CN101839184A - 旋转检测装置和旋转检测方法 - Google Patents

旋转检测装置和旋转检测方法 Download PDF

Info

Publication number
CN101839184A
CN101839184A CN201010142906A CN201010142906A CN101839184A CN 101839184 A CN101839184 A CN 101839184A CN 201010142906 A CN201010142906 A CN 201010142906A CN 201010142906 A CN201010142906 A CN 201010142906A CN 101839184 A CN101839184 A CN 101839184A
Authority
CN
China
Prior art keywords
combustion engine
internal
rotation
judged
output shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201010142906A
Other languages
English (en)
Other versions
CN101839184B (zh
Inventor
清水博和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Publication of CN101839184A publication Critical patent/CN101839184A/zh
Application granted granted Critical
Publication of CN101839184B publication Critical patent/CN101839184B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/34403Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using helically teethed sleeve or gear moving axially between crankshaft and camshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0021Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of rocker arm ratio
    • F01L13/0026Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of rocker arm ratio by means of an eccentric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • G01P13/04Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement
    • G01P13/045Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement with speed indication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/06Reverse rotation of engine

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

本发明提供一种旋转检测装置和旋转检测方法,其根据在旋转轴的正转和反转时不同的旋转信号来判定旋转轴的正转和反转。旋转信号设定成在内燃机的作为输出轴的曲柄轴正转时和反转时具有不同的脉冲宽度,通过判断脉冲宽度是否大于阈值,来检测曲柄轴的正转和反转。另外,根据内燃机旋转速度、处于预定活塞位置的气缸、内燃机负载、起动开关、进气压力以及蓄电池电压等,来判断曲柄轴正转的条件,如果正转条件成立,则根据此时测量出的旋转信号的脉冲宽度来设定脉冲宽度的阈值。

Description

旋转检测装置和旋转检测方法
技术领域
本发明涉及根据在旋转轴的正转和反转时不同的旋转信号来判定旋转轴的正转和反转的旋转检测装置和旋转检测方法。
背景技术
在日本特开2009-002193号公报中公开了一种发动机的控制装置,该发动机的控制装置具有输出与发动机的曲柄轴的旋转同步的旋转信号的检测器。此处,所述检测器根据曲柄轴是正转还是反转来输出脉冲宽度不同的旋转信号,所述控制装置对所述旋转信号的脉冲宽度进行测量,并根据脉冲宽度的测量值是否大于阈值来判定曲柄轴的正转和反转。
但是,当由于所述检测器的偏差或劣化而使所述旋转信号的脉冲宽度发生波动时,存在基于脉冲宽度的测量值与阈值的比较的正转和反转的判定精度降低的问题。
发明内容
因此,本发明的目的在于提供能够稳定地维持旋转轴的正转和反转的判定精度的旋转检测装置和旋转检测方法。
为了达成上述目的,本发明所涉及的旋转检测装置根据在旋转轴的正转和反转时不同的旋转信号和阈值的比较来判定所述旋转轴的正转和反转,所述旋转信号是与所述旋转轴的旋转对应地输出的旋转信号,所述旋转检测装置对所述旋转轴向一侧旋转的条件进行判定,并且根据满足所述旋转轴向一侧旋转的条件时的所述旋转信号来设定所述阈值。
此外,在本发明所涉及的旋转检测方法中,输入在旋转轴的正转和反转时不同的旋转信号,并根据所述旋转信号和阈值的比较来判定所述旋转轴的正转和反转,所述旋转信号是与所述旋转轴的旋转对应地输出的旋转信号,在所述旋转检测方法中,对所述旋转轴向一侧旋转的条件进行判定,根据满足所述旋转轴向一侧旋转的条件时的所述旋转信号来变更所述阈值。
关于本发明的其它目的和特征,可以根据以下描述并参考附图来理解。
附图说明
图1是表示本申请的发明的实施方式中的内燃机的图。
图2是表示本申请的发明的实施方式中的可变气门正时机构(variable valve timing mechanism)的剖视图。
图3是表示本申请的发明的实施方式中的曲柄角度传感器和凸轮传感器的结构的图。
图4是表示本申请的发明的实施方式中的曲柄角度传感器和凸轮传感器的输出特性的时间图。
图5是表示本申请的发明的实施方式中的旋转信号POS的由正转和反转引起的脉冲宽度的差异的时间图。
图6是表示本申请的发明的实施方式中的正转和反转的判定处理的流程图。
图7是表示本申请的发明的实施方式中的阈值的设定处理的流程图。
具体实施方式
图1是表示应用本申请的发明所涉及的旋转检测装置和旋转检测方法的车辆用内燃机101的图。此外,在本实施方式中,内燃机101是直列四缸内燃机。
在图1中,在内燃机101的进气管102中介入安装有电子控制式节气门装置104,该电子控制式节气门装置104利用节气门电动机103a来驱动节气门103b开闭。
另外,内燃机101经电子控制式节气门装置104和进气门105将空气吸入到各气缸的燃烧室106内。
在各气缸的进气口130设置有燃料喷射阀131。燃料喷射阀131根据来自ECU(Engine Control Unit:发动机控制单元)114的喷射脉冲信号而打开,并喷射燃料。
燃烧室106内的燃料通过利用省略了图示的火花塞进行火花点火而起火燃烧。
燃烧室106内的燃烧废气经排气门107流出至排气管111,设置于排气管111的前置催化转换器108和后置催化转换器109对在排气管111内流动的废气进行净化。
进气凸轮轴134和排气凸轮轴110一体地具有凸轮,并通过该凸轮来使进气门105和排气门107动作。
设置于进气凸轮轴134的可变气门正时机构113是通过使进气凸轮轴134相对于曲柄轴(输出轴、旋转轴)120的旋转相位连续地变化来使进气门105的气门正时(timing valve)连续地变化的机构。
图2表示可变气门正时机构113的结构。
可变气门正时机构113具有:第一旋转体21,其固定于与曲柄轴120的旋转同步地旋转的链轮25,并且与该链轮25一体地旋转;第二旋转体22,其通过螺栓22a固定于进气凸轮轴134的一端,并且与进气凸轮轴134一体地旋转;以及筒状的中间齿轮23,其通过螺旋花键26与第一旋转体21的内周面和第二旋转体22的外周面啮合。
中间齿轮23经三线螺纹等多线螺纹28与滚筒27连接,在该滚筒27和中间齿轮23之间夹装有扭转弹簧29。
中间齿轮23通过扭转弹簧29而被向气门正时的延迟(遅角)方向(图2中的左方向)施力,当电磁延迟装置24产生磁力时,中间齿轮23经滚筒27和多线螺纹28向提前(進角)方向(图2中的右方向)运动。
随着该中间齿轮23的轴向位置的不同,旋转体21、22的相对相位发生变化,从而进气凸轮轴134相对于曲柄轴120的相位发生变化。
ECU114根据内燃机101的运转状态来控制电磁延迟装置24。
此外,可变气门正时机构113并不限定于图2所示的结构,可以适当采用能使凸轮轴相对于曲柄轴的旋转相位变化的公知的机构。例如,可以通过日本特开2003-184516号公报中公开的具有螺旋状引导件而成的可变气门正时机构、或者日本特开2007-120406号公报中公开的液压叶片式的可变气门正时机构等来改变进气门105的气门正时。
此外,内燃机101具有交流发电机(发电机)171。曲柄轴120的旋转通过传动机构172而传递至交流发电机171,由此,交流发电机171以与内燃机101的旋转成比例的速度旋转,成为能够发电状态。
在交流发电机171的输出端子,连接有蓄电池173的正极端子并且连接有电气负载174,通过交流发电机171来进行蓄电池173的充电,并且将交流发电机171的发电电流供给至燃料喷射阀131和图外的点火线圈等被恒常驱动的电气负载174,另外,根据需要将发电电流供给至前照灯、雨刷、空调等电气负载174。
ECU114内置有微型计算机,其按照预先存储于存储器的程序来进行运算,并对电子控制式节气门装置104、可变气门正时机构113以及燃料喷射阀131等进行控制。
来自各种传感器的检测信号被输入至ECU114。作为各种传感器,内燃机101具有以下等传感器:油门开度传感器116,其设置于油门踏板116a,用于检测油门开度ACC;空气流量传感器115,其检测内燃机101的空气进入量Q;曲柄角度传感器117,其与曲柄轴120的旋转对应地输出脉冲状的旋转信号POS;节气门传感器118,其检测节气门103b的开度TVO;水温传感器119,其检测内燃机101的冷却水的温度TW;凸轮传感器133,其与进气凸轮轴134的旋转对应地输出脉冲状的凸轮信号PHASE;制动开关122,其在踩踏了制动踏板121的制动时接通;车速传感器123,其检测车辆的行驶速度VSP;以及进气压力传感器126,其检测进气压力PB。
另外,向ECU114输入以下信号:作为内燃机101的运转和停止的主开关的点火开关124的接通和断开信号;起动开关125的接通和断开信号;以及蓄电池173的电压信号VB。
图3表示曲柄角度传感器117和凸轮传感器133的结构。
曲柄角度传感器117具有:信号板152,其轴支承于曲柄轴120,在该信号板152的周围具有作为被检测部的凸起部151;以及旋转检测装置153,其固定于内燃机101侧,用于检测凸起部151并输出旋转信号POS。
旋转检测装置153具有检测凸起部151的拾取器,并同时具有包括波形产生电路、选择电路等的各种处理电路,旋转检测装置153所输出的旋转信号POS通常为低电平,而在检测到所述凸起部151时在一定时间内为高电平。
信号板152的凸起部151以曲柄角度为10deg的间距等间隔地设置,但是在夹着曲柄轴120的旋转中心地对置的两个部位设置有连续缺失了两个凸起部151的部分。
此外,凸起部151的缺失数也可以是一个,也可以连续地缺失三个以上。
因此,关于从曲柄角度传感器117输出的脉冲状的旋转信号POS,如图4所示,每隔作为单位曲柄角度的10deg的曲柄角度,该旋转信号POS就会变成高电平,在连续16次这样地变成高电平之后,在30deg的间隔内保持低电平,然后再度连续16次变成高电平。
因此,30deg的低电平期间后的最初的旋转信号POS以180deg曲柄角度的间隔输出,该180deg的曲柄角度相当于本实施方式的四缸内燃机101中的气缸间的行程相位差,换言之,相当于点火间隔。
另一方面,凸轮传感器133具有:信号板158,其轴支承于进气凸轮轴134的端部,在该信号板158的周围具有作为被检测部的凸起部157;以及旋转检测装置159,其固定于内燃机101侧,用于检测凸起部157并输出凸轮信号PHASE。
旋转检测装置159具有检测凸起部157的拾取器,并同时具有包括波形整形电路等的各种处理电路。
信号板158的凸起部157在每隔90deg的凸轮角度的四个部位分别设置有1个、3个、4个、2个,在连续设置有多个凸起部157的部分,凸起部157的间距设定成30deg的曲柄角度、15deg的凸轮角度。
另外,如图4所示,从凸轮传感器133输出的为脉冲信号的凸轮信号PHASE通常为低电平,该凸轮信号PHASE通过检测到所述凸起部157而变成高电平并持续一定时间,并且每隔90deg的凸轮角度、180deg的曲柄角度(CA)而变成1个单独、3个连续、4个连续、2个连续的高电平。
