WO2023181172A1 - 半導体メモリ装置 - Google Patents

半導体メモリ装置 Download PDF

Info

Publication number
WO2023181172A1
WO2023181172A1 PCT/JP2022/013515 JP2022013515W WO2023181172A1 WO 2023181172 A1 WO2023181172 A1 WO 2023181172A1 JP 2022013515 W JP2022013515 W JP 2022013515W WO 2023181172 A1 WO2023181172 A1 WO 2023181172A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gate
gate insulating
insulating layer
semiconductor
Prior art date
Application number
PCT/JP2022/013515
Other languages
English (en)
French (fr)
Inventor
正一 各務
康司 作井
望 原田
Original Assignee
ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
正一 各務
康司 作井
望 原田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニサンティス エレクトロニクス シンガポール プライベート リミテッド, 正一 各務, 康司 作井, 望 原田 filed Critical ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
Priority to PCT/JP2022/013515 priority Critical patent/WO2023181172A1/ja
Priority to US18/187,764 priority patent/US20230309287A1/en
Publication of WO2023181172A1 publication Critical patent/WO2023181172A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/20DRAM devices comprising floating-body transistors, e.g. floating-body cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/403Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh
    • G11C11/404Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration common to a multiplicity of memory cells, i.e. external refresh with one charge-transfer gate, e.g. MOS transistor, per cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4096Input/output [I/O] data management or control circuits, e.g. reading or writing circuits, I/O drivers or bit-line switches 

