WO2023097817A1 - 发电机散热结构及具有其的发电机 - Google Patents

发电机散热结构及具有其的发电机 Download PDF

Info

Publication number
WO2023097817A1
WO2023097817A1 PCT/CN2021/140496 CN2021140496W WO2023097817A1 WO 2023097817 A1 WO2023097817 A1 WO 2023097817A1 CN 2021140496 W CN2021140496 W CN 2021140496W WO 2023097817 A1 WO2023097817 A1 WO 2023097817A1
Authority
WO
WIPO (PCT)
Prior art keywords
fan
heat dissipation
casing
generator
main shaft
Prior art date
Application number
PCT/CN2021/140496
Other languages
English (en)
French (fr)
Inventor
汤国斌
缪杰
周维坚
何涛
陶仙明
杨俊�
陈通红
Original Assignee
浙江水泵总厂有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江水泵总厂有限公司 filed Critical 浙江水泵总厂有限公司
Publication of WO2023097817A1 publication Critical patent/WO2023097817A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • H02K9/06Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium with fans or impellers driven by the machine shaft
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/18Casings or enclosures characterised by the shape, form or construction thereof with ribs or fins for improving heat transfer

Definitions

  • the present application relates to the related fields of generators, in particular to a heat dissipation structure of a generator and a generator having the same.
  • the generator When the generator is working, it will generate heat. If the heat is not dissipated in time, the structural stress will change due to the different thermal expansion coefficients of the parts inside the generator, which will affect the dynamic response of the generator. In addition, if the heat generated is too large, there will be The possibility of the generator burning out;
  • This type of heat dissipation structure has a good heat dissipation effect, but due to the existence of the air inlet and the air outlet, the internal and external spaces of the generator are connected, and the dust or moisture in the external space enters the generator and easily damages the generator. Therefore, it is difficult to apply to dust or in a humid environment.
  • a heat dissipation structure for a generator including a casing, a main shaft and a fan; the main shaft is arranged in the casing, and two ends respectively pass through the casing, one end of the main shaft is used to connect with a driving device, and the other end
  • the fan is fixed; the fan includes a windshield, fan blades and a fixed part, the fixed part can be fixedly connected with the main shaft, the windshield is fixed on the outer peripheral wall of the fixed part and is connected with
  • the main shaft is vertical, and the outer peripheral wall of the fixed part is also fixed with a plurality of fan blades in the circumferential direction around the central axis of the main shaft, and the fan blades are perpendicular to the windshield and fixedly connected.
  • the fan blade is arc-shaped.
  • the above-mentioned electrode heat dissipation structure by setting the fan outside the casing, enables the casing to dissipate heat without opening holes, ensuring the sealing of the casing; in addition, by adopting arc-shaped curved fan blades instead of straight The fan blades increase the wind force when the fan rotates, thereby increasing the heat dissipation efficiency and avoiding the heat accumulation caused by insufficient heat dissipation efficiency, so that the heat dissipation structure of the generator of the present application can be applied to the environment where the working environment is poor and requires a long time. Time working generator.
  • one end of the fan blade is perpendicular to the outer peripheral wall of the fixing part, and the arc diameter of the fan blade is 3 to 3.5 times the diameter of the main shaft.
  • Such setting increases the contact area between each fan blade and the air when it rotates, thereby effectively increasing the wind force when the fan rotates, and further increasing the heat dissipation efficiency of the generator heat dissipation structure of the present application.
  • the arc diameter of the fan blade is 3.23 times the diameter of the main shaft.
  • a plurality of cooling fins are fixed on the outer peripheral wall of the housing.
  • the distance between every two adjacent heat dissipation fins is equal.
  • the heat dissipation fins are arranged parallel to the horizontal plane, the heat dissipation fins are integrally formed with the casing, and the casing is an aluminum profile.
  • the casing can be obtained by drawing the profile along the central axis of the main shaft, and the obtained profile can be used as the main body of the casing by cutting the corresponding length according to actual needs, which greatly reduces the processing difficulty of the casing. Reduced processing costs.
  • the heat dissipation structure of the generator further includes a fan cover, and the fan cover is detachably arranged at an end of the casing close to the fan.
  • the fan can be protected, thereby preventing the fan from being deformed or damaged by being exposed to the outside world for a long time, and increasing the service life of the fan.
  • a plurality of protrusions are fixed on the outer peripheral wall of the housing, the fan cover is detachably arranged on the protrusions, and the inner diameter of the fan housing is larger than the outer diameter of the housing. path.
  • the end face of the housing near the fan is rounded.
  • the second aspect of the present application provides a generator, which includes the heat dissipation structure of the generator in any one of the above embodiments.
  • Fig. 1 is the schematic diagram of the half-section structure of the generator of the present application in the front view direction;
  • Fig. 2 is a schematic cross-sectional structure diagram of the front view direction of the fan in Fig. 1;
  • FIG. 3 is a schematic cross-sectional structural diagram of a part of the housing in FIG. 1 viewed from the left.
  • a component when a component is said to be “mounted on” another component, it can be directly on the other component or there can also be an intervening component.
  • a component When a component is said to be “set on” another component, it may be set directly on the other component or there may be an intervening component at the same time.
  • a component When a component is said to be “fixed” to another component, it may be directly fixed to the other component or there may be an intervening component at the same time.
