CN101207180B - 多层电极结构 - Google Patents

多层电极结构 Download PDF

Info

Publication number
CN101207180B
CN101207180B CN2007101996058A CN200710199605A CN101207180B CN 101207180 B CN101207180 B CN 101207180B CN 2007101996058 A CN2007101996058 A CN 2007101996058A CN 200710199605 A CN200710199605 A CN 200710199605A CN 101207180 B CN101207180 B CN 101207180B
Authority
CN
China
Prior art keywords
electrode
layer
electrode structure
sidewall conductor
sidewall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2007101996058A
Other languages
English (en)
Other versions
CN101207180A (zh
Inventor
陈士弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macronix International Co Ltd
Original Assignee
Macronix International Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix International Co Ltd filed Critical Macronix International Co Ltd
Publication of CN101207180A publication Critical patent/CN101207180A/zh
Application granted granted Critical
Publication of CN101207180B publication Critical patent/CN101207180B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8413Electrodes adapted for resistive heating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

一种多层电极结构,包括两并联的电流路径。多个大致为平板状的电极层以堆叠方式形成,最外层提供电接点,并限定第一电流路径穿过此堆叠。两侧壁导体层形成而邻接于电极层堆叠的两个端点,两侧壁导体层定义了第二电流路径。侧壁导体层的端点与电极层导电接点位于同一平面,使得电极结构导电接点各自由一组侧壁层端点与电极层导电接点所形成。

