CN101545072A - 一种高电磁性能取向硅钢的生产方法 - Google Patents

一种高电磁性能取向硅钢的生产方法 Download PDF

Info

Publication number
CN101545072A
CN101545072A CN200810035079A CN200810035079A CN101545072A CN 101545072 A CN101545072 A CN 101545072A CN 200810035079 A CN200810035079 A CN 200810035079A CN 200810035079 A CN200810035079 A CN 200810035079A CN 101545072 A CN101545072 A CN 101545072A
Authority
CN
China
Prior art keywords
annealing
temperature
rolling
percent
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200810035079A
Other languages
English (en)
Other versions
CN101545072B (zh
Inventor
杨国华
孙焕德
吉亚明
李国保
黑红旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoshan Iron and Steel Co Ltd
Original Assignee
Baoshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN2008100350796A priority Critical patent/CN101545072B/zh
Application filed by Baoshan Iron and Steel Co Ltd filed Critical Baoshan Iron and Steel Co Ltd
Priority to KR1020107023644A priority patent/KR101252561B1/ko
Priority to US12/934,897 priority patent/US8333846B2/en
Priority to PCT/CN2009/071003 priority patent/WO2009117959A1/zh
Priority to JP2011501093A priority patent/JP5479448B2/ja
Priority to RU2010143391/02A priority patent/RU2450062C1/ru
Priority to EP09725052A priority patent/EP2272995B1/en
Publication of CN101545072A publication Critical patent/CN101545072A/zh
Application granted granted Critical
Publication of CN101545072B publication Critical patent/CN101545072B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • C21D8/0284Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明涉及一种高电磁性能取向硅钢的生产方法,包括用转炉或电炉炼钢,钢水经二次精炼和连铸后,获得板坯,之后进行热轧、第一次冷轧、脱碳退火、第二次冷轧,涂布以MgO为主要成分的退火隔离剂,然后进行高温退火,最后涂绝缘涂层和进行拉伸平整退火,所述板坯的组分(按重量百分比计)为:C:0.020%~0.050%、Si:2.6%~3.6%、S:0.015%~0.025%、Als:0.008%~0.028%、N:0.005%~0.020%、Mn:0.15%~0.5%,且10≤Mn/S≤20、Cu:0.3%~1.2%,且Cu/Mn≥2,其余为Fe及不可避免的杂质。本发明在保持低生产成本的情况下能够显著提高磁性,有效降低铁损,获得高磁感取向硅钢。

