006-05-22 2007-11-22 3M Innovative Properties Company Electrode composition, method of making the same, and lithium ion battery including the same
KR100830612B1 (ko) 2006-05-23 2008-05-21 강원대학교산학협력단 리튬 이차 전지용 음극 활물질, 그의 제조 방법 및 그를포함하는 리튬 이차 전지
US8080335B2 (en) 2006-06-09 2011-12-20 Canon Kabushiki Kaisha Powder material, electrode structure using the powder material, and energy storage device having the electrode structure
JP5200339B2 (ja) 2006-06-16 2013-06-05 パナソニック株式会社 非水電解質二次電池
JP5398962B2 (ja) 2006-06-30 2014-01-29 三洋電機株式会社 リチウム二次電池及びその製造方法
US7964307B2 (en) 2006-07-24 2011-06-21 Panasonic Corporation Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2008034266A (ja) 2006-07-28 2008-02-14 Canon Inc リチウム二次電池用負極材料の製造方法
US7722991B2 (en) 2006-08-09 2010-05-25 Toyota Motor Corporation High performance anode material for lithium-ion battery
JPWO2008029502A1 (ja) 2006-08-29 2010-01-21 ユニチカ株式会社 電極形成用バインダー、そのバインダーを用いた電極形成用スラリー、そのスラリーを用いた電極、その電極を用いた二次電池、その電極を用いたキャパシタ
JP5039956B2 (ja) 2006-09-07 2012-10-03 トヨタ自動車株式会社 負極活物質、負極およびリチウム二次電池
US8734997B2 (en) 2006-10-10 2014-05-27 Panasonic Corporation Negative electrode for nonaqueous electrolyte secondary battery
US8187754B2 (en) 2006-10-11 2012-05-29 Panasonic Corporation Coin-type non-aqueous electrolyte battery
KR100778450B1 (ko) 2006-11-22 2007-11-28 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를포함하는 리튬 이차 전지
KR100814816B1 (ko) 2006-11-27 2008-03-20 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 그를 포함하는 리튬 이차전지
JP4501081B2 (ja) 2006-12-06 2010-07-14 ソニー株式会社 電極の形成方法および電池の製造方法
JP2008171802A (ja) 2006-12-13 2008-07-24 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極とその製造方法およびそれを用いた非水電解質二次電池
JP4321584B2 (ja) 2006-12-18 2009-08-26 ソニー株式会社 二次電池用負極および二次電池
US7709139B2 (en) 2007-01-22 2010-05-04 Physical Sciences, Inc. Three dimensional battery
JP5143437B2 (ja) 2007-01-30 2013-02-13 日本カーボン株式会社 リチウムイオン二次電池用負極活物質の製造方法、負極活物質及び負極
WO2008097723A1 (en) 2007-02-06 2008-08-14 3M Innovative Properties Company Electrodes including novel binders and methods of making and using the same
JP5277656B2 (ja) 2007-02-20 2013-08-28 日立化成株式会社 リチウムイオン二次電池用負極材、負極及びリチウムイオン二次電池
JP5165258B2 (ja) 2007-02-26 2013-03-21 日立マクセルエナジー株式会社 非水電解質二次電池
US20090053589A1 (en) 2007-08-22 2009-02-26 3M Innovative Properties Company Electrolytes, electrode compositions, and electrochemical cells made therefrom
US20080206631A1 (en) 2007-02-27 2008-08-28 3M Innovative Properties Company Electrolytes, electrode compositions and electrochemical cells made therefrom
US20080206641A1 (en) 2007-02-27 2008-08-28 3M Innovative Properties Company Electrode compositions and electrodes made therefrom
JP2008234988A (ja) 2007-03-20 2008-10-02 Sony Corp 負極およびその製造方法、ならびに電池およびその製造方法
KR100796664B1 (ko) 2007-03-21 2008-01-22 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
KR100859687B1 (ko) 2007-03-21 2008-09-23 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 그를 포함하는 리튬 이차전지
EP1978587B1 (en) 2007-03-27 2011-06-22 Hitachi Vehicle Energy, Ltd. Lithium secondary battery
JP4979432B2 (ja) 2007-03-28 2012-07-18 三洋電機株式会社 円筒型リチウム二次電池
US20080241703A1 (en) 2007-03-28 2008-10-02 Hidekazu Yamamoto Nonaqueous electrolyte secondary battery
JP2008243717A (ja) 2007-03-28 2008-10-09 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池及びその製造方法
WO2008119080A1 (en) 2007-03-28 2008-10-02 Life Bioscience Inc. Compositions and methods to fabricate a photoactive substrate suitable for shaped glass structures
JP5628469B2 (ja) 2007-04-26 2014-11-19 三菱化学株式会社 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
JP2008269827A (ja) 2007-04-17 2008-11-06 Matsushita Electric Ind Co Ltd 電気化学素子の電極材料およびその製造方法並びにそれを用いた電極極板および電気化学素子
GB0709165D0 (en) 2007-05-11 2007-06-20 Nexeon Ltd A silicon anode for a rechargeable battery
JP5338041B2 (ja) 2007-06-05 2013-11-13 ソニー株式会社 二次電池用負極および二次電池