Description

多层电极结构
技术领域
本发明一般地涉及集成电路设计,并尤其涉及存储装置的设计与制造。
背景技术
随着非易失性存储体的体积越来越小、可靠的储存容量越来越大,其应用也越来越广泛。大体积的外部数据储存装置逐渐被特殊应用的储存装置所取代,进而产生“记忆棒(memory stick)”等微小的存储卡,可储存数十亿位元的数据。
在此储存容量之下,功率消耗变得很重要。当具有数十亿个元件时,每一存储储存单元的功率消耗必须非常低。对于这种装置的功能与容量而言,将功率消耗降到最低是非常重要的目标。
在本领域中的重要技术之一,为各种形式的电阻随机存取存储体(RRAM),如下所详述。美国专利申请第11/155,067号,标题为“Thin Film Fuse Phase Change Ram AndManufacturing Method”,申请人与本申请相同,此案详述了上述的技术,并列为本申请的参考。
如该案所详述,利用了此种技术的存储元件的操作,在元件内部快速而有效地加热。多种方法被提出来改善此现象,其中包括了在存储元件中防止热量流失的方法。
“获得最优化的功率消耗”在此研究领域中,但并未成为关键的议题。目前的存储元件着重于公知手段中,将电流耦合到存储元件本身。此领域未记载在存储元件中如何协助产生热量。
发明内容
本发明的一方面,为一种电极结构,其包括两个并联的电流路径。多个大致为平板型的电极以堆叠方式形成,最外层提供了电接点,并定义穿越此堆叠的第一电流路径。两侧壁导体层形成而邻接至电极层堆叠的两端点,两侧壁导体层限定了第二电流路径。侧壁导体层的端点与电极层导电接点位于同一平面,使得电极结构导电接点各自由一组侧壁层端点与一电极导电接点所形成。
附图说明
图1a-1c示出本发明的一实施例及其变体;
图1d示出图1b与图1c的实施例的操作;
图2a与图2b示出包括本发明实施例的存储元件的实施例;
图3a-3e示出本发明工艺的实施例;
图4a与图4b示出另一本发明工艺的实施例;
图5a与图5b示出本发明另一实施例的工艺;
图6a-6e示出用以制造本发明另一实施例的工艺。
具体实施方式
以下将详述一种电极结构,其提供优选的热性能,以使得本领域技术人员可实施本发明。在附图中所示出的实施例也将被讨论。本领域技术人员将可以理解,以下会描述多个替代方法,而其他方法也可被理解。本发明本身以权利要求所界定,如下所详述。
图1a示出了电极结构的基本实施例10。如图所示,此电极大致为平板型,并且接点区域适合与电路元件形成电接触。此电极包括两层,底层14与顶层12。可以了解的是,在此所用的“底”与“顶”仅用于标示,而非用以指任何功能上的重要性。图中所示出的装置可以侧面方式形成(亦即从图示方向旋转90度)或上下翻转(旋转180度),而不改变其功能。
研究发现,以多层形成电极可减少在装置之内所传导的热量。无论各层由不同材料或相同材料所构成,此现象均已确认,使得多层结构与相同厚度但为单一材料所构成的单层相较之下,具有较低的导热性。此外,此现象也给予设计者较大的弹性,以设计出在特定条件下可提供特定特征条件的结构。在此,优选地选择具有适合的导热与导电性、以及电阻的材料,而形成电极层。优选的材料包括氮化钛、氮化钽、或钽。需要注意的是,在此的设计条件之一,制造不完美的接口,而显示了高电阻与低导热性。因此,优选使用具有良好阻挡特性的材料如氮化钛等,而非使用较为活性因而较容易与邻近材料键合的材料,例如钛。氮化钛可以利用化学气相沉积(CVD)而沉积,而所有材料可利用物理气相沉积(PVD)而沉积,如该领域所公知。优选地,这些层的厚度介于0.3至20纳米之间,更优选为约5纳米。研究发现,在本实施例中,薄膜可制造较有效的接口。
图1a的结果是一种电极结构,其可提供特定的电流与电压,但不会如同现有技术装置一样快速地导热。此特征的重要性如下所详述。
如图1a所示,包括了两层不同材料。事实上,层的数目可随需要改变。设计者可根据如所需要的总电阻与导热性、多层沉积工艺的成本或时间、以及其他本领域中所考虑的因素,而选择所需要的层数。在此以下,以两层来表示多层装置,但读者可以了解的是,此结构表示任何数目的层数均可使用。
对于电极结构20的电性与热性质的额外控制,通过外加侧壁导体26所实现,如图1b所示。在此,顶与底层22、24对应于图1a所标示的,且侧壁导***于此二层的两侧。在本实施例中,侧壁导体的材料为钛。侧壁导体的位置使得其端点与导电元件位于同平面,使得每一侧壁导体提供了从一电极延伸至另一电极的电流路径,其间没有材料或元件变化。优选地,侧壁的厚度介于0.3至20纳米之间,最优选为5纳米。
需要注意的是,此设计可包括侧壁导体,也可不包括,视应用需求而定。在以下的讨论中,大致均包括侧壁导体,但本领域技术人员可以理解,此元件并非本发明的必要元件。
另一实施例是在此结构加上导体材料层。如图1c所示,电极30不只包括顶与底电极元件32、34以及侧壁导体36,还包括导体层37、38。这些层由与金属化层相关的材料所构成。举例而言,可使用铜金属化。其他类型的金属化如铝、氮化钛、含钨材料等,亦可用于此。同时,非金属导电材料如掺杂多晶硅等,亦可用于此。在此实施例中的电极材料优选为氮化钛或氮化钽。或者,电极可为氮化铝钛或氮化铝钽,或可包括一种以上选自下列组中的元素:钛、钨、钼、铝、钽、铜、铂、铱、镧、镍、钌、及其合金。如上所述,材料稳定性是重要的设计条件。因此,大部分实施例使用了钽/氮化钽/氮化钛/硅氮化钽。在一实施例中,此特征通过对材料进行高度掺杂而更加明显。
侧壁导体的稳定效果,可参考图1c与图1d。图1c中央的堆叠层元件(图1c中的层32、34、37与38)以串联方式排列,使得每一元件直接加总到总电阻,因此
RL=R32+R34+R37+R38    (方程式1)
其中RL为电极中央部分的电阻,而各分量则是每一层的电阻。然而,侧壁导体与各层元件并联,产生图1d所示的等效电路,其中各层元件产生电阻RL,而侧壁导体产生电阻RS。在此所排列的为并联电路,其电阻计算为
RE=(RL)(RS)/(RL+RS)(方程式2)
图1c实施例的应用之一,如图2a的存储单元200所示,其大致包括顶电极210、底电极220、以及位于这两个电极之间并与这两个电极接触的存储元件230。此电极以相同方式形成,因此仅标示顶电极210。如前所述,电极的元件包括顶与底电极元件202、204、二导体层207、208、以及侧壁导体206。
在电极之间为存储元件,由电阻随机存取存储(RRAM)材料所构成。多种材料已被证明在制造RRAM时相当有用,如下所述。
一种重要的RRAM材料为硫属化物。硫属化物包括下列四元素中的任意一种:氧(O)、硫(S)、硒(Se)、以及碲(Te),形成元素周期表上第VI族的部分。硫属化物包括将硫属元素与更为正电性的元素或自由基结合而得。硫属化合物合金包括将硫属化合物与其他物质如过渡金属等结合。硫属化合物合金通常包括一个以上选自元素周期表第六栏的元素,例如锗(Ge)以及锡(Sn)。通常,硫属化合物合金包括下列元素中一个以上的复合物:锑(Sb)、镓(Ga)、铟(In)、以及银(Ag)。由于硫属化物通过形成两固态相而实现其双存储性能,每一固态相会显示一特征电阻值,这些材料称为“相变化”材料或合金。