  • the generator When the generator is working, it will generate heat. If the heat is not dissipated in time, the structural stress will change due to the different thermal expansion coefficients of the parts inside the generator, which will affect the dynamic response of the generator. In addition, if the heat generated is too large, there will be The possibility of the generator burning out;
  • most generators adopt the structure of built-in fan, and the fan is installed inside the generator, and is located at one end close to the driving device, and an air inlet and an outlet are set on the generator, wherein the air inlet is axially It is opened on the end face away from the driving device, and the air outlet is radially opened on the side wall of the generator and corresponds to the fan, so that the internal components of the generator are located between the air inlet and the air outlet; therefore, when the fan rotates, The air enters the inside of the generator through the air inlet, and flows through the internal components of the generator such as the rotor and stator in the generator, so that the heat generated during its operation is transferred to the flowing air, and is discharged to the outside through the air outlet, so as to realize the power generation Heat dissipation of internal components of the machine;
  • This type of heat dissipation structure has a good heat dissipation effect, but due to the existence of the air inlet and the air outlet, the internal and external spaces of the generator are connected, and the dust or moisture in the external space enters the generator and easily damages the generator. Therefore, it is difficult to apply to dust or in a humid environment;
  • the heat inside the generator is directly transferred to the flowing air; the heat dissipation structure of the external fan, the heat inside the generator will first be transferred to the generator The engine casing, and then the flowing air generated by the rotation of the fan dissipates the heat from the generator casing; the heat dissipation efficiency is relatively low, and it is easy to generate heat accumulation after long-term work, so it is not suitable for generators that work for a long time, such as the above-mentioned generators.
  • the generator of the cold chain car compressor needs to be turned on all the way during the cold chain transportation. If the heat continues to accumulate, it will affect the dynamic response of the generator, and may even cause the generator to burn out in severe cases.
  • this application firstly provides a heat dissipation structure of a generator, please refer to Fig. 1 and Fig. 2, which includes a casing 10, a main shaft 20 and a fan 30; the main shaft 20 is arranged in the casing 10, and both ends respectively penetrate The casing 10, one end of the main shaft 20 is used to connect with the driving device, and the other end is fixedly provided with a fan 30; the fan 30 includes a windshield 31, a fan blade 32 and a fixing part 33, and the fixing part 33 can be fixedly connected with the main shaft 20.
  • the wind plate 31 is fixed on the outer peripheral wall of the fixed part 33 and is perpendicular to the main shaft 20.
  • the outer peripheral wall of the fixed part 33 is also fixed with a plurality of fan blades 32 around the central axis of the main shaft 20.
  • the fan blades 32 are connected to the windshield.
  • the plates 31 are vertical and fixedly connected, and the fan blades 32 are arc-shaped.
  • the fan 30 By fixing the fan 30 on the end of the main shaft 20 away from the driving device, that is, the fan 30 is arranged outside the casing 10, so that the casing 10 no longer needs to have an air inlet and an air outlet, and cooperate with the main shaft 20 to penetrate the casing 10. Installing a mechanical seal or other conventional sealing structure at the position can ensure the airtightness of the casing 10, so that the generator sealing structure of the present application can be applied to poor working conditions such as dust and humidity, increasing the versatility.
  • the fan blades 32 of the external fan are mostly straight blades.
  • the contact area between each fan blade 32 and the air is increased, thereby effectively increasing the wind force when the fan 30 rotates, thereby increasing The heat dissipation efficiency of the generator heat dissipation structure of the present application.
  • the heat dissipation structure of the generator of the present application by arranging the fan 30 outside the casing 10, enables the casing 10 to dissipate heat without opening holes, thereby ensuring the sealing of the casing 10; in addition, by adopting The arc-shaped curved fan blade 32 replaces the straight blade-shaped fan blade 32, which increases the wind force when the fan 30 rotates, thereby increasing the heat dissipation efficiency and avoiding the heat accumulation caused by insufficient heat dissipation efficiency, so that the application
  • the heat dissipation structure of the generator can be applied to generators that are poor in working environment and need to work for a long time.
  • the windshield 31 perpendicular to the main shaft 20 is fixed on the outer peripheral wall of the fixed part 33, so that when the fan 30 rotates, the air entering the fan 30 is blocked by the windshield 31 and pressed into the duct formed between the blades 32. , so as to realize air blowing through the rotation of the fan 30 .
  • the windshield 31 is in the shape of a slope, and along the direction of the central axis of the main shaft 20, the diameter of the windshield 31 gradually increases toward the side close to the casing 10, so as to play a role toward the casing 10.
  • the effect of the flow guide in the direction of the wall makes the flow air flow out along the direction of the slope under the flow guide action of the slope surface of the windshield 31 when the fan 30 rotates to supply air, thereby reducing the flow air flowing out from the duct and the casing.
  • the angle between the side walls of 10 makes the air flow as close as possible to the side walls of the casing 10, thereby reducing the energy loss caused by the collision between the flowing air and the fan cover 40 or the casing 10, and increasing the heat dissipation efficiency of the fan 30. Effect.
  • one end of the fan blade 32 is perpendicular to the outer peripheral wall of the fixed part 33, and the arc diameter of the fan blade 32 is 3 to 3.5 times the diameter of the main shaft 20.