GB0713895D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Production
GB0713896D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Method
GB0713898D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd A method of fabricating structured particles composed of silcon or a silicon-based material and their use in lithium rechargeable batteries
WO2009026466A1 (en) 2007-08-21 2009-02-26 The Regents Of The University Of California Nanostructures having high performance thermoelectric properties
US20090078982A1 (en) 2007-09-24 2009-03-26 Willy Rachmady Alpha hydroxy carboxylic acid etchants for silicon microstructures
US20090087731A1 (en) 2007-09-27 2009-04-02 Atsushi Fukui Lithium secondary battery
US8119288B2 (en) 2007-11-05 2012-02-21 Nanotek Instruments, Inc. Hybrid anode compositions for lithium ion batteries
CN101442124B (zh) 2007-11-19 2011-09-07 比亚迪股份有限公司 锂离子电池负极用复合材料的制备方法及负极和电池
JP2009176719A (ja) 2007-12-26 2009-08-06 Sony Corp 電解液、二次電池およびスルホン化合物
US20090186267A1 (en) 2008-01-23 2009-07-23 Tiegs Terry N Porous silicon particulates for lithium batteries
WO2009105546A2 (en) * 2008-02-19 2009-08-27 Board Of Regents Of The Nevada System Of Higher Education, On Behalf Of The University Of Nevada, Reno Target and process for fabricating same
US8105718B2 (en) 2008-03-17 2012-01-31 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
US8273591B2 (en) 2008-03-25 2012-09-25 International Business Machines Corporation Super lattice/quantum well nanowires
JP2009252348A (ja) 2008-04-01 2009-10-29 Panasonic Corp 非水電解質電池
JP4998358B2 (ja) 2008-04-08 2012-08-15 ソニー株式会社 リチウムイオン二次電池用負極およびリチウムイオン二次電池
WO2009128800A1 (en) * 2008-04-17 2009-10-22 The Board Of Trustees Of The University Of Illinois Silicon nanowire and composite formation and highly pure and uniform length silicon nanowires
JP4844849B2 (ja) 2008-04-23 2011-12-28 ソニー株式会社 リチウムイオン二次電池用負極およびリチウムイオン二次電池
CN100580876C (zh) 2008-04-25 2010-01-13 华东师范大学 一种选择性刻蚀硅纳米线的方法
US8034485B2 (en) 2008-05-29 2011-10-11 3M Innovative Properties Company Metal oxide negative electrodes for lithium-ion electrochemical cells and batteries
US20100085685A1 (en) 2008-10-06 2010-04-08 Avx Corporation Capacitor Anode Formed From a Powder Containing Coarse Agglomerates and Fine Agglomerates
GB2464158B (en) 2008-10-10 2011-04-20 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
GB2464157B (en) 2008-10-10 2010-09-01 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material
KR101065778B1 (ko) 2008-10-14 2011-09-20 한국과학기술연구원 탄소나노튜브 피복 실리콘-구리 복합 입자 및 그 제조 방법과, 이를 이용한 이차전지용 음극 및 이차전지
JP4952746B2 (ja) 2008-11-14 2012-06-13 ソニー株式会社 リチウムイオン二次電池およびリチウムイオン二次電池用負極
CN101740747B (zh) 2008-11-27 2012-09-05 比亚迪股份有限公司 一种硅负极和含有该硅负极的锂离子电池
KR101819035B1 (ko) 2009-02-16 2018-01-18 삼성전자주식회사 14족 금속나노튜브를 포함하는 음극, 이를 채용한 리튬전지 및 이의 제조 방법
US20100285358A1 (en) 2009-05-07 2010-11-11 Amprius, Inc. Electrode Including Nanostructures for Rechargeable Cells
GB2470056B (en) 2009-05-07 2013-09-11 Nexeon Ltd A method of making silicon anode material for rechargeable cells
GB0908089D0 (en) 2009-05-11 2009-06-24 Nexeon Ltd A binder for lithium ion rechargaable battery cells
GB2470190B (en) 2009-05-11 2011-07-13 Nexeon Ltd A binder for lithium ion rechargeable battery cells
KR102067922B1 (ko) 2009-05-19 2020-01-17 원드 매터리얼 엘엘씨 배터리 응용을 위한 나노구조화된 재료
US20100330419A1 (en) 2009-06-02 2010-12-30 Yi Cui Electrospinning to fabricate battery electrodes
WO2011056847A2 (en) 2009-11-03 2011-05-12 Envia Systems, Inc. High capacity anode materials for lithium ion batteries
GB201005979D0 (en) * 2010-04-09 2010-05-26 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1821446A (zh) * 2006-03-21 2006-08-23 无锡尚德太阳能电力有限公司 一种用于制备多晶硅绒面的酸腐蚀溶液及其使用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition;Kuiqing Peng et.al;《Advanced Functional Materials》;20030228;第13卷(第2期);第127-132页 *