Description

一种高电磁性能取向硅钢的生产方法
技术领域
本发明涉及一种高电磁性能取向硅钢的生产方法。
背景技术
现在较为成熟的普通取向硅钢(CGO)生产技术,采用MnS作为主要抑制剂,热轧加热温度在1350度以上,能耗较高,并且这样的高温条件下钢坯表面出现化渣,加热设备需定期清理,影响产量,并且能耗高,设备易损坏,生产成本高。因此国内外的科研人员开展了大量的研究来降低硅钢的加热温度,其主要改进方法的趋势按照加热温度范围来区分有两种,一种热轧加热温度在1150-1250℃,称为低温板坯加热技术,主要采用后阶段渗氮形成抑制剂的方法来获得抑制能力现阶段低温板坯加热技术发展较快,例如美国专利US 5049205、国内专利CN 1978707和韩国专利KR 2002074312但这几种方法都要增加渗氮设备,造成成本增加,并且存在渗氮不均匀引起最终产品磁性能不均匀的问题。
另一种热轧加热温度在1250-1320℃,作为与上述低温技术的区分,亦可称为中温板坯加热技术。中温板坯加热技术采用含Cu的抑制剂,对经过冶炼和连铸的板坯使用两次冷轧法,在两次冷轧之间采用中间脱碳退火(一次性脱碳退火)的方法,将钢板中的碳含量脱到30ppm以下;第二次冷轧后直接涂MgO隔离剂,或低温回复退火后再涂MgO隔离剂,接着进行高温退火及后续处理。欧洲专利EP 0709470中国专利CN 1786248A公开了的技术方案属于中温板坯加热技术,两者的共同问题是硫含量过低,造成抑制剂数量不足和分布不均匀,从而影响局部或整体的抑制能力,使二次再结晶驱动力不足,磁性能劣化和不均匀化。
发明内容
本发明的目的在于提供一种高电磁性能取向硅钢的生产方法,通过控制板坯成分和工艺获得较好的二次再结晶和底层质量,达到提高取向硅钢产品的电磁性能的目的。
本发明是这样实现的:一种高电磁性能取向硅钢的生产方法,包括用转炉或电炉炼钢,钢水经二次精炼和连铸后,获得板坯,之后进行热轧、第一次冷轧、脱碳退火、第二次冷轧,涂布以氧化镁为主要成分的退火隔离剂,然后进行高温退火,最后涂绝缘涂层和进行拉伸平整退火,所述板坯的组分(按重量百分比计)为:
C:  0.020%~0.050%
Si: 2.6%~3.6%
S:  0.015%~0.025%
Als:0.008%~0.028%
N:  0.005%~0.020%
Mn: 0.15%~0.5%,且10≤Mn/S≤20
Cu: 0.3%~1.2%,且Cu/Mn≥2
其余为Fe及不可避免的杂质。Als为酸溶性铝。
所述热轧工艺为:板坯在加热炉内加热到1250℃以上,保温两小时以上,再进行热轧,热轧精轧过程的开轧温度为1050~1200℃,终轧温度为800℃以上。
所述热轧精轧过程的开轧温度为1070~1130℃,终轧温度为850℃以上。
最终轧成2.0~2.8mm厚度的热轧板。
之后进行酸洗和第一次冷轧,轧制到0.50~0.70mm的中间厚度。
接着进行中间脱碳退火,将中间脱碳退火钢板加热到800℃以上的均热温度,在湿氢保护气氛中进行10分钟以内中间脱碳退火,退火后使钢板的碳含量降到30ppm以下。
中间脱碳退火后,进行第二次冷轧,轧制到成品所需厚度0.15~0.35mm。
在钢板上涂布以MgO为主要成分的退火隔离剂。
最后进行高温退火,工艺为:在气氛为氢占75%~100%的氮氢混合气、干气氛(即露点D.P.<0℃)、温度为1170~1230℃的条件下进行保温15小时以上的高温退火。
本发明通过对板坯成分含量的设计,硫含量提高到S:0.015%~0.025%、锰硫比10≤Mn/S≤20、以及铜锰比Cu/Mn≥2,从成分上控制Cu2S和MnS的化合物比例,使得热轧过程中有利于向Cu2S的析出形式发展。并且,在热轧过程中严格控制开轧和终轧温度,使热轧过程中大多数硫仅以Cu2S抑制剂的形式,尽可能避免MnS+Cu2S的复合析出,从而避免了抑制剂的粗大和不均匀化。Cu2S析出温度约为900~1100℃,析出峰值为1000℃;而MnS的析出峰值大于1100℃,因此大于1050℃的开轧温度和800℃以上的终轧温度,最大程度的保证了Cu2S有足够的析出量和分布,同时抑制了MnS和Cu2S的复合析出,从而确保生产工艺的后阶段Cu2S和AlN一起完成对其他位向晶粒生长的抑制作用,促使二次再结晶(110)[001]高斯方向的晶核具有足够的生长驱动力,最终产品磁性能显著提高。