  • each fan can be limitedly increased.
  • the contact area between the blades 32 and the air when rotating can effectively increase the wind force when the fan 30 rotates, thereby increasing the heat dissipation efficiency of the generator heat dissipation structure of the present application.
  • the arc diameter of the fan blade 32 is 3.23 times the diameter of the main shaft 20 .
  • the outer peripheral wall of the casing 10 is fixed with a plurality of cooling fins 11 , so that by increasing the total area of the outer peripheral wall of the casing 10 , the distance between the outer peripheral wall of the casing 10 and the outside air is increased. contact area, thereby increasing the heat dissipation capacity of the outer peripheral wall of the casing 10 to achieve the effect of increasing heat dissipation efficiency.
  • the distance between every two adjacent cooling fins 11 is equal.
  • the heat dissipation fins 11 are arranged parallel to the horizontal plane, and the heat dissipation fins 11 are integrally formed with the casing 10 , and the casing 10 is an aluminum profile.
  • each heat dissipation fin 11 is parallel to the central axis of the main shaft 20, so that the casing 10 can be obtained by drawing a profile along the central axis of the main shaft 20.
  • the obtained profile can be cut to a corresponding length to be used as the main body of the casing 10, and the complete casing 10 can be obtained only by adding end caps to both ends of the obtained main body, which greatly reduces the processing difficulty of the casing 10 , reducing the processing cost;
  • casing 10 adopts aluminum profile, on the one hand density is less, and weight is lighter, is convenient to carry, transport, and on the other hand, the thermal conductivity of aluminum is relatively good, is conducive to the heat dissipation of casing 10, thereby can improve the power generation of the present application.
  • the heat dissipation efficiency of the heat dissipation mechanism of the machine is the one hand density is less, and weight is lighter, is convenient to carry, transport, and on the other hand, the thermal conductivity of aluminum is relatively good, is conducive to the heat dissipation of casing 10, thereby can improve the power generation of the present application.
  • the heat dissipation structure of the generator further includes a fan cover 40, which is detachably arranged at one end of the casing 10 close to the fan 30, and the end surface of the fan casing 40 away from the side of the casing 10 is provided with Inlet.
  • a fan cover 40 By arranging the fan cover 40, the fan 30 can be protected, thereby preventing the fan 30 from being exposed to the outside world for a long time to cause deformation or damage, and increasing the service life of the fan 30; The normal use of the fan 30 is not affected.
  • the outer peripheral wall of the casing 10 is fixed with a plurality of projections, the fan cover 40 is detachably arranged on the projections, and the inner diameter of the fan cover 40 is larger than the outer diameter of the casing 10, so that An annular gap is formed between the inner surface of the fan cover 40 and the outer surface of the casing 10.
  • the fan cover 40 is used to protect the fan 30, after a long time of use, the fan cover 40 is prone to contamination and accumulation of dirt. If the dirt blocks the air inlet, it may affect the normal use of the fan 30 due to difficulty in normal air intake; therefore , for the fan cover 40, it needs to be cleaned and maintained after being used for a certain period of time, and in this application, the fan cover 40 is detachably arranged on the casing 10, so that when the fan cover 40 needs to be cleaned and maintained, the After the fan cover 40 is disassembled, cleaning and maintenance operations are performed, thereby reducing the difficulty of cleaning and maintaining the fan cover 40, and enabling the fan cover 40 to be cleaned and maintained more thoroughly;
  • the detachable setting here refers to common fixed connection methods such as bolt connection, clip connection, interference fit, etc., which can be disassembled as required.
  • the fan cover 40 is connected to the end face of the projection on the side radially away from the main shaft 20 by bolts. The radially arranged bolts are not blocked by other parts, and the installation and disassembly are more convenient, further reducing the need for replacement and maintenance of the fan cover 40. difficulty.
  • protrusions which are evenly distributed in the circumferential direction around the central axis of the housing 10, and the four protrusions divide the outer peripheral wall of the housing 10 into four parts: upper, lower, left, and right.
  • the sheet 11 is arranged on the left and right parts of the outer peripheral wall of the casing 10;
  • the cooling fins are arranged on the top of the outer peripheral wall of the casing 10, the airflow blown by the fan 30 will be blocked by the junction box at the top of the casing 10, resulting in difficulty in reaching the expected cooling effect; and if the cooling fins are arranged When it is on the lower part of the outer peripheral wall of the casing 10, since the bottom of the casing 10 is close to the bottom surface, the distance between the bottom surface and the bottom surface is relatively small, and there is relatively little external air for heat transfer with the cooling fins 11, and it is difficult to rely on the airflow blown by the fan 30 alone. Completing the heat exchange with the cooling fins 11 in time will also lead to difficulty in achieving the expected cooling effect.
  • the end surface of the housing 10 near the fan 30 is rounded. So that the airflow generated by the rotation of the fan 30 can flow out smoothly along the annular gap between the casing 10 and the fan casing 40 under the guidance of the chamfered surface, thereby avoiding the direct contact between the airflow and the inner surface of the fan casing 40 or the casing 10
  • the collision of the end faces causes turbulent flow, which affects the flow velocity of the airflow, thereby achieving the effect of increasing heat dissipation efficiency.
  • the second aspect of the present application provides a generator, which includes the heat dissipation structure of the generator in any one of the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

