WO2023102727A1 - 一种利用树脂提纯法生产超高纯异丙醇的方法 - Google Patents

一种利用树脂提纯法生产超高纯异丙醇的方法 Download PDF

Info

Publication number
WO2023102727A1
WO2023102727A1 PCT/CN2021/136063 CN2021136063W WO2023102727A1 WO 2023102727 A1 WO2023102727 A1 WO 2023102727A1 CN 2021136063 W CN2021136063 W CN 2021136063W WO 2023102727 A1 WO2023102727 A1 WO 2023102727A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
isopropanol
purity
mixed
column
Prior art date
Application number
PCT/CN2021/136063
Other languages
English (en)
French (fr)
Inventor
高小云
刘兵
Original Assignee
晶瑞电子材料股份有限公司
晶瑞湖北微电子材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶瑞电子材料股份有限公司, 晶瑞湖北微电子材料有限公司 filed Critical 晶瑞电子材料股份有限公司
Priority to PCT/CN2021/136063 priority Critical patent/WO2023102727A1/zh
Publication of WO2023102727A1 publication Critical patent/WO2023102727A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/10Monohydroxylic acyclic alcohols containing three carbon atoms

Definitions

  • the invention belongs to the technical field of isopropanol purification, and in particular relates to a method for producing ultra-high-purity isopropanol by using a resin purification method.
  • Ultra-clean and high-purity electronic chemicals are key integrated raw materials for VLSI manufacturing, and their purity and cleanliness have a very important impact on yield, electrical performance, and reliability.
  • the ultra-high-purity isopropanol has good volatility and miscibility with water, so that the salt solution, organic impurities, particle impurities, etc. remaining on the surface of the silicon wafer after each stage of the process of the single crystal silicon wafer are effectively eliminated. Mix with isopropanol and carry away with the flow of isopropanol.
  • the residual isopropanol volatilizes to ensure that the silicon wafer can quickly reach a clean and dry state, and to ensure that the silicon wafer will not have defects or bad spots due to the influence of surface metal salts in the next process, thereby improving the yield. It is widely used in the cleaning process of various stages of semiconductor ultra-clean single crystal silicon wafers.
  • the method for refining isopropyl ketone mainly also has some following problems at present: 1, the purity requirement of SEMI C12 standard that can't reach semi-conductor level especially; Distillation-rectification technology, this method has strict requirements on equipment and materials, and the purification process needs to consume a lot of steam and electric energy; 3. The production takes a long time, which is not conducive to cost control.
  • the purpose of the invention is to overcome the deficiencies in the prior art, to provide a kind of production method that can produce on a large scale and meet the ultrahigh-purity isopropanol of SEMI C12 standard.
  • the technical scheme adopted in the present invention is: a kind of method utilizing resin purification method to produce ultra-high-purity isopropyl alcohol, described method comprises the steps:
  • the industrial isopropanol is sequentially dehydrated by molecular sieve and reverse osmosis, and the primary isopropanol obtained after the treatment is buffered in the isopropanol raw material tank, and then the nitrogen gas with a purity of more than 99.999% is dried through the drying column and then passed into the isopropanol.
  • the isopropanol raw material in the isopropanol raw material tank is passed into the mixed resin exchange column with nitrogen as a carrier, and the isopropanol passed into the mixed resin exchange column is adjusted.
  • the pressure and flow velocity of the mixed resin exchange column are used to purify the isopropanol to obtain ultra-high-purity isopropanol; wherein, the mixed resin exchange column is filled with a mixed bed formed by mixing anion exchange resin and cation exchange resin Resin, the mixed bed resin is made by mixing anion exchange resin and cation exchange resin, and the mixed resin is treated with high-purity water, high-purity ethanol, high-purity sodium hydroxide, and high-purity hydrochloric acid in sequence, then washed with high-purity water, and finally exposed to ultraviolet light.
  • the anion-exchange resin is alkaline, the cation-exchange resin is acidic, and the purity of the high-purity water, the high-purity ethanol, the high-purity sodium hydroxide, and the high-purity hydrochloric acid is greater than 99.99999%.
  • the anion exchange resin is a combination of one or more selected from DuPont Amberlite IRA 96RF, DuPont Amberlite IRA402Cl, and Dusheng CXO-12.
  • the cation exchange resin is a combination of one or more selected from DuPont Amberlite IR1200Na, DuPont Amberjet 1600, and Lanxess Lewatit TP 207.
  • the feeding volume ratio of the cation exchange resin to the anion exchange resin is 5-20:1.
  • the mixed resin exchange column is cylindrical, and the ratio of column height to column diameter is 10-20:1.
  • the purification temperature of the mixed resin exchange column is 20-30°C.
  • the pressure of the isopropanol passed into the mixed resin exchange column is 1.05-1.15 atmospheric pressure
  • the flow velocity of the isopropanol passed into the mixed resin exchange column is 240 per hour of mixed bed resin volume ⁇ 360 times.
  • the particle diameter of the molecular sieve used in the molecular sieve dehydration is 1-2 mm.
  • the parameters of the reverse osmosis treatment are as follows: the reverse osmosis pressure is 2.5-3.0 MPa, the permeation rate is 420-550 L/h, and the control circulation rate is 600-800 L/h.
  • the drying column is filled with 3A molecular sieves, and the length of the drying column is 1.1-3 times the length of the mixed resin exchange column.
  • the filling volume of the mixed bed resin in the mixed resin exchange column is 40-60% of the volume of the mixed resin exchange column.
  • the present invention has the following advantages compared with the prior art:
  • the present invention uses industrial isopropanol as raw material, dehydrates through molecular sieves, reverse osmosis treatment, and then combines the agitation of dry gas and the pressure supplied by the power pump to flow industrial isopropanol through a specially designed mixed resin exchange column to remove impurity metal ions And anions, after purification, the metal ion content is less than 0.5ppt, the anion content is less than or equal to 0.6ppb, and the moisture content is less than 40ppm, no other complicated processes are required, and the operation difficulty is reduced.