Definitions

  • the present invention relates to a semiconductor memory device.
  • the channel In a normal planar MOS transistor, the channel extends in the horizontal direction along the upper surface of the semiconductor substrate. In contrast, the channel of the SGT extends in a direction perpendicular to the upper surface of the semiconductor substrate (see, for example, Non-Patent Document 1). Therefore, the SGT allows higher density semiconductor devices than planar MOS transistors.
  • DRAM Dynamic Random Access Memory
  • PCM Phase Change Memory
  • Non-Patent Document 3 Phase Change Memory
  • Non-Patent Document 4 RRAM (Resistive Random Access Memory, see, for example, Non-Patent Document 4), MRAM (Magneto-resistive Random Access Memory, for example, non-patent See Patent Document 5 ) etc.
  • DRAM memory cells configured with one MOS transistor without a capacitor see, for example, Non-Patent Documents 6 and 9
  • DRAM memory cells with two gate electrodes and a trench for storing carriers for example, non-patent documents 6 and 9
  • Patent Document 8 a DRAM without a capacitor has a problem in that it is largely affected by the coupling of the gate electrode from the word line of the floating body and cannot provide a sufficient voltage margin.
  • Twin-Transistor memory element in which one memory cell is formed using two MOS transistors in an SOI (Silicon on Insulator) layer (see, for example, Patent Documents 1 and 2).
  • SOI Silicon on Insulator
  • an n+ layer that separates the floating body channels of two MOS transistors and serves as a source or drain is formed in contact with an insulating layer. Since this n+ layer is in contact with the insulating layer, the floating body channels of the two MOS transistors are electrically isolated.
  • a group of holes, which are signal charges, are accumulated in the floating body channel of one transistor.
  • Non-Patent Document 10 The voltage of the floating body channel in which holes are accumulated changes greatly by applying a pulse voltage to the gate electrode of an adjacent MOS transistor. As a result, the operating margin between "1" and "0" during writing cannot be made sufficiently large (for example, Non-Patent Document 10).
  • the present application relates to a memory device using a semiconductor element that does not have a variable resistance element or a capacitor and can be configured only with a MOS transistor.
  • This application uses a single transistor-type DRAM that eliminates capacitors to solve the problems of noise caused by coupling capacitance between the word line and the body, as well as erroneous reading and erroneous rewriting of stored data due to memory instability.
  • a semiconductor memory device that realizes a high-density and high-speed MOS circuit is provided.
  • a memory device using a semiconductor element includes: a semiconductor body extending horizontally or standing vertically with respect to the substrate; a first impurity layer connected to one end of the semiconductor matrix; a second impurity layer connected to one end of the semiconductor base opposite to the first impurity layer; a first gate insulating layer covering a portion of the semiconductor matrix and the first impurity layer; a first gate conductor layer covering the first gate insulating layer; a second gate insulating layer covering a portion of the semiconductor matrix and the second impurity layer; a second gate conductor layer that covers the second gate insulating layer without contacting the first gate conductor layer,
  • the capacitance of the MOS gate structure formed by the second gate conductor layer, the second gate insulating layer, and the semiconductor matrix is divided by the contact area of the second gate conductor layer and the second gate insulating layer.
  • the value of the capacitance of the MOS gate structure formed by the first gate conductor layer, the first gate insulating layer, and the semiconductor matrix is the capacitance of the first gate conductor layer and the first gate insulating layer. Different from the value divided by the contact area, (first invention).
  • voltages applied to the first impurity layer, the second impurity layer, the first gate conductor layer, and the second gate conductor layer are controlled to an operation of generating an electron group and a hole group in the semiconductor matrix by an impact ionization phenomenon or a gate-induced drain leak current by a current flowing between the first impurity layer and the second impurity layer; and the generated electron group. and out of the hole group, a part or all of either the electron group or the hole group, which are majority carriers in the semiconductor matrix, remain in the semiconductor matrix to perform a memory write operation.
  • a source line is connected to the first impurity layer
  • a bit line is connected to the second impurity layer
  • a word line is connected to the first gate conductor layer.
  • a plate line is connected to the second gate conductor layer, and a voltage is applied to each of the source line, bit line, plate line, and word line to write and/or erase the memory.
  • the capacitance of the MOS gate structure formed by the second gate conductor layer, the second gate insulating layer, and the semiconductor matrix is determined by the capacitance of the MOS gate structure formed by the second gate conductor layer and the second gate insulating layer.
  • the capacitance of the MOS gate structure formed by the first gate conductor layer, the first gate insulating layer, and the semiconductor matrix is divided by the contact area of the first gate conductor layer and the first gate conductor layer. It is characterized in that it is smaller than the value divided by the contact area of the gate insulating layer (fourth invention).
  • the thickness of the second gate insulating layer is thicker than the thickness of the first gate insulating layer (fifth invention).
  • the dependence of the threshold value of the MOS transistor region having the second gate insulating layer on the majority carrier concentration of the semiconductor matrix is the same as that of the MOS transistor region having the first gate insulating layer. It is characterized in that the dependence of the threshold value on the majority carrier concentration of the semiconductor matrix is greater than that of the majority carrier concentration (sixth invention).
  • the first invention is characterized in that, when reading information, the voltage applied to the plate line connected to the second gate conductor layer is between a threshold value for writing and a threshold value for erasing. (Seventh invention).
  • the variation in the threshold value of the MOS transistor region having the second gate insulating layer is greater than that of the MOS transistor region having the first gate insulating layer in the write state and the erase state. It is characterized by being large (eighth invention).
  • the threshold value of the MOS transistor having the second gate insulating layer close to the bit line is always the threshold value of the MOS transistor having the first gate insulating layer close to the source line.
  • FIGS. 1 to 4 The structure and operating mechanism of a memory cell using a semiconductor element according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 4.
  • a cell structure of a memory using a semiconductor element according to this embodiment will be described with reference to FIG.
  • An additional example of the cell structure of a memory using the semiconductor element according to this embodiment will be described with reference to FIG.
  • the write mechanism and carrier behavior of a memory using a semiconductor element will be described with reference to FIG. 3, and the data erase mechanism will be described with reference to FIG.
  • Table 1 a change in the threshold value of the MOS transistor region in the memory cell of the semiconductor device according to the present embodiment will be explained.
  • FIG. 1 shows the structure of a memory using a semiconductor element according to a first embodiment of the present invention.
  • FIG. 1 shows a plan view
  • (b) shows a cross-sectional view along (a) line XX'
  • (c) shows a cross-sectional view along (a) line YY'.
  • Above the substrate 20 (which is an example of a "substrate” in the claims), in the horizontal direction with respect to the substrate 20, a central axis having a p-type or i-type (intrinsic type) conductivity type containing acceptor impurities.
  • n+ layer 1 which is an example of a "semiconductor base” in the claims
  • p layer 2 which is a silicon semiconductor matrix whose vertical cross section is rectangular.
  • n+ layer 2 (hereinafter, a semiconductor region containing donor impurities at a high concentration is referred to as an "n+ layer") on one side of the p layer 1 in the horizontal direction (an example of a "first impurity layer” in the claims) ).
  • n+ layer 3 which is an example of a "second impurity layer” in the claims).
  • a gate insulating layer 4 (which is an example of a "first gate insulating layer” in the claims) is located on a part of the surface of the p layer 1 and in contact with or near the n+ layer 2.
  • a first gate conductor layer 5 (which is an example of a “first gate conductor layer” in the claims) surrounds a part of the gate insulating layer 4 and is close to the n+ layer 2.
  • a gate insulating layer 6 (which is an example of a "second gate insulating layer” in the claims) formed on a part of the surface of the p layer 1 and in contact with or near the n+ layer 3 is be.
  • the gate conductor layer 7 (which is an example of a "second gate conductor layer” in the claims) is in contact with the gate insulating layer 6 and is close to the n+ layer 3 without being in contact with the gate conductor layer 5.
  • One dynamic flash memory cell is formed by the p layer 1, the n+ layer 2, the n+ layer 3, the gate insulating layer 4, the gate conductor layer 5, the gate insulating layer 6, and the gate conductor layer 7.
  • the MOS gate capacitance with the gate conductor layer 7 as the gate electrode is the contact between the gate conductor layer 7 and the gate insulating layer 6.
  • capacitor per unit area the value obtained by dividing the MOS gate capacitance by the contact area between the gate electrode and the gate insulating layer, which are its constituent elements, is referred to as "capacitance per unit area"). , is smaller than the capacitance per unit area of the MOS gate structure formed by the gate insulating layer 4 and the p-layer 1.
  • the n+ layer 2 is connected to the source line SL (which is an example of the "source line” in the claims) which is a wiring conductor
  • the gate conductor layer 5 is connected to the word line WL (which is an example of the "source line” in the claims) which is a wiring conductor.
  • the gate conductor layer 7 is connected to a plate line PL (which is an example of a "plate line” in the claims) which is a wiring conductor.
  • the n+ layer 3 is connected to a bit line BL (which is an example of a "bit line” in the claims) which is a wiring conductor.
  • the memory operates by individually manipulating the potentials of the source line, bit line, plate line, and word line.
  • the plurality of dynamic flash memory cells described above are arranged two-dimensionally or three-dimensionally. This memory device is hereinafter referred to as dynamic flash memory.
  • the capacitance per unit area of the MOS gate structure of the gate conductor layer 7, gate insulating layer 6, and p-layer 1 is smaller than that of the gate structure formed of the gate conductor layer 5, gate insulating layer 4, and p-layer 1.
  • the purpose of this is to make the dependence of the threshold value of the MOS transistor region having the gate conductor layer 7 on the majority carrier concentration of the semiconductor matrix higher than that of the MOS transistor region having the gate conductor layer 5.
  • the equation that determines the threshold value includes the term Qn/Cox, and furthermore, Qn is the substrate concentration. Has square root dependence.
  • Cox the greater the dependence of the threshold on the majority carrier concentration of the semiconductor matrix.
  • Cox ⁇ SiO2/tox ( ⁇ SiO2 is the dielectric constant of the silicon oxide film). Therefore, in order to make the capacitance per unit area of the MOS gate structure having the gate conductor layer 7 smaller than that of the MOS gate structure having the gate conductor layer 5, it is necessary to The thickness may be made thicker than the film thickness of the gate insulating layer 4. An example of this is illustrated in FIG.
  • the same effect can be achieved by using a material for the gate insulating layer 6 that has a lower dielectric constant than the gate insulating layer 4 even if the film thickness is the same. Furthermore, by combining the film thickness and dielectric constant, the capacitance per unit area can be adjusted freely.
  • any insulating film used in a normal MOS process can be used for the gate insulating layers 4 and 6, such as a SiO2 film, a SiON film, a HfSiON film, or a laminated film of SiO2/SiN.
  • the p layer 1 is a p-type semiconductor, but there may be a profile in the impurity concentration. Further, there may be a profile in the impurity concentration of the n+ layer 2 and the n+ layer 3.
  • the p layer 1 is If it is an n-type semiconductor, the Dynac flash memory operates by using electrons as carriers for writing.
  • the potential of a part of the memory cell can be changed between the gate conductor layer 5 through the gate insulating layer 4 and the gate conductor layer 7 through the gate insulating layer 6, for example, W, Pd, Ru, etc.
  • It may be a metal such as Al, TiN, TaN, or WN, a metal nitride, or an alloy thereof (including silicide), for example, a laminated structure such as TiN/W/TaN, or a highly doped structure. It may also be formed from a semiconductor.
  • FIG. 1 shows an example in which the p-layer 1 extends horizontally with respect to the substrate 20, a structure in which the p-layer 1 extends vertically with respect to the substrate 20 may also be used.
  • gate conductor layers 4 and 6 in each memory cell are shown as being integrated in FIG. 1, they may be divided horizontally or vertically with respect to the semiconductor matrix. I don't mind.
  • FIG. 2 shows the structure of a memory using the semiconductor element according to the first embodiment of the present invention.
  • FIG. 2 shows a plan view
  • (b) shows a cross-sectional view along line XX' in (a)
  • (c) shows a cross-sectional view along line Y-Y' in (a).
  • the memory cell shown in FIG. 1 has a structure in which the gate conductor layers 5 and 7 are provided on both sides of the semiconductor base body 1, it is also possible to cover the periphery of the semiconductor base body 1 with the gate conductor layers 5 and 7 as shown in FIG. .
  • the gate capacitance per unit area is It is sufficient that the capacitance per unit area of the MOS gate structure formed by 1 is smaller than the capacitance per unit area.
  • the cross section of the semiconductor matrix 1 is rectangular in the vertical direction. It does not matter as long as the capacitance per unit area of the structure is smaller than that of the gate conductor layer 5.
  • the MOS transistor region having the gate conductor layer 5 is referred to as WL-FET
  • the MOS transistor region having the gate conductor layer 7 is referred to as PL-FET.
  • the majority carriers in the n+ layer 2 and the n+ layer 3 are electrons.
  • n+ poly polySi containing a high concentration of is used
  • p-type semiconductor is used for the p layer 1.
  • 0V is input to the n+ layer 2 connected to the source line SL
  • 2.5V is inputted to the n+ layer 3 connected to the bit line BL
  • the gate conductor layer 7 connected to the plate line PL is inputted.
  • the voltage is 4V, and 1.5V, for example, is input to the gate conductor layer 5 connected to the word line WL.
  • FIG. 3(b) shows the hole group 17 in the p-layer 1 when all biases become 0V immediately after writing.
  • the generated hole group 17 is the majority carrier in the p-layer 1, and is temporarily accumulated in the p-layer 1 surrounded by the depletion layer 16, and in a non-equilibrium state, it is substantially used in the WL-FET or PL-FET.
  • the p-layer 1, which is the substrate, is charged to a positive bias.
  • the threshold voltage of the WL-FET with the gate conductor layer 5 and the threshold voltage of the PL-FET with the gate conductor layer 7 are the same as those of the positive substrate due to the holes temporarily accumulated in the p-layer 1.
  • the voltage conditions applied to the bit line BL, source line SL, word line WL, and plate line PL described above are an example for performing a write operation, and other operating voltage conditions that allow a write operation may be used.
  • the voltage conditions applied to the bit line BL, source line SL, word line WL, and plate line PL are 2.5V (BL)/0V (SL)/2V (PL)/4V (WL) and 2.5V (BL)/0V (SL)/2V (PL)/4V (WL).
  • Combinations such as 5V (BL)/0V (SL)/4V (PL)/1V (WL) and 0V (BL)/2.5V (SL)/V (PL)/0V (WL) are also possible.
  • a gate induced drain leak (GIDL) current may be passed to generate a hole group (for example, see Non-Patent Document 8).
  • the voltage applied to the bit line may be higher or lower than 0.6V, but as long as the voltage causes electron drift within the depletion layer 16, it can be adjusted.
  • the voltage conditions applied to the bit line BL, source line SL, word line WL, and plate line PL are 0.6V (BL) / 0V (SL) / 0V (PL) / 3V (WL), 0V (BL) / 0.6V (SL) / 3V (PL) / 0V (WL), 0.6V (BL) / 0V (SL) / 3V (PL) / 0V (WL) Combinations such as 1.5V (BL)/0V (SL)/0V (PL)/3V (WL) are also possible, and the voltage is applied to the above bit line BL, source line SL, word line WL, and plate line PL.
  • the voltage condition is an example for performing the erase operation, and may be another operating condition that allows the erase operation.
  • Figure 5(a) shows the configuration of a dynamic flash memory.
  • Two types are shown: WL-FET and PL-FET.
  • WL is the gate voltage for the WL-FET
  • PL is the gate voltage for the PL-FET.
  • the gate length of the WL-FET (hereinafter referred to as Lpoly) was set to 50 nm
  • the Lpoly of the PL-FET was set to 100 nm
  • the concentration of the p layer was made uniform at 6x10 17 cm -3 .
  • the gate length is defined as the length of the gate conductor layer in the XX' direction in FIGS. 1 and 2.
  • a silicon oxide film with a thickness of 5 nm (hereinafter referred to as TOX) is used for the gate oxide film of WL-FET, and the same material is used for the gate oxide film of PL-FET, and the film thickness is 5 nm, 10 nm, and 15 nm.
  • TOX silicon oxide film with a thickness of 5 nm
  • Vth the thresholds for writing and erasing data
  • the thickness of the gate insulating layer of the PL-FET is made thicker than that of the WL-FET to reduce the gate electrode capacitance per unit area, the dependence of the threshold value of the MOS transistor on the majority carrier concentration of the semiconductor substrate decreases. It can be seen that the fluctuation of the threshold value becomes more sensitive depending on the amount of surplus holes due to writing and erasing.
  • FIG. 6(c) shows the voltage relationship in the writing state.
  • the memory read conditions are exactly the same as in FIG. 6(b).
  • the gate voltages of both the WL-FET and the PL-FET become equal to or higher than the threshold, both MOS transistors are turned on, current flows from BL to SL, and the memory information is recognized as "1".
  • the voltage conditions applied to the bit line BL, source line SL, word line WL, and plate line PL described above are an example for performing the data read operation, and other operating voltage conditions that allow the read operation may be applied. good.
  • data can be similarly read by applying 1V to the bit line BL, 0V to the source line SL, 3V to the word line WL, and 1V to the plate line PL.
  • the voltage applied to the plate line PL must be between the threshold values of the PL-FET in the data erase and write states.
  • the gate length of the WL-FET was 50 nm and the gate length of the PL-FET was 100 nm, but the gate length of the PL-FET is as long as there is a sufficient margin of ⁇ Vth during writing and erasing. It may be shorter, but it is necessary that the threshold of the PL-FET is always higher than the threshold of the WL-FET.
  • the dynamic flash memory according to the first embodiment of the present invention includes a p-layer 1 which is a semiconductor matrix, a first impurity layer 2, a second impurity layer 3, a first gate insulating layer 4, and a second gate insulating layer. It is composed of a layer 6 , a first gate conductor layer 5 , and a second gate conductor layer 7 .
  • the capacitance per unit area with the second gate conductor layer as the gate electrode is The capacitance per unit area of the MOS gate structure formed by the first gate conductor layer, the first gate insulating layer, and the p-layer 1 is set to be smaller than the capacitance per unit area.
  • the dependence of the threshold value of the PL-FET, which is a MOS transistor that operates with the second gate conductor layer as the gate electrode, on carriers of the substrate can be increased, and the PL-FET can be used for data writing and erasing.
  • the threshold voltage difference can be increased, and the operating voltage margin of the memory can be expanded.
  • the dynamic flash memory according to the first embodiment of the present invention places emphasis on on/off for PL-FET, and cell current for WL-FET, and changes the majority carrier concentration of the semiconductor base of PL-FET and WL-FET. Since dependence can be set independently, the margin of memory operating voltage can be expanded.
  • the PL-FET which is highly dependent on the majority carrier concentration of the semiconductor matrix, is located on the drain side of the WL-FET, so that the current flowing through the threshold of the WL-FET is It is possible to perform stable operation without any change. If the positional relationship is reversed, the threshold value of the WL-FET will depend on the resistance of the MOS transistor channel region of the PL-FET, and the source voltage of the WL-FET will float, resulting in a decrease in the effective gate voltage and a decrease in the substrate bias effect. For reasons such as an increase in the threshold value, the threshold value becomes unstable and stable memory operation cannot be achieved.
  • the threshold value of the MOS transistor region of the WL-FET can be set lower than the threshold value of the switching MOS transistor region of a normal memory. ⁇ A large amount of current can be taken during writing, leading to high-speed operation of the memory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Databases & Information Systems (AREA)
  • Non-Volatile Memory (AREA)

Abstract

半導体母体であるp層1があり、片側に伸延したn+層2があり、その反対側にp層1に接して、第2の不純物層n+層3があり、p層1とn+層2の一部を第1のゲート絶縁層4で被膜し、さらにそれに接した第1のゲート導体層5があり、p層1とn+層3の一部を第2のゲート絶縁層6で被膜しゲート電極5と電気的に分離された第2のゲート導体層7があり、n+層2、n+層3、ゲート導体層5,7のそれぞれに電圧を印加し、メモリ動作をさせる。その際にゲート導体層7、ゲート絶縁層6、p層1で形成されるMOS構造の単位面積あたりのゲート容量がゲート導体層5、ゲート絶縁層4,p層1で形成されるMOS構造のそれよりも小さいことを特徴とする。

Description

半導体メモリ装置
 本発明は、半導体メモリ装置に関する。
 近年、LSI(Large Scale Integration) 技術開発において、メモリ素子の高集積化、高性能化、低消費電力化、高機能化が求められている。
  通常のプレナー型MOSトランジスタでは、チャネルが半導体基板の上表面に沿う水平方向に延在する。これに対して、SGTのチャネルは、半導体基板の上表面に対して垂直な方向に延在する(例えば、非特許文献1を参照)。このため、SGTはプレナー型MOSトランジスタと比べ、半導体装置の高密度化が可能である。このSGTを選択トランジスタとして用いて、キャパシタを接続したDRAM(Dynamic Random Access Memory、例えば、非特許文献2を参照)、抵抗変化素子を接続したPCM(Phase Change Memory、例えば、非特許文献3を参照)、RRAM(Resistive Random Access Memory、例えば、非特許文献4を参照)、電流により磁気スピンの向きを変化させて抵抗を変化させるMRAM(Magneto-resistive Random Access Memory、例えば、非特許文献5を参照)などの高集積化を行うことができる。また、キャパシタを有しない、1個のMOSトランジスタで構成された、DRAMメモリセル(例えば非特許文献6、9を参照)、キャリアをためる溝部とゲート電極を二つ有したDRAMメモリセル(例えば非特許文献8を参照)などがある。しかし、キャパシタを持たないDRAMは、フローティングボディのワード線からのゲート電極のカップリングに大きく左右され電圧マージンが十分とれない問題点があった。さらに基板が完全空乏化するとその弊害は大きくなる。また、SOI(Silicon on Insulator)層に、2つのMOSトランジスタを用いて1つのメモリセルを形成したTwin-Transistorメモリ素子がある(例えば、特許文献1,2を参照)。これらの素子では、2つのMOSトランジスタのフローティングボディ チャネルを分ける、ソース、またはドレインとなるn+層が絶縁層に接して形成されている。このn+層が絶縁層に接してあることにより、2つのMOSトランジスタのフローティングボディ チャネルは、電気的に分離される。信号電荷である正孔群は、一方のトランジスタのフローティングボディ チャネルに蓄積される。正孔が蓄積されているフローティングボディ チャネルの電圧は、隣接したMOSトランジスタのゲート電極へのパルス電圧印加により、大きく変化する。これにより、書込みの際の“1”と“0”との動作マージンを十分に大きく出来ない(例えば、非特許文献10)。本願は、抵抗変化素子やキャパシタを有しない、MOSトランジスタのみで構成可能な、半導体素子を用いたメモリ装置に関する。
US2008/0137394 A1 US2003/0111681 A1
Hiroshi Takato, Kazumasa Sunouchi, Naoko Okabe, Akihiro Nitayama, Katsuhiko Hieda, Fumio Horiguchi, and Fujio Masuoka: IEEE Transaction on Electron Devices, Vol.38, No.3, pp.573-578 (1991) H. Chung, H. Kim, H. Kim, K. Kim, S. Kim, K. Dong, J. Kim, Y.C. Oh, Y. Hwang, H. Hong, G. Jin, and C. Chung: "4F2 DRAM Cell with Vertical Pillar Transistor(VPT)," 2011 Proceeding of the European Solid-State Device Research Conference, (2011) H. S. Philip Wong, S. Raoux, S. Kim, Jiale Liang, J. R. Reifenberg, B. Rajendran, M. Asheghi and K. E. Goodson: "Phase Change Memory," Proceeding of IEEE, Vol.98, No 12, December, pp.2201-2227 (2010) T. Tsunoda, K .Kinoshita, H. Noshiro, Y. Yamazaki, T. Iizuka, Y. Ito, A. Takahashi, A. Okano, Y. Sato, T. Fukano, M. Aoki, and Y. Sugiyama : "Low Power and high Speed Switching of Ti-doped NiO ReRAM under the Unipolar Voltage Source of less than 3V," IEDM (2007) W. Kang, L. Zhang, J. Klein, Y. Zhang, D. Ravelosona, and W. Zhao: "Reconfigurable Codesign of STT-MRAM Under Process Variations in Deeply Scaled Technology," IEEE Transaction on Electron Devices, pp.1-9 (2015) M. G. Ertosum, K. Lim, C. Park, J. Oh, P. Kirsch, and K. C. Saraswat : "Novel Capacitorless Single-Transistor Charge-Trap DRAM (1T CT DRAM) Utilizing Electron," IEEE Electron Device Letter, Vol. 31, No.5, pp.405-407 (2010) E. Yoshida, T, Tanaka, "A Capacitorless 1T-DARM Technology Using Gate-Induced Drain-Leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory", IEEE Trans, on Electron Devices vol.53, pp.692-697 (2006) Md. Hasan Raza Ansari, Nupur Navlakha, Jae Yoon Lee, Seongjae Cho, "Double-Gate Junctionless 1T DRAM With Physical Barriers for Retention Improvement", IEEE Trans, on Electron Devices vol.67, pp.1471-1479 (2020) Takashi Ohasawa and Takeshi Hamamoto, "Floating Body Cell -a Novel Body Capacitorless DRAM Cell", Pan Stanford Publishing (2011) F. Morishita, H. Noda, I. Hayashi, T. Gyohten, M. Oksmoto, T. Ipposhi, S. Maegawa, K. Dosaka, and K. Arimoto: " Capacitorless Twin-Transistor Random Access Memory (TTRAM) on SOI,"IEICE Trans. Electron., Vol. E90-c., No.4 pp.765-771 (2007)
 本願は、キャパシタを無くした、1個のトランジス型のDRAMで、ワード線とボディとのカップリング容量によるノイズや、メモリの不安定性による誤読み出しや記憶データの誤った書き換えの問題を解決する高密度、且つ高速なMOS回路を実現する半導体メモリ装置を提供する。
 上記の課題を解決するために、本発明に係る半導体素子を用いたメモリ装置は、
 基板に対して、水平方向に伸延する、または垂直方向に立つ半導体母体と、
 前記半導体母体の一端に繋がる第1の不純物層と、
 前記半導体母体の前記第1の不純物層と反対側の一端に繋がる第2の不純物層と、
 前記半導体母体と前記第1の不純物層の一部を覆う第1のゲート絶縁層と、
 前記第1のゲート絶縁層を覆う、第1のゲート導体層と、
 前記半導体母体と前記第2の不純物層の一部を覆う、第2のゲート絶縁層と、
 前記第1のゲート導体層に接することなく、前記第2のゲート絶縁層を覆う第2のゲート導体層と、を有し、
 前記第2のゲート導体層と、前記第2のゲート絶縁層と、前記半導体母体で形成されるMOSゲート構造の容量を前記第2のゲート導体層と第2のゲート絶縁層の接触面積で割った値が、前記第1のゲート導体層と、前記第1のゲート絶縁層と、前記半導体母体で形成されるMOSゲート構造の容量を前記第1のゲート導体層と第1のゲート絶縁層の接触面積で割った値と異なる、
 ことを特徴とする(第1発明)。
 上記の第1発明において、前記第1の不純物層と、前記第2の不純物層と、前記第1のゲート導体層と、前記第2のゲート導体層に印加する電圧を制御して、前記第1の不純物層と前記第2の不純物層の間に流す電流でインパクトイオン化現象、またはゲート誘起ドレインリーク電流により電子群と正孔群を前記半導体母体に発生させる動作と、発生させた前記電子群と前記正孔群の内、前記半導体母体における多数キャリアである前記電子群又は前記正孔群のいずれかの一部または全てを、前記半導体母体に残存させる動作を行ってメモリ書き込み動作を実行し、前記第1の不純物層と、前記第2の不純物層と、前記第1のゲート導体層と、前記第2のゲート導体層に印加する電圧を制御して、前記第1の不純物層と、前記第2の不純物層の少なくとも一か所から、残存している前記第1の半導体層における多数キャリアである前記電子群又は前記正孔群のいずれかを抜き取ってメモリ消去動作を実行する、
 ことを特徴とする(第2発明)。
 上記の第2発明において、前記第1の不純物層には、ソース線が接続され、前記第2の不純物層には、ビット線が接続され、前記第1のゲート導体層にはワード線が接続され、前記第2のゲート導体層にはプレート線が接続され、ソース線、ビット線、プレート線、ワード線にそれぞれ電圧を与えて、メモリの書き込み、及び/又は、消去を行うことを特徴とする(第3発明)。
 上記の第1発明において、前記第2のゲート導体層と前記第2のゲート絶縁層と前記半導体母体で形成されるMOSゲート構造の容量を前記第2のゲート導体層と前記第2のゲート絶縁層の接触面積で割った値が前記第1のゲート導体層と前記第1のゲート絶縁層と前記半導体母体で形成されるMOSゲート構造の容量を前記第1のゲート導体層と前記第1のゲート絶縁層の接触面積で割った値よりも小さいことを特徴とする(第4発明)。
 上記の第1発明において、前記第2のゲート絶縁層の膜厚が前記第1のゲート絶縁層の膜厚よりも厚いことを特徴とする(第5発明)。
 上記の第1発明において、前記第2のゲート絶縁層を有するMOSトランジスタ領域のしきい値の前記半導体母体の多数キャリア濃度依存性が、前記第1よりのゲート絶縁層を有するMOSトランジスタ領域のしきい値の前記半導体母体の多数キャリア濃度依存性よりも大きいことを特徴とする(第6発明)。
 上記の第1発明において、情報を読み出す際に、前記第2のゲート導体層につながるプレート線に印加する電圧が、書き込み時のしきい値と消去時のしきい値の間にあることを特徴とする(第7発明)。
 上記の第1発明において、書き込み状態と消去状態で、前記第2のゲート絶縁層を有するMOSトランジスタ領域のしきい値の変動が、前記第1のゲート絶縁層を有するMOSトランジスタ領域のそれよりも大きいことを特徴とする(第8発明)。
 上記の第1発明において、前記ビット線に近い前記第2のゲート絶縁層を有するMOSトランジスタのしきい値が、常に前記ソース線に近い前記第1のゲート絶縁層を有するMOSトランジスタのしきい値よりも高いことを特徴とする(第9発明)。
第1実施形態に係る半導体素子を用いたメモリ装置の断面構造を示す図である。 第1実施形態に係る半導体素子を用いたメモリ装置の断面構造の追加例を示す図である。 第1実施形態に係る半導体素子を用いたメモリ装置の書き込み動作直後の正孔キャリの蓄積、消去動作、セル電流を説明するための図である。 第1実施形態に係る半導体素子を用いたメモリ装置のセル配置を説明するための図である。 第1実施形態に係る半導体素子を用いたメモリ装置を構成しているMOSトランジスタのしきい値の変化を説明するための表である。 第1実施形態に係る半導体素子を用いたメモリ装置の構成と、メモリの消去、書き込み状態の電圧関係を示すための図である。
 以下、本発明に係る、半導体素子を用いたメモリ装置の構造、駆動方式、蓄積キャリアの挙動、半導体装置の中のセル配置、配線構造について、図面を参照しながら説明する。
(第1実施形態)
 図1~図4を用いて、本発明の第1実施形態に係る半導体素子を用いたメモリセルの構造と動作メカニズムを説明する。図1を用いて、本実施形態による半導体素子を用いたメモリのセル構造を説明する。図2を用いて、本実施形態による半導体素子を用いたメモリのセル構造の追加例を説明する。図3を用いて、半導体素子を用いたメモリの書き込みメカニズムとキャリアの挙動を、図4を用いて、データ消去メカニズムを、説明する。また、表1を用いて、本実施形態による半導体装置のメモリセルの中のMOSトランジスタ領域のしきい値の変化を説明する。
 図1に、本発明の第1実施形態に係る半導体素子を用いたメモリの構造を示す。図1において(a)は平面図、(b)は(a)X-X’線に沿った断面図、(c)は(a)Y-Y’線に沿った断面図、を示す。
 基板20(特許請求の範囲の「基板」の一例である)の上方に、基板20に対して水平方向に、アクセプタ不純物を含むp型又はi型(真性型)の導電型を有する中心軸に垂直な断面が矩形のシリコン半導体母体であるp層1(特許請求の範囲の「半導体母体」の一例である)がある。p層1の水平方向の一方の側にn+層2(以下、ドナー不純物を高濃度で含む半導体領域を「n+層」と称する。)(特許請求の範囲の「第1の不純物層」の一例である)がある。n+層2とは反対の側にn+層3(特許請求の範囲の「第2の不純物層」の一例である)がある。p層1の表面の一部でかつ、n+層2に接触し、もしくは近傍にゲート絶縁層4(特許請求の範囲の「第1のゲート絶縁層」の一例である)がある。ゲート絶縁層4の一部を囲んで、第1のゲート導体層5(特許請求の範囲の「第1のゲート導体層」の一例である)がn+層2に近接してある。また、p層1の表面の一部でかつ、n+層3に接触し、もしくは近傍に形成されたゲート絶縁層6(特許請求の範囲の「第2のゲート絶縁層」の一例である)がある。また、ゲート導体層5に接することなく、ゲート導体層7(特許請求の範囲の「第2のゲート導体層」の一例である)が、ゲート絶縁層6に接し、n+層3に近接してある。p層1、n+層2、n+層3、ゲート絶縁層4、ゲート導体層5、ゲート絶縁層6、ゲート導体層7により、ひとつのダイナミック フラッシュ メモリセルが形成される。なお、ゲート導体層7と、ゲート絶縁層6と、p層1で形成されるMOSゲート構造において、ゲート導体層7をゲート電極とするMOSゲート容量をゲート導体層7とゲート絶縁層6の接触する面積で割った値(これ以降、MOSゲート容量をその構成要素であるゲート電極とゲート絶縁層の接触面積で割った値を“単位面積当たりの容量”と称する)が、ゲート導体層5と、ゲート絶縁層4と、p層1で形成されるMOSゲート構造の、単位面積当たりの容量よりも小さい。
 さらに、n+層2は配線導電体であるソース線SL(特許請求の範囲の「ソース線」の一例である)に、ゲート導体層5は配線導電体であるワード線WL(特許請求の範囲の「ワード線」の一例である)に接続され、ゲート導体層7は配線導電体であるプレート線PL(特許請求の範囲の「プレート線」の一例である)に接続されている。また、n+層3は配線導電体であるビット線BL(特許請求の範囲の「ビット線」の一例である)に接続されている。ソース線、ビット線、プレート線、ワード線の電位をそれぞれに操作することで、メモリの動作をさせる。本実施形態のメモリ装置では、上述の複数のダイナミック フラッシュ メモリセルが複数2次元、もしくは3次元状に配置されている。このメモリ装置を以下、ダイナミック フラッシュ メモリ と呼ぶ。
 なお、ゲート導体層7,ゲート絶縁層6とp層1のMOSゲート構造の単位面積当たりの容量をゲート導体層5,ゲート絶縁層4とp層1で形成されるゲート構造のそれよりも小さくする目的は、ゲート導体層7を有するMOSトランジスタ領域のしきい値の半導体母体の多数キャリア濃度依存性を、ゲート導体層5を有するMOSトランジスタ領域のそれより高くするためである。MOS構造の単位面積当たりの容量をCox、反転層の単位面積あたりの空間電荷をQnとすると、そのしきい値を決定する式にQn/Coxの項が含まれ、さらに、Qnは基板濃度の平方根依存性を持つ。つまり、Coxが小さければ、しきい値の半導体母体の多数キャリア濃度依存性が大きくなる。さらに、ゲート絶縁層に例えば、膜厚がtoxのシリコン酸化膜を用いると、Cox=εSiO2/tox(εSiO2はシリコン酸化膜の誘電率)で示される。したがって、ゲート導体層7を持つMOSゲート構造の単位面積当たりの容量を、ゲート導体層5を持つMOSゲート構造のそれよりも小さくするためには、同じ材料であれば、ゲート絶縁層6の膜厚をゲート絶縁層4の膜厚よりも厚くすればよい。図1にはこの例を図示している。また、同じ膜厚でもゲート絶縁層4より誘電率の低い材料をゲート絶縁層6に用いることによっても、同様のことが可能である。さらに、膜厚と誘電率を組み合わせることで、自由に単位面積あたりの容量を調整することができる。
 また、ゲート絶縁層4、6には、例えばSiO2膜、SiON膜、HfSiON膜やSiO2/SiNの積層膜など、通常のMOSプロセスにおいて使用されるいかなる絶縁膜も使用可能である。
 なお、図1ではp層1はp型の半導体としたが、不純物の濃度にプロファイルが存在してもよい。また、n+層2、n+層3の不純物の濃度にプロファイルが存在してもよい。
 また、n+層2とn+層3を正孔が多数キャリアであるp+層(以下、アクセプタ不純物を高濃度で含む半導体領域を「p+層」と称する。)で形成したときは、p層1をn型半導体、とすれば書き込みのキャリアを電子とすることでダイナック フラッシュ メモリの動作がなされる。
 また、ゲート導体層5はゲート絶縁層4を介して、またゲート導体層7はゲート絶縁層6を介してメモリセルの一部の電位を変化させられるのであれば、例えばW、Pd、Ru、Al、TiN,TaN、WNのような金属、金属の窒化物、もしくはその合金(シリサイドを含む)、例えばTiN/W/TaNのような積層構造であってもよいし、高濃度にドープされた半導体で形成されてもよい。
  また、図1ではp層1は基板20に対して、水平方向である例を示したが、p層1が基板20に対して垂直方向に伸延する構造でもよい。
 なお、図1では、それぞれのメモリセルにおいて、ゲート導体層4,6は、それぞれが一体のものとして、示されているが、半導体母体に対して、水平、または垂直方向において、分割されていても構わない。
 また、図1では半導体母体1の両側にゲート導体層5、7がある例を示したが、どちらか片方にゲート導体層がある構造でも構わない。
 図2を用いて、本発明の第1実施形態に係るダイナミック フラッシュ メモリ装置の追加例を示す。図2に、本発明の第1実施形態に係る半導体素子を用いたメモリの構造を示す。図2の(a)は平面図、(b)は(a)のX-X’線に沿った断面図、(c)は(a)のY-Y’線に沿った断面図、を示す。図1においてメモリセルは、半導体母体1の両側にゲート導体層5,7がある構造を示したが、図2のように半導体母体1の周囲をゲート導体層5、7で覆う形態でも構わない。この場合も、ゲート導体層7と、ゲート絶縁層6と、p層1で形成されるMOSゲート構造において、単位面積当たりのゲート容量が、ゲート導体層5と、ゲート絶縁層4と、p層1で形成されるMOSゲート構造の、単位面積当たりの容量よりも小さければよい。
 また、図1と図2では垂直方向には半導体母体1の断面が矩形であることを用いて説明したが、台形状でも多角形でも円形の形でも、ゲート導体層7が電極であるMOSゲート構造の単位面積当たりの容量がゲート導体層5のそれよりも小さければ構わない。
 図3を用いて、本発明の第1実施形態に係るダイナミック フラッシュ メモリの書き込み動作時のキャリア挙動、蓄積、セル電流を説明する。なお、ゲート導体層5を持つMOSトランジスタ領域をWL-FET,ゲート導体層7を持つMOSトランジスタ領域をPL-FETと示した。図3(a)に示すように、まずn+層2とn+層3の多数キャリアが電子であり、たとえばWLにつながるゲート導体層5とPLにつながるゲート導体層7にn+ poly(以下、ドナー不純物を高濃度で含むpoly Siを「n+ poly」と称する。)を使用し、p層1にp型半導体を使用した場合を説明する。ソース線SLの接続されたn+層2に、例えば0Vを入力し、ビット線BLの接続されたn+層3に、例えば2.5Vを入力し、プレート線PLの接続されたゲート導体層7を例えば4Vとし、ワード線WLの接続されたゲート導体層5に、例えば、1.5Vを入力する。
 この電圧印加状態で、図1の例では上下のゲート導体層7と接触するゲート絶縁層6の内側全面に、図2の例ではゲート導体層7と接触するゲート絶縁層6の内周全面に反転層14bが全面に形成される。また、図1の例では上下のゲート絶縁層4の内側の一部に反転層14aが形成され、図2の例ではゲート絶縁層4の内周の一部に反転層14aが形成される。図3(a)に示すように反転層14aが消滅するピンチオフ点15が存在し、ここで電界が最大となる。そして、n+層2からn+層3の方向に向かって電子が流れる。この結果、ピンチオフ点15近傍領域でインパクトイオン化現象が生じる。このインパクトイオン化現象により、ソース線SLの接続されたn+層2からビット線BLの接続されたn+層3に向かって加速された電子がSi格子に衝突し、その運動エネルギーによって、電子・正孔対が生成される。生成された電子の一部は、ゲート導体層5に流れるが、大半はビット線BLに接続されたn+層3に流れる。
 図3(b)には、書き込み直後、すべてのバイアスが0Vになったときのp層1にある正孔群17を示す。生成された正孔群17は、p層1の多数キャリアであり、一時的に空乏層16に囲まれたp層1に蓄積され、非平衡状態では実質的にWL-FETやPL-FETの基板であるp層1を正バイアスに充電する。その結果、ゲート導体層5をもつWL-FETのしきい値電圧とゲート導体層7をもつPL-FETのしきい値電圧は、p層1に一時的に蓄積される正孔による正の基板バイアス効果によって、初期状態から低くなる。PLにこの低くなったしきい値電圧より高い電圧を印加するとPL-FETが導通し、WL-FETがMOSトランジスタとして動作する。これにより、図3(c)に示すように、ワード線WLの接続されたゲート導体層5をもつWL-FETはWLの電圧依存性を持つ電流がn+層3からn+層2に流れることになる。この書込み状態を論理記憶データ“1”に割り当てる。
 なお、上記のビット線BL、ソース線SL、ワード線WL、プレート線PLに印加する電圧条件は、書き込み動作を行うための一例であり、書き込み動作ができる他の動作電圧条件であってもよい。例えば、上記のビット線BL、ソース線SL、ワード線WL、プレート線PLに印加する電圧条件は、2.5V(BL)/0V(SL)/2V(PL)/4V(WL)や2.5V(BL)/0V(SL)/4V(PL)/1V(WL)や0V(BL)/2.5V(SL)/V(PL)/0V(WL)、などの組み合わせでも可能である。ただし、ビット線BLに2.5V、ソース線SLに0V、ワード線WLに4V、プレート線PLに2Vをかけた場合にはピンチオフ点15の位置がゲート導体層7のほうにシフトするが、同様の現象を起こすことができる。また、ビット線BLに2.5V、ソース線SLに0V、ワード線WLに1V、プレート線PLに4Vをかけた場合にはピンチオフ点15の位置がゲート導体層5のほうにシフトするが、やはり同様の現象を起こすことができる。ただし、書き込み状態の前のPL-FETのゲート導体層7にはそのしきい値電圧よりも高い電圧を印加することは必須である。
 なお、上記のインパクトイオン化現象を起こさせる代わりに、ゲート誘起ドレインリーク(GIDL)電流を流して正孔群を生成してもよい(例えば非特許文献8を参照)。
 次に、図4を用いて、図1及び図2に示した第1実施形態のダイナミック フラッシュ メモリの消去動作メカニズムを説明する。図3(b)に示した状態から、ビット線BLの電圧を0.6V,ソース線SLに0V、プレート線PLに3V、ワード線WLに0Vに印加する。その結果、p層1に蓄積されている正孔17の濃度がn+層2の正孔濃度よりも十分高いために、その濃度勾配によって、拡散によってn+層2に正孔が流れ込む。逆にn+層2の電子濃度がp層1の電子濃度よりも高いために、濃度勾配により、拡散によって電子18がp層1に流れ込む。p層1に流入した電子はp層1の中で正孔と再結合し消滅する。しかし、注入された電子18がすべては消滅せず、消滅しなかった電子18はビット線BLとソース線SLの電位勾配によってドリフトによって空乏層16を通り、n+層3に流れ込む。電子はソース線SLから次々と供給されるので、非常に短時間に過剰の正孔は電子と再結合し、初期の状態に戻る。これにより、図4(b)に示すように、このワード線WLが接続されたゲート導体層5をもつWL-FETやゲート導体層7をもつPL-FETは元々のしきい値に戻る。この記憶素子の消去状態は論理記憶データ“0”となる。
 なお、ビット線にかける電圧は0.6Vよりも高くても低くても、電子のドリフトが空乏層16内で起こる電圧であれば、調整可能の範囲である。またほかのデータの消去方法として、上記のビット線BL、ソース線SL、ワード線WL、プレート線PLに印加する電圧条件は、0.6V(BL)/0V(SL)/0V(PL)/3V(WL)や0V(BL)/0.6V(SL)/3V(PL)/0V(WL)やー0.6V(BL)/0V(SL)/3V(PL)/0V(WL)や1.5V(BL)/0V(SL)/0V(PL)/3V(WL)、などの組み合わせでも可能であり、上記のビット線BL、ソース線SL、ワード線WL、プレート線PLに印加する電圧条件は、消去動作を行うための一例であり、消去動作ができる他の動作条件であってもよい。
 図5を用いて、書き込みと消去において、ダイナミック フラッシュ メモリを構成するMOSトランジスタ領域のしきい値の変化がどのような単位面積当たりのゲート容量依存性を持つかを説明する。
 図5(a)にはダイナミック フラッシュ メモリを構成する。WL-FETとPL-FETの二種類を示した。WLはWL-FETにとってのゲート電圧であり、PLはPL-FETにとってのゲート電圧である。ここでWL-FETのゲート長(これ以降Lpolyと表記)を50nm、PL-FETのLpolyを100nmと設定し、p層の濃度は6x1017cm-3で一様とした。なお、ゲート長とは図1及び図2のX-X’方向のゲート導体層の長さと定義する。またWL-FETのゲート酸化膜に5nmの厚さ(これ以降toxと表記)のシリコン酸化膜を使用し、PL-FETのゲート酸化膜も同様の材料を用い、膜厚を5nm,10nm,15nmの3種類のMOSトランジスタを設定した。
 図5(b)にはそれぞれのMOSトランジスタの条件とともに、VD=0.05Vの時のデータ書き込み時と消去時のしきい値(これ以降Vthと表記)を示し、その二つの状態でしきい値の変化(これ以降ΔVthと表記)を示した。なお、しきい値の計算にはショートチャンネル効果も考慮された。tox=5nmの時にはWL-FETもPL-FETのΔVthは0.2Vであるのに対して、tox=10nm使用時のΔVthは0.41V,tox=15nm使用時のΔVthは0.61Vとその値が広がることがわかる。つまり、PL-FETのゲート絶縁層の厚さをWL-FETのそれよりも厚くして単位面積当たりのゲート電極容量を小さくすると、MOSトランジスタのしきい値の半導体基板の多数キャリア濃度依存性が高くなり、書き込みや消去による余剰正孔の量によって、しきい値の変動がより敏感になることがわかる。
 図6を用いて、図5で説明したΔVthの拡大が、ダイナミック フラッシュ メモリの動作のマージンを広げることに役立つことを説明する。図6(a)は図5のPL-FETとWL-FETを接続したダイナミック フラッシュ メモリの構成を示した。またここではWL-FETにtox=5nm、PL-FETのtox=15nmのゲート絶縁層を用いるように設定した。
 まず、ダイナミック フラッシュ メモリの読み出しのために、BLに0.5V,PLに1.2V、WLに2.0V,SLに0Vを印加する。消去状態の電圧関係を図6(b)に示した。この図から明らかなように、WL-FETはオンの状態であるが、PL-FETはPLの電圧が、しきい値以下であるために、オフの状態であり、WLの電圧をいくら上げても、BLからSLに電流が流れない。したがって、読み出し動作を行っても電流が流れないために、メモリ情報が“0”であることが認識される。
 一方で、図6(c)に書き込み状態での電圧関係を示した。メモリの読み出し条件は図6(b)と全く同じである。この場合にはWL-FETもPL-FETもゲート電圧はしきい値以上になり、どちらのMOSトランジスタもオン状態となり、BLからSLに電流が流れ、メモリ情報が“1”と認識される。
 なお、上記のビット線BL、ソース線SL、ワード線WL、プレート線PLに印加する電圧条件は、データ読み出し動作を行うための一例であり、読み出し動作ができる他の動作電圧条件であってもよい。例えば、ビット線BLに1V、ソース線SLに0V、ワード線WLに3V、プレート線PLに1Vをかけても同様にデータを読み出すことができる。ただし、プレート線PLにかける電圧はデータ消去と書き込み状態でのPL-FETのしきい値の間に存在する必要がある。
 また、上記の例ではWL-FETのゲート長を50nm、PL-FETのゲート長を100nmとしたが、PL-FETのゲート長は書き込み時と消去時のΔVthのマージンが十分とれるのであれば、より短くしても構わないが、常にPL-FETのしきい値がWL-FETのしきい値より高いことが必要である。
 本実施形態は、下記の特徴を有する。
(特徴1)
 本発明の第1実施形態に係るダイナミック フラッシュ メモリは、半導体母体であるp層1と、第1の不純物層2と第2の不純物層3と第1のゲート絶縁層4と第2のゲート絶縁層6と第1のゲート導体層5と第2のゲート導体層7で構成される。また、第2のゲート導体層と、第2のゲート絶縁層と、p層1で形成される、MOSゲート構造において、第2のゲート導体層をゲート電極とする単位面積当たりの容量を、第1のゲート導体層と、第1のゲート絶縁層と、p層1で形成されるMOSゲート構造の単位面積当たりの容量よりも小さくする。これにより、第2のゲート導体層をゲート電極として作動するMOSトランジスタであるPL-FETのしきい値の基板のキャリア依存性を大きくすることでき、PL-FETのデータ書き込み時と消去時のしきい値電圧差を大きくすることができ、メモリの動作電圧マージンを広げることができる。
(特徴2)
 本発明の第1実施形態に係るダイナミック フラッシュ メモリは、PL-FETはオン/オフを重視し、WL-FETではセル電流を重視して、PL-FETとWL-FETの半導体母体の多数キャリア濃度依存性を独立に設定できるので、メモリ動作電圧のマージンを広げることができる。
(特徴3)
 本発明の第1実施形態に係るダイナミック フラッシュ メモリは、半導体母体の多数キャリア濃度依存性の高いPL-FETがWL-FETのドレイン側に位置することにより、WL-FETのしきい値が流れる電流によって変化することがなく、安定した動作を行うことができる。逆の位置関係になるとWL-FETのしきい値はPL-FETのMOSトランジスタチャネル領域の抵抗依存性を持ち、WL-FETのソース電圧が浮くことによる、実効ゲート電圧の低下、基板バイアス効果によるしきい値の上昇などの理由で、しきい値が不安定となり、安定したメモリ動作とならない。
(特徴4)
 本発明の第1実施形態に係るダイナミック フラッシュ メモリは、WL-FETのMOSトランジスタ領域のしきい値を通常のメモリのスイッチングMOSトランジスタ領域のしきい値に比較して、低く設定できるので、“1”書き込み時の電流を大きく取れ、メモリの高速動作につながる。
(特徴5)
 本発明の第1実施形態に係るダイナミック フラッシュ メモリでは、プレート線PLの電圧を0Vにしておけば、同じセルのビットライン線BLの電圧やワード線WLの電圧がどのように変化してもメモリの内容が影響されることはなく、ディスターブ不良に非常に強い構造となっている。
 また、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した各実施形態は、本発明の一実施例を説明するためのものであり、本発明の範囲を限定するものではない。上記実施例及び変形例は任意に組み合わせることができる。さらに、必要に応じて上記実施形態の構成要件の一部を除いても本発明の技術思想の範囲内となる。
 本発明に係る、半導体素子を用いれば従来よりも、密度が高く、かつ高速であり、かつ動作マージンの高い、半導体メモリ装置を提供することができる。
1 p層
2 第1の不純物層 n+層 (SLに接続)
3 第2の不純物層 n+層 (BLに接続)
4 第1のゲート絶縁膜 
5 第1のゲート導体層 (WLに接続)
6 第2のゲート絶縁膜 (PLに接続)
7 第2のゲート導体層

14a,14b 反転層
15 ピンチオフ点
16 空乏層
17 余剰正孔
18 注入された電子
20 基板

Claims (9)

  1.  基板に対して、水平方向に伸延する、または垂直方向に立つ半導体母体と、
     前記半導体母体の一端に繋がる第1の不純物層と、
     前記半導体母体の前記第1の不純物層と反対側の一端に繋がる第2の不純物層と、
     前記半導体母体と前記第1の不純物層の一部を覆う第1のゲート絶縁層と、
     前記第1のゲート絶縁層を覆う、第1のゲート導体層と、
     前記半導体母体と前記第2の不純物層の一部を覆う、第2のゲート絶縁層と、
     前記第1のゲート導体層に接することなく、前記第2のゲート絶縁層を覆う第2のゲート導体層と、を有し、
     前記第2のゲート導体層と、前記第2のゲート絶縁層と、前記半導体母体で形成されるMOSゲート構造の容量を前記第2のゲート導体層と第2のゲート絶縁層の接触面積で割った値が、前記第1のゲート導体層と、前記第1のゲート絶縁層と、前記半導体母体で形成されるMOSゲート構造の容量を前記第1のゲート導体層と第1のゲート絶縁層の接触面積で割った値と異なる、
     ことを特徴とする半導体素子を用いたメモリ装置。
  2.  前記第1の不純物層と、前記第2の不純物層と、前記第1のゲート導体層と、前記第2のゲート導体層に印加する電圧を制御して、前記第1の不純物層と前記第2の不純物層の間に流す電流でインパクトイオン化現象、またはゲート誘起ドレインリーク電流により電子群と正孔群を前記半導体母体に発生させる動作と、発生させた前記電子群と前記正孔群の内、前記半導体母体における多数キャリアである前記電子群又は前記正孔群のいずれかの一部または全てを、前記半導体母体に残存させる動作を行ってメモリ書き込み動作を実行し、前記第1の不純物層と、前記第2の不純物層と、前記第1のゲート導体層と、前記第2のゲート導体層に印加する電圧を制御して、前記第1の不純物層と、前記第2の不純物層の少なくとも一か所から、残存している前記第1の半導体層における多数キャリアである前記電子群又は前記正孔群のいずれかを抜き取ってメモリ消去動作を実行する、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置。
  3.  前記第1の不純物層には、ソース線が接続され、前記第2の不純物層には、ビット線が接続され、前記第1のゲート導体層にはワード線が接続され、前記第2のゲート導体層にはプレート線が接続され、ソース線、ビット線、プレート線、ワード線にそれぞれ電圧を与えて、メモリの書き込み、及び/又は、消去を行う、
     ことを特徴とする請求項2に記載の半導体素子を用いたメモリ装置。
  4.  前記第2のゲート導体層と前記第2のゲート絶縁層と前記半導体母体で形成されるMOSゲート構造の容量を前記第2のゲート導体層と前記第2のゲート絶縁層の接触面積で割った値が前記第1のゲート導体層と前記第1のゲート絶縁層と前記半導体母体で形成されるMOSゲート構造の容量を前記第1のゲート導体層と前記第1のゲート絶縁層の接触面積で割った値よりも小さい、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置。
  5.  前記第2のゲート絶縁層の膜厚が前記第1のゲート絶縁層の膜厚よりも厚い、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置。
  6.  前記第2のゲート絶縁層を有するMOSトランジスタ領域のしきい値の前記半導体母体の多数キャリア濃度依存性が、前記第1よりのゲート絶縁層を有するMOSトランジスタ領域のしきい値の前記半導体母体の多数キャリア濃度依存性よりも大きい、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置。
  7.  情報を読み出す際に、前記第2のゲート導体層につながるプレート線に印加する電圧が、書き込み時のしきい値と消去時のしきい値の間にあることを、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置。
  8.  書き込み状態と消去状態で、前記第2のゲート絶縁層を有するMOSトランジスタ領域のしきい値の変動が、前記第1のゲート絶縁層を有するMOSトランジスタ領域のそれよりも大きい、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置。
  9.  前記ビット線に近い前記第2のゲート絶縁層を有するMOSトランジスタのしきい値が、常に前記ソース線に近い前記第1のゲート絶縁層を有するMOSトランジスタのしきい値よりも高い
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置。
PCT/JP2022/013515 2022-03-23 2022-03-23 半導体メモリ装置 WO2023181172A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/013515 WO2023181172A1 (ja) 2022-03-23 2022-03-23 半導体メモリ装置
US18/187,764 US20230309287A1 (en) 2022-03-23 2023-03-22 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/013515 WO2023181172A1 (ja) 2022-03-23 2022-03-23 半導体メモリ装置

Publications (1)

Publication Number Publication Date
WO2023181172A1 true WO2023181172A1 (ja) 2023-09-28

Family

ID=88096889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013515 WO2023181172A1 (ja) 2022-03-23 2022-03-23 半導体メモリ装置

Country Status (2)

Country Link
US (1) US20230309287A1 (ja)
WO (1) WO2023181172A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003188279A (ja) * 2001-12-14 2003-07-04 Toshiba Corp 半導体メモリ装置およびその製造方法
JP2008147514A (ja) * 2006-12-12 2008-06-26 Renesas Technology Corp 半導体記憶装置
JP2009252264A (ja) * 2008-04-02 2009-10-29 Toshiba Corp 半導体記憶装置およびその駆動方法
US20200135863A1 (en) * 2015-04-29 2020-04-30 Zeno Semiconductor, Inc. MOSFET and Memory Cell Having Improved Drain Current Through Back Bias Application

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003188279A (ja) * 2001-12-14 2003-07-04 Toshiba Corp 半導体メモリ装置およびその製造方法
JP2008147514A (ja) * 2006-12-12 2008-06-26 Renesas Technology Corp 半導体記憶装置
JP2009252264A (ja) * 2008-04-02 2009-10-29 Toshiba Corp 半導体記憶装置およびその駆動方法
US20200135863A1 (en) * 2015-04-29 2020-04-30 Zeno Semiconductor, Inc. MOSFET and Memory Cell Having Improved Drain Current Through Back Bias Application

Also Published As

Publication number Publication date
US20230309287A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
TWI781028B (zh) 包含半導體元件之記憶裝置的製造方法
WO2023148799A1 (ja) 半導体素子を用いたメモリ装置
TWI793974B (zh) 使用柱狀半導體元件的記憶裝置
WO2023162039A1 (ja) 半導体メモリ装置
JP7497101B2 (ja) 半導体素子を用いたメモリ装置
WO2023032193A1 (ja) 半導体素子を用いたメモリ装置
WO2023037446A1 (ja) 半導体素子を用いたメモリ装置
WO2023181172A1 (ja) 半導体メモリ装置
WO2023195047A1 (ja) 半導体メモリ装置
TWI841332B (zh) 半導體記憶裝置
TWI823432B (zh) 使用半導體元件的記憶裝置的製造方法
TWI810929B (zh) 使用半導體元件的記憶裝置的製造方法
US20230320065A1 (en) Semiconductor memory device
WO2023238370A1 (ja) 半導体メモリ装置
WO2024042609A1 (ja) 半導体素子を用いたメモリ装置
WO2023175792A1 (ja) 半導体を用いたメモリ装置
TWI840162B (zh) 使用半導體的記憶裝置
JP7381145B2 (ja) メモリ素子を有する半導体装置
TWI838745B (zh) 使用半導體元件的記憶裝置
TWI806354B (zh) 半導體元件記憶裝置
WO2024127518A1 (ja) 半導体素子を用いたメモリ装置
TWI813279B (zh) 使用半導體元件的記憶裝置
TWI823513B (zh) 具有記憶元件之半導體裝置的製造方法
TWI793968B (zh) 半導體元件記憶裝置
WO2022180733A1 (ja) 柱状半導体素子を用いたメモリ装置の製造方法