发电机散热结构及具有其的发电机。该发电机散热结构,包括机壳(10)、主轴(20)以及风扇(30);主轴(20)设置于机壳(10)内,且两端分别贯穿机壳(10),主轴(20)的一端用于与驱动装置连接,另一端固设有风扇(30);风扇(30)包括挡风板(31)、扇叶(32)以及固定部(33),固定部(33)的外周壁以主轴(20)的中轴线为中心周向均布固设有多个扇叶(32),扇叶(32)与挡风板(31)垂直并固定连接,扇叶(32)呈圆弧形。

Description

发电机散热结构及具有其的发电机
相关申请
本申请要求2021年11月30日申请的,申请号为202111445851.3,发明名称为“发电机散热结构及具有其的发电机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及发电机相关领域,特别是涉及一种发电机散热结构及具有其的发电机。
背景技术
发电机工作时会产生热量,若不及时进行散热,会由于发电机内部各部分件热膨胀系数不同导致结构应力发生变化,从而影响发电机的动态响应,此外,若发热量过大,还存在导致发电机烧毁的可能;
目前,为保证发电机散热,大部分发电机采取内置风扇的结构,将风扇设置于发电机内部,并在发电机上开设进风口和出风口,以通过风扇转动带动空气流动,对发电机内部的组件进行散热;
此类散热结构,散热效果较好,但由于进风口与出风口的存在,导致发电机内外部空间连通,外部空间的灰尘或水分进入发电机内部容易损坏发电机,因此,难以适用于扬尘或潮湿的环境中。
发明内容
基于此,有必要针对内置风扇结构散热效率高但密封性不佳,难以适用于扬尘、潮湿环境的问题,提供一种能够同时保证散热效率以及密封性的发电机散热结构及具有其的发电机。
一种发电机散热结构,包括机壳、主轴以及风扇;所述主轴设置于所述机壳内,且两端分别贯穿所述机壳,所述主轴的一端用于与驱动装置连接,另一端固设有所述风扇;所述风扇包括挡风板、扇叶以及固定部,所述固定部能够与所述主轴固定连接,所述挡风板固设于所述固定部的外周壁且与所述主轴垂直,所述固定部的外周壁还以所述主轴的中轴线为中心周向均布固设有多个所述扇叶,所述扇叶与所述挡风板垂直并固定连接,所述扇 叶呈圆弧形。
上述电极散热结构,通过将风扇设置于机壳外部,使得机壳不需要开孔即可进行散热,保证了机壳的密封性;此外,通过采取圆弧形弯曲的扇叶替代直叶形的扇叶,增加了风扇转动时的风力,从而增加了散热效率,避免了因散热效率不足导致热量积累的情况发生,以使得本申请的发电机散热结构能够适用于对工作环境较差且需要长时间工作的发电机。
在其中一个实施例中,所述扇叶的一端与所述固定部的外周壁垂直,所述扇叶的圆弧直径为所述主轴直径的3倍~3.5倍。
如此设置,以增大每一扇叶转动时与空气之间的接触面积,从而能够有效增加风扇转动时的风力,进而增加本申请的发电机散热结构的散热效率。
在其中一个实施例中,所述扇叶的圆弧直径为所述主轴直径的3.23倍。
在其中一个实施例中,所述机壳的外周壁固设有多个散热鳍片。
如此设置,通过增加机壳外周壁的总面积,以增加机壳外周壁的散热能力,达到增加散热效率的效果。
在其中一个实施例中,每两相邻的所述散热鳍片之间的间距相等。
如此设置,以使得流经每两相邻散热鳍片的风量均相对均匀,从而保证各散热鳍片上的散热效果相对均匀,避免因散热不均匀导致个别散热鳍片上热量累计,导致对应部位的机壳内的温度过高的情况发生。
在其中一个实施例中,所述散热鳍片均平行于水平面设置,所述散热鳍片与所述机壳一体成型,所述机壳为铝型材。
如此设置,使得机壳能够沿主轴的中轴线方向通过拉型材的方式得到,只需要根据实际需求将得到的型材截取对应长度即可作为机壳的主体使用,大大减少了机壳的加工难度,降低了加工成本。
在其中一个实施例中,所述发电机散热结构还包括风扇罩,所述风扇罩可拆卸的设置于所述机壳靠近所述风扇的一端。
如此设置,能够对风扇进行保护,从而避免风扇长时间暴露于外界导致变形或损坏,增加风扇的使用寿命。
在其中一个实施例中,所述机壳的外周壁固设有多个凸块,所述风扇罩可拆卸的设置于所述凸块,且所述风扇罩的内径大于所述机壳的外径。
如此设置,以使得风扇罩的内表面与机壳的外表面之间形成一环形间隙,从而保证流动空气与机壳外侧壁能够平行吹出,以保证流动空气均能够与机壳的外周壁充分接触,以增加散热效率。
在其中一个实施例中,所述机壳靠近所述风扇的一侧端面倒有圆角。
如此设置,以使得由风扇转动产生的气流能够平滑的流出,从而避免因气流直接与风扇罩内表面或机壳的端面碰撞导致紊流,影响气流的流速,进而达到增加散热效率的效果。
本申请第二方面提供一种发电机,该发电机包括上述任一实施例的发电机散热结构。
附图说明
图1为本申请的发电机正视方向的半剖结构示意图;
图2为图1中风扇的正视方向的剖视结构示意图;
图3为图1中部分机壳的左视方向的剖视结构示意图。
主要元件符号说明:10、机壳;11、散热鳍片;20、主轴;30、风扇;31、挡风板;32、扇叶;33、固定部;40、风扇罩。
以上主要元件符号说明结合附图及具体实施方式对本申请作进一步详细的说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当组件被称为“安装于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。当一个组件被认为是“固定于”另一个组件,它可以是直接固定在另一个组件上或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
发电机工作时会产生热量,若不及时进行散热,会由于发电机内部各部分件热膨胀系数不同导致结构应力发生变化,从而影响发电机的动态响应,此外,若发热量过大,还存在导致发电机烧毁的可能;
目前,为保证发电机散热,大部分发电机采取内置风扇的结构,将风扇设置于发电机内部,且位于靠近驱动装置的一端,并在发电机上开设进风口和出风口,其中进风口轴向 开设于远离驱动装置的一侧端面,而出风口径向开设于发电机的侧壁,且与风扇对应,从而使得发电机内部组件均位于进风口与出风口之间;因此当风扇转动时,空气通过进风口进入发电机内部,并流经发电机内的转子、定子等发电机内部组件,使得其工作过程中产生的热量传递至流动空气中,并通过出风口排出外界,从而实现对发电机内部组件的散热;
此类散热结构,散热效果较好,但由于进风口与出风口的存在,导致发电机内外部空间连通,外部空间的灰尘或水分进入发电机内部容易损坏发电机,因此,难以适用于扬尘或潮湿的环境中;
例如在冷链车中,通常需要设置发电机发电以驱动用于制冷的压缩机,但由于发电机大多设置于车底,若采取上述散热结构,车辆行进过程中溅起的水花以及雨天时沿车身流下的雨水,均可能通过进风口或出风口进入发电机内部,导致发电机的损坏;
目前也存在一些外置风扇的发电机,但相较于内置风扇的散热结构,发电机内部的热量直接传递至流动空气;外置风扇的散热结构,其发电机内部的热量会先传递至发电机机壳,再通过风扇转动产生的流动空气,对发电机机壳进行散热;散热效率相对较低,长时间工作容易产生热量积累,因此不适合长时间工作的发电机使用,例如上述的用于冷链车压缩机的发电机,在冷链运输过程中需要全程开启,若热量持续积累,会影响发电机的动态响应,严重时甚至可能导致发电机烧毁。
针对上述问题,本申请首先提供一种发电机散热结构,请结合图1和图2所示,包括机壳10、主轴20以及风扇30;主轴20设置于机壳10内,且两端分别贯穿机壳10,主轴20的一端用于与驱动装置连接,另一端固设有风扇30;风扇30包括挡风板31、扇叶32以及固定部33,固定部33能够与主轴20固定连接,挡风板31固设于固定部33的外周壁且与主轴20垂直,固定部33的外周壁还以主轴20的中轴线为中心周向均布固设有多个扇叶32,扇叶32与挡风板31垂直并固定连接,扇叶32呈圆弧形。
通过将风扇30固设于主轴20远离驱动装置的一端,即将风扇30设置于机壳10的外部,以使得机壳10不再需要开设进风口和出风口,配合在主轴20贯穿机壳10的位置设置机械密封或其他常规的密封结构,即可保证机壳10的密封性,从而使得本申请的发电机密封结构能够适用于扬尘、潮湿等工况较差的情况,增加了泛用性。
此外,将风扇30外置后,发电机启动后产生的热量传递至机壳10,并且通过风扇30转动产生的流动空气对机壳10进行散热。相关技术中,外置风扇的扇叶32大多为直叶。而本申请中,通过将风扇30的扇叶32设计为圆弧形,增大了每一扇叶32转动时与空气之间的接触面积,从而能够有效增加风扇30转动时的风力,进而增加本申请的发电机散热结构的散热效率。
综上所述,本申请的发电机散热结构,通过将风扇30设置于机壳10外部,使得机壳10不需要开孔即可进行散热,保证了机壳10的密封性;此外,通过采取圆弧形弯曲的扇叶32替代直叶形的扇叶32,增加了风扇30转动时的风力,从而增加了散热效率,避免了因散热效率不足导致热量积累的情况发生,以使得本申请的发电机散热结构能够适用于对工作环境较差且需要长时间工作的发电机。
此外,在固定部33的外周壁固定与主轴20垂直的挡风板31,以使得风扇30转动时,进入风扇30的空气被挡风板31阻挡并压入扇叶32之间形成的涵道,从而通过风扇30的转动实现送风。
在一些实施例中,挡风板31呈坡面形,且沿主轴20的中心轴方向,挡风板31的直径向靠近机壳10的一侧逐渐增大,以起到向机壳10侧壁方向导流的效果,使得风扇30转动送风时,流动空气能够在挡风板31坡面的导流作用下,沿坡面走向流出,从而减小从涵道流出的流动空气与机壳10的侧壁之间的夹角,使得气流尽可能贴近机壳10的侧壁,进而减少因流动空气与风扇罩40或机壳10碰撞所导致的能量损失,达到增加风扇30的散热效率的效果。
在一些实施例中,扇叶32的一端与固定部33的外周壁垂直,扇叶32的圆弧直径为主轴20直径的3倍~3.5倍,在此倍率范围内,能够有限增加每一扇叶32转动时与空气之间的接触面积,从而能够有效增加风扇30转动时的风力,进而增加本申请的发电机散热结构的散热效率。在图2所示的实施例中,扇叶32的圆弧直径为主轴20直径的3.23倍。
在图3所示的实施例中,机壳10的外周壁固设有多个散热鳍片11,从而通过增加机壳10外周壁的总面积,从而增加机壳10外周壁与外界空气间的接触面积,进而增加机壳10外周壁的散热能力,达到增加散热效率的效果。
同样在图3所示的实施例中,每两相邻的散热鳍片11之间的间距相等。通过将各散热鳍片11等间距设置,以使得流动空气流进散热鳍片11时,流经每两相邻散热鳍片11的风量均相对均匀,从而保证各散热鳍片11上的散热效果相对均匀,避免因散热不均匀导致个别散热鳍片11上热量累计,导致对应部位的机壳10内的温度过高的情况发生。
同样在图3所示的实施例中,散热鳍片11均平行于水平面设置,散热鳍片11与机壳10一体成型,机壳10为铝型材。通过将散热鳍片11均平行于水平面设置,使得每一散热鳍片11均与主轴20的中轴线平行,从而使得机壳10能够沿主轴20的中轴线方向通过拉型材的方式得到,只需要根据实际需求将得到的型材截取对应长度即可作为机壳10的主体使用,只需在得到的主体两端加装端盖即可得到完整的机壳10,大大减少了机壳10的加工难度,降低了加工成本;
而机壳10采用铝型材,一方面密度较小,重量较轻,便于搬运、运输,另一方面,铝的导热性能相对较好,有利于机壳10的散热,从而能够提高本申请的发电机散热机构的散热效率。
在图1所示的实施例中,发电机散热结构还包括风扇罩40,风扇罩40可拆卸的设置于机壳10靠近风扇30的一端,风扇罩40远离机壳10一侧的端面开设有进风口。通过设置风扇罩40,能够对风扇30进行保护,从而避免风扇30长时间暴露于外界导致变形或损坏,增加风扇30的使用寿命;而开设进风口,使得空气能够从进风口进入风扇罩40,不影响风扇30的正常使用。
请结合图1和图3所示,机壳10的外周壁固设有多个凸块,风扇罩40可拆卸的设置于凸块,且风扇罩40的内径大于机壳10的外径,以使得风扇罩40的内表面与机壳10的外表面之间形成一环形间隙,当风扇30启动时,沿涵道径向流出的流动空气,最终会沿此环形间隙流出,从而保证流动空气与机壳10外侧壁能够平行吹出,以保证流动空气均能够与机壳10的外周壁充分接触,以增加散热效率;
通过在机壳10的外周壁固设凸块,并将风扇罩40设置于凸块,以保证在内径大于机壳10的外径的情况下,风扇罩40仍能够设置于机壳10;
由于风扇罩40用于对风扇30进行保护,长时间使用后,风扇罩40容易沾染、堆积脏污,若脏污堵塞进风口,则可能由于难以正常进风导致影响风扇30的正常使用;因此,对于风扇罩40,在使用一定时间后,需要进行清理与维护,而本申请中,将风扇罩40可拆卸的设置于机壳10,使得在需要对风扇罩40清理和维护时,可以将风扇罩40拆卸后进行清理和维护作业,从而减少了风扇罩40清理、维护的难度,并且使得风扇罩40能够得到更加彻底的清理、维护;
此外,这里的可拆卸的设置,指螺栓连接、卡接、过盈配合等常见的可根据需要进行拆卸的固定连接方式。可选的,风扇罩40与凸块沿径向远离主轴20一侧的端面通过螺栓连接,径向设置的螺栓无其他零件阻挡,安装、拆卸较为便利,进一步减小了更换、维护风扇罩40的难度。
可选的,凸块设置有四个,以机壳10的中轴线为中心周向均布,且四个凸块将机壳10的外周壁分为上、下、左、右四个部分,散热鳍片11设置于机壳10外周壁的左、右两个部分;
四个周向均布的凸块能够保证风扇罩40与机壳10固定相对牢靠;而仅将散热鳍片11设置于机壳10外周壁的左、右两个部分,是因为若将散热鳍片11设置于机壳10外周壁的上、下部分时,设置散热鳍片11所带来散热效率提升收益较低,反而会由于增设散热鳍片 11导致成本提升,性价比较低。
其中,若将散热鳍片设置于机壳10外周壁的上部时,由风扇30吹出的气流会被机壳10顶部的接线盒阻挡,导致难以达到预计的散热效果;而若将散热鳍片设置于机壳10外周壁的下部时,由于机壳10下部贴近底面,与底面之间距离较小,可供与散热鳍片11进行热传递的外部空气相对较少,仅依靠风扇30吹出的气流难以及时完成与散热鳍片11之间的换热,从而同样会导致难以达到预计的散热效果。
在图1所示的实施例中,机壳10靠近风扇30的一侧端面倒有圆角。以使得由风扇30转动产生的气流能够在倒角面导向作用下,沿机壳10与风扇罩40之间的环形间隙平滑的流出,从而避免因气流直接与风扇罩40内表面或机壳10的端面碰撞导致紊流,从而影响气流的流速,进而达到增加散热效率的效果。
本申请第二方面提供一种发电机,该发电机包括上述任一实施例的发电机散热结构。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种发电机散热结构,其特征在于,包括机壳、主轴以及风扇;
    所述主轴设置于所述机壳内,且两端分别贯穿所述机壳,所述主轴的一端用于与驱动装置连接,另一端固设有所述风扇;
    所述风扇包括挡风板、扇叶以及固定部,所述固定部能够与所述主轴固定连接,所述挡风板固设于所述固定部的外周壁且与所述主轴垂直,所述固定部的外周壁还以所述主轴的中轴线为中心周向均布固设有多个所述扇叶,所述扇叶与所述挡风板垂直并固定连接,所述扇叶呈圆弧形。
  2. 根据权利要求1所述的发电机散热结构,其特征在于,所述扇叶的一端与所述固定部的外周壁垂直,所述扇叶的圆弧直径为所述主轴直径的3倍~3.5倍。
  3. 根据权利要求2所述的发电机散热结构,其特征在于,所述扇叶的圆弧直径为所述主轴直径的3.23倍。
  4. 根据权利要求1所述的发电机散热结构,其特征在于,所述机壳的外周壁固设有多个散热鳍片。
  5. 根据权利要求4所述的发电机散热结构,其特征在于,每两相邻的所述散热鳍片之间的间距相等。
  6. 根据权利要求4所述的发电机散热结构,其特征在于,所述散热鳍片均平行于水平面设置,所述散热鳍片与所述机壳一体成型,所述机壳为铝型材。
  7. 根据权利要求1所述的发电机散热结构,其特征在于,所述发电机散热结构还包括风扇罩,所述风扇罩可拆卸的设置于所述机壳靠近所述风扇的一端。
  8. 根据权利要求7所述的发电机散热结构,其特征在于,所述机壳的外周壁固设有多个凸块,所述风扇罩可拆卸的设置于所述凸块,且所述风扇罩的内径大于所述机壳的外径。
  9. 根据权利要求1所述的发电机散热结构,其特征在于,所述机壳靠近所述风扇的一侧端面倒有圆角。
  10. 一种发电机,其特征在于,包括如权利要求1~9中任意一项所述的发电机散热结构。
PCT/CN2021/140496 2021-11-30 2021-12-22 发电机散热结构及具有其的发电机 WO2023097817A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111445851.3A CN114094766A (zh) 2021-11-30 2021-11-30 发电机散热结构及具有其的发电机
CN202111445851.3 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023097817A1 true WO2023097817A1 (zh) 2023-06-08

Family

ID=80306064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140496 WO2023097817A1 (zh) 2021-11-30 2021-12-22 发电机散热结构及具有其的发电机

Country Status (2)

Country Link
CN (1) CN114094766A (zh)
WO (1) WO2023097817A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117118123A (zh) * 2023-08-04 2023-11-24 杭州重红科技有限公司 一种发电机防尘保护装置及电机装置
CN117914057A (zh) * 2024-03-18 2024-04-19 江苏泰隆高新传动设备有限公司 一种风机用防爆电机

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074496A (ja) * 2001-08-31 2003-03-12 Sumiyoshi Kinzoku Kk ファンモータ装置
CN203717455U (zh) * 2014-01-28 2014-07-16 安徽安凯汽车股份有限公司 一种用于电动客车驱动电机的转子挡风板
CN108278203A (zh) * 2018-01-19 2018-07-13 浙江奔凯精密机械有限公司 一种无油涡旋式空气压缩机
CN207853668U (zh) * 2017-12-22 2018-09-11 绍兴市万鹏机电有限公司 一种防爆电机
CN209818303U (zh) * 2019-04-15 2019-12-20 珠海凌达压缩机有限公司 挡油帽、转子组件以及压缩机
CN210927262U (zh) * 2019-10-31 2020-07-03 江西广厚科技协同创新有限公司 一种防灰尘积累的铝合金电机壳
CN212875599U (zh) * 2020-09-30 2021-04-02 扬州市鑫明机电有限公司 一种新型永磁发电机

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204061304U (zh) * 2014-03-26 2014-12-31 郭亮甫 池塘增氧机用闭式叶轮

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074496A (ja) * 2001-08-31 2003-03-12 Sumiyoshi Kinzoku Kk ファンモータ装置
CN203717455U (zh) * 2014-01-28 2014-07-16 安徽安凯汽车股份有限公司 一种用于电动客车驱动电机的转子挡风板
CN207853668U (zh) * 2017-12-22 2018-09-11 绍兴市万鹏机电有限公司 一种防爆电机
CN108278203A (zh) * 2018-01-19 2018-07-13 浙江奔凯精密机械有限公司 一种无油涡旋式空气压缩机
CN209818303U (zh) * 2019-04-15 2019-12-20 珠海凌达压缩机有限公司 挡油帽、转子组件以及压缩机
CN210927262U (zh) * 2019-10-31 2020-07-03 江西广厚科技协同创新有限公司 一种防灰尘积累的铝合金电机壳
CN212875599U (zh) * 2020-09-30 2021-04-02 扬州市鑫明机电有限公司 一种新型永磁发电机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117118123A (zh) * 2023-08-04 2023-11-24 杭州重红科技有限公司 一种发电机防尘保护装置及电机装置
CN117914057A (zh) * 2024-03-18 2024-04-19 江苏泰隆高新传动设备有限公司 一种风机用防爆电机
CN117914057B (zh) * 2024-03-18 2024-05-31 江苏泰隆高新传动设备有限公司 一种风机用防爆电机

Also Published As

Publication number Publication date
CN114094766A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
WO2023097817A1 (zh) 发电机散热结构及具有其的发电机
JP5032782B2 (ja) 冷却手段を設けた送風機
WO2009038067A1 (ja) ファンモータ
CN207968158U (zh) 一种具有均布通风式防护罩结构的电机
WO2019242182A1 (zh) 用于风力发电机组的散热***及风力发电机组
JP5202724B2 (ja) 冷却ファン付モータ
CN213367586U (zh) 驱动一体机
CN209943481U (zh) 一种散热性能较好的减速机
CN110445309A (zh) 一种高效的高压发电机风路
CN216253729U (zh) 一种工业扇直流驱动控制器的高效散热结构
CN211630021U (zh) 电机前轴冷却装置
CN110690782B (zh) 一种减振风冷木工电主轴
CN210168394U (zh) 一种制冷机机箱
JP7068509B2 (ja) 回転電機
CN220817933U (zh) 风扇组件及空调室外机
CN218472595U (zh) 一种电源机箱及应用其的电源
CN212784962U (zh) 一种风冷电机外壳
CN211702782U (zh) 散热装置及变频器
CN216121130U (zh) 集电环
CN209982267U (zh) 一种高压变频调速三相异步电动机用冷却器
CN218997832U (zh) 一种加快潜水电机散热冷却的结构
CN212909256U (zh) 电机
CN216278555U (zh) 一种带有散热式电机的轴流风机
CN217335477U (zh) 变频调速一体机
CN212463011U (zh) 一种磁悬浮电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966237

Country of ref document: EP

Kind code of ref document: A1