此外,1个单独的凸轮信号PHASE、以及多个连续输出的凸轮信号PHASE中的开头信号隔开180deg的曲柄角度而输出。
凸轮信号PHASE的连续输出数表示气缸编号,在本实施方式的四缸内燃机101中,与下述情况相对应:气缸间的行程的相位差为180deg的曲柄角度,点火按照第一气缸(#1cyl)→第三气缸(#3cyl)→第四气缸(#4cyl)→第二气缸(#2cyl)的顺序进行。
ECU114通过计算凸轮信号PHASE的连续输出数,来判别活塞位置位于上死点TDC等预定位置的气缸,并根据相关的判别结果来确定应进行燃料喷射或点火的气缸,并且针对各个气缸输出喷射脉冲信号或点火信号。
例如,根据旋转信号POS的周期的变化来判断旋转信号POS的缺失部位,以该缺失部分为基准,来确定对计算凸轮信号PHASE的产生数的180deg的曲柄角度的区间,根据该计数区间中的凸轮信号PHASE的产生数来检测下一个将要到达上死点TDC的气缸。
此处,通过利用可变气门正时机构113改变进气凸轮轴134相对于曲柄轴120的旋转相位,旋转信号POS和凸轮信号PHASE的相位发生变化。
因此,ECU114以旋转信号POS的缺失部分为基准,检测出基准曲柄角度位置REF,并且检测出从该基准曲柄角度位置REF到输出凸轮信号PHASE为止的角度,来作为表示基于可变气门正时机构113的进气凸轮轴134的旋转相位的值。
另外,在可变气门正时机构113的控制中,ECU114根据内燃机负载、内燃机旋转速度等内燃机运转状态对目标旋转相位进行运算,通过基于实际旋转相位和目标旋转相位之间的偏差的比例·积分·微分动作,对电磁延迟装置24的操作量进行运算,根据该操作量来驱动电磁延迟装置24。
如上所述,ECU114根据旋转信号POS来检测进气凸轮轴134的旋转相位,并且根据旋转信号POS对内燃机旋转速度NE进行运算,而且根据旋转信号POS来检测曲柄轴120的旋转位置。
即,旋转信号POS兼作曲柄轴120的旋转位置的测量信号,ECU114通过对从旋转信号POS的缺失部分、或者以缺失部分为基准检测到的基准曲柄角度位置REF开始的旋转信号POS的产生数进行计数,来检测曲柄轴120的旋转位置。
但是,在内燃机101即将停止前,存在曲柄轴120借助于缸内的压缩压力等向相反方向旋转的情况,如果在所述反转时仍与正转时相同地对旋转信号POS的产生数进行计数,则曲柄轴120的停止位置的检测会产生误差。
因此,曲柄角度传感器117在曲柄轴120的正转时和反转时输出脉冲宽度不同的旋转信号POS,以使ECU114能够判别内燃机101的正转和反转(参照图5)。
作为根据旋转轴的旋转方向而产生脉冲宽度不同的脉冲信号的方法,例如使用日本特开2001-165951号公报中公开的方法。具体来说,产生相位相互错开的两个信号作为信号板152的凸起部151的检测脉冲信号,通过比较这些信号来判定正转和反转,根据正转和反转的判定结果来选择形成为不同的脉冲宽度WP的两个脉冲信号中的一方并将其输出。
ECU114测量旋转信号POS的脉冲宽度WP,并对测量出的脉冲宽度WP和脉冲宽度WP的阈值SL进行比较,由此来判断是正转时的脉冲宽度WP还是反转时的脉冲宽度WP,从而判断内燃机101的作为输出轴的曲柄轴120是正转还是反转。
此外,在本实施方式中,如图5所示,将正转时的脉冲宽度WP设定成45μs,将反转时的脉冲宽度WP设定成90μs,但是脉冲宽度WP并不限定于上述的45μs、90μs。此外,也可以将正转时的脉冲宽度WP设定成比反转时的脉冲宽度WP要大。
另外,在图5所示的例子中,旋转信号POS是在通常时为低电平、在位于预定的角度位置时变成一定时间的高电平的脉冲信号,但也可以是在通常时为高电平、在位于预定的角度位置时变成一定时间的低电平的脉冲信号,在该情况下,可以设定成低电平期间的时间根据旋转方向的不同而不同,并将低电平期间的时间作为脉冲宽度WP测量出来从而判别旋转方向。
在正转和反转的判别中使用的脉冲宽度WP的阈值SL设定成正转时的脉冲宽度WP和反转时的脉冲宽度WP的中间值。并且,如果测量出的脉冲宽度WP在阈值SL以上,则ECU114判断为曲柄轴120反转,如果测量出的脉冲宽度WP小于阈值SL,则ECU114判断为曲柄轴120正转。
另外,如果曲柄轴120正转,则ECU114在旋转信号POS的输出时刻判断为曲柄轴120比上一次向正转方向旋转了相当于旋转信号POS的产生间隔的曲柄角度。此外,如果曲柄轴120反转,则ECU114在旋转信号POS的输出时刻判断为曲柄轴120比上一次向反转方向旋转了相当于旋转信号POS的产生间隔的曲柄角度。
ECU114持续地进行基于正转和反转的判别的曲柄轴120的旋转角度的检测,直到内燃机101停止为止,由此来检测曲柄轴120的停止位置。
如上所述,当判别正转和反转从而对曲柄轴120的旋转位置进行检测时,即使存在前曲柄轴120在内燃机101即将停止反转的情况,也能够高精度地判断曲柄轴120的停止位置。另外,如果存储了曲柄轴120的停止位置,并且在再起动时推定为曲柄轴120从存储的停止位置开始旋转,则能够使燃料喷射和点火及早开始。
例如,如果由于曲柄轴120在内燃机101即将停止前反转而使得曲柄轴120的停止位置不清楚,则在再起动时,曲柄轴120的旋转位置在初次检测到旋转信号POS的缺失部分之前是不清楚的,因而推迟了燃料喷射和点火的开始。
在本实施方式中,ECU114进行这样的怠速停止(idle stop)控制:当在内燃机101的怠速运转状态下判断出自动停止条件成立时,使内燃机101自动停止,当在使内燃机101自动停止后判断出再起动条件成立时,使内燃机101自动地再起动。此处,在使内燃机101自动地再起动时,如果及早开始燃料喷射和点火,则能够提高内燃机101的再起动性。
在怠速停止控制中,例如在车速VSP为0km/h、内燃机旋转速度NE为预定旋转速度以下、油门开度ACC为全闭、制动开关122为接通的制动状态、冷却水的温度TW为预定温度以上等条件全部成立时,ECU114判断为怠速停止条件(自动停止条件)成立,使燃料喷射和点火停止,并且使内燃机101停止。
所述预定旋转速度是用于判断内燃机101的怠速旋转状态的值,其设定成比目标怠速旋转速度稍高。此外,所述预定温度是用于判断内燃机101的完全预热(completely warmed-up)状态的值。
另一方面,如果在内燃机101自动停止的状态下,例如制动开关122被切换成断开、油门踏板被踩踏、自动停止状态的持续时间比基准时间要长、并且判断出蓄电池电压的降低,则ECU114判断为再起动条件成立,从而使对内燃机101的燃料喷射和点火再次开始。
此外,在再起动时,可以使用起动电动机来使内燃机101开始旋转,此外,也可以不使用起动电动机,而是借助于燃烧室内的燃料的燃烧而产生的压力来使内燃机101开始旋转。
另外,如上所述,通过比较旋转信号POS的脉冲宽度WP和阈值SL来进行曲柄轴120的正转和反转的判断,但是旋转信号POS的脉冲宽度WP的测量值由于曲柄角度传感器117的偏差、或测量脉冲宽度WP的ECU114的偏差等而发生变动。
因此,在将阈值SL作为固定值而预先赋予了的情况下,存在不能正确地判定曲柄轴120的正转和反转的可能性。
因此,ECU114具有这样的阈值SL的学习功能:根据脉冲宽度WP的测量值来设定并存储阈值SL,根据存储的阈值SL进行正转和反转的判定。
下面,根据图6和图7的流程图,对利用ECU114实现的阈值SL的学习功能进行说明。
图6的流程图表示ECU114在每次产生旋转信号POS时所执行的流程。
在步骤S1001中,对旋转信号POS的脉冲宽度WP进行测量。
具体来说,例如,检测旋转信号POS的上升沿和下降沿,测量从上升沿到下降沿为止的时间,将该测量出的时间作为脉冲宽度WP。
在接下来的步骤S1002中,对在步骤S1001中测量出的脉冲宽度WP和阈值SL进行比较。然后,如果脉冲宽度WP小于阈值SL,则判定为曲柄轴120正转,进入步骤S1003,将标记FH设定为0。
另一方面,当在步骤S1002中判断为脉冲宽度WP在阈值SL以上的情况下,判定为曲柄轴120反转,进入步骤S1004,将标记FH设定为1。
即,标记FH为1的情况表示曲柄轴120反转,所述标记FH为0的情况表示曲柄轴120正转。
在步骤S1005中,执行在每当产生旋转信号POS时都要进行的除正转和反转判定以外的中断处理。
在所述中断处理中,包含通过旋转信号POS的计数完了(count up)而实现的旋转轴120的旋转位置的检测、以及旋转信号POS的缺失部分的检测等。
另一方面,图7的流程图表示在ECU114中每隔固定时间(例如10ms)而中断执行的流程。
在步骤S2001中,读取内燃机旋转速度NE、起动开关125的接通和断开信号、以及由空气流量传感器115检测出的空气进入量Q等表示内燃机101的运转状态的信息。
在接下来的步骤S2002中,根据在步骤S2001中读取的表示内燃机运转条件的数据,对是否为曲柄轴120正转的条件进行判断。
具体来说,在以下条件(1)~(6)中的至少一个成立的情况下,判断为是曲柄轴120正转的条件。