许多以相变化为基础的存储材料已经被描述于技术文件中,包括下列合金:镓/锑、铟/锑、铟/硒、锑/碲、锗/碲、锗/锑/碲、铟/锑/碲、镓/硒/碲、锡/锑/碲、铟/锑/锗、银/铟/锑/碲、锗/锡/锑/碲、锗/锑/硒/碲、以及碲/锗/锑/硫。在锗/锑/碲合金家族中,可以尝试大范围的合金成分。此成分可以下列特征式表示:TeaGebSb100-(a+b),其中a与b代表了所组成元素的原子总数为100%时,各原子的百分比。一位研究员描述了最有用的合金为,在沉积材料中所包含的平均碲浓度远低于70%,典型地低于60%,并在一般形式合金中的碲含量范围从最低23%至最高58%,且最优选介于48%至58%的碲含量。锗的浓度高于约5%,且其在材料中的平均范围从最低8%至最高30%,一般低于50%。最优选地,锗的浓度范围介于8%至40%。在此成分中所剩下的主要成分则为锑。(Ovshinky‘112专利,栏10~11)由另一研究者所评估的特殊合金包括Ge2Sb2Te5、GeSb2Te4、以及GeSb4Te7。(Noboru Yamada,”Potential of Ge-Sb-TePhase-change Optical Disks for High-Data-RateRecording”,SPIE v.3109,pp.28-37(1997))更一般地,过渡金属如铬(Cr)、铁(Fe)、镍(Ni)、铌(Nb)、钯(Pd)、铂(Pt)、以及上述的混合物或合金,可与锗/锑/碲结合以形成相变化合金,其包括可编程的电阻性质。可使用的存储材料的特殊范例,如Ovshinsky‘112专利中栏11-13所述,其范例在此列入参考。
相变化合金能在此单元有源沟道区域内依其位置顺序在材料为一般非晶状态的第一结构状态与为一般结晶固体状态的第二结构状态之间切换。这些材料至少为双稳定态。此词汇“非晶”用以指相对较无次序的结构,其较之单晶更无次序性,而带有可检测的特征如较之结晶态更高的电阻值。此词汇“结晶态”用以指相对较有次序的结构,其较之非晶态更有次序,因此包括可检测的特征,例如比非晶态更低的电阻值。典型地,相变化材料可电切换至完全结晶态与完全非晶态之间所有可检测的不同状态。其他受到非晶态与结晶态的改变而影响的材料特征包括,原子次序、自由电子密度、以及活化能。此材料可切换成为不同的固态、或可切换成为由两种以上固态所形成的混合物,提供从非晶态至结晶态之间的灰阶部分。此材料中的电性质亦可能随之改变。
相变化合金可通过施加电脉冲而从一种相态切换至另一相态。先前观察指出,较短、较大幅度的脉冲倾向于将相变化材料的相态改变成大体为非晶态。较长、较低幅度的脉冲倾向于将相变化材料的相态改变成大体为结晶态。在较短、较大幅度脉冲中的能量够大,因此足以破坏结晶结构的键合,同时够短因此可以防止原子再次排列成结晶态。在没有不适当实验的情形下,可以利用实验方法决定特别适用于特定相变化合金的适当脉冲量变曲线。在后续的叙述中,相变化材料以GST指称,而可以了解的是,也可使用其他类型的相变化材料。一种可用于PCRAM的材料为Ge2Sb2Te5
其他可编程电阻存储材料也可用于本发明的其他实施例中。此种材料之一为超巨磁阻(CMR)材料,其在磁场中会大幅改变电阻值。此种材料一般为含锰的钙钛矿氧化物,且电阻值的改变一般在数量级的幅度内。优选的RRAM化学式为PrxCayMnO3,其中x∶y=0.5∶0.5,或其他成分为x∶0~1;y∶0~1。包括锰氧化物的超巨磁阻材料也可被使用。
另一RRAM材料为双元素化合物,例如NixOy、TixOy、AlxOy、WxOy、ZnxOy、ZrxOy、CuxOy等,其中x∶y=0.5∶0.5,或其他成分为x∶0~1;y∶0~1。同时,也可使用掺杂有铜、碳六十、银等的聚合物,包括TCNQ(7,7,8,8-tetracyanoquinodimethane)、PCBM(methanofullerene 6,6-phenyl C61-butyric acid methylester)、TCNQ-PCBM、Cu-TCNQ、Ag-TCNQ、C60-TCNQ、以其他物质掺杂的TCNQ、或任何其他聚合物材料,其包括以电脉冲控制的双稳定或多稳定电阻态。
如前所述,图2a的电极元件提供了理想的电压与电流电平,但并不会如同现有技术一般将热量快速导离RRAM元件230。此RRAM元件因此保留了电流产生的大部分热量,进而减少用以在RRAM的中产生理想热量水平所需要的电流输入,因而较容易改变这些元件相关的状态。
图2b示出了另一实施例250,其中多层元件220的高电阻率、以及所伴随的热量增加,受到控制以提供热量至RRAM装置230、240。除此改变之外,其他的次元件以及元件成分与上述的部分相同。
用以制造上述电极元件的工艺实施例,如图3a-3e所示。在图3a中,此工艺从在衬底上沉积顶电极材料2、底电极材料4、以及导电材料层7、8衬底开始。需要注意的是,设计者可以自由地选择特定的材料以及层数,从仅具有顶与底电极的简单结构到多层导电层,无论是否具有侧壁导体均可。举例而言,在此所示的结构具有两层导电材料层、顶与底电极、以及一组侧壁导体。
此沉积作用可利用此领域的公知技术所进行,优选由CVD与PVD工艺进行。特定工艺由所选定的材料本质而决定,如本领域中所公知。
在初始沉积后,此工艺继续进行以建立层堆叠的尺寸,如图3b所示,其从掩模9的沉积开始,其位置与尺寸生成具有理想横向尺寸的堆叠。此工艺使用了公知的光刻工艺,以生成如图3c所示的堆叠1。
侧壁导体以数个步骤形成。首先,如图3d所示,一层侧壁导体材料6被沉积,产生覆盖整个堆叠及其周围区域的层结构。如同前一沉积,此工艺优选使用公知技术进行。
通过使用各向异性蚀刻移除从堆叠横向延伸的材料、以及至少部分堆叠顶端的材料,而移除多余的材料,接着使用化学机械研磨工艺(CMP)而将已经完成的电极元件的上表面平面化,生成电极30,如同先前图1c中所示。此平面化必须受到控制,以外露顶电极32的上表面,同时确保两侧壁导体36以及顶电极位于同一平面。
另一变体实施例如图4a与图4b所示。在此,优选将电介质层49加到侧壁导体46上。如图4a所示,此工艺将接着从侧壁导体材料的沉积步骤开始(图3d),进行电介质层49的沉积。电介质材料优选包括二氧化硅、聚亚酰胺、氮化硅、或其他公知的电介质材料。
之后则进行公知的各向异性蚀刻步骤,以定义此结构的横向尺寸,接着以CMP进行平坦化步骤,产生如图4b所示的结构。
上述的各种实施例,均以称为“叠置”的工艺所进行。以相同原理所进行的替代方法,如图5a与图5b所示。在此,电极元件50在衬底中生成并填满凹口而形成电极元件50。如图所示,提供衬底51,如同制造晶圆一般,并在衬底中形成凹口53。接着,进行连续沉积步骤,其与上述相同,而沉积顶与底电极层52、54,以及导电材料层57、58。这些层结构填满了凹口53,生成了“层叠”效果。所生成的结构被平坦化,以移除延伸至凹口53上的材料层,如图5b所示。
用以形成此一电极结构的工艺,可参照图6a-6d而获得详述。在此,电极结构60包括衬底61,并在衬底中形成栓塞65,如图6a所示。此栓塞作用为导电接点,优选由如钨等耐热金属所构成,且使用公知方法形成于衬底中。其他耐热金属包括钛、钼、铝、钽、铜、铂、铱、镧、镍、钌、及其氧化物。
凹口67形成于衬底中,如图6b所示,优选由择优蚀刻工艺所进行,并选择对于栓塞有高蚀刻速率而对衬底材料有较低蚀刻速率的工艺。如图所示的优选结构中,适合的实施例包括钨蚀刻工艺。
接着使用连续沉积步骤、然后进行CMP而完成电极60,如图6c与图6d所示。与其他电路元件的接触由栓塞元件65以及顶电极62完成。
如本领域所公知,在具有相当高深宽比的开口中沉积,例如栓塞元件65,可能在所沉积材料中产生深裂缝。被沉积的材料倾向于沿着所沉积结构的边缘共形地沉积,留下空洞或裂缝,而非均匀实心的材料。后续的蚀刻或CMP步骤可将裂缝打开,但裂缝仍可能留在沉积结构中。因为其共形性很高,钨特别容易发生这种现象,如图6e所示,即使蚀刻到相当深度之后,裂缝69在栓塞元件中仍然可见。在此种情形中,后续沉积的材料可能无法与先前形成的材料产生完全的接触,产生较差的层间接触。
本发明可减轻上述的问题,因为电极材料以及相关结构在填满如裂缝69的沟槽时相当有用。此材料确保了在电极材料与栓塞65的钨金属之间,良好而连续的接触。
虽然本发明已参照优选实施例来加以描述,需要了解的是,本发明并未受限于其详细描述内容。替换方式及修改样式已于先前描述中所建议,并且其他替换方式及修改样式将为本领域技术人员所想到。特别是,根据本发明的结构与方法,所有具有实质上等同于本发明的构件结合而实现与本发明实质上相同的结果的都不脱离本发明的精神范畴。因此,所有这种替换方式及修改样式都将落在本发明在所附权利要求及其均等物所界定的范畴之中。任何在前文中提及的专利申请以及印刷文本,均列为本发明的参考。