Also Published As

Publication number Publication date
US20110269019A1 (en) 2011-11-03
TW201027829A (en) 2010-07-16
EP2335307A1 (en) 2011-06-22
GB2464158A (en) 2010-04-14
KR101419280B1 (ko) 2014-07-15
TWI460908B (zh) 2014-11-11
GB0818645D0 (en) 2008-11-19
KR20110082171A (ko) 2011-07-18
JP2012505505A (ja) 2012-03-01
CN102239583A (zh) 2011-11-09
US9184438B2 (en) 2015-11-10
WO2010040985A1 (en) 2010-04-15
JP5535222B2 (ja) 2014-07-02
GB2464158B (en) 2011-04-20

Similar Documents

Publication Publication Date Title
CN102239583B (zh) 制造由硅或硅基材料构成的结构化粒子的方法及其在锂可充电电池中的用途
CN103098265B (zh) 制造由硅或硅基材料构成的结构化粒子的方法及其在锂可充电电池中的用途
KR101432509B1 (ko) 실리콘 또는 실리콘-기재 물질로 이루어진 구조화된 입자의 제조 방법 및 리튬 재충전용 배터리에서의 그의 용도
CN102239584B (zh) 制造由硅或硅基材料构成的结构化粒子的方法
US20150050556A1 (en) Etched silicon structures, method of forming etched silicon structures and uses thereof
CN104093887A (zh) 形成多个粒子的方法
CN105050957A (zh) 复合硅或复合锡颗粒
CN113921800A (zh) 大洋粘土镁热还原制备多孔硅作为锂离子电池负极材料

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160113

Termination date: 20191002

CF01 Termination of patent right due to non-payment of annual fee