WO2024066108A1 - 一种电子光学测试平台装置 - Google Patents

一种电子光学测试平台装置 Download PDF

Info

Publication number
WO2024066108A1
WO2024066108A1 PCT/CN2022/143433 CN2022143433W WO2024066108A1 WO 2024066108 A1 WO2024066108 A1 WO 2024066108A1 CN 2022143433 W CN2022143433 W CN 2022143433W WO 2024066108 A1 WO2024066108 A1 WO 2024066108A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron
electron beam
platform device
lead screw
loading
Prior art date
Application number
PCT/CN2022/143433
Other languages
English (en)
French (fr)
Inventor
黄龙
张刘晶
张振生
俞大鹏
Original Assignee
南方科技大学
深圳国际量子研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方科技大学, 深圳国际量子研究院 filed Critical 南方科技大学
Publication of WO2024066108A1 publication Critical patent/WO2024066108A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]

Definitions

  • the present application relates to the technical field of electronic optical experiments, and more specifically, to an electronic optical test platform device.
  • Electro-optical components need to be tested. In the current development process of electro-optical equipment, most of the electro-optical components are tested separately, and they are not assembled into an electro-optical system for testing. The collected and analyzed data is limited. In addition, to test the electro-optical system, all the electro-optical components must be processed and formed before being assembled and tested. In this way, it is impossible to partially modify a single electro-optical component. If a modification is required, it must be re-processed and manufactured, so that the electro-optical components must be re-processed and manufactured multiple times until they meet the test requirements, resulting in waste and inefficiency.
  • the purpose of the present application is to provide an electronic optical test platform device, aiming to solve the technical problems existing in the prior art that electronic optical components can only be tested independently, the collection and analysis data are limited, and even if they are composed of an electronic optical system for testing, they still face waste and inefficiency when modifications are needed.
  • an electronic optical test platform device comprising:
  • An electron gun the electron gun being used to generate an electron beam
  • a vacuum chamber wherein an objective lens, an electron beam imaging system, and an electron beam size detection device are disposed in the vacuum chamber, wherein the objective lens is used to reduce the electron beam diameter;
  • a liner tube one end of which is sealed and connected to an electron gun, the liner tube is used for the electron beam to pass through, the other end of the liner tube is relatively sealed with an objective lens and is connected to a vacuum chamber, the electron beam imaging system and the electron beam size detection device both include a silicon wafer coated with photoresist, the electron beam passes through the liner tube to hit the silicon wafer to excite secondary electrons and backscattered electrons, the electron beam imaging system is used to use the secondary electron and backscattered electron signals to form an image, the photoresist forms an etching mark under the action of the electron beam, and the size of the electron beam is obtained by measuring the etching mark, and the interior of the liner tube is vacuum; and
  • Each of the loading trays can be moved independently along the length direction of the liner tube, and the loading tray is used to carry the electron optical element to be detected.
  • the electron gun is fixedly arranged or the electron gun is fixedly connected to an adjacent carrier plate and moves therewith.
  • the liner passes through the center of the plurality of carrier plates, the plurality of carrier plates are aligned with each other in the length direction of the liner, and each carrier plate is moved individually by means of a screw mechanism.
  • the electronic optical test platform device further includes:
  • Two fixed plates are provided at intervals in the length direction of the liner and aligned with each other;
  • a lead screw the lead screw is assembled between two fixed disks, the lead screw is rotatably connected to the fixed disk, the lead screw is also connected to a hand wheel for driving the lead screw to rotate, and the lead screw has an external thread;
  • a nut the nut is fixedly connected to the loading plate, the nut has an internal thread, the internal thread is adapted to the external thread, and the nut is sleeved on the lead screw;
  • a slide bar is installed between two fixed plates, and the slide bar and the loading plate are arranged to slide relative to each other.
  • a support column is connected between the two fixed plates to keep the two fixed plates relatively fixed, and the support column is used to support the entire test platform device.
  • the loading plate is fixedly connected to a linear bearing, a ball is arranged in the linear bearing, the slide rod passes through the linear bearing, and the linear bearing and the slide rod are slidably connected to realize a relative sliding setting between the slide rod and the loading plate.
  • the number of the lead screws is the same as the number of the loading plates, each of the lead screws drives one of the loading plates to move, the loading plate is provided with a through hole for the lead screw to pass through, the nut is fixedly connected to the loading plate and aligned with the through hole, and the lead screw passes through the through hole and the nut at the same time.
  • the electron gun is fixedly connected to one of the fixed plates, and the other fixed plate is fixedly connected to the vacuum chamber.
  • the number of the sliding rods is the same as the number of the loading plates, and each sliding rod passes through a linear bearing connected to the loading plate.
  • a detachable clamp is also mounted on the slide bar, and the tightness of the clamp is adjusted by turning a screw, and the clamp is at least fixed to the lower side of the linear bearing to position the carrier plate.
  • an electron optical test platform device provided by the present application is that the electron gun in the present application is used to emit an electron beam, and the electron beam passes through a liner tube and enters an objective lens in a vacuum chamber through the liner tube, where it converges at the objective lens to reduce the diameter of the electron beam, and the electron beam reaches a sample in the vacuum chamber, which is a silicon wafer coated with photoresist, and generates secondary electrons and backscattered electrons.
  • An electron beam imaging system receives secondary electron and backscattered electron signals to form an image, and an electron beam size detection device detects the size of the electron beam, thereby identifying the size and aberration of the electron beam after the electron beam is manipulated.
  • the aberration represents the distortion and error formed by the electron beam after being manipulated by an electron optical element.
  • the electron optical element forms distortion and error due to errors in processing technology, material uniformity, assembly, power supply ripple stability, etc.
  • the electron beam passes through the liner tube, it is connected to the electric
  • a plurality of different electron optical elements can be arranged on the carrier plate between the sub-gun and the vacuum chamber, so that a plurality of electron optical elements can be combined at will and their positions can be adjusted arbitrarily for rapid testing. Since each carrier plate can move independently, that is, can independently move along the length direction of the liner, the position of each electron optical element can be adjusted.
  • Each electron optical element is connected to a power generator, and data analysis is collected by changing the position or current, voltage and other parameters of the electron optical element.
  • the present application solves the problem in the prior art that the electron optical elements need to be separated and tested independently.
  • a plurality of carrier plates are provided to carry a plurality of electron optical elements, and the positions can be adjusted individually through the carrier plates, forming an electron optical system for testing, without the need to separate the electron optical elements. After processing and forming, it is assembled and tested according to a specific position.
  • the traditional method of modifying or adjusting the electronic optical components requires reprocessing and manufacturing the electronic optical components, and the new components need to be reassembled before the next test, which is time-consuming, labor-intensive and costly.
  • the test device is flexible and diverse, and collects more data. It only needs to make simple position adjustments and combinations of the electronic optical components, adjust the position of the carrier plate, adjust the position of the electron gun, and adjust the power supply signal to quickly collect and analyze data. It can be adjusted to the required position without redesigning the overall structure and can be reused. This universal design greatly improves the speed and efficiency of the research and development of electronic optical systems and reduces costs.
  • FIG1 is a schematic diagram of the structure of an electronic optical test platform device provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of the structure of FIG1 after the support column is removed;
  • FIG3 is a cross-sectional view of the vacuum chamber in FIG1 ;
  • FIG. 4 is a cross-sectional view of the electron gun in FIG. 1 .
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features.
  • “multiple” means two or more, unless otherwise clearly and specifically defined.
  • "Several” means one or more, unless otherwise clearly and specifically defined.
  • the terms “installed”, “connected”, and “connected” should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
  • installed should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements.
  • the present application provides an electronic optical test platform device, including an electron gun 1, a vacuum chamber 2 and a liner 4;
  • the electron gun 1 is used to generate an electron beam
  • An objective lens 3, an electron beam imaging system, and an electron beam size detection device are provided at the vacuum chamber 2, wherein the objective lens 3 is used to reduce the electron beam diameter;
  • the liner tube 4 is sealed and connected to the electron gun 1.
  • the liner tube 4 is used for the electron beam to pass through.
  • the other end of the liner tube 4 is relatively sealed with the objective lens 3 and is connected to the vacuum chamber 2.
  • the electron beam imaging system and the electron beam size detection device both include a silicon wafer coated with photoresist.
  • the electron beam passes through the liner tube 4 to hit the silicon wafer to excite secondary electrons and backscattered electrons.
  • the electron beam imaging system is used to use the secondary electron and backscattered electron signals to form an image.
  • the photoresist forms an etching mark under the action of the electron beam, and the size of the electron beam is obtained by measuring the etching mark.
  • the interior of the liner tube 4 is vacuum; and
  • the loading trays 5 are located between the electron gun 1 and the vacuum chamber 2.
  • the loading trays 5 can each move independently along the length direction of the liner 4, and the loading trays 5 are used to carry the electron optical elements to be detected.
  • the electronic optical element in this embodiment may specifically be a magnetic lens, an electrostatic deflector, a magnetic deflector, an stigmator, a magnetic centering deflector, a beam gate, etc.