Claims (20)

1.一种电极结构,包括:
多个电极层,其形状为平板状并形成为堆叠,最外层提供导电接点,并限定第一电流路径通过所述堆叠;以及
侧壁导体层,形成邻接所述电极层堆叠的两侧,所述两侧壁导体层限定第二电流路径,其中所述侧壁导体层的端点与所述电极层的导电接点位于同一平面,使得电极结构导电接点各自由一组侧壁导体层端点以及电极层导电接点所形成,
其中所述电极结构在相邻的RRAM材料层之间提供电接触。
2.如权利要求1所述的电极结构,其中所述第一与第二电流路径形成并联电阻。
3.如权利要求2所述的电极结构,其中所述多个电极层沉积于半导体结构中。
4.如权利要求2所述的电极结构,其中所述电极层由选自下列组中的材料所构成:氮化钛、氮化钽与钽。
5.如权利要求4所述的电极结构,其中所述电极层材料经高度掺杂。
6.如权利要求2所述的电极结构,还包括多个电极层对。
7.如权利要求2所述的电极结构,其中所述侧壁导体层由钛所构成。
8.如权利要求2所述的电极结构,其中所述多个电极层为薄膜。
9.如权利要求2所述的电极结构,其中所述侧壁导体层为薄膜,且其厚度介于0.3至20纳米之间。
10.如权利要求2所述的电极结构,其中所述侧壁导体层为薄膜,且其厚度约为5纳米。
11.如权利要求2所述的电极结构,其中所述电极结构与RRAM材料层邻接,以提供用于所述RRAM材料层的电接点与热绝缘。
12.一种电极结构,包括:
衬底层,其中具有凹口并在所述凹口的内部具有第一导体接点而可存取;
多个电极层连续地内衬于所述凹口的内部;
第二导体,其与所述多个电极层的最外层形成电接点,
其中所述电极结构在相邻的RRAM材料层之间提供电接触。
13.如权利要求12所述的电极结构,其中所述电极层沉积于半导体结构中。
14.如权利要求12所述的电极结构,其中所述电极层由选自下列组中的材料所构成:氮化钛、氮化钽与钽。
15.如权利要求14所述的电极结构,其中所述电极层材料经高度掺杂。
16.一种用以制造电极结构的方法,包括下列步骤:
在衬底中形成凹口;
在所述凹口中沉积多层电极材料;
修剪所述多层电极材料至预定宽度;
在所述多层电极材料上共形地沉积一层侧壁导体材料;
蚀刻所述多层电极材料以从所述电极结构的上表面移除所述侧壁导体材料,并修剪所述电极结构至预定宽度,
其中所述电极结构在相邻的RRAM材料层之间提供电接触。
17.如权利要求16所述的方法,还包括下列步骤:
在所述蚀刻步骤之前,在所述侧壁导体材料上沉积一层电介质填充材料;以及
进行所述蚀刻步骤,以留下一层电介质填充材料,其附着到所述侧壁导体材料的外表面。
18.如权利要求16所述的方法,其中所述电极材料由选自下列组中的材料所构成:氮化钛、氮化钽与钽。
19.如权利要求16所述的方法,其中所述多层电极材料经高度掺杂。
20.如权利要求16所述的方法,其中所述侧壁导体材料由钛所构成。
CN2007101996058A 2006-12-15 2007-12-11 多层电极结构 Active CN101207180B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/611,428 2006-12-15
US11/611,428 US8344347B2 (en) 2006-12-15 2006-12-15 Multi-layer electrode structure

Publications (2)

Publication Number Publication Date
CN101207180A CN101207180A (zh) 2008-06-25
CN101207180B true CN101207180B (zh) 2011-05-18

Family

ID=39526151

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101996058A Active CN101207180B (zh) 2006-12-15 2007-12-11 多层电极结构

Country Status (3)

Country Link
US (1) US8344347B2 (zh)
CN (1) CN101207180B (zh)
TW (1) TWI336938B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8530875B1 (en) * 2010-05-06 2013-09-10 Micron Technology, Inc. Phase change memory including ovonic threshold switch with layered electrode and methods for forming same
US9847478B2 (en) * 2012-03-09 2017-12-19 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and apparatus for resistive random access memory (RRAM)
CN102779941B (zh) * 2012-08-22 2015-02-18 中国科学院上海微***与信息技术研究所 低功耗相变存储单元及其制备方法
US9166158B2 (en) 2013-02-25 2015-10-20 Micron Technology, Inc. Apparatuses including electrodes having a conductive barrier material and methods of forming same
US9419181B2 (en) * 2013-05-13 2016-08-16 Infineon Technologies Dresden Gmbh Electrode, an electronic device, and a method for manufacturing an optoelectronic device
US9653680B2 (en) * 2015-06-27 2017-05-16 Intel Corporation Techniques for filament localization, edge effect reduction, and forming/switching voltage reduction in RRAM devices
CN106410024A (zh) * 2015-08-03 2017-02-15 华邦电子股份有限公司 电阻式随机存取存储器
US20170133588A1 (en) * 2015-11-06 2017-05-11 HGST Netherlands B.V. Resistive ram cell with focused electric field
US10211054B1 (en) 2017-11-03 2019-02-19 International Business Machines Corporation Tone inversion integration for phase change memory
US10971684B2 (en) * 2018-10-30 2021-04-06 Taiwan Semiconductor Manufacturing Co., Ltd. Intercalated metal/dielectric structure for nonvolatile memory devices