当硫含量高时,铸态组织中硫容易在中心形成偏聚,因此板坯加热时必须在1250℃以上的温度下保证足够的保温时间,才能使中心的硫化物充分固溶,才有可能在之后的热轧中使足够的Cu2S以细小弥散的状态析出。
高温退火时,大量细小的Cu2S和少量MnS处于弥散状态,使表面脱S减慢,增强了抑制力并提高了二次再结晶温度,使二次晶粒位向更准确,磁性能提高。
由于本发明方法提高了硫含量,如果最终高温退火脱硫不完全,会引起产品磁性能劣化,尤其是铁损性能,并引起磁时效,同时产品的加工性能也会明显降低。因此对高温退火工艺中的净化退火时间有更严格的要求,即需要在气氛为氢占75%~100%的氮氢混合气、干气氛下露点D.P.<0℃的条件下进行净化退火,在1170~1230℃下保温时间15小时以上。温度过低或保温时间过短,N、S等有害元素无法完全排除,磁性能降低;温度过高,二次再结晶晶粒粗大,铁损增加,并且玻璃膜质量下降。
本发明具有以下有益效果:本发明通过板坯成分含量的设计、板坯加热和热轧条件的控制,有效改善热轧过程中硫化物析出形式,最大程度避免了MnS+Cu2S的复合抑制剂的析出形式,从而保证足够量的抑制剂均匀和细小的析出,在保持低生产成本的情况下能够显著提高磁性,有效降低铁损,获得高磁感取向硅钢。
具体实施方式
实施例1:
按取向硅钢板坯中硫含量、锰含量和铜含量的不同分为多种组分。各组分中除S、Mn、Cu三种成分外,其他成分的重量百分比保持不变,分别为C:0.040%,Si:3.17%,Als:0.017%,N:0.01%,S、Mn、Cu三种成分含量见表1,其余为Fe及不可避免的杂质。之后将上述板坯按下面的工艺进行处理:在1280℃的再加热温度下在加热炉内保温3小时后,热轧至厚度为2.5mm的热轧板,热轧过程保证精轧的开轧温度在1050~1200℃,终轧温度在800℃以上;酸洗后进行第一次冷轧,轧制到0.65mm厚度后,在850℃、湿氢保护气氛中进行中间脱碳退火,使钢板中碳含量降到30ppm以下;中间脱碳退火后进行第二次冷轧,轧制到成品厚度0.30mm;涂布MgO为主要成分的隔离剂,成卷后在气氛为100% H2、露点为-10℃,温度为1200℃的条件下进行20小时的高温退火;开卷后经过涂绝缘涂层及拉伸平整退火,得到的成品磁性能见表1(高磁感取向硅钢常规产品的磁性能参考标准为:磁感B8≥1.88T,铁损P17/50≤1.30W/kg,以下同)。
表1 成分对磁性能的影响
Figure A200810035079D00061
Figure A200810035079D00071
实施例2:
取向硅钢板坯的组分及重量百分比为C:0.032%,Si:3.2%,Als:0.012%,N:0.01%,S:0.016%,Mn:0.18%,Cu:0.42%,其余为Fe及不可避免的杂质。将板坯按表2中不同的再加热制度在加热炉内保温后热轧至厚度为2.5mm的热轧板,其热轧精轧的开轧和终轧温度参考表2;酸洗后进行第一次冷轧,轧制到0.60mm厚度后,在850℃、湿氢保护气氛中进行中间脱碳退火,使钢板中碳含量降到30ppm以下;中间脱碳退火后进行第二次冷轧,轧制到成品厚度0.27mm;涂布MgO为主要成分的隔离剂,成卷后在气氛为100% H2、露点为-10℃,温度为1200℃的条件下进行20小时的高温退火;开卷后经过涂绝缘涂层及拉伸平整退火,得到的成品磁性能见表2。
表2 成分、板坯加热制度及热轧制度对磁性能的影响
Figure A200810035079D00072
Figure A200810035079D00081
实施例3:
取向硅钢板坯的组分及重量百分比为C:0.032%,Si:3.2%,Als:0.012%,N:0.01%,S:0.016%,Mn:0.18%,Cu:0.42%,其余为Fe及不可避免的杂质。将其在1280℃加热炉内保温3小时后热轧至厚度为2.5mm的热轧板,其中热轧精轧的开轧和终轧温度分别为1100℃和930℃;酸洗后进行第一次冷轧,轧制到0.60mm厚度后,在850℃、湿氢保护气氛中进行中间脱碳退火,使钢板中碳含量降到30ppm以下;中间脱碳退火后进行第二次冷轧,轧制到成品厚度0.27mm;涂布MgO为主要成分的隔离剂后,通过施加不同的高温退火工艺如表3,验证其对成品磁性的影响,后经过涂绝缘涂层及拉伸平整退火,得到高温退火工艺对应的成品磁性能见表3。
表3 高温退火工艺变化对磁性能的影响
Figure A200810035079D00082

Claims (4)

1.一种高电磁性能取向硅钢的生产方法,包括用转炉或电炉炼钢,钢水经二次精炼和连铸后,获得板坯,之后进行热轧、第一次冷轧、脱碳退火、第二次冷轧,涂布以氧化镁为主要成分的退火隔离剂,然后进行高温退火,最后涂绝缘涂层和进行拉伸平整退火,其特征在于,所述板坯的组分(按重量百分比计)为:
C:         0.020%~0.050%
Si:        2.6%~3.6%
S:         0.015%~0.025%
Als:       0.008%~0.028%
N:         0.005%~0.020%
Mn:        0.15%~0.5%,且10≤Mn/S≤20
Cu:        0.3%~1.2%,且Cu/Mn≥2
其余为Fe及不可避免的杂质。
2、如权利要求1所述的高电磁性能取向硅钢的生产方法,其特征在于,所述热轧工艺为:板坯在加热炉内加热到1250℃以上,保温两小时以上,再进行热轧,热轧精轧过程的开轧温度为1050~1200℃,终轧温度为800℃以上。
3、如权利要求2所述的高电磁性能取向硅钢的生产方法,其特征在于,所述热轧精轧过程的开轧温度为1070~1130℃,终轧温度为850℃以上。
4、如权利要求1所述的高电磁性能取向硅钢的生产方法,其特征在于,所述高温退火工艺为:在气氛为氢占75%~100%的氮氢混合气、干气氛、温度为1170~1230℃的条件下进行保温15小时以上的高温退火。
CN2008100350796A 2008-03-25 2008-03-25 一种高电磁性能取向硅钢的生产方法 Active CN101545072B (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN2008100350796A CN101545072B (zh) 2008-03-25 2008-03-25 一种高电磁性能取向硅钢的生产方法
US12/934,897 US8333846B2 (en) 2008-03-25 2009-03-25 Manufacturing method of oriented SI steel with high electric-magnetic property
PCT/CN2009/071003 WO2009117959A1 (zh) 2008-03-25 2009-03-25 一种高电磁性能取向硅钢的生产方法
JP2011501093A JP5479448B2 (ja) 2008-03-25 2009-03-25 高電磁気性能の方向性珪素鋼の製造方法
KR1020107023644A KR101252561B1 (ko) 2008-03-25 2009-03-25 높은 전-자기 특성을 가진 방향성 si 강의 제조 방법
RU2010143391/02A RU2450062C1 (ru) 2008-03-25 2009-03-25 СПОСОБ ИЗГОТОВЛЕНИЯ ОРИЕНТИРОВАННОЙ Si СТАЛИ С ВЫСОКИМИ ЭЛЕКТРОМАГНИТНЫМИ ХАРАКТЕРИСТИКАМИ
EP09725052A EP2272995B1 (en) 2008-03-25 2009-03-25 A manufacturing method of oriented si steel with high electric-magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100350796A CN101545072B (zh) 2008-03-25 2008-03-25 一种高电磁性能取向硅钢的生产方法

Publications (2)

Publication Number Publication Date
CN101545072A true CN101545072A (zh) 2009-09-30
CN101545072B CN101545072B (zh) 2012-07-04

Family

ID=41112977

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100350796A Active CN101545072B (zh) 2008-03-25 2008-03-25 一种高电磁性能取向硅钢的生产方法

Country Status (7)

Country Link
US (1) US8333846B2 (zh)
EP (1) EP2272995B1 (zh)
JP (1) JP5479448B2 (zh)
KR (1) KR101252561B1 (zh)
CN (1) CN101545072B (zh)
RU (1) RU2450062C1 (zh)
WO (1) WO2009117959A1 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102618783A (zh) * 2011-01-30 2012-08-01 宝山钢铁股份有限公司 一种高磁感取向硅钢的生产方法
CN107002161A (zh) * 2014-11-27 2017-08-01 Posco公司 取向电工钢板及其制造方法
CN107002158A (zh) * 2014-11-26 2017-08-01 Posco公司 取向电工钢板用退火隔离剂组合物及利用它的取向电工钢板的制造方法
CN107488815A (zh) * 2017-08-25 2017-12-19 包头钢铁(集团)有限责任公司 一种中温取向硅钢热轧钢带及其制备方法
CN108277423A (zh) * 2017-01-05 2018-07-13 鞍钢股份有限公司 一种中频磁屏蔽硅钢的生产方法
CN108480587A (zh) * 2018-02-13 2018-09-04 鞍钢股份有限公司 一种低夹杂缺陷率高磁感取向硅钢的生产方法
CN110396647A (zh) * 2019-08-22 2019-11-01 中天钢铁集团有限公司 一种高电磁性能及高强度低合金钢及其生产工艺与用途
CN111996352A (zh) * 2020-07-31 2020-11-27 鞍钢股份有限公司 一种高性能取向硅钢极薄带的制备方法
CN112226695A (zh) * 2020-10-16 2021-01-15 马鞍山钢铁股份有限公司 一种高性能热轧取向硅钢钢板及其生产方法
CN112605122A (zh) * 2020-12-15 2021-04-06 首钢智新迁安电磁材料有限公司 一种改善硅钢热轧板边部质量的加工方法
CN113930593A (zh) * 2021-10-26 2022-01-14 无锡普天铁心股份有限公司 一种低损耗宽料取向硅钢的生产方法
CN114540714A (zh) * 2022-02-28 2022-05-27 西北工业大学 一种改善含铜取向硅钢磁性能的方法
CN116121622A (zh) * 2022-11-18 2023-05-16 无锡普天铁心股份有限公司 一种优良底层取向硅钢的生产工艺
CN114921711B (zh) * 2022-05-25 2023-10-24 湖南华菱湘潭钢铁有限公司 一种q620级高耐蚀高强度近海结构钢的生产方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101643881B (zh) * 2008-08-08 2011-05-11 宝山钢铁股份有限公司 一种含铜取向硅钢的生产方法
WO2014020369A1 (en) * 2012-07-31 2014-02-06 Arcelormittal Investigación Y Desarrollo Sl Method of production of grain-oriented silicon steel sheet grain oriented electrical steel sheet and use thereof
CN103695619B (zh) * 2012-09-27 2016-02-24 宝山钢铁股份有限公司 一种高磁感普通取向硅钢的制造方法
EP2933350A1 (en) * 2014-04-14 2015-10-21 Mikhail Borisovich Tsyrlin Production method for high-permeability grain-oriented electrical steel
CN104372238B (zh) * 2014-09-28 2016-05-11 东北大学 一种取向高硅钢的制备方法
US20160108488A1 (en) * 2014-10-15 2016-04-21 Sms Siemag Ag Process for producing grain-oriented electrical steel strip and grain-oriented electrical steel strip obtained according to said process
JP6485554B2 (ja) * 2015-10-26 2019-03-20 新日鐵住金株式会社 方向性電磁鋼板及びその製造方法、並びに方向性電磁鋼板用の脱炭鋼板の製造方法
CN106755843B (zh) * 2016-12-19 2019-07-30 宁波银亿科创新材料有限公司 一种制作取向硅钢的工艺方法
KR102177044B1 (ko) * 2018-11-30 2020-11-10 주식회사 포스코 방향성 전기강판 및 그의 제조방법
CN112593053A (zh) * 2020-12-14 2021-04-02 海安华诚新材料有限公司 一种气耗优化成本较低的取向硅钢高温退火工艺
CN113832322B (zh) * 2021-09-26 2023-04-28 武汉钢铁有限公司 高磁感取向硅钢高效脱碳退火工艺
CN116463545A (zh) * 2022-01-12 2023-07-21 宝山钢铁股份有限公司 一种含铜低温取向硅钢及其制造方法
CN114891978B (zh) * 2022-06-20 2024-01-16 马鞍山钢铁股份有限公司 一种高牌号无取向硅钢一次冷轧断带后的生产方法
CN115449741B (zh) * 2022-09-20 2023-11-24 武汉钢铁有限公司 一种基于薄板坯连铸连轧生产高磁感取向硅钢及方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0774388B2 (ja) 1989-09-28 1995-08-09 新日本製鐵株式会社 磁束密度の高い一方向性珪素鋼板の製造方法
DE4311151C1 (de) * 1993-04-05 1994-07-28 Thyssen Stahl Ag Verfahren zur Herstellung von kornorientierten Elektroblechen mit verbesserten Ummagnetisierungsverlusten
EP0709470B1 (en) * 1993-11-09 2001-10-04 Pohang Iron & Steel Co., Ltd. Production method of directional electromagnetic steel sheet of low temperature slab heating system
WO1995013401A1 (en) * 1993-11-09 1995-05-18 Pohang Iron & Steel Co., Ltd. Production method of directional electromagnetic steel sheet of low temperature slab heating system
JPH07252532A (ja) * 1994-03-16 1995-10-03 Nippon Steel Corp 磁気特性の優れた一方向性電磁鋼板の製造方法
FR2731713B1 (fr) * 1995-03-14 1997-04-11 Ugine Sa Procede de fabrication d'une tole d'acier electrique a grains orientes pour la realisation notamment de circuits magnetiques de transformateurs
KR100240995B1 (ko) * 1995-12-19 2000-03-02 이구택 절연피막의 밀착성이 우수한 무방향성 전기강판의 제조방법
DE19628136C1 (de) * 1996-07-12 1997-04-24 Thyssen Stahl Ag Verfahren zur Herstellung von kornorientiertem Elektroblech
IT1285153B1 (it) * 1996-09-05 1998-06-03 Acciai Speciali Terni Spa Procedimento per la produzione di lamierino magnetico a grano orientato, a partire da bramma sottile.
CN1088760C (zh) * 1997-06-27 2002-08-07 浦项综合制铁株式会社 基于低温板坯加热法生产具有高磁感应强度的晶粒择优取向电工钢板的方法
DE19735062A1 (de) * 1997-08-13 1999-02-18 Thyssen Stahl Ag Verfahren zur Herstellung von kornorientiertem Elektroblech und Verwendung eines Stahls für Elektroblech
IT1299137B1 (it) * 1998-03-10 2000-02-29 Acciai Speciali Terni Spa Processo per il controllo e la regolazione della ricristallizzazione secondaria nella produzione di lamierini magnetici a grano orientato
JP3481491B2 (ja) * 1998-03-30 2003-12-22 新日本製鐵株式会社 磁気特性に優れた一方向性電磁鋼板の製造方法
DE19816158A1 (de) 1998-04-09 1999-10-14 G K Steel Trading Gmbh Verfahren zur Herstellung von korn-orientierten anisotropen, elektrotechnischen Stahlblechen
KR100526122B1 (ko) 2001-03-20 2005-11-08 주식회사 포스코 그라스피막이 없는 저온가열 방향성전기강판의 제조방법
RU2181786C1 (ru) * 2001-07-02 2002-04-27 Цырлин Михаил Борисович Анизотропная электротехническая сталь и способ ее получения
RU2199595C1 (ru) * 2002-06-25 2003-02-27 Открытое акционерное общество "Новолипецкий металлургический комбинат" Способ производства холоднокатаной электротехнической анизотропной стали
JP4283533B2 (ja) * 2002-12-26 2009-06-24 新日本製鐵株式会社 一方向性電磁鋼板の製造方法
CN1283812C (zh) * 2003-10-27 2006-11-08 宝山钢铁股份有限公司 一种取向硅钢板的制造方法
JP4272557B2 (ja) * 2004-02-12 2009-06-03 新日本製鐵株式会社 磁気特性に優れた一方向性電磁鋼板の製造方法
CN100455702C (zh) 2005-11-29 2009-01-28 宝山钢铁股份有限公司 一种具有良好底层的低温加热生产取向硅钢的方法
CN100455690C (zh) * 2005-11-30 2009-01-28 宝山钢铁股份有限公司 一种基于薄板坯连铸连轧的取向硅钢及其制造方法
CN100389222C (zh) 2005-12-13 2008-05-21 武汉钢铁(集团)公司 提高含铜取向硅钢电磁性能和底层质量的生产方法
IN2015DN02521A (zh) * 2006-05-24 2015-09-11 Nippon Steel & Sumitomo Metal Corp
ITRM20070218A1 (it) * 2007-04-18 2008-10-19 Ct Sviluppo Materiali Spa Procedimento per la produzione di lamierino magnetico a grano orientato

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102618783B (zh) * 2011-01-30 2014-08-20 宝山钢铁股份有限公司 一种高磁感取向硅钢的生产方法
CN102618783A (zh) * 2011-01-30 2012-08-01 宝山钢铁股份有限公司 一种高磁感取向硅钢的生产方法
CN107002158A (zh) * 2014-11-26 2017-08-01 Posco公司 取向电工钢板用退火隔离剂组合物及利用它的取向电工钢板的制造方法
CN107002158B (zh) * 2014-11-26 2019-06-18 Posco公司 取向电工钢板用退火隔离剂组合物及利用它的取向电工钢板的制造方法
US11031162B2 (en) 2014-11-27 2021-06-08 Posco Grain-oriented electrical steel sheet and manufacturing method therefor
CN107002161A (zh) * 2014-11-27 2017-08-01 Posco公司 取向电工钢板及其制造方法
CN107002161B (zh) * 2014-11-27 2019-11-29 Posco公司 取向电工钢板及其制造方法
US12040110B2 (en) 2014-11-27 2024-07-16 Posco Co., Ltd Grain-oriented electrical steel sheet and manufacturing method therefor
CN108277423A (zh) * 2017-01-05 2018-07-13 鞍钢股份有限公司 一种中频磁屏蔽硅钢的生产方法
CN107488815A (zh) * 2017-08-25 2017-12-19 包头钢铁(集团)有限责任公司 一种中温取向硅钢热轧钢带及其制备方法
CN108480587A (zh) * 2018-02-13 2018-09-04 鞍钢股份有限公司 一种低夹杂缺陷率高磁感取向硅钢的生产方法
CN110396647A (zh) * 2019-08-22 2019-11-01 中天钢铁集团有限公司 一种高电磁性能及高强度低合金钢及其生产工艺与用途
CN111996352A (zh) * 2020-07-31 2020-11-27 鞍钢股份有限公司 一种高性能取向硅钢极薄带的制备方法
CN112226695A (zh) * 2020-10-16 2021-01-15 马鞍山钢铁股份有限公司 一种高性能热轧取向硅钢钢板及其生产方法
CN112605122A (zh) * 2020-12-15 2021-04-06 首钢智新迁安电磁材料有限公司 一种改善硅钢热轧板边部质量的加工方法
CN113930593A (zh) * 2021-10-26 2022-01-14 无锡普天铁心股份有限公司 一种低损耗宽料取向硅钢的生产方法
CN113930593B (zh) * 2021-10-26 2024-01-16 无锡普天铁心股份有限公司 一种低损耗宽料取向硅钢的生产方法
CN114540714A (zh) * 2022-02-28 2022-05-27 西北工业大学 一种改善含铜取向硅钢磁性能的方法
CN114921711B (zh) * 2022-05-25 2023-10-24 湖南华菱湘潭钢铁有限公司 一种q620级高耐蚀高强度近海结构钢的生产方法
CN116121622A (zh) * 2022-11-18 2023-05-16 无锡普天铁心股份有限公司 一种优良底层取向硅钢的生产工艺

Also Published As

Publication number Publication date
WO2009117959A1 (zh) 2009-10-01
KR101252561B1 (ko) 2013-04-08
JP2011517732A (ja) 2011-06-16
JP5479448B2 (ja) 2014-04-23
EP2272995A4 (en) 2011-06-08
CN101545072B (zh) 2012-07-04
EP2272995A1 (en) 2011-01-12
US8333846B2 (en) 2012-12-18
EP2272995B1 (en) 2012-09-05
US20110139313A1 (en) 2011-06-16
RU2450062C1 (ru) 2012-05-10
KR20110000661A (ko) 2011-01-04

Similar Documents

Publication Publication Date Title
CN101545072B (zh) 一种高电磁性能取向硅钢的生产方法
TWI622655B (zh) 無方向性電磁鋼板及其製造方法
CN100381598C (zh) 一种取向硅钢及其生产方法和装置
US9816152B2 (en) Manufacture method of high-efficiency non-oriented silicon steel with excellent magnetic performance
CN103695619B (zh) 一种高磁感普通取向硅钢的制造方法
CN101906577B (zh) 采用薄板连铸连轧生产的无取向电工钢及其方法
CN103255274B (zh) 一般取向硅钢由两次冷轧改为一次冷轧的生产方法
CN101768697A (zh) 用一次冷轧法生产取向硅钢的方法
CN103805918B (zh) 一种高磁感取向硅钢及其生产方法
CN109112283A (zh) 低温高磁感取向硅钢的制备方法
CN101139681A (zh) 中高牌号冷轧无取向硅钢及其制造方法
US11371111B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof
CN106048390A (zh) 一种薄板坯连铸连轧生产无取向电工钢50w800的生产方法
CN101845582A (zh) 一种高磁感取向硅钢产品的生产方法
CN105274427A (zh) 一种高磁感取向硅钢及生产方法
CN103882289A (zh) 用一般取向钢原料制造高磁感冷轧取向硅钢的生产方法
CN109554607A (zh) 具有优良抗鳞爆性和深冲性的冷轧搪瓷钢板及其制造方法
CN103667874A (zh) 取向硅钢在高温退火期间缩短在炉时间的生产方法
CN104046760A (zh) 一种电工钢板的生产方法
CN105950966B (zh) 采用固有抑制剂法和铸坯低温加热工艺生产Hi-B钢的方法
US20150302962A1 (en) Oriented Silicon Steel and Method for Manufacturing Same
CN105132808B (zh) 一种复合元素处理的高效电机用无取向硅钢的制备方法
CN103834908B (zh) 一种提高取向硅钢电磁性能的生产方法
CN101275201B (zh) 一种取向电工钢及其制造方法
CN108165876B (zh) 一种改善低温渗氮取向硅钢表面质量的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant