WO2024000742A1 - 一种钙钛矿氧化物 - 过渡金属磷化物异质结构复合电极材料及其制备方法与应用 - Google Patents

一种钙钛矿氧化物 - 过渡金属磷化物异质结构复合电极材料及其制备方法与应用 Download PDF

Info

Publication number
WO2024000742A1
WO2024000742A1 PCT/CN2022/111461 CN2022111461W WO2024000742A1 WO 2024000742 A1 WO2024000742 A1 WO 2024000742A1 CN 2022111461 W CN2022111461 W CN 2022111461W WO 2024000742 A1 WO2024000742 A1 WO 2024000742A1
Authority
WO
WIPO (PCT)
Prior art keywords
perovskite oxide
transition metal
composite electrode
metal phosphide
electrode material
Prior art date
Application number
PCT/CN2022/111461
Other languages
English (en)
French (fr)
Inventor
金超
陆正义
李聪
王恩丽
杨瑞枝
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2024000742A1 publication Critical patent/WO2024000742A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material

Definitions

  • the invention belongs to the field of new energy and new materials, specifically relates to a perovskite oxide-transition metal phosphide heterostructure composite electrode material, and also relates to its special synthesis process route and its electrocatalytic activity and application.
  • Fuel cells and metal-air batteries use oxygen as the cathode reaction substance. Through the action of a catalyst, an oxygen reduction reaction occurs, thereby achieving the formation of electric current.
  • the intrinsic kinetic process of the oxygen reduction reaction is inert, and the use of efficient catalysts is required to accelerate the oxygen reduction reaction. Due to the scarcity of precious metals such as Pt and Pd, the development of non-noble metal high-efficiency oxygen catalysts has become a key link in the development of fuel cells and metal-air batteries.
  • Perovskite oxide has a special defect structure, which has strong surface adsorption and dissociation effects on oxygen molecules, and there is often a certain concentration of oxygen vacancies inside the perovskite oxide crystal, which is very conducive to the diffusion of oxygen ions therein. Internal transmission. Therefore, perovskite oxides are often used as air electrode catalysts in solid oxide fuel cells (SOFC), metal-air batteries, and water electrolysis for hydrogen production.
  • SOFC solid oxide fuel cells
  • perovskite oxides can be used in lithium-metal air batteries to significantly reduce the charge and discharge polarization of the battery, and obtain high charge and discharge capacity, excellent charge and discharge rates and long cycles.
  • the material can be converted into a cubic perovskite and layered perovskite oxide composite material to form a heterogeneous interface and improve Oxygen catalytic ability; the prior art reports a SrTi 0.2-x Nb x Co 0.8 O 3 perovskite oxide, which has excellent oxygen evolution activator stability and can be used as a renewable fuel cell, rechargeable metal-air Electrocatalysts in batteries, water electrolysis and other fields.
  • perovskite oxides have been studied and reported in the above fields, they still have practical problems such as low conductivity and catalytic activity that needs to be further improved.
  • the existing technology combines BaCo 1 ⁇ x Ti x O 3 ⁇ ⁇ perovskite oxide with Co 3 O 4 to construct a dual-phase conductive catalyst to improve the catalytic performance and oxygen evolution in alkaline water electrolysis or metal-air batteries.
  • the existing technology uses plasma etching technology to treat perovskite oxide with active groups generated in the plasma in at least one atmosphere of nitrogen, phosphine or hydrogen sulfide gas, effectively improving calcium Oxygen defects and/or oxygen vacancy concentrations of titanium oxides, and element doping of perovskite oxides can quickly improve the electrocatalytic performance of perovskite oxides.
  • existing technologies have improved perovskite catalysts, However, the preparation process is complicated, such as plasma treatment, and compared with conventional precious metal catalysts, there is still a performance gap.
  • the primary purpose of the present invention is to provide a preparation method and application of a perovskite oxide-transition metal phosphide heterostructure composite electrode material.
  • a perovskite oxide-transition metal phosphide heterostructure composite electrode material By constructing the perovskite oxide-transition metal phosphide heterostructure interface in situ, the inherent shortcomings of low conductivity of perovskite oxide are improved.
  • the perovskite oxide is optimized by enriching the material defect structure and introducing functional catalysis. oxygen catalytic performance.
  • the invention also discloses the preparation process of this type of perovskite oxide-transition metal phosphide heterostructure composite electrode material and its specific application as a high-efficiency bifunctional catalyst in water electrolysis and metal-air batteries.
  • the technical solution adopted by the present invention is: a perovskite oxide-transition metal phosphide heterostructure composite electrode material, the perovskite oxide includes Ln 1-x Sr x Cr 1- One of y M y O 3- ⁇ , Ln 1-x Sr x Ti 1-y M y O 3- ⁇ , Ln 0.8 Sr 1.2 MO 4+ ⁇ ; the transition metal phosphide includes M 2 P or MP 2 ; M is a transition metal, and Ln is a rare earth metal.
  • Ln is La, Pr or Gd; M is Fe, Co or Ni; 0 ⁇ x ⁇ 0.5;0 ⁇ y ⁇ 0.5.
  • the size of the transition metal phosphide is 5 to 50 nm, such as 10 to 30 nm; the transition metal phosphide nanoparticles are grown in an island shape and semi-embedded in situ on the perovskite oxide skeleton.
  • the present invention adopts solid phase method or sol-gel method to synthesize perovskite oxide; then the perovskite oxide is reduced at high temperature to obtain perovskite oxide-metal (alloy) composite material; and then the perovskite is oxidized
  • the material-metal (alloy) composite material is subjected to low-temperature phosphating treatment to obtain a perovskite oxide-transition metal phosphide heterostructure composite electrode material.
  • the calcination temperature is 800 ⁇ 1100°C and the calcination time is 4 ⁇ 12h
  • the xerogel is dried at 250 ⁇ 300°C and then calcined at 800 ⁇ 1000°C 4 ⁇ 12h
  • the atmosphere is hydrogen or Ar/H 2 mixed gas
  • the reduction temperature is 700 ⁇ 900°C
  • the reduction time is 2 ⁇ 4h
  • the phosphorus source is sodium hypophosphite or Ammonium hypophosphite
  • the mass ratio of phosphorus source and metal-containing perovskite oxide is 1 to 2:1
  • the carrier gas is Ar or Ar/H 2 mixed gas
  • the phosphating temperature is 300 to 700°C
  • the phosphating temperature is 300 to 700°C.
  • the time is 1 ⁇ 3h.
  • the oxides or carbonates of each metal element are used as raw materials. After weighing according to the stoichiometric ratio, it is produced through ball milling, tableting, high-temperature air calcination, crushing, ball milling and other processes.
  • the calcination temperature is 800 ⁇ 1100°C, calcination time is 4 ⁇ 12h;
  • sol-gel method synthesis uses nitrates of various metal elements as raw materials, citric acid and ethylenediaminetetraacetic acid as chelating agents, ammonia water to adjust the pH value to 7 ⁇ 9, heat and stir
  • the xerogel is dried at 250-300°C, burned and carbonized, and then calcined in high-temperature air.
  • the calcination temperature is 800-1000°C and the calcination time is 4-12 hours.
  • the perovskite oxide prepared above is subjected to high-temperature reduction treatment in a tube furnace to precipitate transition metal or transition metal alloy nanoparticles in situ.
  • the reduction atmosphere is hydrogen or Ar/H 2 mixed gas, the reduction temperature is 800°C, and the reduction time It is 2 ⁇ 4h.
  • the above-mentioned high-temperature reduction treated perovskite oxide is subjected to low-temperature phosphating treatment in a tube furnace.
  • the phosphorus source is sodium hypophosphite or ammonium hypophosphite.
  • the carrier gas is high-purity Ar or Ar/H 2 mixed gas.
  • the phosphorus The phosphating temperature is 300 to 500°C, and the phosphating time is 2 hours.
  • the phosphorus source and the reduced perovskite oxide are placed sequentially along the direction of the carrier gas flow. The mass ratio of the two is 1 to 2:1.
  • the preferred composition of the perovskite oxide is: La 0.8 Sr 0.2 Cr 0.69 Ni 0.31 O 3- ⁇ , La 0.6 Sr 0.4 Ti 0.8 Ni 0.2 O 3- ⁇ , La 0.8 Sr 1.2 Co 0.2 Fe 0.8 O 4+ ⁇ and Pr 0.8 Sr 1.2 Fe 0.5 Ni 0.5 O 4+ ⁇ ;
  • the preferred composition of transition metal phosphide is: Ni 2 P, CoFeP 2 , FeNiP 2 .
  • the synthesis process route of the perovskite oxide-transition metal phosphide heterostructure composite electrode material of the present invention is: solid-phase method or sol-gel method synthesis ⁇ high-temperature reduction ⁇ low-temperature phosphating.
  • the ball milling conditions are 600 rpm, ball milling for 12 hours, and the preferred calcination conditions are 12 hours at 1000°C; when synthesized by the sol-gel method, the preferred calcination conditions are 6 hours at 900°C.
  • High-temperature reduction treatment is performed in a tube furnace to precipitate transition metal or transition metal alloy nanoparticles in situ.
  • the reduction atmosphere is hydrogen or Ar/H 2 mixed gas.
  • the optimized reduction treatment conditions are: Ar/H 2 mixed gas is the carrier gas.
  • the reduction temperature is 800°C and the reduction time is 4h.
  • Low-temperature phosphating treatment is performed in a tube furnace.
  • the preferred phosphating treatment conditions are: Ar/H 2 mixed gas as carrier gas, phosphating temperature of 350°C, phosphating time of 2 hours, phosphorus source and perovskite oxide The mass ratio is 2:1.
  • the perovskite oxide-transition metal phosphide heterostructure composite electrode material of the present invention simultaneously has excellent electrocatalytic activity and stability such as oxygen reduction, oxygen evolution, and hydrogen evolution, and can meet the requirements for the construction of electrolytic water hydrogen production, metal-air Various new energy devices such as batteries, and output excellent and stable electrochemical performance. Its application range includes electrolysis of water for hydrogen production, zinc-air batteries and lithium-air batteries.
  • the invention discloses a device containing the above-mentioned perovskite oxide-transition metal phosphide heterostructure composite electrode material.
  • the electrode of the device includes the above-mentioned perovskite oxide-transition metal phosphide heterostructure composite electrode material. .
  • the invention discloses the application of the above-mentioned perovskite oxide-transition metal phosphide heterostructure composite electrode material in preparing oxygen reduction, oxygen evolution or hydrogen evolution electrode materials.
  • a heterostructure composite electrode material with a perovskite oxide/transition metal phosphide heterostructure is disclosed, and its original structure is disclosed. bit construction method.
  • Both perovskite oxides and transition metal phosphides have high-efficiency oxygen catalytic capabilities, which can increase the conductivity of electrode materials. Their strong electron-pulling ability can produce a charge compensation effect within the heterostructure and increase the oxygen vacancy concentration. Thereby further improving the catalytic activity.
  • the perovskite oxide-transition metal phosphide heterostructure composite electrode material disclosed in the present invention is used as an electrocatalyst for water electrolysis for hydrogen production and metal-air batteries, significantly The performance and stability of these electrochemical devices are improved.
  • the present invention discloses a perovskite oxide-transition metal phosphide heterostructure composite electrode material for the first time. Its characteristics and advantages can be reflected in the following aspects: First, both perovskite oxide and transition metal phosphide are are functional materials, both of which have high-efficiency oxygen catalytic ability.
  • the two are highly coupled and have a synergistic effect, improving the catalytic performance of the heterostructure composite electrode;
  • the transition metal phosphide is grown in situ on On the perovskite oxide surface, the preparation process is simple and controllable;
  • the transition metal phosphide nanoparticles are island-shaped and semi-embedded in situ grown on the perovskite oxide skeleton, which is beneficial to improving the stability of the electrode process. .
  • Figure 1 shows La 0.8 Sr 0.2 Cr 0.69 Ni 0.31 O 3- ⁇ (LSCN), reduced La 0.8 Sr 0.2 Cr 0.69 Ni 0.31 O 3- ⁇ (r-LSCN) and La 0.8 Sr 0.2 Cr after phosphating in Example 1.
  • Figure 2 is a TEM image of the LSCN/Ni 2 P heterostructure composite electrode material formed in Example 1.
  • Figure 3 shows the symmetrical electrode type water electrolysis hydrogen production system constructed using r-LSCN-P in Example 1 and its stability.
  • Figure 4 shows the power curve, rate performance and charge and discharge cycles of the zinc-air battery assembled using La 0.6 Sr 0.4 Ti 0.8 Fe 0.1 Ni 0.1 O 3- ⁇ / (FeNi) 2 P heterostructure composite electrode material in Example 2. stability.
  • Figure 5 is the XRD pattern of the LSCF/CoFeP 2 heterostructure composite electrode material in Example 3.
  • Figure 6 is a TEM image of the LSCF/CoFeP 2 heterostructure composite electrode material in Example 3.
  • Figure 7 shows the performance output diagrams (a, b) of the lithium-air battery assembled using LSCF/ CoFeP2 heterostructure composite electrodes and the performance output diagrams (c, d) of the lithium-air battery assembled using CoP as the catalyst in Example 3. .
  • the medicines or reagents involved in the present invention can be purchased through the market and are conventional raw materials.
  • the physical characterization methods of materials such as X-ray diffraction analysis (XRD), scanning electron microscope (SEM) and scanning electron microscope (TEM) involved in the present invention are conventional instrumental analysis methods, and there are no special sample processing and testing methods.
  • XRD X-ray diffraction analysis
  • SEM scanning electron microscope
  • TEM scanning electron microscope
  • Example 1 First, weigh La(NO 3 ) 3 , Sr(NO 3 ) 2 , (NH 4 ) 2 Cr 2 O 7 and Ni(NO 3 ) 2 with a mass ratio of 8:2:6.9:3.1. ⁇ Dissolve 6H 2 O in deionized water, then add ethylenediaminetetraacetic acid and citric acid (the amounts of ethylenediaminetetraacetic acid and citric acid are respectively 1.5 times and 2 times the amount of total cationic substances), and then add Stir for 5 hours at 80°C to obtain a sol, and then dry at 160°C for 2 hours to obtain a dry gel; first burn the dry gel in a tube furnace at 320°C in air for 3 hours, and then calcine at 1000°C for 8 hours to obtain La 0.8 Sr 0.2 Cr 0.69 Ni 0.31 O 3- ⁇ (LSCN).
  • the LSCN was annealed in a tube furnace at 800°C for 2 hours in an Ar/H 2 (5vol% H 2 ) atmosphere.
  • the LSCN was reduced and elemental Ni nanoparticles were precipitated in situ.
  • the product was labeled r-LSCN.
  • a perovskite oxide-transition metal phosphide heterostructure composite electrode material (r-LSCN-P); protective gas is stopped during the heating and heat preservation processes, and Ar/H 2 protective gas is passed during the cooling process.
  • the XRD and TEM characterization of the product r-LSCN-P are shown in Figure 1 and Figure 2 respectively. It can be seen that LSCN still maintains the cubic perovskite structure after reduction phosphating treatment.
  • the Ni 2 P nanoparticles generated in situ have a diameter of about 20 nm and grow on the surface of the LSCN skeleton in an island-like, semi-embedded manner.
  • Successfully obtained LSCN/Ni 2 P heterostructure composite material (r-LSCN-P) was developed.
  • an electrode slurry was prepared, and then the slurry spraying method was used to evenly load r-LSCN-P on the Electrodes were made on nickel foam with an electrode area of 2cm 2 and a loading capacity of r-LSCN-P of 1.5mg cm -2 .
  • the prepared electrodes were used as positive and negative electrodes to assemble a symmetrical water electrolytic cell and measure its performance in 1.0M KOH aqueous solution.
  • Example 2 According to La 0.6 Sr 0.4 Ti 0.8 Fe 0.1 Ni 0.1 O 3- ⁇ , take lanthanum nitrate, strontium nitrate, nickel nitrate, iron nitrate and titanium dioxide as raw materials, citric acid as chelating agent, water as solvent, and mix the above materials Then, adjust the pH value to 7.5 with ammonia water, stir at 80°C for 5 hours to obtain a sol, then dry at 140°C overnight to obtain a xerogel, and finally calcine at 900°C in the air for 6 hours to obtain La 0.6 Sr 0.4 Ti 0.8 Fe 0.1 Ni 0.1 O 3- delta cubic perovskite oxide powder (LSTFN).
  • LSTFN delta cubic perovskite oxide powder
  • the LSTFN was annealed in a tube furnace at 800°C for 2 hours in an Ar/H 2 (5vol% H 2 ) atmosphere to reduce the LSTN and precipitate FeNi alloy nanoparticles in situ. Put the sodium hypophosphite and the reduced LSTFN powder into the tube furnace in sequence according to the direction of 5% H 2 /Ar gas flow. Before raising the temperature, pass Ar/H 2 protective gas for 0.5 h, and then start from room temperature at 10°C/min.
  • Ar/H 2 5vol% H 2
  • Foamed nickel was used as the current collector, LSTFN@(FeNi) 2 P was used as the bifunctional catalyst, acetylene black was used as the conductive agent, and commercial PVDF was used as the binder to prepare an electrode slurry.
  • the LSTFN@(FeNi) 2 P was sprayed using the slurry spraying method.
  • the working electrode was uniformly loaded on nickel foam, in which the loading amount of LSTFN@(FeNi) 2 P was 1.2 mg cm -2 .
  • a commercial zinc plate was used as the negative electrode, and polyvinyl alcohol hydrogel saturated with 6.0M KOH was used as the solid state.
  • the solid-state zinc-air battery was assembled with the electrolyte, the charge and discharge performance of the battery was tested, and the performance of the solid-state zinc-air battery assembled with LSTFN and commercial Pt/C-IrO catalyst was compared under the same conditions.
  • the results are shown in Figure 4.
  • the peak power density of the solid-state zinc-air battery assembled with LSTFN@(FeNi) 2 P as the catalyst can reach 35Mw cm -2 , which is better than the solid-state zinc-air battery assembled with the commercial Pt/C-IrO 2 catalyst.
  • Example 3 Synthesis of LSCF using solid phase method.
  • Lanthanum oxide, strontium carbonate, ferric oxide and cobalt tetroxide are used as raw materials, weighed according to the stoichiometric ratio and placed in a ball mill at 600 rpm for 12 hours, then pressed into tablets, calcined at 1000°C for 8 hours, and crushed to obtain La 0.8 Sr 1.2 Co 0.2 Fe 0.8 O 4+d layered perovskite oxide powder (LSCF).
  • the LSCF powder was annealed at 800°C for 10 hours in an Ar/H 2 (5vol% H 2 ) reducing atmosphere to obtain r-LSCF powder, and CoFe alloy particles were precipitated on the surface of the LSCF perovskite oxide.
  • LSCF/CoFeP 2 was used as the bifunctional catalyst
  • acetylene black was used as the conductive agent
  • commercial PVDF was used as the binder to prepare the electrode slurry.
  • the slurry spraying method was used to evenly load the LSCF/CoFeP 2 on the carbon paper.
  • the working electrode was made on the LSCF/CoFeP 2 loading capacity of 2.0 mg cm -2 , which was transferred to the glove box after vacuum drying.
  • the metal lithium sheet was used as the negative electrode
  • Whatman glass fiber was used as the separator
  • 1.0 M LiTFSI-TEGDME was used as the electrolyzer.
  • FIG. 7(a,b) shows the assembled lithium-air battery showing excellent rate performance, with a first discharge capacity of up to 4500 mAh g -1 at a current density of 600mA g -1 , and shows excellent charge and discharge cycle performance, after 70 cycles Cycling, no capacity drop and charge-discharge polarization change.
  • Figure 7 (c, d) shows the performance output of a lithium-air battery using pure CoP as a catalyst prepared and tested under the same conditions. In comparison, CoP shows lower charge and discharge capacity and poor charge and discharge. Cycling stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Inert Electrodes (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

一种钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料及其制备方法与应用,属于新能源和新材料领域。钙钛矿氧化物包括Ln 1-xSr xCr 1-yM yO 3- δ、Ln 1-xSr xTi 1-yM yO 3- δ、Ln 0.8Sr 1.2MO 4+ δ等,过渡金属磷化物包括M 2P或MP 2。采用固相法或溶胶-凝胶法合成钙钛矿氧化物;再将钙钛矿氧化物经过高温还原,得到钙钛矿氧化物-金属复合材料;然后将钙钛矿氧化物-金属复合材料进行低温磷化处理,得到钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料,过渡金属磷化物纳米颗粒是以孤岛状、半嵌入式原位生长在钙钛矿氧化物骨架上;同时具备优异的氧气还原、氧气析出和氢气析出等电催化活性及稳定性,能够满足构建电解水制氢、金属-空气电池等各类新能源器件,并输出优异、稳定的电化学性能。

Description

一种钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料及其制备方法与应用 技术领域
本发明属于新能源和新材料领域,具体涉及一种钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料,还涉及其特殊的合成工艺路线及其电催化活性及应用。
背景技术
目前,为满足各类便携式电子产品、电动汽车等领域对更高能量密度及长续航性能的需求,燃料电池和金属-空气电池等新能源受到了广泛的关注和发展。燃料电池和金属-空气电池是以氧气为正极反应物质,通过催化剂的作用,发生氧还原反应,进而实现电流的形成。然后,氧还原反应本征动力学过程惰性,需要高效催化剂的使用才能促进氧还原反应的加速进行。受制于Pt、Pd等贵金属的资源稀缺性,开发非贵金属高效氧催化剂已成为燃料电池和金属-空气电池发展途径中的关键一环。
钙钛矿氧化物具有特殊的缺陷结构,对氧分子具有较强的表面吸附和解离作用,并且在钙钛矿氧化物晶体内部往往又存在有一定浓度的氧空位,非常有利于氧离子在其内部传输。因此,钙钛矿氧化物常被作为空气电极催化剂应用于固体氧化物燃料电池(SOFC)和金属-空气电池及电解水制氢等领域。现有技术报道了Pr 0.4Sr 0.6Co 0.2Fe 0.7Nb 0.1O 3、Ba 0.9Co 0.7Fe 0.2Nb 0.1O 3、La 0.6Sr 0.4Co 0.2Fe 0.8O 3和Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3等钙钛矿氧化物作为高效氧还原与氧析出双功能催化剂,用于锂-金属空气电池可显著降低电池的充放电极化,并获得高充放电容量,优异的充放电倍率和长的循环寿命; 现有专利报道了一种La 1‑xSr x+aFe 1‑y‑zN yM zO 3‑ δ钙钛矿氧化物,其中,N选自Cu、Ni或Co中的一种或更多种,M选自Ti、Nb或Mo中的一种,该材料经高温退火处理后可以转化为立方钙钛矿与层状钙钛矿氧化物复合材料,形成异质界面,提高氧催化能力;现有技术报道了一种SrTi 0.2-xNb xCo 0.8O 3钙钛矿氧化物,它具有优异的氧析出活性剂稳定性,可作为可再生燃料电池、可充电金属‑空气电池、水电解等领域的电催化剂。
尽管钙钛矿氧化物已在上述领域得到了研究和报道,但其仍存在着电导率低,催化活性有待进一步提升等实际问题。现有技术通过将BaCo 1‑xTi xO 3‑ δ钙钛矿氧化物与Co 3O 4复合,构建双相导电催化剂,提升碱性水电解或金属‑空气电池中的氧析出催化性能和稳定性;现有技术通过等离子体刻蚀技术,在氮气或磷化氢或硫化氢气体中的至少一种氛围内,利用等离子体中产生的活性基团处理钙钛矿氧化物,有效提高钙钛矿氧化物的氧缺陷和/或氧空位浓度,并对钙钛矿氧化物进行元素掺杂,快速提升钙钛矿氧化物电催化性能;现有技术虽然对钙钛矿催化剂多有改善,但是制备工艺复杂,比如等离子处理,而且与常规贵金属催化剂相比,性能还有差距。
技术问题
本发明的首要目的在于提供一种钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料的制备方法及其应用。通过原位构建钙钛矿氧化物-过渡金属磷化物异质结构界面,改善钙钛矿氧化物电导率低的固有缺点,同时,通过丰富材料缺陷结构和引入功能催化,优化钙钛矿氧化物的氧催化性能。本发明还公开了该类钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料的制备工艺及其作为高效双功能催化剂在电解水、金属-空气电池中的具体应用。
技术解决方案
为实现上述发明目的,本发明采用的技术方案是:一种钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料,所述钙钛矿氧化物包括Ln 1-xSr xCr 1-yM yO 3- δ、Ln 1-xSr xTi 1-yM yO 3- δ、Ln 0.8Sr 1.2MO 4+ δ中的一种;所述过渡金属磷化物包括M 2P或MP 2;M为过渡金属,Ln为稀土金属。优选的,Ln为La、Pr或Gd;M为Fe、Co或Ni;0<x≤0.5;0<y≤0.5。
本发明中,所述过渡金属磷化物的尺寸为5~50nm,比如10~30nm;过渡金属磷化物纳米颗粒是以孤岛状、半嵌入式原位生长在钙钛矿氧化物骨架上。
本发明采用固相法或溶胶-凝胶法合成钙钛矿氧化物;再将钙钛矿氧化物经过高温还原,得到钙钛矿氧化物-金属(合金)复合材料;然后将钙钛矿氧化物-金属(合金)复合材料进行低温磷化处理,得到钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料。具体的,固相法中,煅烧的温度为800~1100℃,煅烧的时间为4~12h;溶胶-凝胶法中,干凝胶于250~300℃烘干,再于800~1000℃煅烧4~12h;高温还原中,气氛为氢气或Ar/H 2混合气,还原的温度为700~900℃,还原的时间为2~4h;低温磷化处理中,磷源为次亚磷酸钠或次亚磷酸铵;磷源、含金属钙钛矿氧化物的质量比为1~2∶1;载气为Ar或Ar/H 2混合气;磷化的温度为300~700℃,磷化的时间为1~3h。
固相法合成时采用各个金属元素的氧化物或碳酸盐为原料,按化学计量比称量后,经球磨、压片、高温空气煅烧、破碎、球磨等工艺制得,煅烧温度为800~1100℃,煅烧时间为4~12h;溶胶-凝胶法合成时采用各个金属元素的硝酸盐为原料,柠檬酸和乙二胺四乙酸为螯合剂、氨水调节PH值为7~9,加热搅拌至干凝胶,250~300℃下烘干、燃烧排碳,再经高温空气煅烧制得,煅烧温度为800~1000℃,煅烧时间为4~12h。
上述制备的钙钛矿氧化物在管式炉中进行高温还原处理,原位析出过渡金属或过渡金属合金纳米颗粒,还原气氛为氢气或Ar/H 2混合气,还原温度为800℃,还原时间为2~4h。
上述经高温还原处理的钙钛矿氧化物至于管式炉中进行低温磷化处理,磷源为次亚磷酸钠或次亚磷酸铵,载气为高纯Ar或Ar/H 2混合气,磷化温度为300~500℃,磷化时间为2h,磷化时沿载气流向依次放置磷源和还原处理的钙钛矿氧化物,两者质量比为1~2:1。
进一步,钙钛矿氧化物优选组成为:La 0.8Sr 0.2Cr 0.69Ni 0.31O 3- δ、La 0.6Sr 0.4Ti 0.8Ni 0.2O 3- δ、La 0.8Sr 1.2Co 0.2Fe 0.8O 4+ δ和Pr 0.8Sr 1.2Fe 0.5Ni 0.5O 4+ δ;过渡金属磷化物优选组成为:Ni 2P、CoFeP 2、FeNiP 2
本发明的钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料的合成工艺路线为:固相法或溶胶-凝胶法合成→高温还原→低温磷化。固相法合成时,球磨条件为600转/分钟,球磨12h,优选的煅烧条件为1000℃下12h;溶胶-凝胶法合成时,优选的煅烧条件为900℃下6h。在管式炉中进行高温还原处理,原位析出过渡金属或过渡金属合金纳米颗粒,还原气氛为氢气或Ar/H 2混合气,优化还原处理条件为:Ar/H 2混合气为载气,还原温度为800℃,还原时间为4h。在管式炉中进行低温磷化处理,优选的磷化处理条件为:Ar/H 2混合气为载气,磷化温度为350℃,磷化时间为2h,磷源和钙钛矿氧化物质量比为2:1。
本发明的钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料同时具备优异的氧气还原、氧气析出和氢气析出等电催化活性及稳定性,能够满足构建电解水制氢、金属-空气电池等各类新能源器件,并输出优异、稳定的电化学性能,其应用范围包括电解水制氢、锌-空气电池和锂-空气电池等。本发明公开了一种含有上述钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料的器件,所述器件的电极包括上述钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料。本发明公开了上述钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料在制备氧气还原、氧气析出或氢气析出电极材料中的应用。
结合上述的所有技术方案,本发明所具备的优点及有益效果为:首次公开了一种具有钙钛矿氧化物/过渡金属磷化物异质结构的异质结构复合电极材料,并公开了其原位构建方法。钙钛矿氧化物和过渡金属磷化物都具有高效氧催化能力,可增加电极材料的导电性,其较强的拉电子能力,可在异质结构内产生电荷补偿效应,并提高氧空位浓度,从而进一步提高催化活性。作为高效的氧还原、氧析出及氢析出催化剂,本发明公布的钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料用作电解水制氢和金属-空气电池的电催化剂,显著地提升了这些电化学器件的性能及稳定性。
有益效果
本发明首次公开的一种钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料,其特点与优点可体现在以下几个方面:第一,钙钛矿氧化物和过渡金属磷化物均为功能材料,均具有高效氧催化能力,在本发明公开的材料体系内,二者高度耦合,具有协同效应,提升异质结构复合电极的催化性能;第二,过渡金属磷化物原位生长在钙钛矿氧化物表面,制备过程简便可控;第三,过渡金属磷化物纳米颗粒是以孤岛状、半嵌入式原位生长在钙钛矿氧化物骨架上,有利于提升电极过程的稳定性。
附图说明
图1为实施例一中La 0.8Sr 0.2Cr 0.69Ni 0.31O 3- δ(LSCN)、还原La 0.8Sr 0.2Cr 0.69Ni 0.31O 3- δ(r-LSCN)和磷化后La 0.8Sr 0.2Cr 0.69Ni 0.31O 3- δ(r-LSCN-P)的XRD图。
图2为实施例一中形成的LSCN/Ni 2P异质结构复合电极材料的TEM图。
图3为实施例一中利用r-LSCN-P构建的对称电极型水电解制氢***及稳定性。
图4为实施例二中利用La 0.6Sr 0.4Ti 0.8Fe 0.1Ni 0.1O 3- δ/ (FeNi) 2P 异质结构复合电极材料组装的锌-空气电池的功率曲线、倍率性能及充放电循环稳定性。
图5为实施例三中LSCF/CoFeP 2异质结构复合电极材料的XRD图。
图6为实施例三中LSCF/CoFeP 2异质结构复合电极材料的TEM图。
图7为实施例三中利用LSCF/CoFeP 2异质结构复合电极组装的锂-空气电池性能输出图(a,b)和以CoP为催化剂组装的锂-空气电池性能输出图(c,d)。
本发明的实施方式
本发明涉及的药品或试剂均可通过市场采购,为常规原料。本发明涉及的X射线衍射分析(XRD)、扫描电子显微镜(SEM)和扫描电子显微镜(TEM)等材料物理表征手段为常规仪器分析方法,不存在特殊的样品处理及测试方法。制作并测试水电解制氢器件、液态锌-空气电池及锂-空气电池时,本发明涉及的电极制作方法及电解池和电池组装方法与常规电极和电池制备方法无异,测试方法及条件也无特殊要求。
下面结合附图、实施例对本发明作进一步描述。以下实例用于说明本发明,但不用来限制本发明的范围。
实施例一:首先称取物质的量比为8:2:6.9:3.1的La(NO 3) 3、Sr(NO 3) 2、(NH 4) 2Cr 2O 7和Ni(NO 3) 2·6H 2O溶解于去离子水中,然后加入乙二胺四乙酸、柠檬酸(乙二胺四乙酸、柠檬酸的物质的量分别为阳离子总物质的量的1.5倍、2倍),再于80℃搅拌下搅拌 5小时,得到溶胶,然后于160℃干燥2h,得到干凝胶;将干凝胶先在管式炉中,空气中320℃烧3h,然后在1000℃下煅烧8h,得到La 0.8Sr 0.2Cr 0.69Ni 0.31O 3- δ(LSCN)。
将LSCN于管式炉中,在Ar/H 2(5vol% H 2)气氛下800℃退火2h,将LSCN还原,原位析出单质Ni纳米颗粒,产物标记为r-LSCN。
将4.0克NaH 2PO 2和2.0克 r-LSCN分别装入两个刚玉舟,并沿气体流动方向依次放置于通有Ar/H 2(5vol% H 2)保护气的管式炉中,Ar/H 2保护气先吹过NaH 2PO 2,再吹过r-LSCN,升温之前先通Ar/H 2保护气0.5 h,然后以10℃/min从室温升至500℃,保温2h,然后自然降温,得到钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料(r-LSCN-P);升温和保温过程停止通保护气,降温过程通Ar/H 2保护气。产物r-LSCN-P 的XRD和TEM表征分别如图1和图2所示。可以看出,经还原磷化处理后LSCN仍然保持着立方钙钛矿结构,原位生成的Ni 2P纳米颗粒直径约20nm,是以孤岛状、半嵌入式生长在LSCN骨架表面,成功地获得了LSCN/Ni 2P异质结构复合材料(r-LSCN-P)。
利用泡沫镍为集流体,以r-LSCN-P为双功能催化剂、乙炔黑为导电剂、商用Nafion为粘结剂配制电极浆料,然后采用浆料喷涂法将r-LSCN-P均匀负载在泡沫镍上制作电极,电极面积2cm 2,r-LSCN-P负载量为1.5mg cm -2,并以制作的电极充当正负极,组装对称型水电解池,测量其在1.0M KOH水溶液中的电解水制氢性能及稳定性,并在相同条件下,与LSCN、r-LSCN以及商业Pt/C和IrO 2等催化剂组装的水电解池性能作对比,结果如图3所示。可以看出r-LSCN-P//r-LSCN-P对称电解池表现出最低的电解电压及电解稳定性。
实施例二:根据La 0.6Sr 0.4Ti 0.8Fe 0.1Ni 0.1O 3- δ取硝酸镧、硝酸锶、硝酸镍、硝酸铁和二氧化钛为原料,柠檬酸为螯合剂,水为溶剂,将以上物质混合后,氨水调节pH值至7.5,在 80℃下搅拌 5小时得到溶胶,然后,在140℃干燥过夜得到干凝胶,最后在空气中 900℃煅烧 6小时,得到 La 0.6Sr 0.4Ti 0.8 Fe 0.1Ni 0.1O 3- δ立方钙钛矿氧化物粉末(LSTFN)。将LSTFN于管式炉中,在Ar/H 2(5vol% H 2)气氛下800℃退火2h,将LSTN还原,原位析出FeNi合金纳米颗粒。按 5% H 2/Ar气流流向依次将次亚磷酸钠和还原处理的LSTFN粉末放入管式炉中,升温之前先通Ar/H 2保护气0.5 h,然后以10℃/min从室温升至350℃,保温2小时,然后自然降温,得到钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料(LSTFN@(FeNi) 2P);升温和保温过程停止通保护气,降温过程通Ar/H 2(5vol% H 2)保护气。
利用泡沫镍为集流体,以LSTFN@(FeNi) 2P为双功能催化剂、乙炔黑为导电剂、商用PVDF为粘结剂配制电极浆料,采用浆料喷涂法将LSTFN@(FeNi) 2P均匀负载在泡沫镍上制作工作电极,其中LSTFN@(FeNi) 2P负载量为1.2mg cm -2,以商业锌板为负极,以饱浸了6.0M KOH的聚乙烯醇水凝胶为固态电解质组装固态锌-空气电池,测试电池充放电性能,并在相同条件下与LSTFN和商业Pt/C-IrO 2催化剂组装的固态锌-空气电池性能作比较,结果如图4所示。其中,以LSTFN@(FeNi) 2P为催化剂组装的固态锌-空气电池的峰值功率密度可达35Mw cm -2, 相比商业Pt/C-IrO 2催化剂组装的固态锌-空气电池表现出更优异的充放电循环稳定性,200圈循环无衰减。
实施例三:采用固相法合成LSCF。氧化镧,碳酸锶,三氧化二铁和四氧化三钴为原料,按化学计量比称量后放在球磨机中600转/分钟球磨12h,然后压成片,经1000 ℃煅烧8小时,粉碎得到 La 0.8Sr 1.2 Co 0.2Fe 0.8O 4+d层状钙钛矿氧化物粉末(LSCF)。将LSCF粉末在Ar/H 2(5vol% H 2)还原气氛中800℃退火处理10小时,得到r-LSCF粉末,在LSCF钙钛矿氧化物表面析出CoFe合金颗粒。按 5% H 2/Ar气流流向依次将次亚磷酸钠和r-LSCF粉末放入管式炉中,升温之前先通Ar/H 2保护气0.5 h,然后以10℃/min从室温升至350℃,保温5小时,然后自然降温,得到LSCF钙钛矿氧化物-CoFeP 2过渡金属磷化物异质结构复合电极材料(LSCF/CoFeP 2),r-LSCF表面的CoFe合金颗粒原位转变成CoFeP 2纳米颗粒;升温和保温过程停止通保护气,降温过程通Ar/H 2(5vol% H 2)保护气。LSCF/CoFeP 2 的XRD和TEM物性表征分别如图5和图6所示。可以看出CoFeP 2颗粒尺寸约20nm,以孤岛状、半嵌入式生长在LSCF骨架表面。
利用商用碳纸为集流体,以LSCF/CoFeP 2为双功能催化剂、乙炔黑为导电剂、商用PVDF为粘结剂配制电极浆料,采用浆料喷涂法将LSCF/CoFeP 2均匀负载在碳纸上制作工作电极,其中LSCF/CoFeP 2负载量为2.0mg cm -2,经真空干燥处理后转移到手套箱内,以金属锂片为负极,Whatman玻璃纤维为隔膜,1.0 M LiTFSI-TEGDME为电解液,组装CR2032扣式锂-空气电池,并利用蓝电充放电仪测试其电池性能。结果如图7(a,b)所示。可以看出,组装的锂-空气电池表现出优异的倍率性能,在600mA g -1的电流密度下,首次放电容量高达4500 mAh g -1,且表现出优异的充放电循环性能,经70圈循环,无容量下降和充放电极化变化。作为对比,图7(c,d)给出了相同条件下制备和测试的以纯CoP为催化剂的锂空气电池的性能输出,相比较,CoP表现出较低的充放电容量和较差的充放电循环稳定性。
以上所述的具体描述,仅为对本发明目的、技术实施方案和实施效果的进一步详 细说明,但本发明的保护范围并不局限于此,任何在本发明所揭示的技术领域以内的修改、 同等替换等,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料,其特征在于,所述钙钛矿氧化物包括Ln 1-xSr xCr 1-yM yO 3- δ、Ln 1-xSr xTi 1-yM yO 3- δ、Ln 0.8Sr 1.2MO 4+ δ中的一种;所述过渡金属磷化物包括M 2P或MP 2;M为过渡金属,Ln为稀土金属。
  2. 根据权利要求1所述钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料,其特征在于,所述过渡金属磷化物的尺寸为5~50nm。
  3. 根据权利要求1所述钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料,其特征在于,Ln为La、Pr或Gd;M为Fe、Co或Ni;0<x≤0.5;0<y≤0.5。
  4. 权利要求1所述钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料的制备方法,其特征在于,采用固相法或溶胶-凝胶法合成钙钛矿氧化物;再将钙钛矿氧化物经过高温还原,得到钙钛矿氧化物-金属复合材料;然后将钙钛矿氧化物-金属复合材料进行低温磷化处理,得到钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料。
  5. 根据权利要求4所述钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料的制备方法,其特征在于,固相法中,煅烧的温度为800~1100℃,煅烧的时间为4~12h;溶胶-凝胶法中,干凝胶于250~300℃烘干,再于800~1000℃煅烧4~12h。
  6. 根据权利要求4所述钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料的制备方法,其特征在于,高温还原中,气氛为氢气或Ar/H 2混合气,还原的温度为700~900℃,还原的时间为2~4h。
  7. 根据权利要求4所述钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料的制备方法,其特征在于,低温磷化处理中,磷源为次亚磷酸钠或次亚磷酸铵;磷源、钙钛矿氧化物的质量比为1~2∶1。
  8. 根据权利要求4所述钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料的制备方法,其特征在于,低温磷化处理中,载气为Ar或Ar/H 2混合气;磷化的温度为300~700℃,磷化的时间为1~3h。
  9. 一种含有权利要求1所述钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料的器件,其特征在于,所述器件的电极包括权利要求1所述钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料。
  10. 权利要求1所述钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料在制备氧气还原、氧气析出或氢气析出电极材料中的应用。
PCT/CN2022/111461 2022-06-30 2022-08-10 一种钙钛矿氧化物 - 过渡金属磷化物异质结构复合电极材料及其制备方法与应用 WO2024000742A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210770006.1A CN115058733A (zh) 2022-06-30 2022-06-30 一种钙钛矿氧化物-过渡金属磷化物异质结构复合电极材料及其制备方法与应用
CN202210770006.1 2022-06-30

Publications (1)

Publication Number Publication Date
WO2024000742A1 true WO2024000742A1 (zh) 2024-01-04

Family

ID=83203446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111461 WO2024000742A1 (zh) 2022-06-30 2022-08-10 一种钙钛矿氧化物 - 过渡金属磷化物异质结构复合电极材料及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN115058733A (zh)
WO (1) WO2024000742A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115893508A (zh) * 2022-11-08 2023-04-04 广东省先进陶瓷材料科技有限公司 一种钙钛矿复合氧化物及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104470A (ja) * 1990-08-23 1992-04-06 Meidensha Corp 固体電解質型燃料電池用電極の製造方法
WO2006106334A1 (en) * 2005-04-08 2006-10-12 Ceres Intellectual Property Company Limited High performance sofc cathode material in the 4500c - 6500c range
CN112510218A (zh) * 2020-12-22 2021-03-16 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) 一种用于金属空气电池阴极催化层的复合材料及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04104470A (ja) * 1990-08-23 1992-04-06 Meidensha Corp 固体電解質型燃料電池用電極の製造方法
WO2006106334A1 (en) * 2005-04-08 2006-10-12 Ceres Intellectual Property Company Limited High performance sofc cathode material in the 4500c - 6500c range
CN112510218A (zh) * 2020-12-22 2021-03-16 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) 一种用于金属空气电池阴极催化层的复合材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI CONG ET AL.: "Prepation of perovskite oxides/(CoFe)P2 heterointerfaces to improve oxygen evolution activity of La0.8Sr1.2Co0.2Fe0.8O4+δ layered perovskite oxide", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 45, 5 July 2020 (2020-07-05), pages 22959 - 22964, XP086250015, DOI: 10.1016/j.ijhydene.2020.06.044 *

Also Published As

Publication number Publication date
CN115058733A (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
CN113066969A (zh) 一种导电高分子包覆磷酸锰铁锂正极材料的制备方法
CN110233250A (zh) 一种单晶颗粒三元正极材料的制备方法
CN112349885B (zh) 一种改性锂离子电池正极材料及其制备方法
CN109103462B (zh) 一种燃料电池用钴-氮共掺杂碳气凝胶催化剂及其制备方法
CN111180709A (zh) 碳纳米管、金属铜共掺杂草酸亚铁锂电池复合负极材料及其制备方法
CN108493460B (zh) 一种钙钛矿/氧化铈氧催化剂及其脱溶复合制备方法
CN109888225A (zh) 正极材料及其制备方法和锂离子电池
Gao et al. Preparation and characterization of La1− xSrxNiyFe1− yO3− δ cathodes for low-temperature solid oxide fuel cells
CN113851641A (zh) 一种高熵固溶体正极材料及其制备方法和应用
CN111153447B (zh) 一种网格状多孔前驱体材料及其制备方法、以及一种正极材料
Nie et al. Efficient oxygen evolution reaction in SrCo0. 8Fe0. 2O3-δ perovskite and surface reconstruction for practical zinc-air batteries
CN115395007A (zh) 一种层状-尖晶石复合相单晶富锂锰基正极材料及其应用
WO2024000742A1 (zh) 一种钙钛矿氧化物 - 过渡金属磷化物异质结构复合电极材料及其制备方法与应用
Wang et al. Sr x Ti 0.6 Fe 0.4 O 3− δ (x= 1.0, 0.9) catalysts for ammonia synthesis via proton-conducting solid oxide electrolysis cells (PCECs)
Quan et al. Facile hybrid strategy of SrCo0. 5Fe0. 3Mo0. 2O3-δ/Co3O4 heterostructure for efficient oxygen evolution reaction
CN102569830B (zh) 金属空气电池正极催化剂及其制备方法
CN101503219B (zh) 四氧化三钴多孔纳米片的制备方法
CN115650318A (zh) 一种掺杂的p2型层状镍锰酸钠正极材料及其制备方法
CN114657579A (zh) 一种二元合金纳米颗粒修饰的固体氧化物电解池工作电极及其制备方法和应用
CN114300664A (zh) 一种表面包覆硒酸锂的富锂单晶正极材料及其制备方法和应用
CN112047381B (zh) 一种固体氧化物燃料电池晶面择优暴露的阴极及其制备方法与应用
CN117199379B (zh) 一种氧变价钠离子电池层状氧化物正极材料及其制备方法
CN111732088B (zh) 一种磷酸铁锂前驱体/碳纳米管复合材料
CN112897597B (zh) 复合正极氧化物纳米颗粒合成及其制备方法
CN112687886B (zh) 一种中温固体氧化物燃料电池复合阴极及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948834

Country of ref document: EP

Kind code of ref document: A1