另外,如果基于以下条件(1)~(6)中的多个成立的情况来判断为正转的话,则能够提高正转和反转的判定精度。
(1)内燃机旋转速度NE在预定旋转速度NES以上;
(2)根据凸轮信号PHASE而判别为位于预定的活塞位置的气缸沿正转方向切换;
(3)内燃机负载TP在预定负载TPS以上;
(4)起动开关125的接通状态;
(5)进气压力PB相对于大气压力增大或减小了预定量以上的状态;
(6)蓄电池电压VB在预定电压VBS以上。
关于条件(1),对内燃机旋转速度NE、即曲柄轴120的旋转速度是否为已上升的状态进行判断。预定旋转速度NES设定成在曲柄轴120反转时无法达到的旋转速度,例如,将预定旋转速度NES设为500rpm。
即,内燃机101反转时的内燃机旋转速度NE的最大值比内燃机101正转时的内燃机旋转速度NE的最大值要低,因此在达到了超过反转时的内燃机旋转速度NE的最大值的内燃机旋转速度NE的情况下,可以判断为曲柄轴120正转。
关于条件(2),对下述气缸是否按照与内燃机101正转时对应的顺序更新进行判断,所述气缸是ECU114根据凸轮信号PHASE而判断为活塞位于预定位置的气缸。如上所述,内燃机101的点火顺序是第一气缸→第三气缸→第四气缸→第二气缸,因此该点火顺序成为与内燃机101正转时对应的更新顺序,如果判别为处于预定的活塞位置的气缸按照该顺序进行更新,则曲柄轴120正转。
关于所述条件(3),对内燃机101是否在只有在内燃机101的正转状态下才能够实现的内燃机负载下运转进行判断。因此,预定负载TPS设定成比内燃机101在即将停止前从正转颠倒为反转那样的低负载状态要高的内燃机负载,如果内燃机101在为预定负载TPS以上的内燃机载荷TP下运转,则判断为正转状态。
换言之,在内燃机101反转的情况下,内燃机101不会在超过预定负载TPS的内燃机负载下运转,如果内燃机负载在预定负载TPS以上,则判断为曲柄轴120正转。
作为表示内燃机负载的状态量,优选使用由空气流量传感器115检测出的空气进入量Q、基于空气进入量Q而计算出的燃料喷射量等表示抽吸至内燃机101的空气量的大小的状态量。
此处,预定负载TPS设定得越高,正转状态的判定精度越高,但是将预定负载TPS设定成例如在内燃机101的怠速运转时判断为条件(4)成立的程度,也能够获得必要且充分的判定精度。
关于条件(4),对内燃机101是否为起动操作状态进行判断。在起动开关125为接通状态、并且是通过起动电动机使内燃机101旋转的曲柄转动起动(cranking)状态的情况下,曲柄轴120向起动电动机的旋转方向、即正转方向旋转。因此,如果起动开关125为接通开状态,换言之,如果内燃机101为起动操作状态,则可以判断为曲柄轴120正转。
关于条件(5),对作为进气管102内的压力的进气压力PB的发展状态进行判断,换言之,对进气压力PB是否从大气压力变化了预定量以上进行判断。
曲柄轴120的反转发生在内燃机101即将停止前,该情况下,进气压力PB接近大气压力。换言之,在进气压力PB从大气压力变化了预定量以上的情况下,可以判断为曲柄轴120处于正转状态,关于进气压力PB是否从大气压力变化了预定量以上,可以通过比较进气压力PB和预定压力PBS来进行判断。
如上所述,由于在反转时进气压力PB接近大气压力,所以将从大气压力偏离了预定量以上的压力、即在曲柄轴120反转时无法达到的进气压力PB设定成所述预定压力PBS,从而在进气压力PB比该预定压力PBS离大气压力更远的情况下可以判断为正转状态。
此处,如果内燃机101是自然进气机,则在全开运转状态下进气压力PB接近大气压力,因此将预定压力PBS设定成负压力,在进气压力PB成为大于等于预定压力PBS的负压的情况下,换言之,当内燃机101在进气负压较大的低负载下运转的情况下,判断为曲柄轴120正转。
此外,在内燃机101具有增压机的情况下,进气压力PB由于增压而高于大气压力,因此将预定压力PBS设定成正压力,在进气压力PB成为大于等于预定压力PBS的正压力的内燃机负载的上升状态下,可以判断为曲柄轴120正转。
关于条件(6),根据蓄电池电压VB对被内燃机101驱动的交流发电机171是否处于发电状态中进行判断。
通过内燃机101正转,交流发电机171发电,从而蓄电池电压VB通过交流发电机171的发电而变高,因此将通过交流发电机171发电而达到的蓄电池电压VB设定成预定电压VBS。
由此,如果蓄电池电压VB在预定电压VBS以上,则可以判断为交流发电机171处于发电状态中,进而,如果交流发电机171正在发电,则可以判断为曲柄轴120正转。
此外,在内燃机101为自然进气机的情况下,进气压力PB由于内燃机负载的增大而从负压力向大气压力接近,此外,如上所述,进气压力PB在反转状态下也接近大气压力,因此在根据进气压力PB来进行内燃机负载的判断的情况下,要从正转判断区域中排除掉大气压力附近,在为负压力产生状态的情况下,可以判断为内燃机101正转。
另一方面,在具有增压机的内燃机101的情况下,进气压力PB由于内燃机负载的增大而从大气压力变为更高的正压力,因此在根据进气压力PB来进行内燃机负载的判断的情况下,在进气压力PB比大气压力高出预定量以上的情况下,可以判断为内燃机101正转。
当在步骤S2002中判断为内燃机旋转速度NE、内燃机负载TP等不满足曲柄轴120正转的条件的情况下,换言之,在存在曲柄轴120反转的可能性的情况下,进入步骤S2003。
在步骤S2003中,将对脉冲宽度WP的样本数进行计数的计数值CN设置为0,并且将脉冲宽度WP的平均值AVWP重置为初始值。
作为所述初始值,采用正转时的脉冲宽度WP的设计值。在本实施方式的情况下,正转时的脉冲宽度WP的设计值为45μs。
另一方面,当在步骤S2002中判断为内燃机旋转速度NE、内燃机负载TP等满足曲柄轴120正转的条件的情况下,换言之,在推定曲柄轴120正转的情况下,进入步骤S2004。
在步骤S2004中,使计数值CN比上次值CNz增加1。
在接下来的步骤S2005中,将最近测量出的脉冲宽度WP和上一次的平均值AVWPz进行加权平均,将该加权平均值作为此次的平均值AVWP。
AVWP=AVWPz×0.9+WP×0.1
此外,脉冲宽度WP的平滑化处理并不限定于所述加权平均运算,也可以是普通平均运算等。此外,加权平均运算中使用的系数并不限定于上述系数。
在步骤S2006中,对计数值CN是否在判定值以上进行判断。
所述判定值例如为100,其根据足以求出正转时的旋转信号POS的脉冲宽度WP的平均值的样本数来设定。
当在步骤S2006中判断为计数值CN小于判定值时,判断为平均值AVWP的可靠性不足,从而绕过步骤S2007~步骤S2009进入步骤S2010。
在步骤S2010中,将此次在步骤S2004中增大后的计数值CN的值设定为上次值CNz,将此次在步骤S2005中更新后的平均值AVWP设定为上次值AVWPz。
另一方面,当在步骤S2006中判断为计数值CN在判定值以上的情况下,进入步骤S2007。
在步骤S2007中,将此次在步骤S2005中更新后的平均值AVWP和预先存储的裕量MA相加,将该相加结果设定成在步骤S1002中用于判定正转和反转的阈值SL,并存储该新的阈值SL。
阈值SL=AVWP+裕量MA
在正转时的脉冲宽度WP设定为45μs、反转时的脉冲宽度WP设定为90μs的本实施方式的情况下,所述裕量MA设定为例如10μs左右。
即,在脉冲宽度WP达到由正转时的脉冲宽度的平均值AVWP和裕量MA相加而得的时间以上时,判定为曲柄轴120反转。
关于所述裕量MA,加入正转时的标准脉冲宽度WP和反转时的标准脉冲宽度WP之差、脉冲宽度WP的波动宽度等预先进行调整,并存储起来。但是,可以根据正转时的脉冲宽度WP相对于标准值是短还是长,来设定不同的值作为裕量MA,或者可以根据基于阈值SL(该阈值SL根据裕量MA而设定)而判断为反转时的脉冲宽度的脉冲宽度WP来修正裕量MA。
此外,在正转时的脉冲宽度WP设定成比反转时的脉冲宽度WP要长的情况下,只要将所述平均值AVWP减去裕量MA而得到的结果作为阈值SL即可。
如上所述,如果根据在曲柄轴120正转的状态下测量出的脉冲宽度WP来使阈值SL进行学习,则在脉冲宽度WP的测量值由于各种因素而相对于设计值波动时,能够与此相对应地改变阈值SL,因此能够提高正转和反转的判定精度。
另外,如果正转和反转的判定精度得以提高,则内燃机101的停止位置的判定精度提高,能够迅速且高精度地控制从怠速停止状态进行再起动时的燃料喷射和点火,能够提高内燃机101的再起动性。
在步骤S2008中,对在步骤S2007中更新后的阈值SL是否在最大值以上、或者在最小值以下进行判断。
在正转时的脉冲宽度WP设定为45μs、反转时的脉冲宽度WP设定为90μs的本实施方式的情况下,所述最大值设定为例如150μs,所述最小值设定为例如20μs。
所述最大值和最小值根据脉冲宽度WP的波动范围来设定,并设定成在容许的脉冲宽度WP的波动内阈值SL所不会超过的值。
换言之,相对于容许的脉冲宽度WP的波动,阈值SL在夹在最大值和最小值之间的范围内变化,所述阈值SL设定成当脉冲宽度WP由于曲柄角度传感器117等的异常而超过容许的波动地变化时,所述阈值SL通过运算而成为被所述最大值和最近值所夹的范围之外的值。
因此,在步骤S2008中,当判断为阈值SL在最大值以上、或在最小值以下的情况下,可以诊断为:由于曲柄角度传感器117的异常,旋转信号POS的脉冲宽度WP超过容许的波动地变化。
在旋转信号POS的脉冲宽度WP产生了异常的情况下,不能根据脉冲宽度WP的判别来进行正转和反转的判定,由此,内燃机101的再起动性降低,因此进入步骤S2009,禁止怠速停止控制。
即,如果不能根据旋转信号POS的脉冲宽度WP来进行正转和反转的判定,则在内燃机101在即将停止前发生了反转的情况,下无法正确地检测出内燃机101的停止位置,因此无法根据停止位置来设定再起动时的燃料喷射时机和点火时期。
因此,在再起动时,直到检测出旋转信号POS的缺失位置、并且判别出处于预定活塞位置的气缸时,才能够开始进行燃料喷射和点火,因而起动时间变长,再起动性降低。
因此,在步骤S2009中,通过禁止怠速停止控制来使停止位置的检测结果无效,以使怠速停止在再起动性降低了的状态下不会被执行,然后进入步骤S2010。
但是,在再起动时,在即使在检测出旋转信号POS的缺失位置、并且判别出处于预定的活塞位置的气缸之后才开始进行燃料喷射和点火,起动性也不会降低到会损害起动加速性的情况下,或者在容许起动性的降低的情况下,也可以禁止基于正转和反转的判定而实现的停止位置的检测,或者使停止位置的检测结果无效,并且容许怠速停止控制的实施。
另一方面,当在步骤S2008中判断为阈值SL小于最大值、并且大于最小值的情况下,推定为旋转信号POS的脉冲宽度WP在容许的范围内波动。
因此,当在步骤S2008中判断为阈值SL小于最大值、并且大于最小值的情况下,通过绕过步骤S2009而进入步骤S2010,来允许怠速停止控制。该情况下,根据正转和反转的判定来进行停止位置的检测,使该检测结果有效,在从怠速停止起进行再起动时,根据停止位置的存储来检测曲柄轴120的角度位置。
在图7的流程图所示的实施方式中,判断为,在曲柄轴120正转的条件成立时测量出的脉冲宽度WP是正转时的脉冲宽度,并使阈值SL根据脉冲宽度WP进行学习,但是也可以使阈值SL根据在曲柄轴120反转的条件下测量出的脉冲宽度WP进行学习。
在以反转时的脉冲宽度WP为基准来使阈值SL进行学习的情况下,只要在图7的流程图的步骤S2002中判断是否满足反转条件,并且在步骤S2007中将“AVWP-裕量MA”作为新的阈值SL即可。
在步骤S2002中的反转条件的判断中,如日本特开2004-052698号公报公开的那样,可以根据旋转信号POS的周期或周期比来判断是否满足曲柄轴120反转的条件。
具体来说,当内燃机101在即将停止前从正转切换成反转时,旋转信号POS的周期TPOS变长,而成为在正转时不会产生的周期TPOS,因此在周期TPOS变得比判定值TSL更长的情况下,可以判断为满足曲柄轴120的反转条件。所述判定值TSL设定成当内燃机101在正转状态下停止的情况下不会被周期TPOS超过的值。
此外,通过内燃机101从正转状态切换成反转状态,周期TPOS突然变长,周期TPOS的测量结果的最新值TPOS与上次值TPOSz之比、即周期比RT(RT=TPOS/TPOSz)变大而成为在正转时不会产生的大小,因此在周期比RT比判定值RTS要大的情况下,可以判定为满足曲柄轴120的反转条件。所述判定值RTS设定成当内燃机101在正转状态下停止的情况下不会被周期比RT超过的值。
此外,在本实施方式中,设置有缺失部位,在该缺失部位,旋转信号POS的周期TPOS比原来的10deg周期要长,因此如上所述,在根据周期TPOS来判定反转条件的情况下,对周期TPOS是否是测量了缺失部分而得到的结果进行判别,在使用缺失部分的周期TPOS的情况下,将判定值TSL、RTS切换成与缺失部分相适合的值。
当判断为反转条件成立时,求出在反转状态下测量出的脉冲宽度WP的平均值AVWP,根据该平均值AVWP来更新阈值SL。
在本实施方式中,将正转时的脉冲宽度WP设定成45μs,将反转时的脉冲宽度WP设定成90μs,由于反转时的脉冲宽度WP更长,所以将在反转时测量出的脉冲宽度WP的平均值AVWP减去裕量MA而得到的值设定为阈值SL。所述裕量MA与正转时一样为10μs左右。
此外,由于曲柄轴120持续反转的期间短,所以也可以使在求取脉冲宽度WP的平均值AVWP时的要求样本数比正转时要少。
此外,当在正转条件成立时和反转条件成立时分别计算出基于脉冲宽度WP的平均值AVWP的阈值SL、或者基于该平均值AVWP和裕量MA的阈值SL的情况下,作为最终在正转和反转的判定中使用的阈值SL,可以采用下述两个值的中间值,所述两个值中的一个值是在正转条件成立时求出的平均值AVWP或阈值SL,所述两个值中的另一个值是在反转条件成立时求出的平均值AVWP或阈值SL。
此处,中间值可以是正转时的值和反转时的值所夹的区域的中央值。
此外,也可以根据求出了平均值AVWP时的脉冲宽度WP的样本数、以及基于学习频度等的可靠性的不同,对正转时的值和反转时的值附加权重值,进而设定阈值SL。
在内燃机101中,由于在正转状态下运转的情况要远多于反转状态,所以一般正转时的平均值AVWP的可靠性更高。
因此,例如可以将相对于下述两个值所夹的区域的中央值按照区域宽度的预定比例向正转时的值接近的值作为最终的阈值SL,其中,所述两个值中的一个值是在正转时求出的平均值AVWP或基于该平均值AVWP而设定的阈值SL,所述两个值中的另一个值是在反转时求出的平均值AVWP或基于该平均值AVWP而设定的阈值SL。
此外,可以将在正转时求出的平均值AVWP或基于该平均值AVWP而设定的阈值SL、和在反转时求出的平均值AVWP或基于该平均值AVWP而设定的阈值SL的加权平均值作为最终的阈值SL,并且将加权平均运算中的与正转时求出的值对应的权重值设定成比与反转时求出的值对应的权重值要大。
另外,反转时的学***均值AVWP的时刻起经过的时间越长,使与在反转时求出的值对应的权重值越小,并相对地使与在正转时求出的值对应的权重值越大。
此外,在上述实施方式中,作为在曲柄轴120的正转和反转时不同的旋转信号POS,产生了在正转和反转时脉冲宽度WP不同的旋转信号POS,但是例如也可以使脉冲状的旋转信号POS的振幅在正转和反转时不同。
例如,在旋转信号POS是在通常时为低电平、在成为预定角度位置时变成一定时间的高电平的脉冲信号的情况下,可以将所述高电平的高度设定成在正转和反转时不同。
该情况下,通过根据在满足曲柄轴120的正转条件和/或反转条件时的旋转信号POS的振幅,来设定振幅的阈值SL,也能够得到与所述实施方式相同的作用和效果。
另外,可以设定成旋转信号POS的脉冲宽度WP和振幅两者在正转和反转时都不同,例如,在基于脉冲宽度WP的正转和反转的判定结果、和基于振幅的正转和反转的判定结果一致的情况下,输出正转和反转的判定结果,在两者的判定结果不一致的情况下,输出旋转方向不明的判定结果。
此外,在上述实施方式中,在正转和反转时不同的旋转信号POS兼用作曲柄轴120的旋转位置的测量信号,但是也可以分别产生用于检测曲柄轴120的正转和反转的旋转信号、以及曲柄轴120的旋转位置的测量信号。
但是,如果使在曲柄轴120的正转和反转时不同的旋转信号POS兼用作曲柄轴120的旋转位置的测量信号,则能够减少旋转检测器的数量,并且能够使信号的处理电路简化。
此外,在上述实施方式中,根据阈值SL与最大值和最小值的比较来诊断曲柄角度传感器117有无异常,但是也可以根据平均值AVWP与该平均值AVWP的容许变化区域的比较来进行异常诊断,或者也可以根据所述阈值SL或平均值AVWP的上次值与此次值的偏差来进行异常诊断。
此外,关于对旋转轴正转的条件或反转的条件进行判定、并根据判定为满足正转条件或反转条件时的旋转信号来设定阈值的旋转检测装置,并不限定于内燃机的输出轴的旋转检测,可以应用于存在反转的可能性的旋转轴的旋转检测。本申请的发明所涉及的旋转检测装置和方法可以应用于例如构成车辆的动力传递装置的旋转轴、即在车辆前进和后退时旋转方向被切换的旋转轴的旋转检测。在车辆前进和后退时旋转方向被切换的旋转轴例如为变速器的输出轴。
此外,在上述实施方式中,以所述旋转信号POS在预定的曲柄角度位置缺失的方式构成了曲柄角度传感器117,但是,例如也可以使用通过检测内燃机101的环形齿轮来无缺失地输出旋转信号POS的曲柄角度传感器。
这里,通过引用的方式吸收了在2009年3月18日提出的日本专利申请第2009-066483号公报和在2009年12月24日提出的日本专利申请第2009-292797号公报的全部内容。
尽管只选择了少数实施例来说明本发明,但对本领域技术人员来说,显然可以做出各种变化和修改而仍然不偏离所附权利要求书中定义的发明范围。
另外,依照本发明所做的上述实施例的描述仅作说明用途,并非对所附权利要求书及其等同内容所定义的发明进行限制。

Claims (20)

1.一种旋转检测装置,其根据在旋转轴的正转时和反转时不同的旋转信号与阈值的比较,来判定所述旋转轴的正转和反转,所述旋转信号是与所述旋转轴的旋转对应地输出的旋转信号,所述旋转检测装置的特征在于,
所述旋转检测装置对所述旋转轴向一侧旋转的条件进行判定,并且根据满足所述旋转轴向一侧旋转的条件时的所述旋转信号,来设定所述阈值。
2.根据权利要求1所述的旋转检测装置,其特征在于,
所述旋转轴是内燃机的输出轴,
所述旋转检测装置根据内燃机旋转速度、处于预定活塞位置的气缸、内燃机负载、起动操作状态、进气压力以及蓄电池的电压中的至少一方,来判定所述输出轴是否正转。
3.根据权利要求2所述的旋转检测装置,其特征在于,
在所述内燃机旋转速度上升了的状态下,所述旋转检测装置判定为所述输出轴正转。
4.根据权利要求2所述的旋转检测装置,其特征在于,
在判别为位于所述预定活塞位置的气缸的更新顺序正常的情况下,所述旋转检测装置判定为所述输出轴正转。
5.根据权利要求2所述的旋转检测装置,其特征在于,
在所述内燃机负载增大了的状态下,所述旋转检测装置判定为所述输出轴正转。
6.根据权利要求2所述的旋转检测装置,其特征在于,
在所述内燃机的起动操作状态下,所述旋转检测装置判定为所述输出轴正转。
7.根据权利要求2所述的旋转检测装置,其特征在于,
在所述内燃机的进气压力从大气压力增大或减小了预定量以上的状态下,所述旋转检测装置判定为所述输出轴正转。
8.根据权利要求2所述的旋转检测装置,其特征在于,
在所述内燃机所具有的蓄电池的电压上升了的状态下,所述旋转检测装置判定为所述输出轴正转。
9.根据权利要求2至8中的任一项所述的旋转检测装置,其特征在于,
所述旋转检测装置根据所述旋转轴的正转和反转的判定,对所述内燃机的停止位置进行检测,并且对所述阈值是否异常进行判定,在判定为所述阈值异常的情况下,使所述停止位置的检测结果无效。
10.根据权利要求1至8中的任一项所述的旋转检测装置,其特征在于,
所述旋转信号是每隔所述旋转轴的单位旋转角度进行输出的脉冲信号,在所述旋转轴的正转和反转时,所述旋转信号的脉冲宽度不同,
所述旋转检测装置对所述旋转信号的脉冲宽度进行测量,并根据测量出的脉冲宽度是否比所述阈值长,来判定所述旋转轴的正转和反转。
11.一种旋转检测方法,在该旋转检测方法中,输入在旋转轴的正转时和反转时不同的旋转信号,并根据所述旋转信号和阈值的比较来判定所述旋转轴的正转和反转,所述旋转信号是与所述旋转轴的旋转对应地输出的旋转信号,所述旋转检测方法的特征在于,
在所述旋转检测方法中,对所述旋转轴向一侧旋转的条件进行判定,根据满足所述旋转轴向一侧旋转的条件时的所述旋转信号,来变更所述阈值。
12.根据权利要求11所述的旋转检测方法,其特征在于,
所述旋转轴是内燃机的输出轴,
对所述旋转轴向一侧旋转的条件进行判定的步骤是如下步骤:作为所述内燃机的运转条件,对内燃机旋转速度、处于预定活塞位置的气缸、内燃机负载、起动操作状态、进气压力以及蓄电池的电压中的至少一方进行检测,
根据所述运转条件,对所述输出轴是否正转进行判定。
13.根据权利要求12所述的旋转检测方法,其特征在于,
检测所述运转条件的步骤是检测内燃机旋转速度的步骤,
判定所述输出轴是否正转的步骤是这样的步骤:在内燃机旋转速度上升了的状态下,判定为所述输出轴正转。
14.根据权利要求12所述的旋转检测方法,其特征在于,
检测所述运转条件的步骤是检测位于预定活塞位置的气缸的步骤,
判定所述输出轴是否正转的步骤是这样的步骤:在判别为位于预定活塞位置的气缸的更新顺序正常的情况下,判定为所述输出轴正转。
15.根据权利要求12所述的旋转检测方法,其特征在于,
检测所述运转条件的步骤是检测内燃机负载的步骤,
判定所述输出轴是否正转的步骤是这样的步骤:在内燃机负载增大了的状态下,判定为所述输出轴正转。
16.根据权利要求12所述的旋转检测方法,其特征在于,
检测所述运转条件的步骤是检测所述内燃机的起动操作状态的步骤,
判定所述输出轴是否正转的步骤是这样的步骤:在所述内燃机的起动操作状态下,判定为所述输出轴正转。
17.根据权利要求12所述的旋转检测方法,其特征在于,
检测所述运转条件的步骤是检测所述内燃机的进气压力的步骤,
判定所述输出轴是否正转的步骤是这样的步骤:在所述内燃机的进气压力从大气压力增大或减小了预定量以上的状态下,判定为所述输出轴正转。
18.根据权利要求12所述的旋转检测方法,其特征在于,
检测所述运转条件的步骤是检测所述内燃机所具有的蓄电池的电压的步骤,
判定所述输出轴是否正转的步骤是这样的步骤:在所述蓄电池的电压上升了的状态下,判定为所述输出轴正转。
19.根据权利要求12至18中的任一项所述的旋转检测方法,其特征在于,
根据所述旋转轴的正转和反转,对所述内燃机的停止位置进行检测,
并且对所述阈值是否异常进行诊断,
在诊断为所述阈值异常的情况下,使所述停止位置无效。
20.根据权利要求11至18中的任一项所述的旋转检测方法,其特征在于,
所述旋转信号是每隔所述旋转轴的单位旋转角度进行输出的脉冲信号,在所述旋转轴的正转和反转时,所述旋转信号的脉冲宽度不同,
判定所述旋转轴的正转和反转的步骤是这样的步骤:对所述旋转信号的脉冲宽度进行测量,根据测量出的脉冲宽度是否比所述阈值长,来判定所述旋转轴的正转和反转。
CN 201010142906 2009-03-18 2010-03-18 旋转检测装置和旋转检测方法 Active CN101839184B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009066483 2009-03-18
JP2009-066483 2009-03-18
JP2009-292797 2009-12-24
JP2009292797A JP4901949B2 (ja) 2009-03-18 2009-12-24 回転検出装置

Publications (2)

Publication Number Publication Date
CN101839184A true CN101839184A (zh) 2010-09-22
CN101839184B CN101839184B (zh) 2012-12-26

Family

ID=42738355

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010142906 Active CN101839184B (zh) 2009-03-18 2010-03-18 旋转检测装置和旋转检测方法

Country Status (3)

Country Link
US (1) US8818685B2 (zh)
JP (1) JP4901949B2 (zh)
CN (1) CN101839184B (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103016089A (zh) * 2011-09-20 2013-04-03 日立汽车***株式会社 内燃机的可变气门正时机构的控制装置及控制方法
CN103032124A (zh) * 2011-09-28 2013-04-10 日立汽车***株式会社 内燃机的可变阀门正时机构的控制装置及方法
CN103282647A (zh) * 2010-12-28 2013-09-04 日立汽车***株式会社 车辆的控制装置
CN103321770A (zh) * 2012-03-19 2013-09-25 日立汽车***株式会社 内燃机的控制装置及控制方法
CN105510036A (zh) * 2015-12-02 2016-04-20 浙江吉利汽车研究院有限公司 一种检测发动机停机相位的传感器及方法
CN106704072A (zh) * 2015-07-27 2017-05-24 三阳工业股份有限公司 启动兼发电装置控制引擎起动的方法
CN110139978A (zh) * 2016-12-19 2019-08-16 斯堪尼亚商用车有限公司 四冲程内燃机中的汽缸检测
CN110217559A (zh) * 2019-06-18 2019-09-10 武汉凡谷自动化有限公司 用于两端面形状不同的杆类部件的正反向识别输送装置
CN110685809A (zh) * 2018-07-05 2020-01-14 爱信精机株式会社 阀正时控制装置
CN111033091A (zh) * 2017-08-28 2020-04-17 加特可株式会社 车辆的控制装置及车辆的控制方法
CN111212962A (zh) * 2017-10-13 2020-05-29 戴姆勒股份公司 用于机动车内燃机的气门传动机构
CN115453354A (zh) * 2022-08-24 2022-12-09 中核核电运行管理有限公司 一种核电厂电机正反转检测方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7975534B2 (en) * 2008-08-04 2011-07-12 Gm Global Technology Operations, Inc. Crankshaft reversal detection systems
US8091411B2 (en) * 2010-05-27 2012-01-10 Delphi Technologies, Inc. Apparatus and method for estimating bounce back angle of a stopped engine
US9239017B2 (en) 2011-11-01 2016-01-19 GM Global Technology Operations LLC Stop-start control systems for engines with fully flexible valve actuation system
FR2999042B1 (fr) * 2012-11-30 2016-10-21 Continental Automotive France Procede de traitement d'un signal fourni par un capteur bidirectionnel et dispositif correspondant
US9851416B2 (en) 2014-07-22 2017-12-26 Allegro Microsystems, Llc Systems and methods for magnetic field sensors with self-test
US10465551B2 (en) * 2014-09-11 2019-11-05 General Electric Company Reverse rotation detection in rotating machinery
US10156461B2 (en) * 2014-10-31 2018-12-18 Allegro Microsystems, Llc Methods and apparatus for error detection in a magnetic field sensor
US9714615B2 (en) * 2015-01-08 2017-07-25 R.J. Scheu Ignition filter for compressed air engine
FR3033051B1 (fr) * 2015-02-24 2017-02-10 Continental Automotive France Procede et dispositif de traitement d'un signal produit par un capteur de rotation d'une cible tournante
JP6348860B2 (ja) * 2015-02-27 2018-06-27 日立オートモティブシステムズ株式会社 車両用制御装置
DE102015219335B3 (de) * 2015-10-07 2017-02-02 Continental Automotive Gmbh Verfahren zum Steuern eines Verbrennungsmotors mit einer Nockenwelle
WO2017104290A1 (ja) * 2015-12-15 2017-06-22 日立オートモティブシステムズ株式会社 車両制御装置
US11530619B1 (en) 2021-10-08 2022-12-20 Saudi Arabian Oil Company System and method for automatic detection of unintended forward and reverse rotations in rotating equipment
US11848682B2 (en) 2022-01-11 2023-12-19 Allegro Microsystems, Llc Diagnostic circuits and methods for analog-to-digital converters

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182463A (ja) * 1986-02-03 1987-08-10 Nippon Denso Co Ltd 内燃機関用逆転防止装置
CN1131977A (zh) * 1993-08-27 1996-09-25 电气联合股份有限公司 发动机控制
US20010002791A1 (en) * 1999-12-07 2001-06-07 Hiroyuki Tsuge Detected signal processing device for rotating sensor and detected signal outputting method therefor
JP2003232255A (ja) * 2002-02-08 2003-08-22 Hitachi Unisia Automotive Ltd 内燃機関の逆転検出装置及び気筒判別装置
US20040011122A1 (en) * 2002-07-22 2004-01-22 Hitachi Unisia Automotive, Ltd. Control apparatus and control method of engine
JP2005171963A (ja) * 2003-12-15 2005-06-30 Denso Corp 内燃機関の点火制御装置
US20090020100A1 (en) * 2007-07-18 2009-01-22 Mitsubishi Electric Corporation Internal combustion engine control apparatus

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3264850B2 (ja) * 1997-02-07 2002-03-11 三菱電機株式会社 内燃機関制御装置
JP3509690B2 (ja) * 1999-12-24 2004-03-22 株式会社デンソー 車両用交流発電機、車両用交流発電機の制御装置及び車両用交流発電機の制御方法
KR100435678B1 (ko) * 2001-08-31 2004-06-12 현대자동차주식회사 엔진의 역회전 시동 방지방법
JP2003184516A (ja) 2001-12-13 2003-07-03 Hitachi Unisia Automotive Ltd 内燃機関のバルブタイミング制御装置
JP3805726B2 (ja) * 2002-07-10 2006-08-09 三菱電機株式会社 内燃機関制御装置
JP4123005B2 (ja) * 2003-02-24 2008-07-23 株式会社デンソー 内燃機関の可変バルブタイミング制御装置
KR100669303B1 (ko) * 2002-10-25 2007-01-16 가부시키가이샤 덴소 내연 기관의 가변 밸브 타이밍 제어 장치
JP3794487B2 (ja) * 2002-11-13 2006-07-05 三菱電機株式会社 クランク角検出装置
JP4082197B2 (ja) * 2002-12-05 2008-04-30 トヨタ自動車株式会社 内燃機関の弁駆動システム
US7263959B2 (en) * 2003-01-27 2007-09-04 Toyota Jidosha Kabushiki Kaisha Control apparatus of internal combustion engine
JP2005042589A (ja) * 2003-07-25 2005-02-17 Toyota Motor Corp 内燃機関のクランク角検出装置
JP4031428B2 (ja) * 2003-12-24 2008-01-09 三菱電機株式会社 内燃機関の点火制御装置
US7204222B2 (en) * 2004-02-17 2007-04-17 Toyota Jidosha Kabushiki Kaisha Drive system and automobile
JP2005233622A (ja) 2004-02-17 2005-09-02 Toyota Motor Corp 逆転検出機能付き回転検出装置
JP4516401B2 (ja) * 2004-10-18 2010-08-04 日立オートモティブシステムズ株式会社 エンジンの始動制御装置
JP4553749B2 (ja) * 2004-12-27 2010-09-29 ヤマハ発動機株式会社 エンジンの点火制御装置及びそれを備えた車両
US7461621B2 (en) * 2005-09-22 2008-12-09 Mazda Motor Corporation Method of starting spark ignition engine without using starter motor
JP4400546B2 (ja) 2005-10-28 2010-01-20 日産自動車株式会社 内燃機関の可変バルブタイミング装置
JP4749981B2 (ja) * 2005-12-28 2011-08-17 日立オートモティブシステムズ株式会社 内燃機関の可変動弁装置
JP4797885B2 (ja) * 2006-08-25 2011-10-19 株式会社デンソー バルブタイミング調整装置
JP4542569B2 (ja) 2007-06-20 2010-09-15 三菱電機株式会社 エンジンの制御装置
US8408177B2 (en) * 2008-03-28 2013-04-02 Mazda Motor Corporation Control method for internal combustion engine system, and internal combustion engine system
JP5035267B2 (ja) * 2009-02-20 2012-09-26 株式会社デンソー クランク角検出装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182463A (ja) * 1986-02-03 1987-08-10 Nippon Denso Co Ltd 内燃機関用逆転防止装置
CN1131977A (zh) * 1993-08-27 1996-09-25 电气联合股份有限公司 发动机控制
US20010002791A1 (en) * 1999-12-07 2001-06-07 Hiroyuki Tsuge Detected signal processing device for rotating sensor and detected signal outputting method therefor
JP2003232255A (ja) * 2002-02-08 2003-08-22 Hitachi Unisia Automotive Ltd 内燃機関の逆転検出装置及び気筒判別装置
US20040011122A1 (en) * 2002-07-22 2004-01-22 Hitachi Unisia Automotive, Ltd. Control apparatus and control method of engine
JP2005171963A (ja) * 2003-12-15 2005-06-30 Denso Corp 内燃機関の点火制御装置
US20090020100A1 (en) * 2007-07-18 2009-01-22 Mitsubishi Electric Corporation Internal combustion engine control apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103282647A (zh) * 2010-12-28 2013-09-04 日立汽车***株式会社 车辆的控制装置
CN103016089B9 (zh) * 2011-09-20 2017-07-25 日立汽车***株式会社 内燃机的可变气门正时机构的控制装置及控制方法
CN103016089A (zh) * 2011-09-20 2013-04-03 日立汽车***株式会社 内燃机的可变气门正时机构的控制装置及控制方法
CN103016089B (zh) * 2011-09-20 2017-06-20 日立汽车***株式会社 内燃机的可变气门正时机构的控制装置及控制方法
CN103032124A (zh) * 2011-09-28 2013-04-10 日立汽车***株式会社 内燃机的可变阀门正时机构的控制装置及方法
CN103032124B (zh) * 2011-09-28 2016-08-31 日立汽车***株式会社 内燃机的可变阀门正时机构的控制装置及方法
CN103321770A (zh) * 2012-03-19 2013-09-25 日立汽车***株式会社 内燃机的控制装置及控制方法
CN106704072A (zh) * 2015-07-27 2017-05-24 三阳工业股份有限公司 启动兼发电装置控制引擎起动的方法
CN105510036A (zh) * 2015-12-02 2016-04-20 浙江吉利汽车研究院有限公司 一种检测发动机停机相位的传感器及方法
CN110139978A (zh) * 2016-12-19 2019-08-16 斯堪尼亚商用车有限公司 四冲程内燃机中的汽缸检测
US11585287B2 (en) 2016-12-19 2023-02-21 Scania Cv Ab Cylinder detection in a four-stroke internal combustion engine
CN111033091A (zh) * 2017-08-28 2020-04-17 加特可株式会社 车辆的控制装置及车辆的控制方法
CN111033091B (zh) * 2017-08-28 2021-06-08 加特可株式会社 车辆的控制装置及车辆的控制方法
CN111212962A (zh) * 2017-10-13 2020-05-29 戴姆勒股份公司 用于机动车内燃机的气门传动机构
CN110685809A (zh) * 2018-07-05 2020-01-14 爱信精机株式会社 阀正时控制装置
CN110217559A (zh) * 2019-06-18 2019-09-10 武汉凡谷自动化有限公司 用于两端面形状不同的杆类部件的正反向识别输送装置
CN115453354A (zh) * 2022-08-24 2022-12-09 中核核电运行管理有限公司 一种核电厂电机正反转检测方法

Also Published As

Publication number Publication date
US8818685B2 (en) 2014-08-26
US20100241302A1 (en) 2010-09-23
JP4901949B2 (ja) 2012-03-21
CN101839184B (zh) 2012-12-26
JP2010242742A (ja) 2010-10-28

Similar Documents

Publication Publication Date Title
CN101839184B (zh) 旋转检测装置和旋转检测方法
US7027911B2 (en) Apparatus for controlling engine rotation stop by estimating kinetic energy and stop position
CN101871399B (zh) 通用内燃机的控制装置
JP3815441B2 (ja) 内燃機関の停止始動制御装置
CN101852160B (zh) 用于在满足发动机重起条件时重起内燃机的***
US20120303251A1 (en) Control appartus and control method for internal-combustion engine
CN102472192B (zh) 内燃机的启动控制***
CN103216372A (zh) 发动机起动装置及发动机起动方法
CN103321770B (zh) 内燃机的控制装置及控制方法
CN108443024A (zh) 发动机控制装置
JP5591390B2 (ja) 回転検出装置
JP4147398B2 (ja) エンジン制御装置
CN108952980A (zh) 用于发动机的控制装置及发动机的控制方法
JP6334389B2 (ja) エンジン制御装置
JP2001082190A (ja) エンジンのバルブタイミング制御装置
TWI564477B (zh) 引擎系統及跨坐型車輛
CN103195635B (zh) 通过小齿轮与环形齿轮的啮合起动内燃机的***
JP2011137419A (ja) 車載用内燃機関の制御装置
JP3899510B2 (ja) 内燃機関の触媒早期暖機制御システムの異常診断装置
TWI596275B (zh) 引擎系統及跨坐型車輛
JPH1113493A (ja) エンジンの吸気制御装置
TWI567293B (zh) 引擎系統及跨坐型車輛
US11242818B2 (en) Control device of internal combustion engine
CN106030081A (zh) 内燃机的控制装置
JP2003343231A (ja) 2サイクルエンジンのオイル制御装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: Ibaraki

Patentee after: Hitachi astemo Co.,Ltd.

Address before: Ibaraki

Patentee before: HITACHI AUTOMOTIVE SYSTEMS, Ltd.

CP01 Change in the name or title of a patent holder