  • the method is simple to operate, and the energy consumption is extremely low. High-grade isopropanol is stable and reliable for large-scale industrial production, meeting SEMI C12 standards.
  • the detection of metal ion content adopts inductively coupled plasma mass spectrometry (model: ICP-MS8900), the detection of anion content adopts anion chromatography (Thermo Fisher AQ type), and the detection of moisture content adopts Metter V20 trace Moisture tester.
  • Test items unit Test results Test items unit Test results water ppm 380 Copper (Cu) ppt 48 Cl- ppb 18.45 Zinc (Zn) ppt 425 SO 4 2- ppb 23.62 Gallium (Ga) ppt 15 NO 3 - ppb 12.18 Germanium (Ge) ppt 13 PO 4 3- ppb 14.50 Arsenic (As) ppt 17 Sodium (Na) ppt 1485 Strontium (Sr) ppt 5 Magnesium (Mg) ppt 162 Zirconium (Zr) ppt 16 Aluminum (Al) ppt 298 Niobium (Nb) ppt 20 Potassium (K) ppt 602 Molybdenum (Mo) ppt 32 Calcium (Ca) ppt 614 Silver (Ag) ppt 3 Titanium (Ti) ppt 260 Cadmium (Cd) ppt 4 Vanadium (V) ppt 70 Tin (Sn) ppt 80 Chrom
  • This example provides a kind of method utilizing resin purification method to produce ultra-high-purity isopropanol, and described method comprises the steps:
  • the industrial isopropanol is sequentially dehydrated through molecular sieves (the particle diameter of the molecular sieve used is 1.5 ⁇ 0.5mm), reverse osmosis treatment (reverse osmosis pressure 2.7 ⁇ 0.1MPa, permeation rate is 480 ⁇ 20L/h, and the control circulation is 700 ⁇ 0.
  • the primary isopropanol obtained after the treatment is cached in the isopropanol raw material tank, then the nitrogen gas with a purity greater than 99.999% is passed into the isopropanol raw material tank after drying through the drying column, and the Under the synergistic effect of the pump, the isopropanol raw material in the isopropanol raw material tank is passed into the mixed resin exchange column with nitrogen as the carrier, and the pressure and flow rate of the isopropanol passed into the mixed resin exchange column are adjusted, and the mixed resin is exchanged.
  • the column purifies the isopropanol to obtain ultra-high-purity isopropanol; wherein, the mixed resin exchange column is filled with a mixed-bed resin formed by mixing anion-exchange resin and cation-exchange resin, and the mixed-bed resin is an anion-exchange resin
  • the mixed resin after mixing the exchange resin and the cation exchange resin is processed by high-purity water, high-purity ethanol, high-purity sodium hydroxide, and high-purity hydrochloric acid in sequence, then washed by high-purity water, and finally exposed to ultraviolet light.
  • the cation exchange resin is acidic, and the purity of the high-purity water, the high-purity ethanol, the high-purity sodium hydroxide, and the high-purity hydrochloric acid is greater than 99.99999% respectively;
  • the drying column is filled with 3A molecular sieves, and the length of the drying column is twice the length of the mixed resin exchange column; the pressure of the isopropyl alcohol that is passed into the mixed resin exchange column is controlled to be 1.05 atmospheres, and is passed into the mixed resin exchange column
  • the flow velocity of the isopropanol is 300 times of the mixed bed resin volume per hour; the purification temperature of the mixed resin exchange column is about 25 °C, and the mixed resin exchange column is cylindrical, and the ratio of its column height to column diameter is 15: 1.
  • the volume ratio of cation exchange resin and anion exchange resin in the mixed resin exchange column is 10:1
  • the filling volume of the mixed bed resin in the mixed resin exchange column is 50% of the volume of the mixed resin exchange column
  • the anion exchange resin is DuPont Amberlite IRA 96RF
  • the cation exchange resin is DuPont Amberjet 1600.
  • This example provides a kind of method utilizing resin purification method to produce ultra-high-purity isopropanol, and described method comprises the steps:
  • the industrial isopropanol is sequentially dehydrated through molecular sieves (the particle diameter of the molecular sieve used is 1.5 ⁇ 0.5mm), reverse osmosis treatment (reverse osmosis pressure 2.8 ⁇ 0.1MPa, permeation rate is 500 ⁇ 20L/h, and the control circulation is 750 ⁇ 0.
  • the primary isopropanol obtained after the treatment is cached in the isopropanol raw material tank, then the nitrogen gas with a purity greater than 99.999% is passed into the isopropanol raw material tank after drying through the drying column, and the Under the synergistic effect of the pump, the isopropanol raw material in the isopropanol raw material tank is passed into the mixed resin exchange column with nitrogen as the carrier, and the pressure and flow rate of the isopropanol passed into the mixed resin exchange column are adjusted, and the mixed resin is exchanged.
  • the column purifies the isopropanol to obtain ultra-high-purity isopropanol; wherein, the mixed resin exchange column is filled with a mixed-bed resin formed by mixing anion-exchange resin and cation-exchange resin, and the mixed-bed resin is an anion-exchange resin
  • the mixed resin after mixing the exchange resin and the cation exchange resin is processed by high-purity water, high-purity ethanol, high-purity sodium hydroxide, and high-purity hydrochloric acid in sequence, then washed by high-purity water, and finally exposed to ultraviolet light.
  • the cation exchange resin is acidic, and the purity of the high-purity water, the high-purity ethanol, the high-purity sodium hydroxide, and the high-purity hydrochloric acid is greater than 99.99999% respectively;
  • the drying column is filled with 3A molecular sieves, and the length of the drying column is 3 times of the length of the mixed resin exchange column; the pressure of the isopropanol which is controlled to pass into the mixed resin exchange column is 1.1 atmospheres, and is passed into the mixed resin exchange column
  • the flow velocity of the isopropanol is 360 times of the mixed bed resin volume per hour;
  • the purification temperature of the mixed resin exchange column is about 25 °C, and the mixed resin exchange column is cylindrical, and the ratio of its column height to column diameter is 15: 1.
  • the volume ratio of cation exchange resin and anion exchange resin in the mixed resin exchange column is 10:1
  • the filling volume of the mixed bed resin in the mixed resin exchange column is 50% of the volume of the mixed resin exchange column
  • the anion exchange resin is DuPont Amberlite IRA 96RF
  • the cation exchange resin is Lanxess Lewatit TP 207.
  • This example provides a kind of method utilizing resin purification method to produce ultra-high-purity isopropanol, and described method comprises the steps:
  • Industrial isopropanol is sequentially dehydrated through molecular sieves (the particle diameter of the molecular sieve used is 1.5 ⁇ 0.5mm), reverse osmosis treatment (reverse osmosis pressure 2.6 ⁇ 0.1MPa, permeation rate is 440 ⁇ 20L/h, and the control circulation is 650 ⁇ 0.
  • the primary isopropanol obtained after the treatment is cached in the isopropanol raw material tank, then the nitrogen gas with a purity greater than 99.999% is passed into the isopropanol raw material tank after drying through the drying column, and the Under the synergistic effect of the pump, the isopropanol raw material in the isopropanol raw material tank is passed into the mixed resin exchange column with nitrogen as the carrier, and the pressure and flow rate of the isopropanol passed into the mixed resin exchange column are adjusted, and the mixed resin is exchanged.
  • the column purifies the isopropanol to obtain ultra-high-purity isopropanol; wherein, the mixed resin exchange column is filled with a mixed-bed resin formed by mixing anion-exchange resin and cation-exchange resin, and the mixed-bed resin is an anion-exchange resin
  • the mixed resin after mixing the exchange resin and the cation exchange resin is processed by high-purity water, high-purity ethanol, high-purity sodium hydroxide, and high-purity hydrochloric acid in sequence, then washed by high-purity water, and finally exposed to ultraviolet light.
  • the cation exchange resin is acidic, and the purity of the high-purity water, the high-purity ethanol, the high-purity sodium hydroxide, and the high-purity hydrochloric acid is greater than 99.99999% respectively;
  • the drying column is filled with 3A molecular sieves, and the length of the drying column is 3 times of the length of the mixed resin exchange column; the pressure of the isopropanol that is passed into the mixed resin exchange column is controlled to be 1.15 atmospheres, and is passed into the mixed resin exchange column
  • the flow velocity of the isopropanol is 320 times of the mixed bed resin volume per hour;
  • the purification temperature of the mixed resin exchange column is about 25 °C, and the mixed resin exchange column is cylindrical, and the ratio of its column height to column diameter is 15: 1.
  • the volume ratio of cation exchange resin and anion exchange resin in the mixed resin exchange column is 10:1, the filling volume of the mixed bed resin in the mixed resin exchange column is 50% of the volume of the mixed resin exchange column, and the anion exchange resin is Du Sheng CXO-12, cation exchange resin is DuPont Amberjet 1600.
  • This example provides a kind of method of producing ultra-high purity isopropanol, described method comprises the steps:
  • the industrial isopropanol is buffered in the isopropanol raw material tank, and then the nitrogen gas with a purity of more than 99.999% is passed into the isopropanol raw material tank after being dried by a drying column, and the isopropanol is made
  • the isopropanol raw material in the raw material tank is passed into the mixed resin exchange column with nitrogen as a carrier, the pressure and flow rate of the isopropanol passed into the mixed resin exchange column are adjusted, and the isopropanol is purified through the mixed resin exchange column.
  • the mixed bed resin formed by mixing anion exchange resin and cation exchange resin is filled in the mixed resin exchange column, and this mixed bed resin is after anion exchange resin is mixed with cation exchange resin
  • the mixed resin is processed by high-purity water, high-purity ethanol, high-purity sodium hydroxide, and high-purity hydrochloric acid in sequence, then rinsed with high-purity water, and finally exposed to ultraviolet light.
  • the anion exchange resin is alkaline, and the cation exchange resin is acidic.
  • the purity of the high-purity water, the high-purity ethanol, the high-purity sodium hydroxide, and the high-purity hydrochloric acid is greater than 99.99999% respectively;
  • the drying column is filled with 3A molecular sieves, and the length of the drying column is twice the length of the mixed resin exchange column; the pressure of the isopropyl alcohol that is passed into the mixed resin exchange column is controlled to be 1.05 atmospheres, and is passed into the mixed resin exchange column
  • the flow velocity of the isopropanol is 300 times of the mixed bed resin volume per hour; the purification temperature of the mixed resin exchange column is about 25 °C, and the mixed resin exchange column is cylindrical, and the ratio of its column height to column diameter is 15: 1.
  • the volume ratio of cation exchange resin and anion exchange resin in the mixed resin exchange column is 10:1
  • the filling volume of the mixed bed resin in the mixed resin exchange column is 50% of the volume of the mixed resin exchange column
  • the anion exchange resin is DuPont Amberlite IRA 96RF
  • the cation exchange resin is DuPont Amberjet 1600.
  • Example 1 Example 2
  • Example 3 Comparative example 1 water ppm 34 36 35 55 Cl- ppb 0.23 0.28 0.19 0.45 SO 4 2- ppb 0.08 0.15 0.10 0.36 NO 3 - ppb 0.30 0.60 0.55 0.91 PO 4 3- ppb 0.01 0.005 0.006 0.015 Sodium (Na) ppt 0.447 0.514 0.306 1.564 Magnesium (Mg) ppt 0.016 0.213 0.009 0.751 Aluminum (Al) ppt 0.258 0.332 0.129 1.381 Potassium (K) ppt 0.095 0.112 0.084 0.389 Calcium (Ca) ppt 0.027 0.062 0.010 0.916 Titanium (Ti) ppt 0.424 0.389 0.218 1.022 Vanadium (V) ppt 0.002 0.005 0.001 0.264 Chromium (Cr) ppt 0.028 0.039 0.015 0.520 Manganese (Mn) ppt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明公开了一种利用树脂提纯法生产超高纯异丙醇的方法,包括:将工业异丙醇依次经过分子筛脱水、反渗透处理,然后缓存在异丙醇原料罐中,将氮气经过干燥柱干燥处理后通入异丙醇原料罐中,并在动力泵的协同作用下使异丙醇原料罐中的异丙醇原料以氮气为载体通入混合树脂交换柱中,调节通入混合树脂交换柱内的异丙醇的压强和流速,通过混合树脂交换柱对异丙醇进行纯化处理,得到超高纯异丙醇;混合树脂交换柱中填充有由阴离子交换树脂与阳离子交换树脂混合形成的混床树脂,并依次经过高纯水、高纯乙醇、高纯氢氧化钠、高纯盐酸处理,然后经过高纯水冲洗,最后经过紫外光曝光照射而制得;该方法制成的超高纯异丙醇满足SEMI C12标准。

Description

[根据细则26改正 11.01.2022]一种利用树脂提纯法生产超高纯异丙醇的方法 技术领域
本发明属于异丙醇的提纯技术领域,具体涉及一种利用树脂提纯法生产超高纯异丙醇的方法。
背景技术
超净高纯电子化学品是超大规模集成电路制造的关键集成性原材料,其纯度、洁净度对成品率、电性能、可靠性等有十分重要的影响。例如其中的超高纯异丙醇,其具有良好的挥发性及与水的互溶性,使单晶硅片各个阶段工艺之后残留在硅片表面的盐溶液、有机杂质、颗粒杂质等均被有效与异丙醇混合,并随着异丙醇的流动带走。最后,残留异丙醇挥发,保证了硅片可以快速达到洁净干燥状态,并保证接下来的工序中硅片不会因为表面金属盐等的影响出现瑕疵、坏点,从而提高成品率,因此被广泛地用于半导体超净单晶硅片的各阶段清洗过程。
但是,近年来,随着芯片线程快速细微化,芯片的最高精度已经达到了7nm制程;由于半导体本身太过精细,因此要求清洗用异丙醇本身具有足够的纯度,要求其中的金属离子含量足够低,水分及其他有机物含量也要足够低。但是,在实际使用过程中,目前精制异丙酮的方法主要还存在如下一些问题:1、达不到半导体级别尤其是SEMI C12标准的纯度要求;2、公开报道的异丙醇提纯技术主要集中在蒸馏-精馏技术,这种方法对设备材料要求苛刻,提纯过程需要消耗大量蒸汽和电力能源;3、生产耗时长,不利于控制成本等。
发明内容
本发明的目的是克服现有技术的不足,提供一种可规模化生产并满足SEMI C12标准的超高纯异丙醇的生产方法。
为达到上述目的,本发明采用的技术方案是:一种利用树脂提纯法生产超高纯异丙醇的方法,所述方法包括如下步骤:
将工业异丙醇依次经过分子筛脱水、反渗透处理,将处理后获得的初级异丙醇缓存在异丙醇原料罐中,然后将纯度大于99.999%以上的氮气经过干燥柱干燥处理后通入异丙醇原料罐中,并在动力泵的协同作用下使异丙醇原料罐中的异丙醇原料以氮气为载体通入混合树脂交换柱中,调节通入混合树脂交换柱内的异丙醇的压强和流速,通过混合树脂交换柱对异丙醇进行纯化处理,得到超高纯异丙醇;其中,所述混 合树脂交换柱中填充有由阴离子交换树脂与阳离子交换树脂混合形成的混床树脂,该混床树脂是将阴离子交换树脂与阳离子交换树脂混合后的混合树脂依次经过高纯水、高纯乙醇、高纯氢氧化钠、高纯盐酸处理,然后经过高纯水冲洗,最后经过紫外光曝光照射而制得,所述阴离子交换树脂呈碱性,所述阳离子交换树脂呈酸性,所述高纯水、所述高纯乙醇、所述高纯氢氧化钠、所述高纯盐酸的纯度分别大于99.99999%。
根据本发明的一些优选且具体的方面,所述阴离子交换树脂为选自杜邦Amberlite IRA 96RF、杜邦Amberlite IRA402Cl、杜笙CXO-12中的一种或多种的组合。
根据本发明的一些优选且具体的方面,所述阳离子交换树脂为选自杜邦Amberlite IR1200Na、杜邦Amberjet 1600、朗盛Lewatit TP 207中的一种或多种的组合。
根据本发明的一些优选方面,所述混合树脂交换柱中,阳离子交换树脂与阴离子交换树脂的投料体积比为5-20∶1。
根据本发明的一些优选方面,所述混合树脂交换柱为圆柱形,其柱体高度与柱体直径之比为10-20∶1。
根据本发明的一些优选方面,所述混合树脂交换柱的提纯温度为20-30℃。
根据本发明的一些优选方面,通入混合树脂交换柱内的异丙醇的压强为1.05-1.15个大气压,通入混合树脂交换柱内的异丙醇的流速为每小时混床树脂体积的240~360倍。
根据本发明的一些优选方面,所述分子筛脱水采用的分子筛的颗粒直径为1-2mm。
根据本发明的一些优选方面,所述反渗透处理的参数如下:反渗透压2.5-3.0MPa,透过量为420-550L/h,控制循环量为600-800L/h。
根据本发明的一些优选方面,所述干燥柱中填充有3A分子筛,所述干燥柱的长度为所述混合树脂交换柱长度的1.1~3倍。
根据本发明的一些优选方面,混合树脂交换柱中的混床树脂的填充体积为混合树脂交换柱体积的40-60%。
由于上述技术方案运用,本发明与现有技术相比具有下列优点:
本发明以工业异丙醇为原料,通过分子筛脱水、反渗透处理,然后结合干燥气体的鼓动和动力泵供给的压力将工业异丙醇流经特别设计制作的混合树脂交换柱,去除 杂质金属离子和阴离子,提纯后,金属离子含量小于0.5ppt,阴离子含量小于等于0.6ppb,而且水分含量低于40ppm,无需其他复杂工艺,降低了操作难度,该方法操作简单,能源消耗极低,可实现电子级异丙醇稳定可靠的大规模工业生产,满足SEMI C12标准。
具体实施方式
下面将结合具体实施例对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下实施例中,对金属离子含量的检测采用电感耦合等离子质谱(型号:ICP-MS8900),对阴离子含量的检测采用阴离子色谱仪(Thermo Fisher AQ型),对水分含量的检测采用Metter V20痕量水份测试仪。
下述实施例中所采用的异丙酮原料的检测结果如下表1所示。
表1
检测项目 单位 检测结果 检测项目 单位 检测结果
ppm 380 铜(Cu) ppt 48
Cl - ppb 18.45 锌(Zn) ppt 425
SO 4 2- ppb 23.62 镓(Ga) ppt 15
NO 3 - ppb 12.18 锗(Ge) ppt 13
PO 4 3- ppb 14.50 砷(As) ppt 17
钠(Na) ppt 1485 锶(Sr) ppt 5
镁(Mg) ppt 162 锆(Zr) ppt 16
铝(Al) ppt 298 铌(Nb) ppt 20
钾(K) ppt 602 钼(Mo) ppt 32
钙(Ca) ppt 614 银(Ag) ppt 3
钛(Ti) ppt 260 镉(Cd) ppt 4
钒(V) ppt 70 锡(Sn) ppt 80
铬(Cr) ppt 74 锑(Sb) ppt 23
锰(Mn) ppt 10 钡(Ba) ppt 30
铁(Fe) ppt 510 铊(Tl) ppt 3
钴(Co) ppt 6 铅(Pb) ppt 1
镍(Ni) ppt 56      
实施例1
本例提供了一种利用树脂提纯法生产超高纯异丙醇的方法,所述方法包括如下 步骤:
将工业异丙醇依次经过分子筛脱水(采用的分子筛的颗粒直径为1.5±0.5mm)、反渗透处理(反渗透压2.7±0.1MPa,透过量为480±20L/h,控制循环量为700±20L/h),将处理后获得的初级异丙醇缓存在异丙醇原料罐中,然后将纯度大于99.999%以上的氮气经过干燥柱干燥处理后通入异丙醇原料罐中,并在动力泵的协同作用下使异丙醇原料罐中的异丙醇原料以氮气为载体通入混合树脂交换柱中,调节通入混合树脂交换柱内的异丙醇的压强和流速,通过混合树脂交换柱对异丙醇进行纯化处理,得到超高纯异丙醇;其中,所述混合树脂交换柱中填充有由阴离子交换树脂与阳离子交换树脂混合形成的混床树脂,该混床树脂是将阴离子交换树脂与阳离子交换树脂混合后的混合树脂依次经过高纯水、高纯乙醇、高纯氢氧化钠、高纯盐酸处理,然后经过高纯水冲洗,最后经过紫外光曝光照射而制得,所述阴离子交换树脂呈碱性,所述阳离子交换树脂呈酸性,所述高纯水、所述高纯乙醇、所述高纯氢氧化钠、所述高纯盐酸的纯度分别大于99.99999%;
其中,干燥柱中填充有3A分子筛,干燥柱的长度为混合树脂交换柱长度的2倍;控制通入混合树脂交换柱内的异丙醇的压强为1.05个大气压,通入混合树脂交换柱内的异丙醇的流速为每小时混床树脂体积的300倍;混合树脂交换柱的提纯温度约为25℃,混合树脂交换柱为圆柱形,其柱体高度与柱体直径之比为15∶1,混合树脂交换柱中阳离子交换树脂与阴离子交换树脂的投料体积比为10∶1,混合树脂交换柱中的混床树脂的填充体积为混合树脂交换柱体积的50%,阴离子交换树脂为杜邦Amberlite IRA 96RF,阳离子交换树脂为杜邦Amberjet 1600。
该例制成的超高纯异丙醇的检测结果参见表2所示。
实施例2
本例提供了一种利用树脂提纯法生产超高纯异丙醇的方法,所述方法包括如下步骤:
将工业异丙醇依次经过分子筛脱水(采用的分子筛的颗粒直径为1.5±0.5mm)、反渗透处理(反渗透压2.8±0.1MPa,透过量为500±20L/h,控制循环量为750±20L/h),将处理后获得的初级异丙醇缓存在异丙醇原料罐中,然后将纯度大于99.999%以上的氮气经过干燥柱干燥处理后通入异丙醇原料罐中,并在动力泵的协 同作用下使异丙醇原料罐中的异丙醇原料以氮气为载体通入混合树脂交换柱中,调节通入混合树脂交换柱内的异丙醇的压强和流速,通过混合树脂交换柱对异丙醇进行纯化处理,得到超高纯异丙醇;其中,所述混合树脂交换柱中填充有由阴离子交换树脂与阳离子交换树脂混合形成的混床树脂,该混床树脂是将阴离子交换树脂与阳离子交换树脂混合后的混合树脂依次经过高纯水、高纯乙醇、高纯氢氧化钠、高纯盐酸处理,然后经过高纯水冲洗,最后经过紫外光曝光照射而制得,所述阴离子交换树脂呈碱性,所述阳离子交换树脂呈酸性,所述高纯水、所述高纯乙醇、所述高纯氢氧化钠、所述高纯盐酸的纯度分别大于99.99999%;
其中,干燥柱中填充有3A分子筛,干燥柱的长度为混合树脂交换柱长度的3倍;控制通入混合树脂交换柱内的异丙醇的压强为1.1个大气压,通入混合树脂交换柱内的异丙醇的流速为每小时混床树脂体积的360倍;混合树脂交换柱的提纯温度约为25℃,混合树脂交换柱为圆柱形,其柱体高度与柱体直径之比为15∶1,混合树脂交换柱中阳离子交换树脂与阴离子交换树脂的投料体积比为10∶1,混合树脂交换柱中的混床树脂的填充体积为混合树脂交换柱体积的50%,阴离子交换树脂为杜邦Amberlite IRA 96RF,阳离子交换树脂为朗盛Lewatit TP 207。
该例制成的超高纯异丙醇的检测结果参见表2所示。
实施例3
本例提供了一种利用树脂提纯法生产超高纯异丙醇的方法,所述方法包括如下步骤:
将工业异丙醇依次经过分子筛脱水(采用的分子筛的颗粒直径为1.5±0.5mm)、反渗透处理(反渗透压2.6±0.1MPa,透过量为440±20L/h,控制循环量为650±20L/h),将处理后获得的初级异丙醇缓存在异丙醇原料罐中,然后将纯度大于99.999%以上的氮气经过干燥柱干燥处理后通入异丙醇原料罐中,并在动力泵的协同作用下使异丙醇原料罐中的异丙醇原料以氮气为载体通入混合树脂交换柱中,调节通入混合树脂交换柱内的异丙醇的压强和流速,通过混合树脂交换柱对异丙醇进行纯化处理,得到超高纯异丙醇;其中,所述混合树脂交换柱中填充有由阴离子交换树脂与阳离子交换树脂混合形成的混床树脂,该混床树脂是将阴离子交换树脂与阳离子交换树脂混合后的混合树脂依次经过高纯水、高纯乙醇、高纯氢氧化钠、高 纯盐酸处理,然后经过高纯水冲洗,最后经过紫外光曝光照射而制得,所述阴离子交换树脂呈碱性,所述阳离子交换树脂呈酸性,所述高纯水、所述高纯乙醇、所述高纯氢氧化钠、所述高纯盐酸的纯度分别大于99.99999%;
其中,干燥柱中填充有3A分子筛,干燥柱的长度为混合树脂交换柱长度的3倍;控制通入混合树脂交换柱内的异丙醇的压强为1.15个大气压,通入混合树脂交换柱内的异丙醇的流速为每小时混床树脂体积的320倍;混合树脂交换柱的提纯温度约为25℃,混合树脂交换柱为圆柱形,其柱体高度与柱体直径之比为15∶1,混合树脂交换柱中阳离子交换树脂与阴离子交换树脂的投料体积比为10∶1,混合树脂交换柱中的混床树脂的填充体积为混合树脂交换柱体积的50%,阴离子交换树脂为杜笙CXO-12,阳离子交换树脂为杜邦Amberjet 1600。
该例制成的超高纯异丙醇的检测结果参见表2所示。
对比例1
本例提供了一种生产超高纯异丙醇的方法,所述方法包括如下步骤:
将工业异丙醇缓存在异丙醇原料罐中,然后将纯度大于99.999%以上的氮气经过干燥柱干燥处理后通入异丙醇原料罐中,并在动力泵的协同作用下使异丙醇原料罐中的异丙醇原料以氮气为载体通入混合树脂交换柱中,调节通入混合树脂交换柱内的异丙醇的压强和流速,通过混合树脂交换柱对异丙醇进行纯化处理,得到超高纯异丙醇;其中,所述混合树脂交换柱中填充有由阴离子交换树脂与阳离子交换树脂混合形成的混床树脂,该混床树脂是将阴离子交换树脂与阳离子交换树脂混合后的混合树脂依次经过高纯水、高纯乙醇、高纯氢氧化钠、高纯盐酸处理,然后经过高纯水冲洗,最后经过紫外光曝光照射而制得,所述阴离子交换树脂呈碱性,所述阳离子交换树脂呈酸性,所述高纯水、所述高纯乙醇、所述高纯氢氧化钠、所述高纯盐酸的纯度分别大于99.99999%;
其中,干燥柱中填充有3A分子筛,干燥柱的长度为混合树脂交换柱长度的2倍;控制通入混合树脂交换柱内的异丙醇的压强为1.05个大气压,通入混合树脂交换柱内的异丙醇的流速为每小时混床树脂体积的300倍;混合树脂交换柱的提纯温度约为25℃,混合树脂交换柱为圆柱形,其柱体高度与柱体直径之比为15∶1,混合树脂交换柱中阳离子交换树脂与阴离子交换树脂的投料体积比为10∶1,混合树 脂交换柱中的混床树脂的填充体积为混合树脂交换柱体积的50%,阴离子交换树脂为杜邦Amberlite IRA 96RF,阳离子交换树脂为杜邦Amberjet 1600。
该例制成的超高纯异丙醇的检测结果参见表2所示。
表2实施例1-3以及对比例1所得超高纯异丙醇产品的检测结果
检测项目 单位 实施例1 实施例2 实施例3 对比例1
ppm 34 36 35 55
Cl - ppb 0.23 0.28 0.19 0.45
SO 4 2- ppb 0.08 0.15 0.10 0.36
NO 3 - ppb 0.30 0.60 0.55 0.91
PO 4 3- ppb 0.01 0.005 0.006 0.015
钠(Na) ppt 0.447 0.514 0.306 1.564
镁(Mg) ppt 0.016 0.213 0.009 0.751
铝(Al) ppt 0.258 0.332 0.129 1.381
钾(K) ppt 0.095 0.112 0.084 0.389
钙(Ca) ppt 0.027 0.062 0.010 0.916
钛(Ti) ppt 0.424 0.389 0.218 1.022
钒(V) ppt 0.002 0.005 0.001 0.264
铬(Cr) ppt 0.028 0.039 0.015 0.520
锰(Mn) ppt 0.005 0.008 0.003 0.812
铁(Fe) ppt 0.063 0.088 0.046 1.26
钴(Co) ppt 0.002 0.006 0.001 0.119
镍(Ni) ppt 0.021 0.030 0.015 0.512
铜(Cu) ppt 0.158 0.200 0.011 0.540
锌(Zn) ppt 0.091 0.064 0.024 0.216
镓(Ga) ppt 0.001 0.003 0.002 0.129
锗(Ge) ppt 0.008 0.012 0.006 0.456
砷(As) ppt 0.018 0.022 0.009 0.342
锶(Sr) ppt 0.001 0.002 0.001 0.103
锆(Zr) ppt 0.001 0.001 0.001 0.110
铌(Nb) ppt 0.002 0.001 0.001 0.328
钼(Mo) ppt 0.004 0.009 0.003 0.256
银(Ag) ppt 0.001 0.001 0.001 0.045
镉(Cd) ppt 0.001 0.001 0.001 0.118
锡(Sn) ppt 0.003 0.005 0.002 0.324
锑(Sb) ppt 0.001 0.001 0.002 0.212
钡(Ba) ppt 0.001 0.002 0.001 0.120
铊(Tl) ppt 0.001 0.008 0.005 0.105
铅(Pb) ppt 0.001 0.004 0.001 0.011
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围,凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。

Claims (11)

  1. 一种利用树脂提纯法生产超高纯异丙醇的方法,其特征在于,所述方法包括如下步骤:
    将工业异丙醇依次经过分子筛脱水、反渗透处理,将处理后获得的初级异丙醇缓存在异丙醇原料罐中,然后将纯度大于99.999%以上的氮气经过干燥柱干燥处理后通入异丙醇原料罐中,并在动力泵的协同作用下使异丙醇原料罐中的异丙醇原料以氮气为载体通入混合树脂交换柱中,调节通入混合树脂交换柱内的异丙醇的压强和流速,通过混合树脂交换柱对异丙醇进行纯化处理,得到超高纯异丙醇;其中,所述混合树脂交换柱中填充有由阴离子交换树脂与阳离子交换树脂混合形成的混床树脂,该混床树脂是将阴离子交换树脂与阳离子交换树脂混合后的混合树脂依次经过高纯水、高纯乙醇、高纯氢氧化钠、高纯盐酸处理,然后经过高纯水冲洗,最后经过紫外光曝光照射而制得,所述阴离子交换树脂呈碱性,所述阳离子交换树脂呈酸性,所述高纯水、所述高纯乙醇、所述高纯氢氧化钠、所述高纯盐酸的纯度分别大于99.99999%。
  2. 根据权利要求1所述的一种利用树脂提纯法生产超高纯异丙醇的方法,其特征在于,所述阴离子交换树脂为选自杜邦Amberlite IRA 96RF、杜邦Amberlite IRA402Cl、杜笙CXO-12中的一种或多种的组合。
  3. 根据权利要求1所述的一种利用树脂提纯法生产超高纯异丙醇的方法,其特征在于,所述阳离子交换树脂为选自杜邦Amberlite IR1200Na、杜邦Amberjet 1600、朗盛Lewatit TP 207中的一种或多种的组合。
  4. 根据权利要求1或2或3所述的一种利用树脂提纯法生产超高纯异丙醇的方法,其特征在于,所述混合树脂交换柱中,阳离子交换树脂与阴离子交换树脂的投料体积比为5-20∶1。
  5. 根据权利要求1或2或3所述的一种利用树脂提纯法生产超高纯异丙醇的方法,其特征在于,所述混合树脂交换柱为圆柱形,其柱体高度与柱体直径之比为10-20∶1。
  6. 根据权利要求1或2或3所述的一种利用树脂提纯法生产超高纯异丙醇的方法,其特征在于,所述混合树脂交换柱的提纯温度为20-30℃。
  7. 根据权利要求1或2或3所述的一种利用树脂提纯法生产超高纯异丙醇的方法,其特征在于,通入混合树脂交换柱内的异丙醇的压强为1.05-1.15个大气压,通 入混合树脂交换柱内的异丙醇的流速为每小时混床树脂体积的240~360倍。
  8. 根据权利要求1或2或3所述的一种利用树脂提纯法生产超高纯异丙醇的方法,其特征在于,混合树脂交换柱中的混床树脂的填充体积为混合树脂交换柱体积的40-60%。
  9. 根据权利要求1或2或3所述的一种利用树脂提纯法生产超高纯异丙醇的方法,其特征在于,所述分子筛脱水采用的分子筛的颗粒直径为1-2mm。
  10. 根据权利要求1或2或3所述的一种利用树脂提纯法生产超高纯异丙醇的方法,其特征在于,所述反渗透处理的参数如下:反渗透压2.5-3.0MPa,透过量为420-550L/h,控制循环量为600-800L/h。
  11. 根据权利要求1或2或3所述的一种利用树脂提纯法生产超高纯异丙醇的方法,其特征在于,所述干燥柱中填充有3A分子筛,所述干燥柱的长度为所述混合树脂交换柱长度的1.1~3倍。
PCT/CN2021/136063 2021-12-07 2021-12-07 一种利用树脂提纯法生产超高纯异丙醇的方法 WO2023102727A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/136063 WO2023102727A1 (zh) 2021-12-07 2021-12-07 一种利用树脂提纯法生产超高纯异丙醇的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/136063 WO2023102727A1 (zh) 2021-12-07 2021-12-07 一种利用树脂提纯法生产超高纯异丙醇的方法

Publications (1)

Publication Number Publication Date
WO2023102727A1 true WO2023102727A1 (zh) 2023-06-15

Family

ID=86729454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/136063 WO2023102727A1 (zh) 2021-12-07 2021-12-07 一种利用树脂提纯法生产超高纯异丙醇的方法

Country Status (1)

Country Link
WO (1) WO2023102727A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB687380A (en) * 1949-10-29 1953-02-11 Bataafsche Petroleum Process for the purification of alcohols
CN102452897A (zh) * 2010-12-06 2012-05-16 江苏达诺尔半导体超纯科技有限公司 超高纯异丙醇的生产工艺
CN102898275A (zh) * 2012-11-05 2013-01-30 苏州晶瑞化学有限公司 一种高纯异丙醇的制备方法
CN111170832A (zh) * 2019-12-31 2020-05-19 江苏中德电子材料科技有限公司 一种超净高纯异丙醇高效节能环保连续生产工艺
CN111205168A (zh) * 2020-02-25 2020-05-29 苏州晶瑞化学股份有限公司 一种利用树脂提纯法生产超高纯异丙醇的方法
CN112409135A (zh) * 2020-11-05 2021-02-26 贵溪市恒盛实业有限公司 一种高纯度异丙醇的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB687380A (en) * 1949-10-29 1953-02-11 Bataafsche Petroleum Process for the purification of alcohols
CN102452897A (zh) * 2010-12-06 2012-05-16 江苏达诺尔半导体超纯科技有限公司 超高纯异丙醇的生产工艺
CN102898275A (zh) * 2012-11-05 2013-01-30 苏州晶瑞化学有限公司 一种高纯异丙醇的制备方法
CN111170832A (zh) * 2019-12-31 2020-05-19 江苏中德电子材料科技有限公司 一种超净高纯异丙醇高效节能环保连续生产工艺
CN111205168A (zh) * 2020-02-25 2020-05-29 苏州晶瑞化学股份有限公司 一种利用树脂提纯法生产超高纯异丙醇的方法
CN112409135A (zh) * 2020-11-05 2021-02-26 贵溪市恒盛实业有限公司 一种高纯度异丙醇的制备方法

Similar Documents

Publication Publication Date Title
CN111205168A (zh) 一种利用树脂提纯法生产超高纯异丙醇的方法
CN110577195B (zh) 一种半导体级过氧化氢水溶液的制备方法
CN104907108A (zh) 一种阴离子交换树脂的预处理方法
CN108117217A (zh) 一种bta/tta高盐废水优化处理工艺
WO2023102727A1 (zh) 一种利用树脂提纯法生产超高纯异丙醇的方法
CN114890889A (zh) 一种电子级柠檬酸的提纯方法
CN102874805A (zh) 一种用于废水处理的多孔炭的制备方法
CN113460969A (zh) 一种生产效率高且稳定性强的半导体级双氧水的制备方法
TWI746036B (zh) 從混酸溶液中去除及回收金屬之方法及裝置
CN109775760B (zh) 超低钾钼酸铵溶液、钼酸铵溶液衍生产品及其制备方法
JP2000290693A (ja) 電子部品部材類の洗浄方法
CN113735697B (zh) 一种半导体级丙酮的连续生产方法
CN109850851B (zh) 一种超高纯过氧化氢中颗粒的控制方法
WO2022183513A1 (zh) 一种电解槽出口淡盐水的催化脱氯工艺
CN114132935A (zh) 一种硅溶胶的纯化方法
CN114655928A (zh) 一种电子级盐酸制备方法
JP2011146642A (ja) 重水の貯蔵方法及び回収方法
CN106748652B (zh) 一种去除工业级异丙醇中痕量金属杂质的方法
CN113401872B (zh) 一种集成电路用盐酸的生产工艺
CN111472009A (zh) 一种钢类线材的拉拔除锈工艺
CN221027723U (zh) 一种氨气直接生产电子级氨水的生产装置
CN114904500B (zh) 一种树脂脱附剂及脱附方法
CN219848872U (zh) 一种电子级超净高纯酸的制备装置
CN113764259B (zh) 一种半导体芯片的清洗方法
CN116281869A (zh) 一种去除半导体级过氧化氢溶液中toc的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966651

Country of ref document: EP

Kind code of ref document: A1