  • the electronic optical components such as magnetic lens, electrostatic deflector, magnetic deflector, stigmator, magnetic centering deflector, beam gate, etc. can be temporarily assembled and placed on the loading plate 5 for fixing.
  • Various electronic optical components can be tested individually or randomly combined and placed on the corresponding loading plate 5 for testing. After the corresponding electronic optical components are placed, they are powered by a power supply.
  • the power supply adjustment can change the size, while the position change can change the position of the magnetic field or electric field.
  • the magnetic lens when the electron optical element is a magnetic lens, the magnetic lens generates a magnetic field after power is turned on, and the size of the magnetic field can be adjusted by adjusting the power supply, and the position of the magnetic field can be adjusted by adjusting the position of the magnetic lens.
  • the magnetic lens controls the electron beam by converging the electron beam with the magnetic field.
  • the electrostatic deflector When the electron optical element is an electrostatic deflector, the electrostatic deflector generates an electrostatic field, and the size of the electrostatic field can be adjusted by adjusting the power supply, and the position of the electrostatic field can be adjusted by adjusting the position of the electrostatic deflector.
  • the electrostatic deflector controls the electron beam by deflecting the electron beam with an electric field.
  • the magnetic deflector When the electron optical element is a magnetic deflector, the magnetic deflector generates a magnetic field after power is turned on, and the magnitude of the magnetic field can be adjusted by adjusting the power supply, and the position of the magnetic field can be adjusted by adjusting the position of the magnetic deflector.
  • the magnetic deflector controls the electron beam by deflecting the electron beam with a magnetic field.
  • the stigmator When the electron optical element is an stigmator, the stigmator generates a magnetic field after power is turned on, and the magnitude of the magnetic field can be adjusted by adjusting the power supply, and the position of the magnetic field can be adjusted by adjusting the position of the stigmator.
  • the stigmator controls the electron beam by controlling the shape of the electron beam through the Lorentz force in different directions of the magnetic field.
  • the magnetic centering deflector When the electron optical element is a magnetic centering deflector, the magnetic centering deflector generates a magnetic field after power is turned on, and the size of the magnetic field can be adjusted by adjusting the power supply, and the position of the magnetic field can be adjusted by adjusting the position of the magnetic centering deflector.
  • the magnetic centering deflector controls the electron beam by fine-tuning the deflection of the electron beam through the magnetic field.
  • the beam gate When the electron optical element is a beam gate, the beam gate generates a high-frequency electric field that is turned on and off after power is turned on.
  • the size of the electric field can be adjusted by adjusting the power supply, and the position of the electric field can be adjusted by adjusting the position of the beam gate.
  • the beam gate controls the electron beam by deflecting the electron beam with an electric field.
  • the electron gun 1 is powered by a high-voltage cable to generate a continuous and stable electron beam.
  • the chamber of the electron gun 1 is a high vacuum environment.
  • the electron gun 1 will only generate an electron beam in a high vacuum environment.
  • the chamber of the electron gun 1 maintains a vacuum under the continuous extraction of a vacuum pump.
  • the interior of the liner tube 4 is also vacuum, and the liner tube 4 extends into the chamber of the electron gun 1 to receive the generated electron beam.
  • the exposed portion of the liner tube 4 between the electron chamber and the vacuum chamber 2 is a test area.
  • the carrier plate 5 is located in the test area between the electron gun 1 and the vacuum chamber 2.
  • the positions of the multiple carrier plates 5 between the electron gun 1 and the vacuum chamber 2 can be adjusted independently.
  • the carrier plate 5 is used to carry the electron optical elements, that is, the positions of the electron optical elements can be adjusted independently.
  • each electron optical element is set on the carrier plate 5 for testing, each electron optical element is connected to a power generator and a monitoring device, and the position of the electron optical element is adjusted by adjusting the power signal and the position of the carrier plate 5 to collect data for analysis.
  • the position of the electron optical element is mainly changed by adjusting the position of the carrier plate 5, including the relative position with the electron gun 1 and the position with other electron optical elements.
  • the change of the position of the electron-optical element will affect the position of the electric field or magnetic field it generates, and will affect the trajectory of the electron beam in the system.
  • the change of the voltage and current of the electron-optical element will change the size of the electric field or magnetic field it generates, thereby producing different manipulations on the electron beam.
  • This device can test various electron-optical elements multiple times and flexibly.
  • the electron-optical element affects the position of the electric field or magnetic field due to the change of its position, which will act on the electron beam to manipulate the electron beam, produce different manipulations on the electron beam, and obtain the size and aberration of the electron beam after manipulation.
  • the aberration indicates the distortion and error of the electron beam after being manipulated by the electron-optical element.
  • the electron-optical element forms distortion and errors due to errors in processing technology, material uniformity, assembly, power supply ripple stability, etc.
  • each electron optical element is connected to the power generator and the monitoring equipment, and collects data analysis by adjusting the power signal, which mainly includes the signal adjustment of current and voltage.
  • the voltage and current changes of the electron optical element will change the size of the electric field or magnetic field it generates, and then act on the electron beam to manipulate the electron beam and produce different manipulations on the electron beam.
  • the monitoring equipment is used to monitor the voltage, current size changes and ripples, temperature changes and magnetic field changes applied to the electron optical element, so as to monitor the data.
  • the electron beam imaging system and the electron beam size detection device are used to receive the electron beam, so as to obtain the imaging and size detection of the electron beam after different manipulations, so as to collect data and complete the detection of the electron optical element.
  • the monitoring equipment may be an oscilloscope, a multimeter, a temperature measuring instrument, a vacuum gauge, a gauss meter and the like to monitor data such as voltage, current, temperature, vacuum degree, magnetic field strength, electric field strength and the like.
  • both include a silicon wafer coated with photoresist, and both use the silicon wafer for detection.
  • the electron beam hits the silicon wafer coated with photoresist in the vacuum chamber 2 through the electron optical system, secondary electrons and backscattered electrons are excited, and the signals are collected by the electron beam imaging system to form an image.
  • the electron beam size refers to the diameter of the circular spot of the electron beam.
  • the electron beam size detection device includes a sample stage and a silicon wafer coated with photoresist.
  • the photoresist will form etching marks after being acted upon by the electron beam.
  • the silicon wafer with the photoresist forming the etching marks By placing the silicon wafer with the photoresist forming the etching marks under an electron microscope, the size of the marks can be measured, thereby inferring the size of the circular spot of the electron beam.
  • the test parameters of electron optical components are mainly determined by the size and imaging quality of the electron beam.
  • the electron beam control capability can be changed by changing the voltage or current signal, or by changing the position of the electron optical component, thereby completing the test of the electron optical component.
  • the function of the objective lens 3 lies in the coil of the objective lens 3. After power is turned on, the copper coil generates a magnetic field that converges the electron beam, reducing the diameter of the electron beam to perform micro-nano etching on the photoresist.
  • the different electron guns and objective lenses developed and improved can also be installed on an electronic optical test platform device for testing, which can realize the testing of the electron gun and the objective lens.
  • the liner tube 4 is a hollow metal tube, which is made of non-magnetic metal materials such as aluminum, copper, etc.
  • the liner tube 4 is connected to the electron gun 1 chamber and the vacuum chamber 2, and the interior is in a vacuum state.
  • the electron gun 1 in the present application is used to emit an electron beam, which passes through a liner tube 4 and enters an objective lens 3 in a vacuum chamber 2, where it converges and reduces the diameter of the electron beam.
  • the electron beam reaches a sample in the vacuum chamber 2, which is a silicon wafer coated with a photoresist, and generates secondary electrons and backscattered electrons.
  • the electron beam imaging system receives the secondary electron and backscattered electron signals to form an image, and the electron beam size detection system detects the size of the electron beam.
  • the device detects the size of the electron beam, thereby identifying the size and aberration of the electron beam after the electron beam is manipulated.
  • the aberration indicates the distortion and error of the electron beam after being manipulated by the electron optical element.
  • the electron optical element forms distortion and error due to errors in processing technology, material uniformity, assembly, power supply ripple stability, etc.
  • a plurality of different electron optical elements can be arranged on the carrier plate 5 connected between the electron gun 1 and the vacuum chamber 2, thereby realizing the random combination of a plurality of electron optical elements and adjusting the position arbitrarily for rapid testing. Since each carrier plate 5 can move independently, that is, can independently move along the length direction of the liner 4, the position of each electron optical element is adjustable.
  • Each electron optical element is connected to a power generator, and data analysis is collected by changing the position or current and voltage of the electron optical element.
  • the present application solves the disadvantage of the prior art that the electron optical elements need to be separated and tested independently, and the arrangement There are multiple loading trays 5 that can carry multiple electronic optical elements, and the positions of the loading trays 5 can be adjusted separately to form an electronic optical system for testing. There is no need to process the electronic optical elements into shape and then assemble and test them according to specific positions.
  • the traditional method of modifying or adjusting the electronic optical elements requires reprocessing and manufacturing the electronic optical elements, and the new elements need to be reassembled before the next test, which is time-consuming, labor-intensive and costly.
  • the test device is flexible and diverse, and collects more data. It only needs to perform simple position adjustment and combination of the electronic optical elements, position adjustment of the loading trays 5, position adjustment of the electron gun 1, and adjustment of the power supply signal to quickly collect and analyze data. It can be adjusted to the required position without redesigning the overall structure and can be reused.
  • This universal design greatly improves the speed and efficiency of the research and development of the electronic optical system and reduces costs.
  • the position of the electronic optical element and the actual required size measured, and the order and position of the electronic optical elements after combination are determined through test data, and the actual processing required size is measured to design and determine the final drawing size of the electronic optical element, and the modification of the electronic optical element is timely guided by the test and adjustment device.
  • the electronic optical test platform device provided in this embodiment can also replace the electron guns 1 of various models and specifications developed to verify the performance of the electron guns 1.
  • the electron gun 1 may be fixedly arranged, or may be fixedly connected to an adjacent loading tray 5 and move therewith.
  • the electron gun 1 can also be fixed on the adjacent loading tray 5, and the source distance can be adjusted by moving the loading tray 5.
  • the position of the electron gun 1 is adjustable, and it can be fixed on the adjacent loading tray 5 to adjust the position arbitrarily.
  • the position adjustment of the electron gun 1 can adjust the emission position of the electron beam, which plays a vital role in the test of the electron optical system.
  • the electron gun 1 and the electron beam can be adjusted at will.
  • the overall design must be overturned and reprocessed to achieve a similar effect. This design greatly improves the speed and efficiency of the research and development of the electron optical system and reduces the cost.
  • the corresponding matching liner 4 can be replaced, but the liner 4 and the electron gun 1, the liner 4 itself and the vacuum chamber 2 are all kept in a sealed vacuum state, and the position of the electron gun 1 can be adjusted, which is equivalent to directly adjusting the position of the emission source, and the relative position of the electron gun 1 and the electron optical element can be adjusted by moving the emission source.
  • the liner tube 4 and the electron gun 1 chamber are relatively sealed, and the objective lens 3 is arranged in the vacuum chamber 2 and is relatively sealed with the vacuum chamber 2 via a sealing gasket.
  • the liner 4 passes through the center of the multiple carrier plates 5, and the multiple carrier plates 5 are aligned with each other in the length direction of the liner 4.
  • Each of the carrier plates 5 moves independently with the help of the screw 7 mechanism, and the carrier plate 5 is used to carry the electron optical element to be detected.
  • the carrier plate 5 is preferably circular, and the liner 4 passes through the center of the carrier plate 5, so that the carrier plate 5 is symmetrically arranged around the liner 4, the electronic optical element can be set on the carrier plate 5, and the distance between the electronic optical element and the liner 4 can be effectively controlled, and the multiple carrier plates 5 are aligned in the length direction of the liner 4, and the position of the electronic optical element on each carrier plate 5 can also be effectively controlled.
  • the loading plate 5 moves with the aid of a lead screw mechanism, the lead screw mechanism is relatively stable in adjustment, and the position is easy to control, and the adjustment effect is good.
  • this embodiment provides an electronic optical test platform device further comprising a fixed plate 6, a lead screw 7, a nut 8, and a slide rod 10;
  • fixing plates 6 which are spaced apart in the length direction of the liner 4 and aligned with each other;
  • the lead screw 7 is assembled between two fixed plates 6 , and the lead screw 7 is rotatably connected to the fixed plates 6 .
  • the lead screw 7 is also connected to a hand wheel 9 for driving the lead screw 7 to rotate, and the lead screw 7 has an external thread.
  • the nut 8 is fixedly connected to the loading plate 5 , and the nut 8 has an internal thread that matches the external thread.
  • the nut 8 is sleeved on the lead screw 7 .
  • the slide bar 10 is assembled between the two fixed plates 6 , and the slide bar 10 and the loading plate 5 are arranged to slide relative to each other.
  • the fixed plate 6 can be specifically a flange plate.
  • the fixed plate 6 plays the role of supporting the whole.
  • the lead screw 7 is assembled between the two fixed plates 6 and is rotatably connected to the fixed plates 6 respectively.
  • the lead screw 7 is also connected to a handwheel 9 for driving its rotation.
  • the setting of the lead screw 7 is parallel to that of the liner 4. It is located on one side of the liner 4. Both ends of the lead screw 7 are assembled on the fixed plates 6 through bearings. It can rotate, and a handwheel 9 for driving its rotation is also provided at one end of the lead screw 7.
  • the rotation of the lead screw 7 can be achieved by controlling the handwheel 9, and the adjustment is more precise.
  • the nut 8 is fixedly connected to the loading plate 5 , and has an internal thread that matches the external thread.
  • the nut 8 is assembled on the lead screw 7 , so that when the lead screw 7 rotates, the nut 8 moves along the direction of the lead screw 7 , thereby realizing the movement of the loading plate 5 .
  • a sliding rod 10 is also provided in this embodiment.
  • the sliding rod 10 is assembled between the two fixed plates 6.
  • the sliding rod 10 can also be assembled on the bearing of the fixed plate 6.
  • the sliding rod 10 is slidably connected to the loading plate 5.
  • the slide bar 10 When the slide bar 10 is slidably connected to the loading plate 5, the slide bar 10 has a certain restraining effect on the loading plate 5, preventing the loading plate 5 from tilting and becoming unstable, thereby achieving stable and horizontal movement of the nut 8 and the loading plate 5 along the length direction of the lead screw 7. At the same time, since the loading plate 5 is slidably connected to the slide bar 10, the stability of the loading plate 5 when moving along the length direction of the lead screw 7 is also guaranteed.
  • this embodiment further provides a support column 12 connected between the two fixed plates 6 to keep the two fixed plates 6 relatively fixed.
  • a plurality of support columns 12 can be provided, which are evenly connected between the two fixed disks 6 so that the two fixed disks 6 form a relatively fixed integral structure.
  • the cross-section of the support column 12 can be circular or arc-shaped to match the circular edge of the fixed disk 6.
  • the sliding connection between the loading plate 5 and the slide rod 10 can be in the form of a linear bearing 11 fixedly connected to the loading plate 5, a ball is provided in the linear bearing 11, the slide rod 10 passes through the linear bearing 11, and the linear bearing 11 and the slide rod 10 are slidingly connected to realize the relative sliding setting of the slide rod 10 and the loading plate 5.
  • a hole may be provided on the loading tray 5 , and then the slide bar 10 passes through the hole and simultaneously passes through the linear bearing 11 , so that a sliding connection between the loading tray 5 and the slide bar 10 can be achieved.
  • the linear bearing 11 may also be fixedly connected to the side of the loading plate 5, and the slide rod 10 can directly pass through the linear bearing 11 on the side of the loading plate 5 without passing through the loading plate 5 itself. In this way, a sliding connection between the slide rod 10 and the loading plate 5 can be achieved.
  • the loading plate 5 can slide relative to the slide rod 10 better, and has better flexibility and mobility.
  • the present embodiment provides that the number of lead screws 7 is the same as the number of the loading plates 5, each lead screw 7 drives one loading plate 5 to move, the loading plate 5 is provided with a through hole for the lead screw 7 to pass through, the nut 8 is fixedly connected to the loading plate 5 and is aligned with the through hole, and the lead screw 7 passes through the through hole and the nut 8 at the same time.
  • a through hole is opened on the loading plate 5, and the screw 7 passes through the through hole and also passes through the nut 8.
  • the nut 8 has an internal thread that matches the external thread of the screw 7.
  • the number of the loading plate 5 can preferably be three, so that three screws 7 and corresponding nuts 8 can be correspondingly provided.
  • the three screws 7 are respectively assembled between the two fixed plates 6. Specifically, the three screws 7 can be evenly spaced in the circumferential direction, and keep the circumferential distance as large as possible between each other to prevent interference with each other, and the three screws 7 can be rotated separately by operating the corresponding handwheel 9, thereby realizing the individual control of a single loading plate 5.
  • a lead screw 7 passes through the nut 8, thereby driving the loading tray 5 connected to the nut 8 to move. Since multiple loading trays 5 are aligned with each other, the lead screw 7 can pass through other loading trays 5, but it only passes through and there is no connection between the lead screw 7 and other loading trays 5.
  • the electron gun 1 when the electron gun 1 is fixedly arranged, the electron gun 1 is fixedly connected to one of the fixed plates 6 , and the other fixed plate 6 is fixedly connected to the vacuum chamber 2 .
  • the electron gun 1 can be fixed on one of the fixed plates 6, and the other fixed plate 6 is fixedly connected to one side of the vacuum chamber 2.
  • the plurality of slide bars 10 may also be evenly distributed in the circumferential direction, and may be spaced apart from the lead screw 7.
  • the arrangement of the plurality of slide bars 10 effectively ensures the stability of each loading tray 5 during movement, and ensures that each loading tray 5 can move smoothly and individually.
  • a slide bar 10 passes through the linear bearing 11 connected to the corresponding loading tray 5. Since the plurality of loading trays 5 are aligned with each other, the slide bar 10 may also pass through other loading trays 5, and holes may be opened on the other loading trays 5 to avoid the slide bar 10.
  • a detachable clamp 13 is also assembled on the slide bar 10.
  • the clamp 13 is adjusted in tightness by turning a screw.
  • the clamp 13 is at least fixed to the lower side of the linear bearing 11 to position the loading tray 5.
  • the clamp 13 is clamped on the slide bar 10.
  • the clamp 13 is fixed at least on the lower side of the linear bearing 11 connected to the loading plate 5.
  • the clamp 13 is fastened to the slide bar 10 by bolts to support the linear bearing 11 and prevent the loading plate 5 from falling.
  • the clamp 13 can also be set on the upper and lower sides of the linear bearing 11, so that the clamp 13 of the linear bearing 11 is between the two clamps 13 to ensure that the position of the loading plate 5 is fixed.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

一种电子光学测试平台装置,适用于电子光学实验技术领域,包括:电子枪(1)、真空腔室(2)、衬管(4)、载物盘(5);电子枪(1)发生电子束;真空腔室(2)处设置有物镜(3)、电子束成像***、电子束尺寸检测装置;衬管(4)一端连接电子枪(1),衬管(4)用于电子束通过,衬管(4)另一端与真空腔室(2)相连通,电子束成像***利用二次电子和背散射电子信号以形成图像,光刻胶经过电子束的作用形成刻蚀痕迹,通过测量刻蚀痕迹获取电子束的尺寸;载物盘(5)至少为两个,载物盘(5)沿着衬管(4)的长度方向移动,载物盘(5)用于承载电子光学元件。装置解决了现有技术中存在的电子光学元件只能独立测试,收集分析数据有限,即使组成一个电子光学***进行测试,当需要修改时也面临浪费和效率低下的技术问题。

Description

一种电子光学测试平台装置
本申请要求于2022年9月30日在中国专利局提交的、申请号为202211215512.0、发明名称为“一种电子光学测试平台装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子光学实验技术领域,更具体地说,是涉及一种电子光学测试平台装置。
背景技术
电子光学元件需要进行测试,现有电子光学设备研发过程中多是把电子光学元件分隔独立开来进行测试,并没有组成一个电子光学***进行测试,所收集分析数据有限。而且要进行电子光学***测试,要把所有电子光学元件加工成型后再组装测试,这样无法对单个电子光学元件进行部分修改,如要修改需重新加工制作,以致要重新多次加工制造电子光学元件直至达到测试要求,造成浪费和效率低下。
技术问题
本申请的目的在于提供一种电子光学测试平台装置,旨在解决现有技术中存在的电子光学元件只能独立测试,收集分析数据有限,即使组成一个电子光学***进行测试,当需要修改时也面临浪费和效率低下的技术问题。
技术解决方案
为实现上述目的,本申请采用的技术方案是:提供一种电子光学测试平台装置,包括:
电子枪,所述电子枪用于发生电子束;
真空腔室,所述真空腔室处设置有物镜以及电子束成像***、电子束尺寸检测装置,所述物镜用于缩小电子束直径;
衬管,所述衬管一端密封连接电子枪,所述衬管用于电子束通过,所述衬管另一端与物镜之间相对密封且与真空腔室相连通,所述电子束成像***、电子束尺寸检测装置均包括涂有光刻胶的硅片,所述电子束通过衬管打在硅片上激发二次电子和背散射电子,所述电子束成像***用于利用二次电子和背散射电子信号以形成图像,所述光刻胶经过电子束的作用形成刻蚀痕迹,通过测量所述刻蚀痕迹获取所述电子束的尺寸,所述衬管内部为真空;以及
载物盘,所述载物盘至少为两个,所述载物盘位于电子枪和真空腔室之间,所述载物盘能够各自单独沿着衬管的长度方向移动,所述载物盘用于承载待检测的电子光学元件。
在其中一个实施例中,所述电子枪固定设置或所述电子枪固定连接在相邻的载物盘上并随之移动。
在其中一个实施例中,所述衬管穿过多个所述载物盘的中心,多个所述载物盘在衬管长度方向上相互对正,每个所述载物盘借助于丝杠机构单独移动。
在其中一个实施例中,所述电子光学测试平台装置还包括:
固定盘,所述固定盘为两个且在衬管长度方向上间隔设置且相互对正;
丝杠,所述丝杠装配在两个固定盘之间,所述丝杠转动连接在固定盘上,所述丝杠还连接有用于驱动丝杠转动的手轮,所述丝杠具有外螺纹;
丝母,所述丝母固定连接所述载物盘,所述丝母具有内螺纹,所述内螺纹与所述外螺纹相适配,所述丝母套设在所述丝杠上;以及
滑杆,所述滑杆装配在两个固定盘之间,所述滑杆与所述载物盘相对滑动设置。
在其中一个实施例中,于两个所述固定盘之间还连接有支撑柱以使两个所述固定盘保持相对固定,所述支撑柱用于支撑整个测试平台装置。
在其中一个实施例中,所述载物盘固定连接有直线轴承,所述直线轴承内设有滚珠,所述滑杆穿过所述直线轴承,所述直线轴承与滑杆之间滑动连接以实现滑杆与所述载物盘相对滑动设置。
在其中一个实施例中,所述丝杠的数量与所述载物盘的数量相同,每个所述丝杠对应驱动一个所述载物盘运动,所述载物盘上设有用于丝杠穿过的通孔,所述丝母固定连接在载物盘上且与所述通孔相对正,所述丝杠同时穿过通孔和所述丝母。
在其中一个实施例中,所述电子枪固定连接在其中一个固定盘上,另一个固定盘固定连接在真空腔室上。
在其中一个实施例中,所述滑杆的数量与所述载物盘数量相同,每个滑杆对应穿过一个所述载物盘所连接的直线轴承。
在其中一个实施例中,在所述滑杆上还装配有可拆卸地卡箍,所述卡箍通过拧动螺丝以调整所述卡箍松紧,所述卡箍至少固定在所述直线轴承的下侧以使所述载物盘定位。
有益效果
本申请提供的一种电子光学测试平台装置的有益效果在于,本申请中的电子枪用于发射电子束,电子束经衬管,通过衬管进入到真空腔室内的物镜,在物镜处汇聚,缩小电子束直径,电子束到达真空腔室的样品,样品也就是涂有光刻胶的硅片,产生二次电子和背散射电子,电子束成像***接收二次电子和背散射电子信号以形成图像,电子束尺寸检测装置检测电子束的尺寸,从而鉴别电子束***控后电子束的尺寸和像差,像差表示电子束在通过电子光学元件操控后所形成的畸变和误差,电子光学元件由于加工工艺、材料均匀度、装配、电源纹波稳定性等误差形成畸变和误差,电子束在经过衬管过程中,连接在电 子枪和真空腔室之间的载物盘上可以设置多个不同的电子光学元件,实现了多个电子光学元件的随意组合,任意调节位置来进行快速测试,由于各个载物盘之间能够独立运动,即能够独立的沿着衬管的长度方向移动,所以各个电子光学元件的位置均可调,将各个电子光学元件接通电源发生器,通过改变电子光学元件的位置或电流电压等参数来收集数据分析,电子光学元件的位置或电流电压等发生改变的时候,会影响***中磁场和电场,从而会影响电子束运动轨迹,从而实现对电子光学元件的测试,本申请解决了现有技术中需要把电子光学元件分隔独立开来测试的弊端,设置有多个载物盘可承载多个电子光学元件,且可通过载物盘单独进行位置的调节,组成了一个电子光学***进行测试,无需将电子光学元件加工成型后再按照特定位置进行组装测试,传统方法对电子光学元件进行修改或调整,需要对电子光学元件重新加工制作,新的元件再重新组装后再进行下一次的测试,费时、费力、费钱,本测试装置灵活多样,数据收集较多,只需要对电子光学元件进行简单的位置调整和组合、载物盘位置调节、电子枪位置调节、供电信号的调节就可以快速收集分析数据,不用重新设计整体结构就可以调节到所需要位置,可以重复使用,这种通用设计大大提高了电子光学***研发速度和效率,减少了费用,通过测试数据,确定电子光学元件位置及所测量的实际所需尺寸,和电子光学元件组合后的顺序、位置,测量实际加工所需尺寸来设计确定电子光学元件最终图纸尺寸,通过测试和调节装置及时指导电子光学元件的修改。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳 动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种电子光学测试平台装置的结构示意图;
图2为图1去除支撑柱后的结构示意图;
图3为图1中真空腔室的剖视图;
图4为图1中电子枪处的剖视图。
图中,1、电子枪;2、真空腔室;3、物镜;4、衬管;5、载物盘;6、固定盘;7、丝杠;8、丝母;9、手轮;10、滑杆;11、直线轴承;12、支撑柱;13、卡箍。
本发明的实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。“若干”的含义是一个或一个以上,除非另有明确具体的限定。
在本申请的描述中,需要理解的是,术语“中心”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、 “水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
请参阅图1、图2、图3、图4,本申请提供了一种电子光学测试平台装置,包括电子枪1、真空腔室2、衬管4;
其中,电子枪1用于发生电子束;
真空腔室2处设置有物镜3以及电子束成像***、电子束尺寸检测装置,所述物镜3用于缩小电子束直径;
衬管4一端密封连接电子枪1,所述衬管4用于电子束通过,所述衬管4另一端与物镜3之间相对密封且与真空腔室2相连通,所述电子束成像***、电子束尺寸检测装置均包括涂有光刻胶的硅片,所述电子束通过衬管4打在硅片上激发二次电子和背散射电子,所述电子束成像***用于利用二次电子和背散射电子信号以形成图像,所述光刻胶经过电子束的作用形成刻蚀痕迹,通过测量所述刻蚀痕迹获取所述电子束的尺寸,所述衬管4内部为真空;以及
载物盘5至少为两个,所述载物盘5位于电子枪1和真空腔室2之间,所述载物盘5能够各自单独沿着衬管4的长度方向移动,所述载物盘5用于承载 待检测的电子光学元件。
本实施例中的电子光学元件具体可以是磁透镜、静电偏转器、磁偏转器、消像散器、磁对中偏转器、束闸等。
测试时可以把磁透镜、静电偏转器、磁偏转器、消像散器、磁对中偏转器、束闸等电子光学元件临时组装放置到载物盘5上进行固定,各种电子光学元件可以单独进行测试,也可以随机组合后放在对应载物盘5上进行测试。对应的电子光学元件放置好后,用电源对其进行供电。
当电源调节或者是电子光学元件的位置发生改变的时候,均会对其产生的磁场或者电场产生影响,电源调节可以改变大小,而位置改变则可以改变磁场或者电场的位置。
具体地,当电子光学元件为磁透镜时,通电后使磁透镜产生磁场并可以通过调节电源来调节磁场大小,以及通过调节磁透镜的位置来调节磁场的位置,磁透镜是通过磁场对电子束产生汇聚作用来操控电子束。
当电子光学元件为静电偏转器时,使静电偏转器产生静电场并可以通过调节电源来调节静电场大小,以及通过调节静电偏转器的位置来调节静电场位置,静电偏转器是通过电场对电子束产生偏转作用来操控电子束。
当电子光学元件为磁偏转器时,通电后使磁偏转器产生磁场并可以通过调节电源来调节磁场大小,以及通过调节磁偏转器的位置来调节磁场位置,磁偏转器是通过磁场对电子束产生偏转来操控电子束。
当电子光学元件为消像散器时,通电后使消像散器产生磁场并可以通过调节电源来调节磁场大小,以及通过调节消像散器的位置来调节磁场位置,消像散器是通过磁场不同方向洛伦兹力对电子束形状进行控制来操控电子束。
当电子光学元件为磁对中偏转器时,通电后磁对中偏转器产生磁场并可以 通过调节电源来调节磁场大小,以及通过调节磁对中偏转器的位置来调节磁场位置,磁对中偏转器是通过磁场对电子束偏转微调来操控电子束。
当电子光学元件为束闸时,通电后使束闸产生高频电场通断并可以通过调节电源来调节电场大小,以及通过调节束闸的位置来调节电场位置,束闸是通过电场对电子束偏转来操控电子束。
具体地,电子枪1通过高压电缆供电产生持续稳定的电子束,电子枪1腔室为高真空环境,在高真空环境下电子枪1才会产生电子束,电子枪1腔室在真空泵的持续抽取下保持真空。
衬管4内部也为真空,衬管4伸入到电子枪1腔室内,用于接收产生的电子束,衬管4位于电子腔室和真空腔室2之间的外露部分为测试区域。
如图1和图2,具体地,载物盘5位于电子枪1和真空腔室2之间的测试区域,载物盘5为多个,具体可为三个,因此可承托多个电子光学元件,组成一个电子光学***进行测试,多个载物盘5在电子枪1和真空腔室2之间的位置均可独立进行调节,载物盘5用于承载电子光学元件,也就是电子光学元件的位置可独立调节,当各个电子光学元件设置在载物盘5上进行测试的时候,各电子光学元件接通电源发生器和监测设备,通过调节电源信号,以及通过调节载物盘5的位置来调节电子光学元件的位置,来收集数据分析,电子光学元件位置主要是调节载物盘5位置而改变,包括和电子枪1之间的相对位置,也包括和其它电子光学元件之间的位置。电子光学元件位置的改变会影响其产生的电场或磁场的位置,会影响***中电子束轨迹,电子光学元件的电压电流改变会改变其产生的电场或磁场的大小,从而对电子束产生不同的操控,本装置可以多次、灵活的测试各种电子光学元件,电子光学元件由于位置改变而影响电场或磁场的位置,会作用于电子束操控电子束,对电子束产生不同的操控, 并获得操控后电子束的尺寸和像差,像差表示电子束在通过电子光学元件操控后所形成的畸变和误差,电子光学元件由于加工工艺、材料均匀度、装配、电源纹波稳定性等误差形成畸变和误差。
除了改变电子光学元件的位置之外,当各个电子光学元件设置在载物盘5上进行测试的时候,各电子光学元件接通电源发生器和监测设备,通过调节电源信号,来收集数据分析,主要包括电流电压的信号调节,电子光学元件的电压电流改变会改变其产生的电场或磁场的大小,进而作用于电子束操控电子束,对电子束产生不同的操控。
监测设备用于监测施加于电子光学元件上的电压、电流大小变化和纹波,温度变化以及磁场变化,从而对数据进行监控,电子束成像***和电子束尺寸检测装置用于接收所述电子束,从而能够得到被经过不同操控后电子束的成像以及尺寸检测,从而能够收集数据,完成对电子光学元件的检测。
监测设备可以是示波器、万用表、温度测量仪、真空计、高斯计等设备进行电压、电流、温度、真空度、磁场强度、电场强度等数据的监测。
固定好所测试的电子光学元件,通过调节载物盘5的位置来进行电子光学***的设计,不同电子光学元件可以随意组合,任意调节位置来进行快速测试,为最终电子光学***提供设计参数及位置尺寸参数。通过测试数据,判定电子光学元件位置及所测量的实际所需尺寸,和电子光学元件组合后的顺序、位置,测量实际加工所需尺寸来设计确定电子光学元件最终图纸尺寸,通过测试和调节装置及时指导电子光学元件的修改。
只需要对电子光学元件进行简单的位置调整和组合、载物盘5位置调节、电子枪1位置调节、供电信号的调节就可以快速收集分析数据。而传统测试每次调整后都需要对电子光学元件重新加工制作新的元件组装后再进行下一次 的测试,费时、费力、费钱。
具体地,关于电子束成像***和电子束尺寸检测装置,两者均包括涂有光刻胶的硅片,并且两者均借助于硅片进行检测,当电子束通过电子光学***打在真空腔室2内的涂有光刻胶的硅片时,会激发出二次电子和背散射电子,通过电子束成像***收集信号来成像。
电子束尺寸指的是电子束圆形束斑的直径,电子束尺寸检测装置包括样品台和涂有光刻胶的硅片,光刻胶在经过电子束的作用后会形成刻蚀痕迹,把形成刻蚀痕迹光刻胶的硅片放到电子显微镜下就可以测量出痕迹的尺寸,从而推断出电子束圆形束斑的尺寸。
电子光学元件测试参数主要是通过电子束的尺寸和成像质量来判断。可以通过改变电压或电流信号,或改变电子光学元件的位置来改变电子束操控能力,从完成对电子光学元件的测试。
物镜3的作用在于物镜3线圈,通电后铜线圈产生磁场对电子束有汇聚作用,缩小电子束直径来对光刻胶进行微纳刻蚀。所研发改进的不同电子枪和物镜也可以安装在一种电子光学测试平台装置上进行测试,可实现对电子枪和物镜的测试。
衬管4是空心金属管,衬管4由无磁金属材料制成,衬管4可采用铝、铜等无磁金属材料制成,衬管4和电子枪1腔室、真空腔室2连通,内部是真空状态。
本申请中的电子枪1用于发射电子束,电子束经衬管4,通过衬管4进入到真空腔室2内的物镜3,在物镜3处汇聚,缩小电子束直径,电子束到达真空腔室2的样品,样品也就是涂有光刻胶的硅片,产生二次电子和背散射电子,电子束成像***接收二次电子和背散射电子信号以形成图像,电子束尺寸检测 装置检测电子束的尺寸,从而鉴别电子束***控后电子束的尺寸和像差,像差表示电子束在通过电子光学元件操控后所形成的畸变和误差,电子光学元件由于加工工艺、材料均匀度、装配、电源纹波稳定性等误差形成畸变和误差,电子束在经过衬管4过程中,连接在电子枪1和真空腔室2之间的载物盘5上可以设置多个不同的电子光学元件,实现了多个电子光学元件的随意组合,任意调节位置来进行快速测试,由于各个载物盘5之间能够独立运动,即能够独立的沿着衬管4的长度方向移动,所以各个电子光学元件的位置均可调,将各个电子光学元件接通电源发生器,通过改变电子光学元件的位置或电流电压等参数来收集数据分析,电子光学元件的位置或电流电压等发生改变的时候,会影响***中磁场和电场,从而会影响电子束运动轨迹,从而实现对电子光学元件的测试,本申请解决了现有技术中需要把电子光学元件分隔独立开来测试的弊端,设置有多个载物盘5可承载多个电子光学元件,且可通过载物盘5单独进行位置的调节,组成了一个电子光学***进行测试,无需将电子光学元件加工成型后再按照特定位置进行组装测试,传统方法对电子光学元件进行修改或调整,需要对电子光学元件重新加工制作,新的元件再重新组装后再进行下一次的测试,费时、费力、费钱,本测试装置灵活多样,数据收集较多,只需要对电子光学元件进行简单的位置调整和组合、载物盘5位置调节、电子枪1位置调节、供电信号的调节就可以快速收集分析数据,不用重新设计整体结构就可以调节到所需要位置,可以重复使用,这种通用设计大大提高了电子光学***研发速度和效率,减少了费用,通过测试数据,确定电子光学元件位置及所测量的实际所需尺寸,和电子光学元件组合后的顺序、位置,测量实际加工所需尺寸来设计确定电子光学元件最终图纸尺寸,通过测试和调节装置及时指导电子光学元件的修改。
另外本实施例提供的一种电子光学测试平台装置,对于研发的各种型号规格的电子枪1也可以进行替换,验证电子枪1的性能。
如图4,在一个实施例中,电子枪1可以采用固定设置的形式,也可以采用电子枪1固定连接在相邻的载物盘5上并随之移动的形式。
具体地,电子枪1也可以固定在相邻的载物盘5上通过载物盘5的移动可调节源距离。电子枪1位置可调,可以固定相邻的载物盘5上进行任意调节位置,电子枪1调节位置可以调整电子束的发射位置,对电子光学***测试起到至关重要作用。目前现有技术中没有电子枪1、电子束可以随意调节位置的设计,一般都要重新对整体设计推翻重新加工才能达到类似效果,这种设计大大提高了电子光学***研发速度和效率,减小了费用。
当电子枪1随着载物盘5进行移动调节的同时,可更换匹配的相应衬管4,但是衬管4与电子枪1之间、衬管4本身以及真空腔室2均保持在密封的真空状态,电子枪1的位置可进行调节,相当于可直接调节发射源的位置,可实现通过发射源的移动调节电子枪1与电子光学元件的相对位置。
衬管4和电子枪1腔室之间为相对密封,物镜3设置在真空腔室2内,与真空腔室2之间通过密封垫进行相对密封。
如图1和图2,可以理解的是,为了实现电子光学元件对电子束更好的操控,所述衬管4穿过多个所述载物盘5的中心,多个所述载物盘5在衬管4长度方向上相互对正,每个所述载物盘5借助于丝杠7机构单独移动,所述载物盘5用于承载待检测的电子光学元件。
具体地,载物盘5优选为圆形,衬管4穿过载物盘5的中心,这样实现了载物盘5围绕衬管4对称设置,电子光学元件可以设置在载物盘5上,与衬管4之间的距离能够有效地的把控,并且多个载物盘5之间在衬管4长度方向上 对正设置,也可有效地对各个载物盘5上的电子光学元件的位置进行较好的把控。
载物盘5借助于丝杠机构运动,丝杠机构调节较稳定,并且位置易把控,调节效果较好。
如图2,作为本实施例提供的一种电子光学测试平台装置的优选实施方式,为了实现载物盘5的运动,本实施例提供了一种电子光学测试平台装置还包括固定盘6、丝杠7、丝母8、滑杆10;
固定盘6为两个且在衬管4长度方向上间隔设置且相互对正;
丝杠7装配在两个固定盘6之间,所述丝杠7转动连接在固定盘6上,所述丝杠7还连接有用于驱动丝杠7转动的手轮9,所述丝杠7具有外螺纹。
丝母8固定连接所述载物盘5,所述丝母8具有内螺纹,所述内螺纹与所述外螺纹相适配,所述丝母8套设在所述丝杠7上。
滑杆10装配在两个固定盘6之间,所述滑杆10与所述载物盘5相对滑动设置。
固定盘6可以为两个且在衬管4长度方向上间隔设置且相互对正,则两个固定盘6之间的区域为衬管4的穿过区域,也就是设置电子光学元件的测试区域,固定盘6具体可以为法兰盘,固定盘6起到了承载整体的作用,当电子枪1固定设置的时候,可以使电子枪1固定设置在一侧的固定盘6上。
丝杠7装配在两个固定盘6之间且分别与固定盘6转动连接,所述丝杠7还连接有用于驱动其自转的手轮9;丝杠7的设置与衬管4的设置相互平行,其位于衬管4的一侧,丝杠7的两端通过轴承装配在固定盘6上,其可以进行自转,并且在丝杠7的一端还设有用于驱动其自转的手轮9,可通过对手轮9的操控实现丝杠7的自转,调节较精准。
丝母8固定连接所述载物盘5,丝母8具有内螺纹,内螺纹与所述外螺纹相适配,丝母8装配在所述丝杠7上,这样丝杠7转动,丝母8沿着丝杠7的方向运动,从而实现载物盘5的运动。
如图2,为了保持丝母8沿着丝杠7长度方向运动的稳定性,也为了保持载物盘5进行稳定的移动,所以本实施方式还设置了滑杆10,所述滑杆10装配在两个固定盘6之间,具体也可以为滑杆10装配在固定盘6的轴承上,所述滑杆10与所述载物盘5滑动连接。
当滑杆10与载物盘5滑动连接的时候,则滑杆10对载物盘5有一定的束缚作用,防止载物盘5发生倾斜不稳定,从而实现了丝母8以及载物盘5稳定水平的地沿着丝杠7的长度方向运动,同时由于载物盘5与滑杆10滑动连接,也保证了载物盘5在沿着丝杠7长度方向运动时的稳定性。
如图1,进一步地,两个固定盘6之间的相对位置是需要固定的,这样才能够保持整体结构的稳定性,所以本实施例还提供了于两个所述固定盘6之间还连接有支撑柱12以使两个所述固定盘6保持相对固定。
支撑柱12可以设置多个,其均匀连接在两个固定盘6之间,以使两个固定盘6为相对固定的整体结构,支撑柱12的截面可以为圆形,也可以为与固定盘6的圆形边相适配的弧形。
如图2,可以理解的是,载物盘5与滑杆10之间滑动连接的形式可以为,所述载物盘5固定连接有直线轴承11,所述直线轴承11内设有滚珠,所述滑杆10穿过所述直线轴承11,所述直线轴承11与滑杆10之间滑动连接以实现滑杆10与所述载物盘5相对滑动设置。
具体地,可以在载物盘5上设置孔,然后滑杆10穿过该孔,并同时穿过直线轴承11,这样可实现载物盘5与滑杆10之间的滑动连接。
可替代的,直线轴承11也可以与载物盘5的侧部固定连接,滑杆10直接穿过载物盘5侧部的直线轴承11即可,并不需要穿过载物盘5本身,这样也能够实现滑杆10与载物盘5之间的滑动连接。
由于采用了直线轴承11配合滑动的形式,使得载物盘5能够更好地相对滑杆10滑动,灵活性和活动性更好。
如图2,为了实现每个载物盘5之间均单独运动,所以本实施例提供了,丝杠7的数量与所述载物盘5的数量相同,每个所述丝杠7对应驱动一个所述载物盘5运动,所述载物盘5上设有用于丝杠7穿过的通孔,所述丝母8固定连接在载物盘5上且与所述通孔相对正,所述丝杠7同时穿过通孔和所述丝母8。
具体地可为,在载物盘5上开设通孔,丝杠7穿过该通孔,同时还穿过丝母8,丝母8具有内螺纹与丝杠7的外螺纹相匹配,载物盘5的数量优选可为三个,这样可对应设置三个丝杠7以及对应的丝母8,三个丝杠7分别装配在两个固定盘6之间,具体地,三个丝杠7可以在圆周方向上间隔均匀设置,相互之间保持尽量大的周向距离,这样防止相互之间干扰,且三个丝杠7分别可通过操作对应的手轮9实现分别转动,从而实现对单个载物盘5的单独控制。
需要说明的是,一个丝杠7穿过丝母8,从而带动连接此丝母8的载物盘5运动,由于多个载物盘5相互对正,所以该丝杠7可以穿过其它载物盘5,但是仅仅是穿过而已,与其它载物盘5之间并无连接。
在一个实施例中,当电子枪1固定设置的时候,电子枪1固定连接在其中一个固定盘6上,另一个固定盘6固定连接在真空腔室2上。
由于两个固定盘6之间通过支撑柱12连接成了一个整体结构,所以电子枪1可以固定在其中一个固定盘6上,则另一个固定盘6固定连接在真空腔室 2一侧。
如图2,可以理解的是,由于一个丝杠7对应驱动一个载物盘5,所以一个滑杆10也对应滑动连接一个载物盘5,所述滑杆10的数量与所述载物盘5数量相同,每个滑杆10对应穿过一个所述载物盘5所连接的直线轴承11。
具体地,多个滑杆10也可以在圆周方向上均匀分布,具体可以与丝杠7相互间隔设置。多个滑杆10的设置有效地保证了每个载物盘5运动过程中的稳定性,确保各个载物盘5能够顺利的单独移动。同理,一个滑杆10穿过对应载物盘5所连接的直线轴承11,由于多个载物盘5相互对正,所以该滑杆10也可以穿过其它载物盘5,可以在其它载物盘5上开孔以避让滑杆10。
如图2,可以理解的是,当载物盘5的位置调节好之后,为了保证载物盘5的位置定位,防止手轮9发生回转,影响载物盘5的位置,所以在所述滑杆10上还装配有可拆卸地卡箍13,所述卡箍13通过拧动螺丝以调整所述卡箍13松紧,所述卡箍13至少固定在所述直线轴承11的下侧以使所述载物盘5定位。
卡箍13卡在滑杆10上,当载物盘5的位置调整好之后,则至少在载物盘5连接的直线轴承11下侧固定该卡箍13,卡箍13通过螺栓连接紧固在滑杆10上,以承托直线轴承11,防止载物盘5下落,同时为了更好了加强效果,也可以在直线轴承11的上下侧均设置该卡箍13,使直线轴承11卡箍13在两个卡箍13之间,保证载物盘5的位置固定。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种电子光学测试平台装置,其特征在于,包括:
    电子枪,所述电子枪用于发生电子束;
    真空腔室,所述真空腔室处设置有物镜以及电子束成像***、电子束尺寸检测装置,所述物镜用于缩小电子束直径;
    衬管,所述衬管一端密封连接电子枪,所述衬管用于电子束通过,所述衬管另一端与物镜之间相对密封且与真空腔室相连通,所述电子束成像***、电子束尺寸检测装置均包括涂有光刻胶的硅片,所述电子束通过衬管打在硅片上激发二次电子和背散射电子,所述电子束成像***用于利用二次电子和背散射电子信号以形成图像,所述光刻胶经过电子束的作用形成刻蚀痕迹,通过测量所述刻蚀痕迹获取所述电子束的尺寸,所述衬管内部为真空;以及
    载物盘,所述载物盘至少为两个,所述载物盘位于电子枪和真空腔室之间,所述载物盘能够各自单独沿着衬管的长度方向移动,所述载物盘用于承载待检测的电子光学元件。
  2. 如权利要求1所述的一种电子光学测试平台装置,其特征在于,所述电子枪固定设置或所述电子枪固定连接在相邻的载物盘上并随之移动。
  3. 如权利要求1所述的一种电子光学测试平台装置,其特征在于,所述衬管穿过多个所述载物盘的中心,多个所述载物盘在衬管长度方向上相互对正,每个所述载物盘借助于丝杠机构单独移动。
  4. 如权利要求1所述的一种电子光学测试平台装置,其特征在于,所述电子光学测试平台装置还包括:
    固定盘,所述固定盘为两个且在衬管长度方向上间隔设置且相互对正;
    丝杠,所述丝杠装配在两个固定盘之间,所述丝杠转动连接在固定盘上, 所述丝杠还连接有用于驱动丝杠转动的手轮,所述丝杠具有外螺纹;
    丝母,所述丝母固定连接所述载物盘,所述丝母具有内螺纹,所述内螺纹与所述外螺纹相适配,所述丝母套设在所述丝杠上;以及
    滑杆,所述滑杆装配在两个固定盘之间,所述滑杆与所述载物盘相对滑动设置。
  5. 如权利要求4所述的一种电子光学测试平台装置,其特征在于,于两个所述固定盘之间还连接有支撑柱以使两个所述固定盘保持相对固定,所述支撑柱用于支撑整个测试平台装置。
  6. 如权利要求4所述的一种电子光学测试平台装置,其特征在于,所述载物盘固定连接有直线轴承,所述直线轴承内设有滚珠,所述滑杆穿过所述直线轴承,所述直线轴承与滑杆之间滑动连接以实现滑杆与所述载物盘相对滑动设置。
  7. 如权利要求4所述的一种电子光学测试平台装置,其特征在于,所述丝杠的数量与所述载物盘的数量相同,每个所述丝杠对应驱动一个所述载物盘运动,所述载物盘上设有用于丝杠穿过的通孔,所述丝母固定连接在载物盘上且与所述通孔相对正,所述丝杠同时穿过通孔和所述丝母。
  8. 如权利要求4所述的一种电子光学测试平台装置,其特征在于,所述电子枪固定连接在其中一个固定盘上,另一个固定盘固定连接在真空腔室上。
  9. 如权利要求6所述的一种电子光学测试平台装置,其特征在于,所述滑杆的数量与所述载物盘数量相同,每个滑杆对应穿过一个所述载物盘所连接的直线轴承。
  10. 如权利要求6或9所述的一种电子光学测试平台装置,其特征在于,在所述滑杆上还装配有可拆卸地卡箍,所述卡箍通过拧动螺丝以调整所述卡箍 松紧,所述卡箍至少固定在所述直线轴承的下侧以使所述载物盘定位。
PCT/CN2022/143433 2022-09-30 2022-12-29 一种电子光学测试平台装置 WO2024066108A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211215512.0A CN115616017B (zh) 2022-09-30 2022-09-30 一种电子光学测试平台装置
CN202211215512.0 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024066108A1 true WO2024066108A1 (zh) 2024-04-04

Family

ID=84860159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143433 WO2024066108A1 (zh) 2022-09-30 2022-12-29 一种电子光学测试平台装置

Country Status (2)

Country Link
CN (1) CN115616017B (zh)
WO (1) WO2024066108A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232052A (ja) * 1999-02-09 2000-08-22 Nikon Corp 荷電粒子線転写露光装置
JP2007305499A (ja) * 2006-05-15 2007-11-22 Hitachi High-Technologies Corp 差動排気走査形電子顕微鏡
JP2011249273A (ja) * 2010-05-31 2011-12-08 Jeol Ltd 走査電子顕微鏡
CN106770405A (zh) * 2016-12-09 2017-05-31 清华大学 一种完全大气压下超光学衍射成像装置
CN108780729A (zh) * 2016-03-24 2018-11-09 科磊股份有限公司 用于基于电子束的表征工具上的漂移补偿的***及方法
CN109298001A (zh) * 2017-07-25 2019-02-01 东方晶源微电子科技(北京)有限公司 电子束成像模块、电子束检测设备及其图像采集方法
CN111108579A (zh) * 2017-09-29 2020-05-05 株式会社日立高新技术 扫描电子显微镜
WO2021165114A1 (en) * 2020-02-20 2021-08-26 Asml Netherlands B.V. Tool for testing an electron-optical assembly
CN113471042A (zh) * 2021-07-01 2021-10-01 中科晶源微电子技术(北京)有限公司 扫描电子显微镜装置和电子束检测设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4750959B2 (ja) * 2001-03-06 2011-08-17 株式会社トプコン 電子線装置用データ処理装置、電子線装置、電子線装置のステレオ測定方法
JP2006252995A (ja) * 2005-03-11 2006-09-21 Jeol Ltd 荷電粒子ビーム装置
JP4691391B2 (ja) * 2005-05-12 2011-06-01 独立行政法人理化学研究所 電子顕微鏡
GB0516098D0 (en) * 2005-08-05 2005-09-14 Cambridge Image Technology Ltd Electron-optical apparatus
JP2009152087A (ja) * 2007-12-21 2009-07-09 Jeol Ltd 透過電子顕微鏡
JP6218403B2 (ja) * 2013-03-15 2017-10-25 株式会社マーストーケンソリューション 電界放射型電子銃を備えたx線管及びそれを用いたx線検査装置
CN104134604B (zh) * 2014-04-18 2016-10-05 北京大学 一种场发射电子源电子束发射性能评测装置及其评测方法
CN204807482U (zh) * 2015-07-13 2015-11-25 中国科学院高能物理研究所 二次电子特性参数的测量装置
JP7016969B2 (ja) * 2018-05-02 2022-02-07 エーエスエムエル ネザーランズ ビー.ブイ. 電子ビーム装置
CN109580348A (zh) * 2018-12-07 2019-04-05 北京工业大学 材料力学性能原位测试装置及其测试***
CN111663105A (zh) * 2020-05-26 2020-09-15 南方科技大学 超高真空电子束蒸发器、电子束镀膜装置
CN215575693U (zh) * 2021-09-16 2022-01-18 中国科学院高能物理研究所 电子枪测试装置及电子枪测试***
CN114200504B (zh) * 2021-12-13 2024-04-30 中国核动力研究设计院 用于模拟β辐射源的电子束发生器及测试方法
CN114778657A (zh) * 2022-04-27 2022-07-22 中国医学科学院生物医学工程研究所 用于磁声信号检测的载物台和***

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232052A (ja) * 1999-02-09 2000-08-22 Nikon Corp 荷電粒子線転写露光装置
JP2007305499A (ja) * 2006-05-15 2007-11-22 Hitachi High-Technologies Corp 差動排気走査形電子顕微鏡
JP2011249273A (ja) * 2010-05-31 2011-12-08 Jeol Ltd 走査電子顕微鏡
CN108780729A (zh) * 2016-03-24 2018-11-09 科磊股份有限公司 用于基于电子束的表征工具上的漂移补偿的***及方法
CN106770405A (zh) * 2016-12-09 2017-05-31 清华大学 一种完全大气压下超光学衍射成像装置
CN109298001A (zh) * 2017-07-25 2019-02-01 东方晶源微电子科技(北京)有限公司 电子束成像模块、电子束检测设备及其图像采集方法
CN111108579A (zh) * 2017-09-29 2020-05-05 株式会社日立高新技术 扫描电子显微镜
WO2021165114A1 (en) * 2020-02-20 2021-08-26 Asml Netherlands B.V. Tool for testing an electron-optical assembly
CN113471042A (zh) * 2021-07-01 2021-10-01 中科晶源微电子技术(北京)有限公司 扫描电子显微镜装置和电子束检测设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHENG-DAN HE: "Design of electron optical system for electron gun for electron beam welding", JOURNAL OF LANZHOU UNIVERSITY OF TECHNOLOGY, vol. 30, no. 5, 1 January 2004 (2004-01-01), pages 5 - 8, XP093153280, ISSN: 1673-5196 *

Also Published As

Publication number Publication date
CN115616017A (zh) 2023-01-17
CN115616017B (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
TWI709992B (zh) 用於檢查試樣之方法以及帶電粒子多束裝置
US7326927B2 (en) Focusing lens and charged particle beam device for titled landing angle operation
JP6751286B2 (ja) 荷電粒子ビーム試料検査システムおよびその動作方法
US9343260B2 (en) Multipole and charged particle radiation apparatus using the same
TW202401479A (zh) 具有多個偵測器之帶電粒子束裝置及用於成像之方法
JPH11238484A (ja) 投射方式の荷電粒子顕微鏡および基板検査システム
TWI767235B (zh) 電光系統及形成樣本之影像之方法
US4209702A (en) Multiple electron lens
US6515287B2 (en) Sectored magnetic lens and method of use
JP6267543B2 (ja) 収差補正器及びそれを用いた荷電粒子線装置
CN112505594B (zh) 一种螺线管磁场测量***及其使用方法
US11791132B2 (en) Aperture array with integrated current measurement
EP3113206B1 (en) X-ray generator and adjustment method therefor
US20200381212A1 (en) Multiple charged-particle beam apparatus and methods of operating the same
WO2024066108A1 (zh) 一种电子光学测试平台装置
TW202038284A (zh) 多電子束檢查裝置
JP6341645B2 (ja) 粒子ビーム・カラムと一体のリターディング電界型分析器
JPH07110310A (ja) 電子線マイクロアナライザ
US7112803B2 (en) Beam directing system and method for use in a charged particle beam column
Malac et al. NanoMi: An open source electron microscope hardware and software platform
JP7192117B2 (ja) 基板上の限界寸法測定の方法、および基板上の電子デバイスを検査し、カッティングするための装置
WO2021122863A1 (en) Multiple charged-particle beam apparatus with low crosstalk
US20220392741A1 (en) Systems and methods of profiling charged-particle beams
JPH0374035A (ja) 電子ビーム装置
TW202230420A (zh) 用於將帶電粒子束導引至樣本之設備及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960699

Country of ref document: EP

Kind code of ref document: A1