Family Cites Families (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3271591A (en) 1963-09-20 1966-09-06 Energy Conversion Devices Inc Symmetrical current controlling device
US3530441A (en) 1969-01-15 1970-09-22 Energy Conversion Devices Inc Method and apparatus for storing and retrieving information
IL61678A (en) 1979-12-13 1984-04-30 Energy Conversion Devices Inc Programmable cell and programmable electronic arrays comprising such cells
US4719594A (en) 1984-11-01 1988-01-12 Energy Conversion Devices, Inc. Grooved optical data storage device including a chalcogenide memory layer
US4876220A (en) 1986-05-16 1989-10-24 Actel Corporation Method of making programmable low impedance interconnect diode element
JP2685770B2 (ja) 1987-12-28 1997-12-03 株式会社東芝 不揮発性半導体記憶装置
US5534712A (en) 1991-01-18 1996-07-09 Energy Conversion Devices, Inc. Electrically erasable memory elements characterized by reduced current and improved thermal stability
US5166758A (en) 1991-01-18 1992-11-24 Energy Conversion Devices, Inc. Electrically erasable phase change memory
US5177567A (en) 1991-07-19 1993-01-05 Energy Conversion Devices, Inc. Thin-film structure for chalcogenide electrical switching devices and process therefor
US5166096A (en) 1991-10-29 1992-11-24 International Business Machines Corporation Process for fabricating self-aligned contact studs for semiconductor structures
US5958358A (en) 1992-07-08 1999-09-28 Yeda Research And Development Co., Ltd. Oriented polycrystalline thin films of transition metal chalcogenides
US5515488A (en) 1994-08-30 1996-05-07 Xerox Corporation Method and apparatus for concurrent graphical visualization of a database search and its search history
US5785828A (en) 1994-12-13 1998-07-28 Ricoh Company, Ltd. Sputtering target for producing optical recording medium
US6420725B1 (en) 1995-06-07 2002-07-16 Micron Technology, Inc. Method and apparatus for forming an integrated circuit electrode having a reduced contact area
US5879955A (en) 1995-06-07 1999-03-09 Micron Technology, Inc. Method for fabricating an array of ultra-small pores for chalcogenide memory cells
US5869843A (en) 1995-06-07 1999-02-09 Micron Technology, Inc. Memory array having a multi-state element and method for forming such array or cells thereof
US5789758A (en) 1995-06-07 1998-08-04 Micron Technology, Inc. Chalcogenide memory cell with a plurality of chalcogenide electrodes
US5831276A (en) 1995-06-07 1998-11-03 Micron Technology, Inc. Three-dimensional container diode for use with multi-state material in a non-volatile memory cell
US5837564A (en) 1995-11-01 1998-11-17 Micron Technology, Inc. Method for optimal crystallization to obtain high electrical performance from chalcogenides
US5687112A (en) 1996-04-19 1997-11-11 Energy Conversion Devices, Inc. Multibit single cell memory element having tapered contact
US5825609A (en) * 1996-04-23 1998-10-20 International Business Machines Corporation Compound electrode stack capacitor
US6025220A (en) 1996-06-18 2000-02-15 Micron Technology, Inc. Method of forming a polysilicon diode and devices incorporating such diode
US5985698A (en) 1996-07-22 1999-11-16 Micron Technology, Inc. Fabrication of three dimensional container diode for use with multi-state material in a non-volatile memory cell
US5789277A (en) 1996-07-22 1998-08-04 Micron Technology, Inc. Method of making chalogenide memory device
US5814527A (en) 1996-07-22 1998-09-29 Micron Technology, Inc. Method of making small pores defined by a disposable internal spacer for use in chalcogenide memories
US6337266B1 (en) * 1996-07-22 2002-01-08 Micron Technology, Inc. Small electrode for chalcogenide memories
US5998244A (en) 1996-08-22 1999-12-07 Micron Technology, Inc. Memory cell incorporating a chalcogenide element and method of making same
US6147395A (en) 1996-10-02 2000-11-14 Micron Technology, Inc. Method for fabricating a small area of contact between electrodes
US6087674A (en) 1996-10-28 2000-07-11 Energy Conversion Devices, Inc. Memory element with memory material comprising phase-change material and dielectric material
US5825046A (en) * 1996-10-28 1998-10-20 Energy Conversion Devices, Inc. Composite memory material comprising a mixture of phase-change memory material and dielectric material
US6015977A (en) 1997-01-28 2000-01-18 Micron Technology, Inc. Integrated circuit memory cell having a small active area and method of forming same
US5952671A (en) 1997-05-09 1999-09-14 Micron Technology, Inc. Small electrode for a chalcogenide switching device and method for fabricating same
US6031287A (en) 1997-06-18 2000-02-29 Micron Technology, Inc. Contact structure and memory element incorporating the same
US6768165B1 (en) 1997-08-01 2004-07-27 Saifun Semiconductors Ltd. Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping
US7023009B2 (en) 1997-10-01 2006-04-04 Ovonyx, Inc. Electrically programmable memory element with improved contacts
US6617192B1 (en) 1997-10-01 2003-09-09 Ovonyx, Inc. Electrically programmable memory element with multi-regioned contact
US6087269A (en) 1998-04-20 2000-07-11 Advanced Micro Devices, Inc. Method of making an interconnect using a tungsten hard mask
US6483736B2 (en) 1998-11-16 2002-11-19 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6034882A (en) 1998-11-16 2000-03-07 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
US6351406B1 (en) 1998-11-16 2002-02-26 Matrix Semiconductor, Inc. Vertically stacked field programmable nonvolatile memory and method of fabrication
DE19903325B4 (de) 1999-01-28 2004-07-22 Heckler & Koch Gmbh Verriegelter Verschluß für eine Selbstlade-Handfeuerwaffe, mit einem Verschlußkopf und Verschlußträger und einem federnden Sperring mit Längsschlitz
US6177317B1 (en) 1999-04-14 2001-01-23 Macronix International Co., Ltd. Method of making nonvolatile memory devices having reduced resistance diffusion regions
US6075719A (en) 1999-06-22 2000-06-13 Energy Conversion Devices, Inc. Method of programming phase-change memory element
US6077674A (en) 1999-10-27 2000-06-20 Agilent Technologies Inc. Method of producing oligonucleotide arrays with features of high purity
US6314014B1 (en) 1999-12-16 2001-11-06 Ovonyx, Inc. Programmable resistance memory arrays with reference cells
WO2001069673A1 (fr) * 2000-03-13 2001-09-20 Tadahiro Ohmi Dispositif de memoire flash et son procede de fabrication et procede de formation de pellicule dielectrique
US6420216B1 (en) 2000-03-14 2002-07-16 International Business Machines Corporation Fuse processing using dielectric planarization pillars
US6420215B1 (en) 2000-04-28 2002-07-16 Matrix Semiconductor, Inc. Three-dimensional memory array and method of fabrication
US6888750B2 (en) 2000-04-28 2005-05-03 Matrix Semiconductor, Inc. Nonvolatile memory on SOI and compound semiconductor substrates and method of fabrication
US6501111B1 (en) 2000-06-30 2002-12-31 Intel Corporation Three-dimensional (3D) programmable device
US6440837B1 (en) 2000-07-14 2002-08-27 Micron Technology, Inc. Method of forming a contact structure in a semiconductor device
US6563156B2 (en) 2001-03-15 2003-05-13 Micron Technology, Inc. Memory elements and methods for making same
US6339544B1 (en) 2000-09-29 2002-01-15 Intel Corporation Method to enhance performance of thermal resistor device
US6429064B1 (en) 2000-09-29 2002-08-06 Intel Corporation Reduced contact area of sidewall conductor
US6555860B2 (en) 2000-09-29 2003-04-29 Intel Corporation Compositionally modified resistive electrode
US6567293B1 (en) 2000-09-29 2003-05-20 Ovonyx, Inc. Single level metal memory cell using chalcogenide cladding
US6569705B2 (en) 2000-12-21 2003-05-27 Intel Corporation Metal structure for a phase-change memory device
US6271090B1 (en) 2000-12-22 2001-08-07 Macronix International Co., Ltd. Method for manufacturing flash memory device with dual floating gates and two bits per cell
TW490675B (en) 2000-12-22 2002-06-11 Macronix Int Co Ltd Control method of multi-stated NROM
US6627530B2 (en) 2000-12-22 2003-09-30 Matrix Semiconductor, Inc. Patterning three dimensional structures
US6534781B2 (en) 2000-12-26 2003-03-18 Ovonyx, Inc. Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact
US6487114B2 (en) 2001-02-28 2002-11-26 Macronix International Co., Ltd. Method of reading two-bit memories of NROM cell
US6730928B2 (en) 2001-05-09 2004-05-04 Science Applications International Corporation Phase change switches and circuits coupling to electromagnetic waves containing phase change switches
US6514788B2 (en) 2001-05-29 2003-02-04 Bae Systems Information And Electronic Systems Integration Inc. Method for manufacturing contacts for a Chalcogenide memory device
US6613604B2 (en) 2001-08-02 2003-09-02 Ovonyx, Inc. Method for making small pore for use in programmable resistance memory element
US6589714B2 (en) 2001-06-26 2003-07-08 Ovonyx, Inc. Method for making programmable resistance memory element using silylated photoresist
US6511867B2 (en) 2001-06-30 2003-01-28 Ovonyx, Inc. Utilizing atomic layer deposition for programmable device
US6605527B2 (en) 2001-06-30 2003-08-12 Intel Corporation Reduced area intersection between electrode and programming element
US6673700B2 (en) 2001-06-30 2004-01-06 Ovonyx, Inc. Reduced area intersection between electrode and programming element
US6643165B2 (en) 2001-07-25 2003-11-04 Nantero, Inc. Electromechanical memory having cell selection circuitry constructed with nanotube technology
US6709958B2 (en) 2001-08-30 2004-03-23 Micron Technology, Inc. Integrated circuit device and fabrication using metal-doped chalcogenide materials
US6586761B2 (en) 2001-09-07 2003-07-01 Intel Corporation Phase change material memory device
US6861267B2 (en) 2001-09-17 2005-03-01 Intel Corporation Reducing shunts in memories with phase-change material
US6800563B2 (en) 2001-10-11 2004-10-05 Ovonyx, Inc. Forming tapered lower electrode phase-change memories
US6566700B2 (en) 2001-10-11 2003-05-20 Ovonyx, Inc. Carbon-containing interfacial layer for phase-change memory
US6545903B1 (en) 2001-12-17 2003-04-08 Texas Instruments Incorporated Self-aligned resistive plugs for forming memory cell with phase change material
US6512241B1 (en) 2001-12-31 2003-01-28 Intel Corporation Phase change material memory device
US6867638B2 (en) 2002-01-10 2005-03-15 Silicon Storage Technology, Inc. High voltage generation and regulation system for digital multilevel nonvolatile memory
JP3796457B2 (ja) 2002-02-28 2006-07-12 富士通株式会社 不揮発性半導体記憶装置
US6579760B1 (en) 2002-03-28 2003-06-17 Macronix International Co., Ltd. Self-aligned, programmable phase change memory
US6864500B2 (en) 2002-04-10 2005-03-08 Micron Technology, Inc. Programmable conductor memory cell structure
US6605821B1 (en) 2002-05-10 2003-08-12 Hewlett-Packard Development Company, L.P. Phase change material electronic memory structure and method for forming
US6864503B2 (en) 2002-08-09 2005-03-08 Macronix International Co., Ltd. Spacer chalcogenide memory method and device
US6850432B2 (en) 2002-08-20 2005-02-01 Macronix International Co., Ltd. Laser programmable electrically readable phase-change memory method and device
JP4190238B2 (ja) 2002-09-13 2008-12-03 株式会社ルネサステクノロジ 不揮発性半導体記憶装置
US6992932B2 (en) 2002-10-29 2006-01-31 Saifun Semiconductors Ltd Method circuit and system for read error detection in a non-volatile memory array
JP4928045B2 (ja) 2002-10-31 2012-05-09 大日本印刷株式会社 相変化型メモリ素子およびその製造方法
US6791102B2 (en) 2002-12-13 2004-09-14 Intel Corporation Phase change memory
US6744088B1 (en) 2002-12-13 2004-06-01 Intel Corporation Phase change memory device on a planar composite layer
US6815266B2 (en) 2002-12-30 2004-11-09 Bae Systems Information And Electronic Systems Integration, Inc. Method for manufacturing sidewall contacts for a chalcogenide memory device
KR100486306B1 (ko) 2003-02-24 2005-04-29 삼성전자주식회사 셀프 히터 구조를 가지는 상변화 메모리 소자
US7115927B2 (en) * 2003-02-24 2006-10-03 Samsung Electronics Co., Ltd. Phase changeable memory devices
US7049153B2 (en) * 2003-04-23 2006-05-23 Micron Technology, Inc. Polymer-based ferroelectric memory
US20060006472A1 (en) 2003-06-03 2006-01-12 Hai Jiang Phase change memory with extra-small resistors
US7067865B2 (en) 2003-06-06 2006-06-27 Macronix International Co., Ltd. High density chalcogenide memory cells
US7893419B2 (en) 2003-08-04 2011-02-22 Intel Corporation Processing phase change material to improve programming speed
US6815704B1 (en) 2003-09-04 2004-11-09 Silicon Storage Technology, Inc. Phase change memory device employing thermally insulating voids
US6927410B2 (en) 2003-09-04 2005-08-09 Silicon Storage Technology, Inc. Memory device with discrete layers of phase change memory material
DE10345455A1 (de) 2003-09-30 2005-05-04 Infineon Technologies Ag Verfahren zum Erzeugen einer Hartmaske und Hartmasken-Anordnung
JP2005150156A (ja) * 2003-11-11 2005-06-09 Toshiba Corp 磁気記憶装置
US6937507B2 (en) 2003-12-05 2005-08-30 Silicon Storage Technology, Inc. Memory device and method of operating same
US6849891B1 (en) * 2003-12-08 2005-02-01 Sharp Laboratories Of America, Inc. RRAM memory cell electrodes
JP4124743B2 (ja) 2004-01-21 2008-07-23 株式会社ルネサステクノロジ 相変化メモリ
KR100564608B1 (ko) 2004-01-29 2006-03-28 삼성전자주식회사 상변화 메모리 소자
US6936840B2 (en) 2004-01-30 2005-08-30 International Business Machines Corporation Phase-change memory cell and method of fabricating the phase-change memory cell
JP4529493B2 (ja) 2004-03-12 2010-08-25 株式会社日立製作所 半導体装置
KR100598100B1 (ko) 2004-03-19 2006-07-07 삼성전자주식회사 상변환 기억 소자의 제조방법
DE102004014487A1 (de) 2004-03-24 2005-11-17 Infineon Technologies Ag Speicherbauelement mit in isolierendes Material eingebettetem, aktiven Material
US20050230725A1 (en) * 2004-04-20 2005-10-20 Texas Instruments Incorporated Ferroelectric capacitor having an oxide electrode template and a method of manufacture therefor
KR100647218B1 (ko) 2004-06-04 2006-11-23 비욘드마이크로 주식회사 고집적 상변화 메모리 셀 어레이 및 이를 포함하는 상변화메모리 소자
JP2006120707A (ja) 2004-10-19 2006-05-11 Matsushita Electric Ind Co Ltd 可変抵抗素子および半導体装置
US7608503B2 (en) 2004-11-22 2009-10-27 Macronix International Co., Ltd. Side wall active pin memory and manufacturing method
KR100827653B1 (ko) 2004-12-06 2008-05-07 삼성전자주식회사 상변화 기억 셀들 및 그 제조방법들
US7220983B2 (en) 2004-12-09 2007-05-22 Macronix International Co., Ltd. Self-aligned small contact phase-change memory method and device
US7214958B2 (en) 2005-02-10 2007-05-08 Infineon Technologies Ag Phase change memory cell with high read margin at low power operation
US7488967B2 (en) 2005-04-06 2009-02-10 International Business Machines Corporation Structure for confining the switching current in phase memory (PCM) cells
US7166533B2 (en) 2005-04-08 2007-01-23 Infineon Technologies, Ag Phase change memory cell defined by a pattern shrink material process
US8237140B2 (en) 2005-06-17 2012-08-07 Macronix International Co., Ltd. Self-aligned, embedded phase change RAM
US7321130B2 (en) 2005-06-17 2008-01-22 Macronix International Co., Ltd. Thin film fuse phase change RAM and manufacturing method
US7238994B2 (en) 2005-06-17 2007-07-03 Macronix International Co., Ltd. Thin film plate phase change ram circuit and manufacturing method
US7514288B2 (en) 2005-06-17 2009-04-07 Macronix International Co., Ltd. Manufacturing methods for thin film fuse phase change ram
US7598512B2 (en) 2005-06-17 2009-10-06 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation layer and manufacturing method
US7514367B2 (en) 2005-06-17 2009-04-07 Macronix International Co., Ltd. Method for manufacturing a narrow structure on an integrated circuit
US7534647B2 (en) 2005-06-17 2009-05-19 Macronix International Co., Ltd. Damascene phase change RAM and manufacturing method
US7651906B2 (en) 2005-06-20 2010-01-26 Samsung Electronics Co., Ltd. Integrated circuit devices having a stress buffer spacer and methods of fabricating the same
US20070037101A1 (en) 2005-08-15 2007-02-15 Fujitsu Limited Manufacture method for micro structure
US7397060B2 (en) 2005-11-14 2008-07-08 Macronix International Co., Ltd. Pipe shaped phase change memory
US20070111429A1 (en) 2005-11-14 2007-05-17 Macronix International Co., Ltd. Method of manufacturing a pipe shaped phase change memory
US7635855B2 (en) 2005-11-15 2009-12-22 Macronix International Co., Ltd. I-shaped phase change memory cell
US7786460B2 (en) 2005-11-15 2010-08-31 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7450411B2 (en) 2005-11-15 2008-11-11 Macronix International Co., Ltd. Phase change memory device and manufacturing method
US7394088B2 (en) 2005-11-15 2008-07-01 Macronix International Co., Ltd. Thermally contained/insulated phase change memory device and method (combined)
US7414258B2 (en) 2005-11-16 2008-08-19 Macronix International Co., Ltd. Spacer electrode small pin phase change memory RAM and manufacturing method
US7479649B2 (en) 2005-11-21 2009-01-20 Macronix International Co., Ltd. Vacuum jacketed electrode for phase change memory element
US7507986B2 (en) 2005-11-21 2009-03-24 Macronix International Co., Ltd. Thermal isolation for an active-sidewall phase change memory cell
US7449710B2 (en) 2005-11-21 2008-11-11 Macronix International Co., Ltd. Vacuum jacket for phase change memory element
US7829876B2 (en) 2005-11-21 2010-11-09 Macronix International Co., Ltd. Vacuum cell thermal isolation for a phase change memory device
US7599217B2 (en) 2005-11-22 2009-10-06 Macronix International Co., Ltd. Memory cell device and manufacturing method
US7688619B2 (en) 2005-11-28 2010-03-30 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7459717B2 (en) 2005-11-28 2008-12-02 Macronix International Co., Ltd. Phase change memory cell and manufacturing method
US7605079B2 (en) 2005-12-05 2009-10-20 Macronix International Co., Ltd. Manufacturing method for phase change RAM with electrode layer process
US7642539B2 (en) 2005-12-13 2010-01-05 Macronix International Co., Ltd. Thin film fuse phase change cell with thermal isolation pad and manufacturing method
US7531825B2 (en) 2005-12-27 2009-05-12 Macronix International Co., Ltd. Method for forming self-aligned thermal isolation cell for a variable resistance memory array
US8062833B2 (en) 2005-12-30 2011-11-22 Macronix International Co., Ltd. Chalcogenide layer etching method
US7560337B2 (en) 2006-01-09 2009-07-14 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7595218B2 (en) 2006-01-09 2009-09-29 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US20070158632A1 (en) 2006-01-09 2007-07-12 Macronix International Co., Ltd. Method for Fabricating a Pillar-Shaped Phase Change Memory Element
US7741636B2 (en) 2006-01-09 2010-06-22 Macronix International Co., Ltd. Programmable resistive RAM and manufacturing method
US7825396B2 (en) 2006-01-11 2010-11-02 Macronix International Co., Ltd. Self-align planerized bottom electrode phase change memory and manufacturing method
US7432206B2 (en) 2006-01-24 2008-10-07 Macronix International Co., Ltd. Self-aligned manufacturing method, and manufacturing method for thin film fuse phase change ram
US7456421B2 (en) 2006-01-30 2008-11-25 Macronix International Co., Ltd. Vertical side wall active pin structures in a phase change memory and manufacturing methods
US8129706B2 (en) 2006-05-05 2012-03-06 Macronix International Co., Ltd. Structures and methods of a bistable resistive random access memory

Also Published As

Publication number Publication date
US8344347B2 (en) 2013-01-01
US20080142984A1 (en) 2008-06-19
TW200832678A (en) 2008-08-01
TWI336938B (en) 2011-02-01
CN101207180A (zh) 2008-06-25

Similar Documents

Publication Publication Date Title
CN101207180B (zh) 多层电极结构
CN101170122B (zh) 非易失性多位存储器件、其制造方法及其操作方法
US7449710B2 (en) Vacuum jacket for phase change memory element
CN100562985C (zh) 制造存储单元的自对准空洞及底电极的方法
CN101197422B (zh) 在制造存储单元时产生微孔开口的方法
US7220983B2 (en) Self-aligned small contact phase-change memory method and device
CN100481389C (zh) 可编程电阻随机存取存储器及其制造方法
CN100550462C (zh) 具有l型电极的电阻式随机存取存储器单元
TWI387103B (zh) 具有二極體存取裝置之完全自我對準微孔型記憶胞
US20120282752A1 (en) Fabricating current-confining structures in phase change memory switch cells
CN105428526B (zh) 一种三维存储器及其制备方法
KR20060128378A (ko) 상변환 기억 소자의 제조방법
CN110061130A (zh) 硫属化合物存储器存取装置的自对准生长方法
CN101359677B (zh) 相变化存储桥
US10777745B2 (en) Switching element, variable resistance memory device, and method of manufacturing the switching element
CN110416407A (zh) 相变存储器结构
US11665914B2 (en) Three dimensional semiconductor memory devices
US20180019281A1 (en) Variable resistance memory devices and methods of fabricating the same
US8610098B2 (en) Phase change memory bridge cell with diode isolation device
US20080253165A1 (en) Method of Manufacturing a Memory Device, Memory Device, Cell, Integrated Circuit, Memory Module, and Computing System
US11362141B2 (en) Variable resistance memory device
KR100785807B1 (ko) 갭필 공정 없이 고집적화할 수 있는 상변화 메모리 소자의제조방법
CN101075630B (zh) 相变化存储装置及其制造方法
JP2023066387A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant