WO2023053745A1 - バッテリ管理装置 - Google Patents

バッテリ管理装置 Download PDF

Info

Publication number
WO2023053745A1
WO2023053745A1 PCT/JP2022/030697 JP2022030697W WO2023053745A1 WO 2023053745 A1 WO2023053745 A1 WO 2023053745A1 JP 2022030697 W JP2022030697 W JP 2022030697W WO 2023053745 A1 WO2023053745 A1 WO 2023053745A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
vehicle
temperature
charging
time
Prior art date
Application number
PCT/JP2022/030697
Other languages
English (en)
French (fr)
Inventor
将成 沼田
悠 大船
康晃 福井
伸治 梯
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202280065529.4A priority Critical patent/CN118019657A/zh
Priority to JP2023550434A priority patent/JPWO2023053745A1/ja
Publication of WO2023053745A1 publication Critical patent/WO2023053745A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y10/00Economic sectors
    • G16Y10/40Transportation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16YINFORMATION AND COMMUNICATION TECHNOLOGY SPECIALLY ADAPTED FOR THE INTERNET OF THINGS [IoT]
    • G16Y40/00IoT characterised by the purpose of the information processing
    • G16Y40/10Detection; Monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present disclosure relates to a battery management device that manages a running battery mounted on a vehicle.
  • the battery management device described in Patent Literature 1 is configured to adjust the temperature of the battery prior to charging at the charging facility based on future travel information to the charging facility.
  • the running load of the vehicle is too large, the amount of heat generated by the battery due to the running load increases and exceeds the cooling performance of the temperature control unit of the vehicle, making it impossible to cool the battery to the target state. .
  • the charging current at the charging facility will be limited due to the effects of self-heating of the battery when charging at the charging facility. If the charging current is limited, a large amount of time is required to charge the battery in the charging facility, resulting in a large loss of time required to complete charging of the battery.
  • the present disclosure relates to a battery management device that manages a running battery mounted on a vehicle, and an object thereof is to provide a battery management device that can shorten the time required to complete charging in a charging facility. do.
  • a battery management device is a battery management device that manages the state of a running battery mounted on a vehicle.
  • the battery management device has a temperature adjustment section, an environment information acquisition section, a temperature estimation section, a target temperature setting section, and a running speed adjustment section.
  • the temperature adjustment unit adjusts the temperature of the battery.
  • the environment information acquisition unit acquires environment information including information about charging equipment capable of charging the battery based on the charging plan when the vehicle travels toward the destination in the future.
  • the temperature estimation unit estimates the battery temperature when the vehicle arrives at the charging facility based on the environment information acquired by the environment information acquisition unit.
  • the target temperature setting unit sets a target battery temperature at which the battery can be efficiently charged when the vehicle arrives at the charging facility after the vehicle travels and the temperature adjustment unit operates.
  • the travel speed adjustment unit uses the battery temperature estimated by the temperature estimation unit and the target battery temperature set by the target temperature setting unit to determine an adjustment amount of the travel speed when the vehicle travels to the charging facility.
  • the travel speed toward the charging facility can be adjusted by the travel speed adjustment unit.
  • the travel speed adjustment unit By adjusting the travel speed, it is possible to ensure an appropriate operation time for the temperature adjustment unit, so that the battery temperature when arriving at the charging facility can be adjusted to the target battery temperature. It is possible to shorten the time required to complete charging of the battery in the equipment.
  • FIG. 1 is a configuration diagram of a vehicle to which the battery management device of the first embodiment is applied;
  • FIG. 2 is a block diagram showing a schematic configuration of an energy manager according to the first embodiment;
  • FIG. 3 is a flowchart of a battery management program according to the first embodiment;
  • FIG. 4 is an explanatory diagram showing an example of a deceleration amount determination table in the first embodiment;
  • FIG. 5 is an explanatory diagram showing the influence of the running speed adjustment process according to the first embodiment on the battery temperature.
  • FIG. 6 is an explanatory diagram showing the effect of the traveling speed adjustment process according to the first embodiment on the charging rate of the battery.
  • FIG. 7 is a flowchart of a battery management program according to the second embodiment
  • FIG. 8 is an explanatory diagram showing the effect of the running speed adjustment process according to the second embodiment on the battery temperature.
  • FIG. 9 is an explanatory diagram showing the effect of the traveling speed adjustment process according to the second embodiment on the charging rate of the battery.
  • FIG. 10 is an explanatory diagram showing an example of the total required time in the first operation pattern in the third embodiment
  • FIG. 11 is an explanatory diagram showing an example of the total required time in the second operation pattern in the third embodiment
  • FIG. 12 is an explanatory diagram showing an example of the total required time in the third operation pattern in the third embodiment.
  • the vehicle A is equipped with a battery B for running, and is a BEV (Battery Electric Vehicle) that runs on the electric power of the battery B.
  • the energy manager 1 has an integrated control unit 10, a battery manager 20, an exercise manager 30, a heat manager 40, and an information notification unit 50, and manages the state of the battery B.
  • FIG. 10 Battery Electric Vehicle
  • the energy manager 1 is implemented by an in-vehicle computer that includes a processing unit, a RAM, a storage unit, an input/output interface, and a bus that connects them.
  • the processing unit is hardware for arithmetic processing coupled with RAM. By accessing the RAM, the processing unit executes various processes for realizing the functions of each functional unit, which will be described later.
  • the storage unit is configured to include a nonvolatile storage medium.
  • the storage unit stores various programs (battery management program, etc.) executed by the processing unit. A specific configuration and functional units of the energy manager 1 will be described later in detail.
  • the vehicle A is equipped with a communication module 60, a navigation device 70, a user input unit 80, a plurality of consumption domains DEc, power supply domains DEs, a charging system 21, and the like.
  • the communication module 60 is a communication module (Data Communication Module) mounted on the vehicle A.
  • the communication module 60 transmits and receives radio waves to and from base stations around the vehicle A through wireless communication conforming to communication standards such as LTE (Long Term Evolution) and 5G.
  • LTE Long Term Evolution
  • 5G wireless communication conforming to communication standards
  • LTE Long Term Evolution
  • the vehicle A becomes a connected car that can be connected to the network NW.
  • the communication module 60 can transmit and receive information to and from the cloud server 100, the station manager 90, etc. through the network NW.
  • the cloud server 100 is an information distribution server installed on the cloud, and distributes weather information, road traffic information, and the like, for example.
  • the station manager 90 is a computing system installed in the charging management center CTc.
  • Station manager 90 is communicably connected to a large number of charging stations CS installed in a specific area through network NW.
  • the station manager 90 keeps track of station information about each charging station CS.
  • the station information includes the installation location of the charging station CS, usability information indicating whether the station is in use, charging capability information of the charger, and the like.
  • the charging capability information is, for example, whether or not quick charging is possible, the corresponding charging standard, the maximum output of quick charging, and the like.
  • Station information is an example of environment information.
  • the charging station CS is an infrastructure facility for charging the running battery B mounted on the vehicle A, and corresponds to charging equipment. Each charging station CS charges the battery B using AC power supplied through a power network or DC power supplied from a solar power generation system or the like. Charging stations CS are installed, for example, in parking lots of shopping malls, convenience stores, public facilities, and the like.
  • the navigation device 70 is an in-vehicle device that guides the travel route to the destination set by the user.
  • the navigation device 70 guides the vehicle to go straight, turn left or right, change lanes, etc. at intersections, branch points, merging points, etc., through screen display, voice reproduction, and the like.
  • the navigation device 70 can provide the energy manager 1 with information such as the distance to the destination, the vehicle speed in each traveling section, the difference in elevation, etc., as the environment information as the navigation information.
  • the user input unit 80 is an operation device that receives an input operation by a user who is an occupant of vehicle A.
  • the user input unit 80 includes, for example, a user operation for operating the navigation device 70, a user operation for switching between starting and stopping temperature regulation control (described later), and a user operation for changing various setting values related to the vehicle A. etc. are entered.
  • the user input unit 80 can provide the energy manager 1 with input information based on user operations.
  • a steering switch provided on the spokes of the steering wheel, switches and dials provided on the center console, etc., and an audio input device for detecting the driver's speech are mounted as the user input unit 80 on the vehicle A.
  • a touch panel or the like of the navigation device 70 may function as the user input section 80 .
  • a user terminal such as a smart phone or a tablet terminal may function as the user input unit 80 by being connected to the energy manager 1 by wire or wirelessly.
  • the consumption domain is a group of in-vehicle devices that implement various vehicle functions by using the power of battery B and the like.
  • One consumption domain includes at least one domain manager and is composed of a group of in-vehicle devices whose power consumption is managed by the domain manager.
  • the multiple consumption domains include a running control domain and a temperature control domain.
  • the travel control domain is a consumption domain that controls the travel of vehicle A.
  • the cruise control domain includes motor generator MG, inverter INV, steering control system SCS, brake control system BCS, and motion manager 30 .
  • the motor generator MG is a driving source that generates a driving force for running the vehicle A.
  • the inverter INV controls power running and regeneration by the motor generator MG.
  • a steering control system SCS controls the steering of the vehicle A.
  • the brake control system BCS controls the braking force applied to the vehicle A.
  • the inverter INV converts the DC power supplied from the battery B into three-phase AC power during power running by the motor generator MG, and supplies the three-phase AC power to the motor generator MG. Inverter INV can adjust the frequency, current and voltage of AC power, and controls the driving force generated by motor generator MG. On the other hand, during regeneration by motor generator MG, inverter INV converts AC power into DC power and supplies it to battery B. FIG.
  • the motion manager 30 comprehensively controls the inverter INV, the steering control system SCS, and the brake control system BCS, and makes the vehicle A run in accordance with the driving operation of the driver.
  • the motion manager 30 functions as a domain manager of the running control domain and comprehensively manages power consumption by each of the motor generator MG, the inverter INV, the steering control system SCS and the brake control system BCS.
  • the motion manager 30 has a vehicle speed control section 30a.
  • the vehicle speed control unit 30a controls the traveling speed of the vehicle A by integrally controlling the inverter INV, the steering control system SCS, and the brake control system BCS.
  • the temperature control domain is a consumption domain that performs air conditioning of the cabin space of vehicle A and temperature control of battery B.
  • the temperature control domain includes an air conditioner 41 , a temperature control system 42 and a heat manager 40 .
  • a plurality of air conditioners 41 may be installed for one vehicle A.
  • the air conditioner 41 is an electric vehicle air conditioner that uses power supplied from the battery B to heat, cool, and ventilate the living room space.
  • the air conditioner 41 includes a refrigeration cycle device, a blower fan, an electric heater, an indoor air conditioning unit, and the like.
  • the air conditioner 41 can control the compressor of the refrigeration cycle device, the electric heater, the indoor air conditioning unit, and the like, and generate warm air and cold air.
  • the air conditioner 41 supplies warm air or cool air generated by the operation of the blower fan to the living room space as air-conditioned air.
  • the temperature control system 42 is a system that cools or heats the battery B.
  • the temperature control system 42 may cool or heat the motor generator MG, the inverter INV, and the like together with the battery B.
  • the temperature control system 42 maintains the temperature of the electric travel system within a predetermined temperature range by circulating the heat medium heated or cooled by the air conditioner 41 .
  • the temperature control system 42 is composed of a heat medium circuit, an electric pump, a radiator, a chiller, a liquid temperature sensor, and the like.
  • the heat medium circuit is mainly composed of piping installed so as to surround each component of the electric drive system such as the battery B, the motor generator MG, and the inverter INV.
  • the electric pump circulates the heat medium filled in the piping of the heat medium circuit.
  • the exhaust heat of the battery B transferred to the heat medium is released to the outside air by the radiator or released to the refrigerant of the air conditioner 41 by the chiller.
  • the liquid temperature sensor measures the temperature of the heat medium. Therefore, the temperature control system 42 corresponds to an example of a temperature control section.
  • the heat manager 40 is an in-vehicle computer that controls the operation of the air conditioner 41 and the temperature control system 42 .
  • the heat manager 40 compares the air conditioning set temperature of the living room space with the temperature measured by the temperature sensor installed in the living room space, and controls the air conditioning operation of the air conditioner 41 . Also, the heat manager 40 refers to the measurement result of the liquid temperature sensor and controls the temperature control operations of the air conditioner 41 and the temperature control system 42 .
  • the thermal manager 40 functions as a domain manager of thermal domains.
  • the heat manager 40 has a temperature control section 40a, and the temperature control section 40a comprehensively manages power consumption by the air conditioner 41 and the temperature control system 42 respectively.
  • the power supply domain is a group of in-vehicle devices that enable power supply to the consumption domain.
  • the power supply domain like the consumption domain, contains at least one domain manager and has a charging circuit, a battery B and a battery manager 20 .
  • the charging circuit functions as a junction box that integrally controls the power flow between each consumption domain and the battery B in cooperation with the battery manager 20 .
  • the charging circuit supplies power from the battery B and charges the battery B.
  • Battery B is a secondary battery that can charge and discharge power.
  • Battery B is composed of an assembled battery including a large number of battery cells.
  • As the battery cell for example, a nickel-metal hydride battery, a lithium-ion battery, an all-solid battery, or the like can be used.
  • the electric power stored in the battery B can be used mainly for running the vehicle A and air conditioning the room space.
  • the battery manager 20 is an in-vehicle computer that functions as a domain manager of the power supply domain.
  • the battery manager 20 has a power management unit 20a and manages power supplied from the charging circuit to each consumption domain.
  • the battery manager 20 notifies the overall control unit 10 of the energy manager 1 of the remaining amount information of the battery B as environment information.
  • the charging system 21 supplies power to the power supply domain and enables battery B to be charged.
  • An external charger is electrically connected to the charging system 21 at the charging station CS.
  • the charging system 21 outputs charging power supplied through the charging cable to the charging circuit.
  • the charging system 21 converts AC power supplied from a charger for normal charging into DC power, and supplies the DC power to the charging circuit.
  • the charging system 21 outputs DC power supplied from the charger for quick charging to the charging circuit.
  • the charging system 21 has a function of communicating with a charger for rapid charging, and controls the voltage supplied to the charging circuit in cooperation with the control circuit of the charger.
  • the energy manager 1 has an integrated control unit 10, a battery manager 20, an exercise manager 30, a heat manager 40, and an information notification unit 50.
  • the battery manager 20, the exercise manager 30, and the heat manager 40 are in-vehicle computers that control specific functions (for example, the running function and the temperature control function of the vehicle). Configure.
  • the overall control unit 10 uses various information output from the battery manager 20, the exercise manager 30, and the heat manager 40 to integrally manage power usage by each consumption domain.
  • the integrated control unit 10 is configured by an in-vehicle computer and constitutes a part of the energy manager 1 .
  • the integrated control unit 10 plays a major role in control processing in the energy manager 1 .
  • the information notification unit 50 is an in-vehicle computer that functions as a domain manager for notifying information specified using various information such as the battery manager 20, and constitutes a part of the energy manager 1.
  • a consumption domain for notifying the user of the vehicle A of information is connected to the information notification unit 50 .
  • the display and speaker of the navigation device 70 the display unit arranged on the instrument panel (that is, the instrument panel) at the front of the vehicle compartment, and the like are connected to the information notification unit 50 .
  • the information notification unit 50 can display the information specified by the integrated control unit 10 (for example, information related to the recommended traveling speed described later) on the display of the navigation device 70 or the like. Further, the information notification unit 50 can output the information specified by the integrated control unit 10 by voice from the speaker of the navigation device 70 .
  • the display, speaker, etc. of the navigation device 70 correspond to an example of the information transmission section.
  • the integrated control unit 10 of the energy manager 1 a control unit that controls various controlled devices connected as the consumption domain and the power supply domain is integrated.
  • the configuration (hardware and software) that controls the operation of each controlled device constitutes a control unit that controls the operation of each controlled device.
  • the integrated control unit 10 information on the travel route along which the vehicle A will travel toward the destination in the future and the charging facility (i.e., charging station CS) arranged on the travel route and capable of charging the battery B is included.
  • a configuration for acquiring environment information corresponds to the environment information acquisition unit 10a.
  • the environmental information includes information that affects the state of battery B at the destination of vehicle A. As the destination, a parking lot or waiting area where the vehicle A is left, or a charging station CS can be determined.
  • the state of the battery B is, for example, remaining capacity, temperature, and the like.
  • the environmental information includes information provided from the outside of the vehicle A, for example, center information delivered from the station manager 90 and the cloud server 100.
  • the center information includes usability information and charging capability information regarding the chargers of the charging station CS.
  • the environment information also includes weather information, road traffic information, and the like.
  • the weather information includes information indicating the outside temperature, the amount of solar radiation, the amount of radiant heat from the road surface, the presence or absence of rain or snow on the travel route set in the navigation device 70, and the like.
  • the environmental information includes information generated inside the vehicle A among the information affecting the state of the battery B.
  • information provided by the navigation device 70, the power supply domain, the consumption domain, and the like correspond to an example of environmental information.
  • the information provided by the navigation device 70 includes information such as the number of traffic lights (number of stops) in addition to the distance to the destination, vehicle speed and elevation difference in each section.
  • information provided from the power supply domain includes status information indicating the state of the power supply domain.
  • the status information includes remaining amount information and temperature information of the battery B, and the like.
  • the remaining amount information includes, for example, the value of the state of charge.
  • the information provided by the exercise manager 30 includes, for example, information indicating the driver's driving tendency, and more specifically, includes at least information indicating the tendency of the driver's accelerator opening and brake depression force. ing.
  • information provided from the user input unit 80 may be acquired as environment information.
  • the information may be input to the user input unit 80 by the user riding in the vehicle A, or the information may be input to the user terminal functioning as the user input unit 80 by the user outside the vehicle A. good.
  • the information may be information input by the user in real time in response to an inquiry from the system side such as the energy manager 1, or may be information indicating setting values recorded by past operations of the user.
  • the status information includes the set temperature (hereinafter referred to as "air-conditioning request information") of the air-conditioning in the room space and the air-conditioning information indicating the current temperature, the temperature information of the heat medium in the heat-medium circuit, the state of the motor generator MG and the inverter INV, etc. (For example, the current temperature, etc.) is included.
  • a future use schedule can be set for the vehicle A.
  • the usage schedule includes a driving schedule after vehicle A is left unattended, a high-load driving schedule, a charging schedule, a driving schedule after battery B is left at high temperature, and a driving schedule after battery B is left at low temperature. be able to.
  • the configuration for estimating the battery temperature Tb of the battery B when the vehicle A arrives at the charging station CS based on the environment information acquired by the environment information acquisition unit 10a in the overall control unit 10 is , correspond to the temperature estimator 10b.
  • the temperature estimation unit 10b uses information on the travel route provided by the navigation device 70, center information provided by the station manager 90, weather information and road traffic information provided by the cloud server 100, Estimate battery temperature Tb.
  • the target battery temperature TbO at which the battery B can be efficiently charged when the vehicle A travels while adjusting the temperature of the battery B and reaches a predetermined charging station CS. corresponds to the target temperature setting unit 10c.
  • the battery B self-heats by receiving power supply at the charging station CS. If the battery temperature Tb becomes too high, the battery B itself deteriorates. Therefore, if the temperature rises above the predetermined battery temperature upper limit TbU, the charging current supplied from the charging station CS will be larger than usual. controlled low.
  • Target temperature setting unit 10c determines that battery temperature Tb at the completion of charging of battery B is equal to or lower than battery temperature upper limit TbU, based on the relationship between the increase in battery temperature Tb accompanying charging and the battery temperature upper limit TbU set for battery B.
  • the target battery temperature TbO is determined so that
  • the configuration for adjusting the traveling speed when the vehicle A travels to the charging station CS facility by using the battery temperature Tb at the time of arrival at the charging station CS and the target battery temperature TbO is It corresponds to the speed adjustment unit 10d.
  • the electric power stored in the battery B is output at the same time as the temperature of the battery B is controlled by the temperature control system 42 . That is, during movement to the charging station CS, the increase in the battery temperature Tb accompanying the running of the vehicle A and the adjustment (cooling) of the battery temperature Tb by the temperature control system 42 are performed in parallel.
  • the greater the running load of vehicle A the greater the increase in battery temperature Tb that accompanies running. Therefore, when the running load of the vehicle A is larger than the cooling capacity of the temperature control system 42, the battery B cannot be sufficiently cooled by the temperature control system 42, and the battery temperature Tb at the time of arrival at the charging station CS is It is assumed that the battery temperature may be higher than the target battery temperature TbO.
  • the travel speed adjustment unit 10d adjusts the travel load of the vehicle A and, at the same time, adjusts the travel speed toward the charging station CS in order to ensure the execution period of the temperature adjustment of the battery B by the temperature control system 42.
  • the traveling speed is adjusted by the traveling speed adjusting unit 10d so that at least the battery temperature Tb at the time of arrival at the charging station CS is lower than the target battery temperature TbO.
  • the integrated control unit 10 estimates the time required for the vehicle A to travel and the temperature control system 42 to operate and for the vehicle A to reach a predetermined charging station CS.
  • the configuration corresponds to the required time estimation unit 10e.
  • the configuration for estimating the charging time upon arrival at the charging station CS based on various environmental information corresponds to the charging time estimating unit 10f.
  • the charging time estimating unit 10f calculates the charging time when the vehicle reaches the charging station CS at the current traveling speed, and the charging time when the vehicle reaches the charging station CS while traveling at the traveling speed adjusted by the traveling speed adjusting unit 10d. is estimated.
  • the charging time estimating unit 10f uses information on the traveling route, center information, weather information, road traffic information, remaining amount information of the battery B, etc. to determine the battery B at the time of arrival at the charging station CS when traveling at the current traveling speed. Estimate remaining amount information. Then, the charging time estimator 10f estimates the charging time at the arriving charging station CS based on the information on the charging station CS and the remaining amount information of the battery B at the time of arrival.
  • the charging time estimating unit 10f in addition to information on the traveling route, center information, weather information and road traffic information, information on the remaining amount of the battery B, etc., also receives information on the traveling speed adjusted by the traveling speed adjusting unit 10d. is used to estimate the remaining amount information of the battery B when the speed is adjusted. Then, the charging time estimating unit 10f estimates the charging time when the running speed is adjusted based on the information of the charging station CS and the remaining amount information of the battery B.
  • the overall control unit 10 the total time required to complete charging of the battery B when the vehicle A is traveling at the current traveling speed, and the total time required for traveling at the traveling speed adjusted by the traveling speed adjustment unit 10d
  • the configuration for estimating the time corresponds to the total time estimating section 10g.
  • the total time estimating unit 10g sums up the required time and the charging time estimated by the required time estimating unit 10e and the charging time estimating unit 10f to determine whether the vehicle is running at the current running speed or running at the running speed adjusting unit 10d. Estimate the total time when the speed is adjusted.
  • the total time when traveling at the current speed is the sum of the required time and charging time estimated assuming that the vehicle is traveling at the current speed.
  • the total time when the traveling speed is adjusted by the traveling speed adjusting unit 10d is the sum of the required time and the charging time estimated on the premise that the vehicle is traveling at the traveling speed adjusted by the traveling speed adjusting unit 10d. required by
  • the temperature control system 42 corresponds to the temperature control performance adjusting section 10h.
  • the temperature control performance adjusting unit 10h adjusts the temperature control performance of the temperature control system 42 so that the battery temperature Tb when the vehicle A arrives at the charging station CS becomes the target battery temperature TbO.
  • FIG. 1 The battery management program according to the first embodiment adjusts the temperature of the battery B by the temperature control system 42 and, when the vehicle A is running, shortens the charging time required for charging the battery B at the charging station CS as much as possible. is executed.
  • the battery management program according to the first embodiment is stored in the storage unit of the energy manager 1 as described above, and is read and executed by the integrated control unit 10 that constitutes the processing unit. Also, in the following description, it is assumed that the destination for travel of the vehicle A is set, and that the travel route from the current location to the destination is determined by the navigation device 70 . It is assumed that at least the charging station CS is included on the travel route set by the navigation device 70 .
  • step S1 the environment information obtained from the navigation device 70, the cloud server 100, etc. is used to estimate the situation at the time when the vehicle A arrives at the charging station CS.
  • the charging rate (remaining amount information) of the battery B at the time of arrival at the charging station CS can be estimated by referring to the current remaining amount information of the battery B, road traffic information, weather information, etc. as environmental information. can be done.
  • the battery temperature Tb at the time of arrival at the charging station CS the current battery temperature Tb, road traffic information, weather information, internal resistance of the battery B, temperature control capability of the temperature control system 42, etc. are referred to as environment information.
  • environment information can be estimated by After specifying the status of the battery B and the like at the time of arrival at the charging station CS using the environmental information, the process proceeds to step S2.
  • the temperature control capability of the temperature control system 42 in this case is limited within a predetermined standard capability limit. Specifically, the temperature control capability of the temperature control system 42 is limited by the maximum capacity of the components of the refrigeration cycle apparatus, and is also limited by the upper limit of the rotation speed of the compressor.
  • step S2 the target battery temperature TbO at the charging station CS related to the arrival situation in step S1 is calculated.
  • Target battery temperature TbO is determined such that battery temperature Tb is lower than battery temperature upper limit value TbU determined for battery B while battery B is being charged at charging station CS.
  • the target battery temperature TbO is determined so that the battery temperature Tb becomes equal to or lower than the battery temperature upper limit TbU at the time of completion of charging, in consideration of the self-heating of the battery B accompanying charging at the charging station CS.
  • the target battery temperature TbO for example, the planned charging amount of the battery B at the charging station CS, the center information including the standard of the charger at the charging station CS, and the information indicating the internal resistance of the battery B are used as the environmental information. be able to.
  • step S3 When the vehicle moves to step S3, it calculates the battery temperature control amount necessary for the battery temperature Tb at the time of arrival at the charging station CS to reach the target battery temperature TbO when the vehicle travels to the charging station CS at the current traveling speed.
  • the battery temperature adjustment amount the amount of heat generated by the battery B due to the running of the vehicle A and the ability of the temperature adjustment system 42 to adjust the temperature can be estimated as approximate numerical values. Therefore, in order to cool to the target battery temperature TbO, it is possible to specify the execution period of the temperature adjustment by the temperature adjustment system 42 .
  • step S4 the arrival battery temperature estimated in step S1 is compared with the target battery temperature TbO calculated in step S2. By comparing the arrival time battery temperature with the target battery temperature TbO, it is determined whether the temperature control execution time by the temperature control system 42 until arrival at the charging station CS is sufficient to reach the target battery temperature TbO. can be judged.
  • step S5 it is determined whether or not the temperature control execution time by the temperature control system 42 is insufficient based on the result of comparison between the arrival time battery temperature and the target battery temperature TbO in step S4.
  • the process proceeds to step S6. On the other hand, if the arrival time battery temperature is equal to or lower than the target battery temperature TbO, it means that the temperature control execution time is sufficient, and the process returns to step S1.
  • step S6 it is determined whether or not the temperature control performance of the temperature control system 42 can be improved.
  • the temperature control performance of the temperature control system 42 is usually limited by the maximum capacity set for the constituent equipment of the refrigeration cycle apparatus, for example, by the maximum compressor rotation speed.
  • the maximum compressor rotation speed is set for quality assurance purposes, and it may be possible to operate at a rotation speed higher than the maximum value for a short period of time. In other words, it is possible to temporarily improve the temperature control performance of the temperature control system 42 by operating the compressor at a rotational speed equal to or higher than the maximum value, albeit for a short period of time.
  • step S6 by temporarily improving the temperature control performance of the temperature control system 42, it is also determined whether or not the battery temperature upon arrival will become equal to or lower than the target battery temperature TbO. Even in this case, if the battery temperature upon arrival is higher than the target battery temperature TbO, the process proceeds to step S7, and if not, the process proceeds to step S8.
  • step S7 the running speed of the vehicle A when heading from the current location to the charging station CS is adjusted so that the arrival battery temperature becomes the target battery temperature TbO. Specifically, in step S7, the travel speed is adjusted based on the deceleration amount determination table stored in the storage unit of the energy manager 1.
  • FIG. The integrated control unit 10 that executes the process of step S7 functions as a traveling speed adjustment unit 10d.
  • the deceleration amount determination table is configured by associating the deceleration amount of the running speed with the battery temperature difference and the distance to the charging station CS.
  • the battery temperature difference means a value obtained by subtracting the target battery temperature TbO from the arrival battery temperature, and is the deviation amount of the arrival battery temperature from the target battery temperature TbO.
  • the distance to the charging station CS means the distance from the current location to the charging station CS. The distance to the charging station CS can also be replaced with the time to reach the charging station CS.
  • a line Db indicating a standard deceleration amount and a line Da indicating a larger deceleration amount are defined. , is determined to result in a larger deceleration amount.
  • step S7 the currently set target value of the running speed is updated using the determined deceleration amount of the running speed. Specifically, the determined deceleration amount is subtracted from the currently set running speed target value to set a new running speed target value.
  • the user can be notified of the newly set running speed target value via the information notification unit 50 .
  • Various methods such as image output and audio output can be adopted as a notification method for the user. For example, it may be displayed on the display of the navigation device 70, or through an audio system mounted on the vehicle A, the information regarding the target value of the running speed may be output by voice.
  • step S7 by adjusting the travel speed to secure the temperature control execution time, it is possible to control the battery temperature Tb at the time of arrival at the charging station CS to be the target battery temperature TbO.
  • the battery temperature Tb does not exceed the battery temperature upper limit value TbU, and the battery B is charged by fully utilizing the performance of the charging station CS. can be done. That is, the performance of the charging station CS can be fully utilized, and the charging time of the battery B in the charging station CS can be shortened.
  • step S8 the temperature control performance of the temperature control system 42 between the current location and the charging station CS is adjusted.
  • the temperature control system 42 controls the battery so that the arrival battery temperature reaches the target battery temperature TbO.
  • the temperature of B can be adjusted.
  • the integrated control unit 10 that executes step S8 functions as a temperature control performance adjusting unit 10h.
  • the battery temperature Tb does not exceed the battery temperature upper limit value TbU. can be charged. That is, the performance of the charging station CS can be fully utilized, and the charging time of the battery B in the charging station CS can be shortened.
  • FIG. 5 shows the influence of whether or not the running speed is adjusted on the change in the battery temperature Tb. shows the battery temperature Tb when FIG. 6 shows the influence of whether or not the running speed is adjusted on the change in the charging rate.
  • Figure 2 shows the rate of charge of Battery B when conditioned.
  • Time t0 to time t5 in FIGS. 5 and 6 indicate the same time.
  • Time t0 indicates the start time of control by the battery management program according to the first embodiment, and control is performed with t0 as the current time.
  • the battery B is self-heated due to the output of the vehicle A traveling, and is cooled by the temperature control system 42.
  • the battery temperature Tb drops. continue.
  • the charging rate of battery B also decreases as vehicle A travels toward charging station CS due to the output accompanying travel of vehicle A and the output accompanying operation of temperature control system 42 . To go.
  • Time t1 indicates the point in time when the vehicle A arrives at the charging station CS and charging at the charging station CS is started if the traveling speed is not adjusted. As indicated by the dashed line in FIG. 5, if the running speed is not adjusted, the temperature control execution time is insufficient, so the battery temperature Tb at time t1 (that is, the battery temperature at arrival) is lower than the target battery temperature TbO. is also expensive.
  • Time t2 indicates the point in time when battery temperature Tb reaches battery temperature upper limit value TbU due to charging at charging station CS.
  • the change in the charging rate of battery B shows different slopes before and after battery temperature Tb reaches battery temperature upper limit TbU. After that, the slope of the charging rate becomes gentle. This is because the charging current supplied by charging station CS is limited so that battery temperature Tb of battery B does not exceed battery temperature upper limit value TbU.
  • the vehicle does not arrive at the charging station CS at time t2, but arrives at the charging station CS at time t3.
  • the vehicle arrives at the charging station CS at time t3, and the battery temperature Tb at that time indicates the target battery temperature TbO.
  • the target battery temperature TbO at time t3 is determined so that the battery temperature Tb at the time of completion of charging (for example, when the charging rate reaches 100%) is equal to or lower than the battery temperature upper limit value TbU. Therefore, changes in battery temperature Tb and charging rate after time t3 are constant in the most efficient state.
  • the charging time of the battery B at the charging station CS is from time t2 to time t5 if the running speed is not adjusted.
  • the arrival at the charging station CS and the start of charging are time t3, which is later than the time t2 when the running speed is not adjusted, but the charging time is longer. , from time t3 to time t4.
  • the traveling speed is adjusted by the battery management program, thereby realizing efficient charging of the battery B at the charging station CS and shortening the charging time at the charging station CS. can be shortened.
  • step S7 when the vehicle A runs to the charging station CS by running the vehicle A and operating the temperature control system 42, in step S7, The travel speed towards the charging station CS can be adjusted. Since the operating time of the temperature control system 42 can be appropriately ensured by adjusting the travel speed, the battery temperature upon arrival at the charging station CS can be adjusted to the target battery temperature TbO. can. As a result, the charging performance of the charging station CS can be efficiently utilized, so that the time required to complete charging of the battery B in the charging station CS can be shortened.
  • the travel speed adjustment amount to the charging station CS is determined according to the battery temperature difference due to the difference between the battery temperature at arrival and the target battery temperature TbO.
  • the traveling time and the operating time of the temperature control system 42 that can secure the operating time of the temperature control system 42 necessary for the battery temperature Tb at the time of arrival at the charging station CS to reach the target battery temperature TbO can be specified. can determine the appropriate amount of adjustment.
  • the travel speed adjustment amount to the charging station CS is determined using a deceleration determination table that associates the battery temperature difference with the distance to the charging station CS.
  • the distance to the charging station CS corresponds to the time required to reach the charging station CS. Therefore, the energy manager 1 can more appropriately determine the travel speed adjustment amount, and can more reliably shorten the charging time at the charging station CS.
  • the travel speed adjustment amount is determined such that the longer the distance to the charging station CS corresponding to the time required to reach the charging station CS, the greater the deceleration.
  • the traveling speed is appropriately adjusted according to the time required to reach the charging station CS and the distance to the charging station CS, so that the charging time at the charging station CS can be shortened more reliably. can be done.
  • the travel speed adjustment amount is determined such that the larger the battery temperature difference, which indicates the degree of divergence between the arrival battery temperature and the target battery temperature TbO, the greater the deceleration.
  • the running speed is appropriately adjusted according to the degree of deviation between the battery temperature upon arrival and the target battery temperature, so that the charging time at the charging station CS can be shortened more reliably. can be done.
  • the adjustment result of the running speed is transmitted to the user via the information notification unit 50 in step S7.
  • the user can grasp the information about the traveling speed to the charging station CS, so that the user can perform the driving operation based on the adjustment result.
  • step S7 the travel speed adjustment result can be set as a control target value for the travel speed up to the charging station CS.
  • the control relating to traveling to the charging station CS has contents suitable for shortening the charging time, so that efficient charging can be realized at the charging station CS.
  • step S8 the temperature control performance (cooling performance) of the temperature control system 42 can be improved with respect to the temperature control performed by the temperature control system 42 from the current location to the charging station CS.
  • the arrival battery temperature can be adjusted to the target battery temperature TbO without adjusting the running speed of the vehicle A. That is, the energy manager 1 can shorten the charging time at the charging station CS from the viewpoint of the temperature control performance of the temperature control system 42 .
  • FIG. 7 a battery management program is executed for the purpose of shortening not only the charging time at the charging station CS but also the total required time Tt including the required time from the current location to the charging station CS.
  • the total required time Tt corresponds to an example of the total time.
  • FIG. 7 The processing contents of the battery management program according to the second embodiment will be described with reference to FIGS. 7 to 9.
  • FIG. The battery management program according to the second embodiment adjusts the temperature of the battery B by the temperature control system 42, and when the vehicle A is running, the total required time from the current time to the completion of charging at the charging station CS is calculated as much as possible. performed to make it shorter.
  • the total required time Tt is obtained by summing the required time required for traveling from the current point to the charging station CS and the charging time required for charging the battery B at the charging station CS. Also, the preconditions for executing the battery management program according to the second embodiment are the same as those of the first embodiment, and thus the description thereof will be omitted.
  • step S11 the environment information acquired from the navigation device 70, the cloud server 100, etc. is used to estimate the situation when the vehicle A arrives at the charging station CS. That is, in step S11, the same processing as in step S1 in the first embodiment is performed.
  • step S12 the target battery temperature TbO at the charging station CS related to the arrival situation in step S11 is calculated. Since the content of the target battery temperature TbO calculation process is the same as that of step S1 in the first embodiment, the description thereof will be omitted.
  • step S13 the battery temperature adjustment amount necessary for the battery temperature Tb at the time of arrival at the charging station CS to reach the target battery temperature TbO when traveling to the charging station CS at the current traveling speed is determined.
  • the processing contents of step S13 are the same as those of step S3 described above.
  • step S14 first, the total required time Tt when traveling to the charging station CS at the current traveling speed is estimated.
  • the time required to reach the charging station CS from the current location when traveling at the current traveling speed can be calculated using map information provided by the navigation device 70, road traffic information provided by the cloud server 100, and the like. Presumed.
  • the charging time at the charging station CS when traveling at the current traveling speed is specified using the remaining amount information of the battery B related to the arrival state specified in step S11 and the information of the charging station CS included in the center information. can.
  • the reference total required time Ttc the total required time Tt related to the current running speed
  • estimate the total required time Tt (hereinafter referred to as the total required time Ttd during deceleration) when traveling at a setting that is decelerated from the current travel speed.
  • the energy manager 1 assumes that the vehicle is traveling at a traveling speed that is reduced by a predetermined value from the currently determined traveling speed, and calculates the required time during deceleration and the charging time during deceleration. presume.
  • the time required for deceleration uses the travel speed during deceleration determined based on the travel speed currently set, the map information provided by the navigation device 70, the road traffic information provided by the cloud server 100, and the like. is estimated by Then, the charging time during deceleration can be specified by using the remaining amount information of the battery B at the time of arrival at the charging station CS in the deceleration setting and the information of the charging station CS included in the center information.
  • the remaining amount information in the deceleration setting can be estimated by the same method as in step S11 described above, except that the assumption of the traveling speed is different.
  • the total required time Ttd during deceleration can be obtained by summing the time required for the travel speed during deceleration and the charging time thus obtained.
  • the energy manager 1 estimates the total required time Tt (hereinafter referred to as total required time Tta when speeding up) when running at a setting that is increased from the current running speed.
  • the energy manager 1 assumes that the vehicle is traveling at a traveling speed that is increased by a predetermined value from the currently determined traveling speed, and calculates the required time during acceleration and Estimate charging time.
  • the required time for acceleration is determined based on the traveling speed currently set as a reference, the map information provided by the navigation device 70, the road traffic information provided by the cloud server 100, and the like. is estimated by using Then, the charging time during speed increase can be specified using the remaining amount information of the battery B at the time of arrival at the charging station CS in the speed increasing setting and the information of the charging station CS included in the center information.
  • the remaining amount information in the speed-up setting can be estimated by the same method as in step S11 described above, except that the assumption of the traveling speed is different.
  • the total time required at time of speed increase Tta can be obtained. After estimating the reference total required time Ttc, the total required time Ttd for deceleration, and the total required time Tta for acceleration, the process proceeds to step S15.
  • step S15 the reference total required time Ttc estimated in step S14, the total required time Ttd during deceleration, and the total required time Tta during acceleration are compared to evaluate the setting of the traveling speed from the current location to the charging station CS. That is, among the three types of travel speed settings, the setting that provides the shortest total required time Tt and quicker completion of charging of the battery B is specified.
  • step S16 it is determined whether or not the travel speed needs to be adjusted using the evaluation result in step S15. That is, it is determined whether or not the reference total required time Ttc is longer than the total required time Ttd during deceleration or the total required time Tta during acceleration.
  • the process returns to step S11.
  • step S17 it is determined whether or not the reference total required time Ttc is longer than the deceleration total required time Ttd. In this case, it means that the time required to complete the charging of the charging station CS can be shortened by adjusting the deceleration of the traveling speed rather than the traveling speed currently set, so the process proceeds to step S18.
  • step S19 when the reference total required time Ttc is shorter than the total required time Ttd during deceleration and the total required time Tta during acceleration, the process returns to step S11. Therefore, in the determination process of step S17, when the process proceeds to step S19, it corresponds to the case where the reference total required time Ttc is longer than the acceleration total required time Tta.
  • step S18 since decelerating the traveling speed from the currently set speed leads to shortening the total required time, the traveling speed deceleration process is executed.
  • the current running speed setting is updated to the running speed related to the total required time Ttd during deceleration.
  • the target value for the travel control of the vehicle A is also updated, and the newly updated travel speed is also notified.
  • the process returns to step S11.
  • step S19 increasing the traveling speed from the currently set speed leads to a reduction in the total required time, so the traveling speed acceleration process is executed.
  • the traveling speed acceleration process the current traveling speed setting is updated to the traveling speed corresponding to the total required time Tta for acceleration.
  • the target value for the travel control of the vehicle A is also updated, and the newly updated travel speed is also notified.
  • the process returns to step S11.
  • the energy manager 1 repeats the processes of steps S11 to S19 of the battery management program to set the travel speed from the current location to the charging station CS to the optimum setting that minimizes the total required time Tt. can do.
  • FIG. 8 shows the effect of running speed adjustment on changes in battery temperature Tb, and the battery temperature when running speed is not adjusted is indicated as reference time battery temperature Tbn.
  • the battery temperature when the travel speed is adjusted to decelerate is indicated as deceleration battery temperature Tbd
  • the battery temperature when the travel speed is adjusted to speed up is indicated as acceleration battery temperature Tba.
  • FIG. 9 shows the influence of the adjustment of the running speed on changes in the charging rate, and indicates the charging rate of the battery B when the running speed is not adjusted as the reference time charging rate Crn. Also, the charging rate of the battery B when the travel speed is adjusted to decelerate is indicated as the decelerating charging rate Crd, and the charging rate of the battery B when the travel speed is adjusted to speed up is indicated as the accelerating charging rate. It is indicated as Cra.
  • Time t0 indicates the time point at which control by the battery management program according to the second embodiment is started.
  • the battery B is self-heated due to the output of the vehicle A traveling, and is cooled by the temperature control system 42.
  • the battery temperature Tb drops. continue.
  • the charging rate of the battery B also decreases as the vehicle A travels toward the charging station CS due to the output accompanying the traveling of the vehicle A and the output accompanying the operation of the temperature control system 42 . .
  • the time tsc indicates the point in time when the vehicle A arrives at the charging station CS and charging at the charging station CS is started if the traveling speed is not adjusted. In this case, the arrival battery temperature reaches the target battery temperature TbO.
  • the reference time charging rate Crn becomes 100% when the traveling speed is not adjusted, and the charging of the battery B at the charging station CS is completed.
  • the reference battery temperature Tbn is equal to or lower than the battery temperature upper limit value TbU, so the charging time can be shortened as much as possible.
  • the charging time when the traveling speed is not adjusted is shown from time tsc to time tfc, and the reference total required time Ttc is shown from time t0 to time tfc. represented by
  • the traveling speed is adjusted to be decelerated and the load on the battery B is reduced, so the rate of decrease per unit time of the deceleration battery temperature Tbd is greater than the reference battery temperature Tbn. Therefore, the deceleration battery temperature Tbd reaches the target battery temperature TbO before the vehicle reaches the charging station CS. After that, the operation of the temperature control system 42 is controlled so as to maintain the target battery temperature TbO, and the battery reaches the charging station CS.
  • the time tsd is the time of arrival at the charging station CS and the time of starting charging of the battery B when the travel speed is adjusted to decelerate. Also in this case, the charging of battery B is started at charging station CS, and the deceleration charging rate Crd increases as time elapses. At this time, as shown in FIG. 9, due to the supply of the charging current to the battery B and the internal resistance of the battery B, the battery temperature Tbd during deceleration also rises as the charging time elapses.
  • the performance of the charging station CS can be fully utilized without being subject to the charging current limitation caused by the battery temperature Tb reaching the battery temperature upper limit value TbU. , the battery B can be charged.
  • the time tfd indicates the point in time when the charging of the battery B is completed when the running speed deceleration adjustment is performed. As shown in FIGS. 8 and 9, the charging rate Crd during deceleration at time tfd indicates 100%, and the battery temperature Tbd during deceleration indicates a value equal to or lower than battery temperature upper limit value TbU.
  • the charging time when the running speed is adjusted to decelerate is shown between time tsd and time tfd, and the total required time Ttd during deceleration is between time t0 and time tfd. represented by between.
  • the traveling speed is being adjusted to be accelerated, and the load on the battery B is increased. be smaller than Further, by adjusting the traveling speed to speed up, the required time from the current location to the charging station CS is also shortened. Arrive at charging station CS.
  • the time tsa means the time of arrival at the charging station CS and the time of starting charging of the battery B when the travel speed is adjusted to increase. Also in this case, the charging of the battery B at the charging station CS is started, and the speed-increasing charging rate Cra increases with the lapse of time. At this time, as shown in FIG. 9, due to the charging current supplied to the battery B and the internal resistance of the battery B, the acceleration battery temperature Tba also rises as the charging time elapses.
  • the arrival battery temperature is higher than the target battery temperature TbO. Therefore, when the speed-increasing battery temperature Tba increases as the battery B is charged in the charging station CS, the battery temperature upper limit value TbU is reached before the speed-increasing charging rate Cra reaches 100%. .
  • the charging time when the running speed is adjusted to increase speed is indicated between time tsa and time tfa, and the total required time Tta for speed increase is indicated between time t0 and time tfa.
  • the time required to reach the charging station CS from the current location is the shortest when the traveling speed is adjusted to increase. Also, in each case, when the timings at which the charging of the battery B is completed are compared, it can be seen that the timing is delayed in the order of time tfa, time tfc, and time tfd. That is, in the case of the examples shown in FIGS. 8 and 9, the movement to the charging station CS and the charging of the battery B can be completed most quickly when the travel speed from the current location to the charging station CS is increased and adjusted. .
  • the environmental information is used to estimate the total required time Tt when various travel speed adjustments are made, and the estimation results are compared. This makes it possible to adjust the traveling speed in the shortest time until charging is completed.
  • speed increase adjustment can also be used as a travel speed adjustment mode. can be
  • FIG. 10 to 12 a third embodiment different from the above-described embodiments will be described with reference to FIGS. 10 to 12.
  • FIG. 10 to 12 a case will be described in which the processing content described in the above embodiment is applied to a situation in which a plurality of charging stations CS are arranged on the travel route.
  • the basic configurations of the energy manager 1 and the like in the third embodiment are the same as those in the above-described embodiments.
  • the energy manager 1 adjusts the traveling speed using the estimation result of the total required time Tt in the above-described embodiment, and determines the presence or absence of charging at each charging station CS.
  • the first operation pattern means the operation pattern of the vehicle A when the battery B is charged at both the first charging station CSa and the second charging station CSb during the process of traveling from the departure point to the destination.
  • the second operation pattern is an operation pattern of the vehicle A in which the battery B is charged at the first charging station CSa and the vehicle A passes through the second charging station CSb in the course of traveling from the departure point to the destination.
  • the third operation pattern is an operation pattern of the vehicle A in the process of traveling from the departure point to the destination, passing through the first charging station CSa and charging the battery B at the second charging station CSb. .
  • the time required for traveling from the starting point to the first charging station CSa and the charging time at the first charging station CSa are estimated by applying the processing content according to the second embodiment described above.
  • the traveling speed Va is estimated as the optimum traveling speed from the departure point to the first charging station CSa, and the vehicle travels at the traveling speed Va.
  • the travel time Tra is estimated as the time required for the case.
  • the environmental information it is possible to estimate the state at the time of arrival when the vehicle travels from the starting point to the first charging station CSa at the traveling speed Va. Therefore, the charging time Tca of the battery B at the first charging station CSa can be estimated. can do.
  • the required time for traveling from the first charging station CSa to the second charging station and the charging time at the second charging station CSb are estimated by applying the processing content according to the above-described embodiment.
  • the traveling speed is obtained as the optimum traveling speed from the first charging station CSa to the second charging station CSb Vb is estimated.
  • the running time Trb is estimated as the required time when running at the running speed Vb.
  • Tcb can be estimated.
  • the traveling speed is obtained as the optimum traveling speed from the second charging station CSb to the destination.
  • Vc is estimated.
  • Trc is estimated as the required time when running at the running speed Vc.
  • the total required time Tt related to the first operation pattern can be obtained by summing the running time Tra, charging time Tca, running time Trb, charging time Tcb, and running time Trc.
  • the battery B is charged at the first charging station CSa, and the vehicle A passes through the second charging station CSb without charging the battery B. .
  • the time required for traveling from the departure point to the first charging station CSa and the charging time at the first charging station CSa are estimated by applying the processing content according to the above-described second embodiment.
  • the traveling speed Vd is estimated as the optimum traveling speed from the departure point to the first charging station CSa, and the vehicle travels at the traveling speed Vd.
  • the running time Trd is estimated as the time required when In addition, using the environmental information, it is possible to estimate the state at the time of arrival when traveling from the starting point to the first charging station CSa at the traveling speed Vd, so that the charging time Tcc of the battery B at the first charging station CSa can be estimated. can do.
  • the time required for traveling from the first charging station CSa to the destination is estimated by applying the processing content according to the above-described embodiment. .
  • the traveling speed Ve is estimated as the optimum traveling speed from the first charging station CSa to the destination. be done.
  • the running time Tre is estimated as the required time when running at the running speed Ve.
  • the total required time Tt according to the second operation pattern is the traveling time Trd from the departure point to the first charging station CSa, the charging time Tcc at the first charging station CSa, and the traveling time from the first charging station CSa to the destination. It is obtained by summing Tre.
  • the vehicle A passes through the first charging station CSa without charging the battery B, and the battery B is charged at the second charging station CSb. .
  • the time required for traveling from the departure point to the second charging station CSb and the charging time at the second charging station CSb are estimated by applying the processing content according to the second embodiment described above.
  • the traveling speed Vf is estimated as the optimum traveling speed from the departure point to the second charging station CSb, and the vehicle travels at the traveling speed Vf.
  • a running time Trf is estimated as the required time in the case of
  • the traveling speed Vg is obtained as the optimum traveling speed from the second charging station CSb to the destination. is estimated. Then, the running time Trg is estimated as the required time when running at the running speed Vg.
  • the total required time Tt according to the third operation pattern is the traveling time Trf from the departure point to the second charging station CSb, the charging time Tcd at the second charging station CSb, and the traveling time from the second charging station CSb to the destination. It is obtained by summing Trg.
  • the first charging station CSa and the second charging station CSb are present on the traveling route from the departure point to the destination, but the present invention is not limited to this aspect. do not have.
  • the number of charging facilities (charging stations CS) present on the travel route may be two or more.
  • the energy manager 1 even when a plurality of charging stations CS exist on the travel route from the departure point to the destination, the total required time Tt can be estimated. can. Since it is possible to consider a plurality of patterns of driving modes of the vehicle A, it is possible to select the charging station CS for charging the battery B so as to minimize the total required time.
  • the energy manager 1 which is an in-vehicle computer, executes the battery management program, so the technical idea according to the present disclosure can be regarded as the battery management program. It is also possible to regard the technical idea according to the present disclosure as a battery management method.
  • the temperature control system 42 is used as an example of the temperature control unit, but it is not limited to this aspect.
  • Various aspects can be adopted as the temperature adjustment unit as long as it is a device or system capable of adjusting the temperature of the battery B. FIG.
  • the cooling of the battery has been described as a mode of temperature adjustment, but it is also possible to configure so that the battery B is warmed up (heated).
  • the charging plan in the present disclosure may at least define the charging facility (charging station CS) used for charging the battery B when the vehicle A travels toward the destination in the future. It is sufficient that the location information of the charging facility is included in the environmental information.
  • the mode in which the traveling route along which the vehicle A will travel toward the destination in the future and the charging facilities (charging stations CS) arranged on the traveling route are determined is also an example of the charging plan. corresponds to
  • the following processing can be performed. For example, it is possible to estimate the arrival time of vehicle A to the charging facility by specifying the distance from the current location to the charging facility using the location information of the charging facility and dividing it by the running speed (for example, legal speed). . By estimating the arrival time of the vehicle A with respect to the charging facility in this manner, the processes of steps S1 and S11 of the above-described embodiment can be performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Computing Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Operations Research (AREA)
  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

バッテリ管理装置としてのエネルギマネージャ(1)は、車両(A)に搭載される走行用のバッテリ(B)の状態を管理する。バッテリ管理装置は、温度調整部(42)と、環境情報取得部(10a)と、温度推定部(10b)と、目標温度設定部(10c)と、走行速度調整部(10d)と、を有する。目標温度設定部は、車両の走行及び温度調整部の作動を行って車両が充電設備に到着した際に、効率よくバッテリの充電を行うことができる目標バッテリ温度を設定する。走行速度調整部は、温度推定部により推定されたバッテリ温度と、目標温度設定部で設定された目標バッテリ温度とを用いて、車両が充電設備へ走行する際の走行速度の調整量を定める。

Description

バッテリ管理装置 関連出願の相互参照
 本出願は、2021年9月29日に出願された日本特許出願2021-159156号に基づくもので、ここにその記載内容を援用する。
 本開示は、車両に搭載された走行用のバッテリを管理するバッテリ管理装置に関する。
 従来、車両に搭載された走行用のバッテリに対しては、バッテリの性能を充分に発揮させる為に、様々な観点での管理が行われている。例えば、特許文献1に記載されたバッテリ管理装置では、将来的な充電設備までの走行情報に基づいて、充電設備での充電に先んじで、バッテリの温度調整を行うように構成されている。
特開2021-27797号公報
 ここで、このようなバッテリ管理装置は、車両に搭載された走行用のバッテリに対して適用される為、バッテリの状態も車両の走行負荷の影響を受けることが想定される。特許文献1のように、充電設備におけるバッテリの充電に先んじて事前にバッテリの温度調整を行う構成であっても、車両の走行負荷の影響によっては、目標とする状態にバッテリの温度調整を行うことができない場合がある。
 例えば、車両の走行負荷が大きすぎる場合、走行負荷に起因するバッテリの発熱量が大きくなり、車両の温度調整部による冷却性能を上回ってしまうと、目標とする状態までバッテリを冷却することができない。
 又、車両の高速走行にて走行負荷が増大する場合には、高速走行により充電設備への到着時間が短くなることが考えられる。この場合、温度調整部による温調時間が短くなることになる為、目標とする状態までバッテリを冷却することができないことが想定される。
 目標とする状態までバッテリを冷却することができない場合、充電設備での充電に際して、バッテリの自己発熱の影響を鑑みて、充電設備での充電電流に制限がかかることが想定される。充電電流が制限された場合、充電設備におけるバッテリの充電に多大な時間が必要になる為、バッテリの充電完了までに要する時間のロスが大きくなってしまう。
 本開示は、上記点に鑑み、車両に搭載された走行用のバッテリを管理するバッテリ管理装置に関し、充電設備での充電完了までに要する時間を短縮可能なバッテリ管理装置を提供することを目的とする。
 本開示の一態様に係るバッテリ管理装置は、車両に搭載される走行用のバッテリの状態を管理するバッテリ管理装置である。バッテリ管理装置は、温度調整部と、環境情報取得部と、温度推定部と、目標温度設定部と、走行速度調整部と、を有する。
 温度調整部は、バッテリの温度調整を行う。環境情報取得部は、車両が目的地へ向かって将来的に走行する際の充電計画に基づくバッテリの充電が可能な充電設備に関する情報を含む環境情報を取得する。温度推定部は、環境情報取得部で取得した環境情報に基づいて、車両が充電設備に到着した際のバッテリ温度を推定する。目標温度設定部は、車両の走行及び温度調整部の作動を行って車両が充電設備に到着した際に、効率よくバッテリの充電を行うことができる目標バッテリ温度を設定する。走行速度調整部は、温度推定部により推定されたバッテリ温度と、目標温度設定部で設定された目標バッテリ温度とを用いて、車両が充電設備へ走行する際の走行速度の調整量を定める。
 バッテリ管理装置によれば、車両の走行及び温度調整部の作動を行って車両が充電設備へ走行する際に、走行速度調整部によって、充電設備へ向かう走行速度を調整することができる。走行速度が調整されることで、温度調整部の作動時間を適切に確保することができる為、充電設備に到着した際のバッテリ温度を、目標バッテリ温度となるように調整することができ、充電設備におけるバッテリの充電完了までの所要時間を短縮することができる。
 本開示についての上記目的及びその他の目的、特徴や利点は、添付図面を参照した下記詳細な説明から、より明確になる。添付図面において、
図1は、第1実施形態のバッテリ管理装置が適用される車両の構成図であり、 図2は、第1実施形態に係るエネルギマネージャの概略構成を示すブロック図であり、 図3は、第1実施形態に係るバッテリ管理プログラムのフローチャートであり、 図4は、第1実施形態における減速量決定テーブルの一例を示す説明図であり、 図5は、第1実施形態に係る走行速度調整処理がバッテリ温度に及ぼす影響を示す説明図であり、 図6は、第1実施形態に係る走行速度調整処理がバッテリの充電率に及ぼす影響を示す説明図であり、 図7は、第2実施形態に係るバッテリ管理プログラムのフローチャートであり、 図8は、第2実施形態に係る走行速度調整処理がバッテリ温度に及ぼす影響を示す説明図であり、 図9は、第2実施形態に係る走行速度調整処理がバッテリの充電率に及ぼす影響を示す説明図であり、 図10は、第3実施形態における第1運用パターンでの合計所要時間の一例を示す説明図であり、 図11は、第3実施形態における第2運用パターンでの合計所要時間の一例を示す説明図であり、 図12は、第3実施形態における第3運用パターンでの合計所要時間の一例を示す説明図である。
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各実施形態において、先行する実施形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の実施形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
 (第1実施形態)
 先ず、本開示における第1実施形態について、図面を参照しつつ説明する。第1実施形態においては、本開示に係るバッテリ管理装置を、車両Aに搭載されたエネルギマネージャ1として実現している。
 図1に示すように、車両Aは、走行用のバッテリBを搭載しており、バッテリBの電力で走行するBEV(Battery Electric Vehicle)である。エネルギマネージャ1は、統括制御部10、バッテリマネージャ20、運動マネージャ30、熱マネージャ40、情報通知部50を有しており、バッテリBの状態を管理する。
 ここで、エネルギマネージャ1は、処理部、RAM、記憶部、入出力インターフェース、及びこれらを接続するバス等を備えた車載コンピュータによって実現されている。処理部は、RAMと結合された演算処理のためのハードウェアである。処理部は、RAMへのアクセスにより、後述する各機能部の機能を実現させる種々の処理を実行する。記憶部は、不揮発性の記憶媒体を含む構成である。記憶部には、処理部によって実行される種々のプログラム(バッテリ管理プログラム等)が格納されている。エネルギマネージャ1の具体的構成及び各機能部については、後に詳細に説明する。
 そして、車両Aには、エネルギマネージャ1と共に、通信モジュール60、ナビゲーション装置70、ユーザ入力部80、複数の消費ドメインDEc、給電ドメインDEs及び充電システム21等が搭載されている。
 通信モジュール60は、車両Aに搭載される通信モジュール(Data Communication Module)である。通信モジュール60は、LTE(Long Term Evolution)及び5G等の通信規格に沿った無線通信により、車両Aの周囲の基地局との間で電波を送受信する。通信モジュール60の搭載により、車両Aは、ネットワークNWに接続可能なコネクテッドカーとなる。
 通信モジュール60は、ネットワークNWを通じて、クラウドサーバ100及びステーションマネージャ90等との間で情報を送受信できる。クラウドサーバ100は、クラウド上に設置された情報配信サーバであり、例えば、気象情報及び道路交通情報等を配信する。
 ステーションマネージャ90は、充電管理センタCTcに設置された演算システムである。ステーションマネージャ90は、特定の地域に設置された多数の充電ステーションCSと、ネットワークNWを通じて、通信可能に接続されている。ステーションマネージャ90は、各充電ステーションCSについてのステーション情報を把握している。ステーション情報には、充電ステーションCSの設置場所、使用中か否かを示す使用可否情報、及び充電器の充電能力情報等が含まれている。充電能力情報は、例えば、急速充電可能か否か、対応する充電の規格、及び急速充電の最大出力等である。ステーション情報は環境情報の一例である。
 充電ステーションCSは、車両Aに搭載される走行用のバッテリBを充電するインフラ施設であり、充電設備に相当する。各充電ステーションCSは、電力網を通じて供給される交流電力、又は太陽光発電システム等から供給される直流電力を用いて、バッテリBを充電する。充電ステーションCSは、例えば、ショッピングモール、コンビニエンスストア及び公共施設等の各駐車場に設置されている。
 ナビゲーション装置70は、ユーザによって設定された目的地までの走行経路を案内する車載装置である。ナビゲーション装置70は、画面表示及び音声再生等により、交差点、分岐ポイント及び合流ポイント等にて、直進、右左折及び車線変更等の誘導を行う。ナビゲーション装置70は、ナビ情報として、目的地までの距離、各走行区間での車速、高低差等の情報を、環境情報として、エネルギマネージャ1に提供可能である。
 ユーザ入力部80は、車両Aの乗員であるユーザによる入力操作を受け付ける操作デバイスである。ユーザ入力部80には、例えば、ナビゲーション装置70を操作するユーザ操作、温調制御(後述する)の起動及び停止の切り替えを行うユーザ操作、車両Aに関連する種々の設定値を変更するユーザ操作等が入力される。ユーザ入力部80は、ユーザ操作に基づく入力情報を、エネルギマネージャ1に提供可能である。
 例えば、ステアリングホイールのスポーク部に設けられたステアスイッチ、センターコンソール等に設置されたスイッチ及びダイヤル、並びにドライバの発話を検出する音声入力装置等が、ユーザ入力部80として車両Aに搭載される。又、ナビゲーション装置70のタッチパネル等がユーザ入力部80として機能してもよい。更に、スマートフォン及びタブレット端末等のユーザ端末が、有線又は無線によってエネルギマネージャ1に接続されることで、ユーザ入力部80として機能してもよい。
 消費ドメインは、バッテリB等の電力の使用により、種々の車両機能を実現する車載機器群である。一つの消費ドメインは、少なくとも一つのドメインマネージャを含んでおり、ドメインマネージャによって電力の消費を管理されるひと纏まりの車載機器群によって構成される。そして、複数の消費ドメインには、走行制御ドメイン及び温調制御ドメインが含まれている。
 走行制御ドメインは、車両Aの走行を制御する消費ドメインである。走行制御ドメインには、モータジェネレータMG、インバータINV、ステア制御システムSCS、ブレーキ制御システムBCS、及び運動マネージャ30が含まれている。
 モータジェネレータMGは、車両Aを走行させるための駆動力を発生させる駆動源である。インバータINVは、モータジェネレータMGによる力行及び回生を制御する。ステア制御システムSCSは、車両Aの操舵を制御する。ブレーキ制御システムBCSは、車両Aに生じさせる制動力を制御する。
 インバータINVは、モータジェネレータMGによる力行時において、バッテリBより供給される直流電力を三相交流電力に変換し、モータジェネレータMGに供給する。インバータINVは、交流電力の周波数、電流及び電圧を調節可能であり、モータジェネレータMGの発生駆動力を制御する。一方、モータジェネレータMGによる回生時において、インバータINVは、交流電力を直流電力に変換し、バッテリBに供給する。
 運動マネージャ30は、インバータINV、ステア制御システムSCS、ブレーキ制御システムBCSを統合的に制御し、ドライバの運転操作に従った車両Aの走行を実現させる。運動マネージャ30は、走行制御ドメインのドメインマネージャとして機能し、モータジェネレータMG、インバータINV、ステア制御システムSCS及びブレーキ制御システムBCSのそれぞれによる電力の消費を総合的に管理する。
 又、運動マネージャ30は、車速制御部30aを有している。車速制御部30aは、インバータINV、ステア制御システムSCS、ブレーキ制御システムBCSを統合的に制御して、車両Aの走行速度を制御する。
 そして、温調制御ドメインは、車両Aの居室空間の空気調和と、バッテリBの温度調整とを実施する消費ドメインである。温調制御ドメインには、空調装置41、温調システム42、及び熱マネージャ40が含まれている。尚、空調装置41は、一台の車両Aに対して、複数設置されていてもよい。
 空調装置41は、バッテリBからの供給電力を利用して、居室空間の暖房、冷房及び換気等を行う電動式の車両用空調装置である。空調装置41は、冷凍サイクル装置、送風ファン、電気ヒータ及び室内空調ユニット等を備えている。空調装置41は、冷凍サイクル装置の圧縮機、電気ヒータ及び室内空調ユニット等を制御し、暖気及び冷気を生成可能である。空調装置41は、送風ファンの作動により、生成した暖気又は冷気を、空調風として、居室空間に供給する。
 温調システム42は、バッテリBの冷却又は加熱を行うシステムである。温調システム42は、バッテリBと共に、モータジェネレータMG及びインバータINV等の冷却又は加熱を行ってもよい。温調システム42は、空調装置41によって加熱又は冷却させた熱媒体の循環により、電動走行系の温度を所定の温度範囲内に維持させる。
 一例として、温調システム42は、熱媒体回路、電動ポンプ、ラジエータ、チラー及び液温センサ等によって構成されている。熱媒体回路は、バッテリB、モータジェネレータMG及びインバータINV等の電動走行系の各構成を巡るように設置された配管を主体として構成される。電動ポンプは、熱媒体回路の配管内に充填された熱媒体を循環させる。熱媒体に移動したバッテリBの排熱は、ラジエータによって外気に放出されるか、又はチラーによって空調装置41の冷媒に放出される。液温センサは、熱媒体の温度を計測する。従って、温調システム42は温度調整部の一例に相当する。
 そして、熱マネージャ40は、空調装置41及び温調システム42の作動を制御する車載コンピュータである。熱マネージャ40は、居室空間の空調設定温度と、居室空間に設置された温度センサの計測温度とを比較し、空調装置41の空調作動を制御する。又、熱マネージャ40は、液温センサによる計測結果を参照し、空調装置41及び温調システム42の温調作動を制御する。
 即ち、熱マネージャ40は、熱ドメインのドメインマネージャとして機能する。そして、熱マネージャ40は、温調制御部40aを有しており、温調制御部40aは、空調装置41及び温調システム42のそれぞれによる電力の消費を総合的に管理する。
 給電ドメインは、消費ドメインへの電力供給を可能にするための車載機器群である。給電ドメインは、消費ドメインと同様に、少なくとも一つのドメインマネージャを含んでおり、充電回路、バッテリB及びバッテリマネージャ20を有している。
 充電回路は、バッテリマネージャ20との協働により、各消費ドメインとバッテリBとの間における電力の流れを統合的に制御するジャンクションボックスとして機能する。充電回路は、バッテリBからの電力供給と、バッテリBへの充電とを実施する。
 バッテリBは、電力を充放電可能な二次電池である。バッテリBは、多数の電池セルを含む組電池により構成されている。電池セルとしては、例えば、ニッケル水素電池、リチウムイオン電池、及び全固体電池等を採用することができる。バッテリBに蓄えられた電力は、主に車両Aの走行と居室空間の空調とに利用することができる。
 バッテリマネージャ20は、給電ドメインのドメインマネージャとして機能する車載コンピュータである。バッテリマネージャ20は、電源管理部20aを有しており、充電回路から各消費ドメインに供給される電力を管理する。又、バッテリマネージャ20は、バッテリBについての残量情報を、環境情報としてエネルギマネージャ1の統括制御部10に通知する。
 充電システム21は、給電ドメインに電力を供給し、バッテリBの充電を可能にする。充電システム21には、充電ステーションCSにて、外部の充電器が電気的に接続される。充電システム21は、充電ケーブルを通じて供給される充電用の電力を、充電回路に出力する。
 普通充電を行う場合、充電システム21は、普通充電用の充電器から供給される交流電力を直流電力に変換し、充電回路に供給する。一方、急速充電を行う場合、充電システム21は、急速充電用の充電器から供給される直流電力を、充電回路に出力する。充電システム21は、急速充電用の充電器と通信する機能を有しており、充電器の制御回路と連携して、充電回路に供給する電圧を制御する。
 図1に示すように、第1実施形態に係るエネルギマネージャ1は、統括制御部10、バッテリマネージャ20、運動マネージャ30、熱マネージャ40、情報通知部50を有している。上述したように、バッテリマネージャ20、運動マネージャ30、熱マネージャ40は、それぞれ特定機能(例えば、車両の走行機能や温調機能)に係る制御を司る車載コンピュータであり、エネルギマネージャ1の一部を構成している。
 そして、統括制御部10は、バッテリマネージャ20、運動マネージャ30、熱マネージャ40から出力された種々の情報を用いて、各消費ドメインによる電力の使用を統合的に管理する。統括制御部10は、車載コンピュータにより構成され、エネルギマネージャ1の一部を構成している。統括制御部10は、エネルギマネージャ1における制御処理の主要な役割を果たす。
 情報通知部50は、バッテリマネージャ20等の種々の情報を用いて特定された情報を通知する為のドメインマネージャとして機能する車載コンピュータであり、エネルギマネージャ1の一部を構成している。情報通知部50には、車両Aのユーザに情報を通知する為の消費ドメインが接続されている。例えば、ナビゲーション装置70のディスプレイやスピーカ、車室内最前部の計器盤(即ち、インストルメントパネル)に配置された表示部等が情報通知部50に接続されている。
 従って、情報通知部50は、統括制御部10で特定された情報(例えば、後述する推奨走行速度に係る情報)を、ナビゲーション装置70のディスプレイ等に表示することができる。又、情報通知部50は、統括制御部10で特定された情報を、ナビゲーション装置70のスピーカから、音声出力することができる。ナビゲーション装置70のディスプレイやスピーカ等は、情報伝達部の一例に相当する。
 尚、車載コンピュータであるエネルギマネージャ1への電力供給は、車両Aが非走行可能状態(例えば、イグニッションオフの状態)であっても継続されている。その為、エネルギマネージャ1は、放置期間においても、制御実行の必要があれば、各機能部を起動して所定の処理を実行できる。
 ここで、エネルギマネージャ1の統括制御部10では、消費ドメイン及び給電ドメインとして接続された各種制御対象機器を制御する制御部が一体に構成されている。図2に示すように、統括制御部10において、それぞれの制御対象機器の作動を制御する構成(ハードウェア及びソフトウェア)がそれぞれの制御対象機器の作動を制御する制御部を構成している。
 例えば、統括制御部10のうち、車両Aが目的地へ向かって将来的に走行する走行経路及び走行経路上に配置されバッテリBを充電可能な充電設備(即ち、充電ステーションCS)に関する情報を含む環境情報を取得する構成は、環境情報取得部10aに相当する。
 環境情報には、車両Aの目的地におけるバッテリBの状態に影響を与える情報が含まれている。目的地としては、車両Aが放置される駐車場又は待機場、或いは充電ステーションCS等を定めることができる。バッテリBの状態は、例えば残量及び温度等である。
 環境情報には、車両Aの外部より提供される情報が含まれており、例えば、ステーションマネージャ90及びクラウドサーバ100等より配信されるセンタ情報を挙げることができる。センタ情報には、充電ステーションCSの充電器に関する使用可否情報及び充電能力情報が含まれている。又、環境情報には、気象情報及び道路交通情報等が含まれている。気象情報には、ナビゲーション装置70に設定された走行経路上の外気温、日射量、路面からの輻射熱量、及び降雨や降雪の有無等を示す情報等が含まれている。
 更に、環境情報には、バッテリBの状態に影響する情報のうちで、車両Aの内部にて生成される情報が含まれている。例えば、ナビゲーション装置70、給電ドメイン及び消費ドメイン等より提供される情報は、環境情報の一例に相当する。ナビゲーション装置70から提供される情報としては、目的地までの距離、各区間の車速及び高低差に加えて、例えば、信号機の数(停車回数)等の情報が含まれている。
 そして、環境情報のうち、給電ドメインから提供される情報には、給電ドメインの状態を示すステータス情報が含まれている。ステータス情報には、バッテリBの残量情報及び温度情報等が含まれている。残量情報は、例えば、充電率(States Of Charge)の値を含んでいる。
 又、運動マネージャ30から提供される情報には、例えば、ドライバの運転傾向を示す情報が含まれており、具体的には、ドライバのアクセル開度及びブレーキ踏力の傾向を示す情報が少なくとも含まれている。
 そして、ユーザ入力部80から提供される情報を環境情報として取得してもよい。この場合、車両Aに乗車中のユーザがユーザ入力部80に入力した情報であってもよく、車両Aの外部にいるユーザがユーザ入力部80として機能するユーザ端末に入力した情報であってもよい。更に、エネルギマネージャ1等のシステム側からの問い合わせに対しユーザがリアルタイムに入力した情報であってもよく、ユーザの過去の操作によって記録された設定値を示す情報であってもよい。
 又、環境情報のうち、消費ドメインから提供される情報としては、各消費ドメインの状態を示すステータス情報を挙げることができる。例えば、ステータス情報には、居室空間の空調の設定温度(以下、「空調要求情報」)及び現在温度を示す空調情報、熱媒体回路における熱媒体の温度情報、モータジェネレータMG及びインバータINV等の状態(例えば、現在温度等)を示す情報等が含まれる。
 尚、環境情報としては、現在の実測値を含む情報に限定されるものではなく、将来の推定値を含む情報を含めることができる。具体的には、車両Aには、将来的な使用スケジュールが設定可能である。使用スケジュールは、車両Aを放置後の走行スケジュール、高負荷での走行スケジュール、充電スケジュール、バッテリBが高温な状態での放置後の走行スケジュール、及び低温下での放置後の走行スケジュール等を含めることができる。
 図2に示すように、統括制御部10のうち、環境情報取得部10aで取得した環境情報に基づいて、車両Aが充電ステーションCSに到着した際のバッテリBのバッテリ温度Tbを推定する構成は、温度推定部10bに相当する。具体的には、温度推定部10bは、ナビゲーション装置70から提供される走行経路に関する情報、ステーションマネージャ90から提供されるセンタ情報、クラウドサーバ100から提供される気象情報及び道路交通情報を用いて、バッテリ温度Tbを推定する。
 そして、統括制御部10の内、車両AがバッテリBの温調を行いつつ走行して、所定の充電ステーションCSに到着した場合に、効率よくバッテリBの充電を行うことができる目標バッテリ温度TbOを設定する構成は、目標温度設定部10cに相当する。
 ここで、充電ステーションCSにおけるバッテリBの充電において、バッテリBは、充電ステーションCSにて電力供給を受けることで自己発熱することが知られている。バッテリ温度Tbが高温になりすぎるとバッテリB自体の劣化要因となる為、予め定められたバッテリ温度上限値TbUよりも高温になると、充電ステーションCSから供給される充電電流の大きさが通常よりも低く制御される。
 この場合、充電電流が低く抑えられてしまう為、充電ステーションCSにおけるバッテリBの充電に要する充電時間が、バッテリ温度上限値TbUより低い通常状態よりも長期化してしまい、バッテリBに対する充電の効率が低下してしまう。
 目標温度設定部10cは、充電に伴うバッテリ温度Tbの上昇と、バッテリBに定められたバッテリ温度上限値TbUとの関係から、バッテリBの充電完了時点のバッテリ温度Tbがバッテリ温度上限値TbU以下になるように、目標バッテリ温度TbOを定める。
 又、統括制御部10の内、充電ステーションCS到着時のバッテリ温度Tbと、目標バッテリ温度TbOとを用いて、車両Aが充電ステーションCS設備へ走行する際の走行速度を調整する構成は、走行速度調整部10dに相当する。
 上述したように、充電ステーションCSへ向かって走行する際には、温調システム42によるバッテリBの温調と同時に、バッテリBに蓄えられた電力が出力される。即ち、充電ステーションCSまでの移動中には、車両Aの走行に伴うバッテリ温度Tbの上昇と、温調システム42によるバッテリ温度Tbの調整(冷却)が並行して行われる。
 車両Aの走行負荷が大きい程、走行に伴うバッテリ温度Tbの上昇が大きくなると考えられる。従って、温調システム42の冷却能力よりも、車両Aの走行負荷が大きい場合には、温調システム42によりバッテリBを充分に冷却することができず、充電ステーションCS到着時のバッテリ温度Tbが目標バッテリ温度TbOよりも高くなる場合が想定される。
 走行速度調整部10dは、車両Aの走行負荷を調整すると同時に、温調システム42によるバッテリBの温度調整の実行期間を確保する為に、充電ステーションCSへ向かう走行速度を調整する。走行速度は、走行速度調整部10dによって、少なくとも、充電ステーションCS到着時のバッテリ温度Tbが目標バッテリ温度TbOよりも低くなるように調整される。
 そして、統括制御部10の内、取得した環境情報に基づいて、車両Aの走行及び温調システム42の作動を行って車両Aが所定の充電ステーションCSに到着するまでに要する所要時間を推定する構成は、所要時間推定部10eに相当する。
 又、統括制御部10の内、充電ステーションCSに到着した場合の充電時間を、様々な環境情報に基づいて推定する構成は、充電時間推定部10fに相当する。充電時間推定部10fでは、現時点における走行速度で充電ステーションCSに到着した場合の充電時間と、走行速度調整部10dで調整された走行速度で走行して充電ステーションCSに到着した場合の充電時間とが推定される。
 充電時間推定部10fは、走行経路に関する情報、センタ情報、気象情報及び道路交通情報、バッテリBの残量情報等を用いて、現時点における走行速度で走行した場合における充電ステーションCS到着時のバッテリBの残量情報を推定する。そして、充電時間推定部10fは、到着した充電ステーションCSの情報と、到着時のバッテリBの残量情報に基づいて、到着した充電ステーションCSにおける充電時間を推定する。
 同様に、充電時間推定部10fは、走行経路に関する情報、センタ情報、気象情報及び道路交通情報、バッテリBの残量情報等に加えて、走行速度調整部10dで調整された走行速度の情報を用いて、速度調整を行った場合のバッテリBの残量情報を推定する。そして、充電時間推定部10fは、充電ステーションCSの情報とバッテリBの残量情報に基づいて、走行速度を調整した場合の充電時間を推定する。
 そして、統括制御部10の内、現時点における車両Aの走行速度で走行した場合のバッテリBの充電完了までに要する合計時間と、走行速度調整部10dで調整された走行速度で走行した場合の合計時間を推定する構成は、合計時間推定部10gに相当する。
 合計時間推定部10gは、所要時間推定部10e及び充電時間推定部10fで推定された所要時間及び充電時間を合算することで、現時点における走行速度で走行した場合と、走行速度調整部10dで走行速度を調整した場合の合計時間を推定する。
 現時点における走行速度で走行した場合の合計時間は、現時点で定められている走行速度で走行していることを前提として推定された所要時間と充電時間の合計である。又、走行速度調整部10dで走行速度が調整された場合の合計時間は、走行速度調整部10dで調整された走行速度で走行していることを前提として推定された所要時間と充電時間の合計により求められる。
 又、統括制御部10の内、走行速度調整部10dで車両Aの走行速度が調整される条件を満たし、且つ、温調システム42の温調性能を調整可能である場合に、温調システム42の温調性能を調整する構成は、温調性能調整部10hに相当する。温調性能調整部10hは、車両Aが充電ステーションCSに到着した際のバッテリ温度Tbが目標バッテリ温度TbOになるように、温調システム42の温調性能を調整する。
 続いて、第1実施形態に係るバッテリ管理プログラムの処理内容について、図3~図6を参照して説明する。第1実施形態に係るバッテリ管理プログラムは、温調システム42によるバッテリBの温度調整を行いつつ、車両Aが走行する場合に、充電ステーションCSにおけるバッテリBの充電に要する充電時間をできるだけ短くする為に実行される。
 尚、第1実施形態に係るバッテリ管理プログラムは、上述したように、エネルギマネージャ1の記憶部に格納されており、処理部を構成する統括制御部10によって読み出されて実行される。又、以下の説明においては、車両Aの走行に関する目的地が設定されているものとし、ナビゲーション装置70によって、現在地から目的地へ向かう走行経路が定められているものとする。そして、ナビゲーション装置70により設定された走行経路上には、少なくとも充電ステーションCSが含まれているものとする。
 図3に示すように、先ず、ステップS1では、ナビゲーション装置70、クラウドサーバ100等から取得した環境情報を用いて、充電ステーションCSに車両Aが到着した時点の状況を推定する。例えば、充電ステーションCSに到着した時点におけるバッテリBの充電率(残量情報)は、現時点におけるバッテリBの残量情報、道路交通情報、気象情報等を、環境情報として参照することで推定することができる。又、充電ステーションCSに到着した時点におけるバッテリ温度Tbは、現時点におけるバッテリ温度Tb、道路交通情報、気象情報、バッテリBの内部抵抗、温調システム42の温調可能能力等を、環境情報として参照することで推定することができる。環境情報を用いて、充電ステーションCS到着時のバッテリB等の状況を特定した後、ステップS2に移行する。
 尚、この場合における温調システム42の温調可能能力は、予め定められた標準的な能力制限の範囲内に制限されている。具体的には、温調システム42の温調可能能力は、冷凍サイクル装置の構成機器の最大能力により制限され、圧縮機の回転数上限値により制限される。
 ステップS2では、ステップS1の到着時状況に係る充電ステーションCSにおける目標バッテリ温度TbOが算出される。目標バッテリ温度TbOは、充電ステーションCSにおけるバッテリBの充電が行われている間、バッテリBに定められているバッテリ温度上限値TbUよりもバッテリ温度Tbが低くなるように定められる。
 即ち、目標バッテリ温度TbOは、充電ステーションCSでの充電に伴うバッテリBの自己発熱を鑑みて、充電完了時点で、バッテリ温度Tbがバッテリ温度上限値TbU以下になるように定められる。目標バッテリ温度TbOの算出に際して、環境情報として、例えば、充電ステーションCSにおけるバッテリBの充電予定量、充電ステーションCSにおける充電器の規格等を含むセンタ情報、バッテリBの内部抵抗等を示す情報を用いることができる。
 ステップS3に移行すると、現時点の走行速度で充電ステーションCSまで走行した場合において、充電ステーションCS到着時点のバッテリ温度Tbが目標バッテリ温度TbOとなる為に必要なバッテリ温調量を算出する。バッテリ温調量の算出に際し、車両Aの走行によるバッテリBの発熱量や、温調システム42による温調可能能力は凡その数値として推定することができる。この為、目標バッテリ温度TbOまで冷却する為に、温調システム42による温度調整の実行期間を特定することができる。
 ステップS4においては、ステップS1で推定された到着時バッテリ温度と、ステップS2で算出された目標バッテリ温度TbOとを比較する。到着時バッテリ温度と、目標バッテリ温度TbOとを比較することで、充電ステーションCSに到着するまでの温調システム42による温調実行時間が、目標バッテリ温度TbOにする為に十分であるか否かを判断することができる。
 ステップS5に移行すると、ステップS4における到着時バッテリ温度と目標バッテリ温度TbOとの比較結果に基づいて、温調システム42による温調実行時間が不足しているか否かが判断される。
 到着時バッテリ温度が目標バッテリ温度TbOよりも高い場合、バッテリBを目標バッテリ温度TbOまで冷却できていないことを意味する為、温調実行時間が不足しているものと判断することができる。温調実行時間が不足していると判断された場合、ステップS6に処理を移行する。一方、到着時バッテリ温度が目標バッテリ温度TbO以下である場合、温調実行時間が十分であることを意味する為、ステップS1に処理を戻す。
 ステップS6においては、温調システム42の温調性能を向上可能であるか否かが判断される。上述したように、温調システム42の温調性能は、通常、冷凍サイクル装置の構成機器に定められている最大能力によって制限されており、例えば、圧縮機の回転数の最大値によって制限されている。
 圧縮機の回転数の最大値は、品質保証の為に定められている場合が多く、短期間であれば最大値以上の回転数で運転することも可能である場合がある。つまり、短期間の間ではあるが、最大値以上の回転数で圧縮機を作動させることで、温調システム42の温調性能を一時的に向上させることも可能である。
 この為、ステップS6では、温調システム42の温調性能を一時的に向上させることによって、到着時バッテリ温度が目標バッテリ温度TbO以下になるか否かの判断も行われる。この場合でも、到着時バッテリ温度が目標バッテリ温度TbOよりも高い場合、ステップS7に移行し、そうでない場合は、ステップS8に移行する。
 ステップS7では、現在地から充電ステーションCSへ向かう際の車両Aの走行速度を、到着時バッテリ温度が目標バッテリ温度TbOになるように調整する。具体的に、ステップS7では、エネルギマネージャ1の記憶部に格納されている減速量決定テーブルに基づいて、走行速度の調整が行われる。ステップS7の処理を実行する統括制御部10は、走行速度調整部10dとして機能する。
 図4に示すように、減速量決定テーブルは、バッテリ温度差と、充電ステーションCSまでの距離に対して、走行速度の減速量を対応付けて構成されている。バッテリ温度差は、到着時バッテリ温度から目標バッテリ温度TbOを減算した値を意味し、目標バッテリ温度TbOに対する到着時バッテリ温度の乖離量である。充電ステーションCSまでの距離は、現在地から充電ステーションCSまでの距離を意味する。充電ステーションCSまでの距離は、充電ステーションCSに到着するまでの時間に置き換えることもできる。
 そして、減速量決定テーブルには、標準的な減速量を示す線Dbと、更に大きな減速量を示す線Daが定められており、何れも、バッテリ温度差及び充電ステーションCSまでの距離が大きい程、より大きな減速量になるように定められている。目標バッテリ温度TbOに対する到着時バッテリ温度の乖離量(バッテリ温度差)が大きい程、走行速度の減速量が大きく定められる為、現在地から充電ステーションCSの到着までに要する時間を長くすることができる。この結果、温調システム42によるバッテリBの温調実行時間を長くすることができるので、到着時バッテリ温度を目標バッテリ温度TbOにすることができる。
 そして、ステップS7では、決定された走行速度の減速量を用いて、現在設定されている走行速度の目標値を更新する。具体的には、現在設定されている走行速度の目標値から、決定された減速量を減算して、新たな走行速度の目標値に設定する。
 この時、情報通知部50を介して、新たに設定された走行速度の目標値を、ユーザに通知する構成とすることができる。ユーザに対する通知方法は、画像出力や音声出力等の様々な手法を採用することができる。例えば、ナビゲーション装置70のディスプレイに表示しても良いし、車両Aに搭載されたオーディオシステムを介して、走行速度の目標値に関する情報を音声出力しても良い。
 ステップS7において、走行速度を調整して温調実行時間を確保することで、充電ステーションCS到着時のバッテリ温度Tbが、目標バッテリ温度TbOになるように制御することができる。これにより、充電ステーションCSにてバッテリBの充電を行ったとしても、バッテリ温度Tbがバッテリ温度上限値TbUを超えることはなく、充電ステーションCSの性能を充分に活用したバッテリBの充電を行うことができる。つまり、充電ステーションCSの性能を充分に活かすことができ、充電ステーションCSにおけるバッテリBの充電時間を短期化することができる。
 そして、ステップS8に移行すると、現在地から充電ステーションCSまでの間に行われる温調システム42の温調性能が調整される。温調システム42による温調性能(冷却性能)を向上させることで、温調実行時間が不足している状態でも、到着時バッテリ温度が目標バッテリ温度TbOになるように、温調システム42によるバッテリBの温度調整を行うことができる。ステップS8を実行する統括制御部10は、温調性能調整部10hとして機能する。
 そして、この場合においても、充電ステーションCSにてバッテリBの充電を行ったとしても、バッテリ温度Tbがバッテリ温度上限値TbUを超えることはない為、充電ステーションCSの性能を充分に活用したバッテリBの充電を行うことができる。つまり、充電ステーションCSの性能を充分に活かすことができ、充電ステーションCSにおけるバッテリBの充電時間を短期化することができる。
 続いて、第1実施形態に係るバッテリ管理プログラムの効果について、図5、図6を参照して説明する。尚、図5は、走行速度の調整の有無がバッテリ温度Tbの変化に与える影響を示しており、走行速度の調整が行われなかった場合のバッテリ温度Tbを破線で示し、走行速度が減速調整された場合のバッテリ温度Tbを示す。そして、図6は、走行速度の調整の有無が充電率の変化に与える影響を示しており、走行速度の調整が行われなかった場合のバッテリBの充電率を破線で示し、走行速度が減速調整された場合のバッテリBの充電率を示す。
 更に、図5、図6における時間t0~時間t5は、それぞれ同じ時間を示している。時間t0は、第1実施形態に係るバッテリ管理プログラムによる制御開始時点を示しており、t0を現時点とした制御が行われる。
 先ず、走行速度調整が行われなかった場合のバッテリ温度Tb、バッテリBの充電率の変化について説明する。時間t0にて制御が開始されると、車両Aは、充電ステーションCSへ走行すると同時に、温調システム42によりバッテリBの冷却が行われる。
 この時、バッテリBには、車両Aの走行に伴う出力による自己発熱が生じると共に、温調システム42による冷却が行われ、充電ステーションCSへ向かって走行していくと同時に、バッテリ温度Tbは低下していく。図6の破線で示すように、バッテリBの充電率についても、車両Aの走行に伴う出力及び温調システム42の作動に伴う出力によって、充電ステーションCSに向かって走行していくと同時に低下していく。
 時間t1は、走行速度の調整が行われなかった場合に、車両Aが充電ステーションCSに到着し、充電ステーションCSにおける充電が開始された時点を示している。図5の破線で示すように、走行速度が調整されなかった場合、温調実行時間が不足しているため、時間t1におけるバッテリ温度Tb(即ち、到着時バッテリ温度)は、目標バッテリ温度TbOよりも高い。
 時間t1において、充電ステーションCSにおけるバッテリBの充電が開始されると、図6に示すように、バッテリBの充電率が上昇していく。この時、図5に示すように、バッテリBに対する充電電流の供給と、バッテリBの内部抵抗とにより、バッテリ温度Tbも充電時間の経過に伴って上昇していく。
 時間t2は、充電ステーションCSでの充電により、バッテリ温度Tbがバッテリ温度上限値TbUに到達した時点を示している。この時、図6の破線からわかるように、バッテリBの充電率の変化は、バッテリ温度Tbがバッテリ温度上限値TbUに到達する前後で異なる傾きを示しており、バッテリ温度上限値TbUに到達した後は、充電率の傾きは緩やかになっている。これは、バッテリBのバッテリ温度Tbがバッテリ温度上限値TbUを超えないように、充電ステーションCSで供給される充電電流が制限されることに起因している。
 この為、時間t2から時間t5までの間では、単位時間当たりの充電率の増加は、時間t1から時間t2までの期間よりも緩やかになる。そして、時間t5において、バッテリBの充電率が100%になるまでは、時間t1から時間t5までの充電時間が必要になることがわかる。
 続いて、走行速度の減速調整が行われた場合のバッテリ温度Tb、バッテリBの充電率の変化について説明する。時間t0にて制御が開始されると、車両Aは、走行速度の調整が行われなかった場合と同様に、充電ステーションCSへ走行すると同時に、温調システム42によりバッテリBの冷却が行われる。
 この時、図5における実線と破線からわかるように、充電ステーションCSへ向かって走行している間におけるバッテリ温度Tbの低下度合は、走行速度の減速調整が行われた場合の方が、走行速度の調整が行われなかった場合よりも大きい。これは、走行速度の減速調整を行ったことで、車両Aの走行に伴うバッテリBの出力が小さくなり、温調システム42により、効率よくバッテリBを冷却できるためである。
 そして、走行速度の減速調整が行われた場合、時間t2の時点では、充電ステーションCSに到着せず、時間t3の時点で充電ステーションCSに到着する。図5の実線で示すように、走行速度の減速調整を行った場合、時間t3において、充電ステーションCSに到着し、その時点のバッテリ温度Tbは、目標バッテリ温度TbOを示す。
 時間t3において、充電ステーションCSにおけるバッテリBの充電が開始されると、図6の実線で示すように、バッテリBの充電率が上昇していく。この時、図5の実線で示すように、バッテリBに対する充電電流の供給と、バッテリBの内部抵抗とにより、バッテリ温度Tbも充電時間の経過に伴って上昇していく。
 ここで、時間t3における目標バッテリ温度TbOは、充電完了時点(例えば、充電率が100%になる時点)のバッテリ温度Tbがバッテリ温度上限値TbU以下となるように定められている。この為、時間t3以後のバッテリ温度Tb及び充電率の変化は、最も効率の良い状態で一定である。
 そして、図6の実線で示すように、時間t4になった時点で、バッテリBの充電率が100%になり、バッテリBの充電を完了する。上述したように、時間t4において、バッテリ温度Tbは、バッテリ温度上限値TbU以下となっている。
 上述の例によれば、走行速度の調整が行われなかった場合、充電ステーションCSにおけるバッテリBの充電時間は、時間t2から時間t5までである。一方、走行速度の減速調整が行われた場合、充電ステーションCSへの到着及び充電の開始は、走行速度の調整が行われなかった場合の時間t2よりも遅い時間t3であるが、充電時間は、時間t3から時間t4までである。
 即ち、第1実施形態に係るエネルギマネージャ1によれば、バッテリ管理プログラムによる走行速度の調整を行うことで、充電ステーションCSにおけるバッテリBの効率の良い充電を実現して、充電ステーションCSにおける充電時間を短期化することができる。
 以上説明したように、第1実施形態に係るエネルギマネージャ1によれば、車両Aの走行及び温調システム42の作動を行って車両Aが充電ステーションCSへ走行する際に、ステップS7にて、充電ステーションCSへ向かう走行速度を調整することができる。走行速度が調整されることで、温調システム42の作動時間を適切に確保することができる為、充電ステーションCSに到着した際のバッテリ温度を、目標バッテリ温度TbOとなるように調整することができる。これにより、充電ステーションCSにおける充電性能を効率よく活用することができるので、充電ステーションCSにおけるバッテリBの充電完了までの所要時間を短縮することができる。
 又、エネルギマネージャ1によれば、図4に示すように、到着時バッテリ温度と目標バッテリ温度TbOの差によるバッテリ温度差に応じて、充電ステーションCSまでの走行速度の調整量を定めている。これにより、充電ステーションCSに到着した時点のバッテリ温度Tbが目標バッテリ温度TbOにする為に必要な温調システム42の作動時間を確保可能な走行時間及び温調システム42の作動時間を特定することができ、適切な調整量を定めることができる。
 そして、図4に示すように、充電ステーションCSまでの走行速度の調整量は、バッテリ温度差と、充電ステーションCSまでの距離とを対応付けた減速量決定テーブルを用いて決定される。充電ステーションCSまでの距離は、充電ステーションCSまでに要する所要時間に対応する。従って、エネルギマネージャ1は、より適切に走行速度の調整量を決定することができ、より確実に、充電ステーションCSにおける充電時間の短縮化を図ることができる。
 又、図4に示すように、充電ステーションCSまでの所要時間に対応する充電ステーションCSまでの距離が長い程、大きく減速させるように走行速度の調整量が決定されている。これにより、充電ステーションCSまでの所要時間及び充電ステーションCSまでの距離に応じて、走行速度が適切に調整されることになる為、より確実に、充電ステーションCSにおける充電時間の短縮化を図ることができる。
 そして、図4に示すように、到着時バッテリ温度と目標バッテリ温度TbOの乖離度を示すバッテリ温度差が大きい程、大きく減速させるように走行速度の調整量が決定されている。これにより、到着時バッテリ温度と目標バッテリ温度との乖離の大きさに応じて、走行速度が適切に調整されることになる為、より確実に、充電ステーションCSにおける充電時間の短縮化を図ることができる。
 又、エネルギマネージャ1によれば、ステップS7において、走行速度の調整結果が情報通知部50を介して、ユーザに伝達される。これにより、ユーザは、充電ステーションCSまでの走行速度に関する情報を把握することができるので、調整結果を踏まえた運転操作を行うことができる。
 そして、エネルギマネージャ1によれば、ステップS7において、走行速度の調整結果を、充電ステーションCSまでの走行速度に関する制御の目標値に設定することができる。これにより、充電ステーションCSまでの走行に関する制御が、充電時間の短縮化に適した内容になる為、充電ステーションCSにおいて効率の良い充電を実現することができる。
 又、エネルギマネージャ1によれば、ステップS8において、現在地から充電ステーションCSまでに行われる温調システム42による温度調整に関して、温調システム42の温調性能(冷却性能)を向上させることができる。これにより、車両Aの走行速度を調整することなく、到着時バッテリ温度が目標バッテリ温度TbOになるように調整することができる。つまり、エネルギマネージャ1は、温調システム42の温調性能の観点から、充電ステーションCSにおける充電時間の短縮化を図ることができる。
 (第2実施形態)
 次に、上述した実施形態と異なる第2実施形態について、図7~図9を参照して説明する。第2実施形態では、充電ステーションCSにおける充電時間だけでなく、現在地か充電ステーションCSまでの所要時間を含めた合計所要時間Ttの短縮化を目的としたバッテリ管理プログラムが実行される。その他、エネルギマネージャ1の基本的構成等については、上述した実施形態と同様である為、再度の説明を省略する。尚、合計所要時間Ttは合計時間の一例に相当する。
 第2実施形態に係るバッテリ管理プログラムの処理内容について、図7~図9を参照して説明する。第2実施形態に係るバッテリ管理プログラムは、温調システム42によるバッテリBの温度調整を行いつつ、車両Aが走行する場合に、現時点から充電ステーションCSでの充電完了までに要する合計所要時間をできるだけ短くする為に実行される。
 尚、合計所要時間Ttは、現時点から充電ステーションCSまでの走行に要する所要時間と、充電ステーションCSにおけるバッテリBの充電に要する充電時間の合計により求められる。又、第2実施形態に係るバッテリ管理プログラムの実行に関する前提条件は、第1実施形態と同様である為、再度の説明は省略する。
 図7に示すように、ステップS11では、ナビゲーション装置70、クラウドサーバ100等から取得した環境情報を用いて、充電ステーションCSに車両Aが到着した時点の状況を推定する。即ち、ステップS11では、第1実施形態におけるステップS1と同様の処理が行われる。
 ステップS12においては、ステップS11の到着時状況に係る充電ステーションCSにおける目標バッテリ温度TbOが算出される。目標バッテリ温度TbOの算出処理の内容は、第1実施形態におけるステップS1と同様である為、再度の説明を省略する。
 ステップS13に移行すると、現時点の走行速度で充電ステーションCSまで走行した場合において、充電ステーションCS到着時点のバッテリ温度Tbが目標バッテリ温度TbOとなる為に必要なバッテリ温調量が決定される。ステップS13の処理内容は、上述したステップS3と同様である。
 ステップS14では、先ず、現時点で定められている走行速度で充電ステーションCSへ走行した場合の合計所要時間Ttを推定する。現時点の走行速度で走行した場合に、現在地から充電ステーションCSに到着するまでに要する所要時間は、ナビゲーション装置70から提供される地図情報、クラウドサーバ100から提供される道路交通情報等を用いることで推定される。そして、現時点の走行速度で走行した場合の充電ステーションCSにおける充電時間は、ステップS11で特定した到着時状況に係るバッテリBの残量情報、センタ情報に含まれる充電ステーションCSの情報を用いて特定できる。こうして求められた現時点の走行速度に係る所要時間と充電時間を合計することで、現時点の走行速度に係る合計所要時間Tt(以下、基準合計所要時間Ttcという)を求めることができる。
 続いて、現時点で定められている走行速度から減速した設定で走行した場合の合計所要時間Tt(以下、減速時合計所要時間Ttdという)を推定する。エネルギマネージャ1は、現時点で定められている走行速度から、予め定められている値の分だけ減速した走行速度で走行するものと仮定して、減速時における所要時間と、減速時における充電時間を推定する。
 減速時の所要時間は、現時点で設定されている走行速度を基準として定められる減速時の走行速度と、ナビゲーション装置70から提供される地図情報、クラウドサーバ100から提供される道路交通情報等を用いることで推定される。そして、減速時の充電時間は、減速設定における充電ステーションCS到着時のバッテリBの残量情報、センタ情報に含まれる充電ステーションCSの情報を用いて特定できる。減速設定における残量情報は、走行速度の仮定が異なる点を除いて、上述のステップS11と同様の手法によって推定できる。こうして求められた減速時の走行速度に係る所要時間と充電時間を合計することで、減速時合計所要時間Ttdを求めることができる。
 更に、現時点で定められている走行速度から増速した設定で走行した場合の合計所要時間Tt(以下、増速時合計所要時間Ttaという)を推定する。エネルギマネージャ1は、現時点で定められている走行速度から、予め定められている値の分だけ増速した走行速度で走行するものと仮定して、増速時における所要時間と、増速時における充電時間を推定する。
 増速時の所要時間は、現時点で設定されている走行速度を基準として定められる増速時の走行速度と、ナビゲーション装置70から提供される地図情報、クラウドサーバ100から提供される道路交通情報等を用いることで推定される。そして、増速時の充電時間は、増速設定における充電ステーションCS到着時のバッテリBの残量情報、センタ情報に含まれる充電ステーションCSの情報を用いて特定できる。増速設定における残量情報は、走行速度の仮定が異なる点を除いて、上述のステップS11と同様の手法によって推定できる。こうして求められた増速時の走行速度に係る所要時間と充電時間を合計することで、増速時合計所要時間Ttaを求めることができる。現時点の走行速度に係る基準合計所要時間Ttc、減速時合計所要時間Ttd、増速時合計所要時間Ttaを推定した後、ステップS15に処理を進める。
 ステップS15では、ステップS14で推定した基準合計所要時間Ttc、減速時合計所要時間Ttd、増速時合計所要時間Ttaを比較して、現在地から充電ステーションCSへ向かう走行速度の設定を評価する。即ち、3種類の走行速度の設定のうち、最も合計所要時間Ttが短く、バッテリBの充電完了が早くなる設定を特定する。
 ステップS16では、ステップS15における評価結果を用いて、走行速度の調整が必要であるか否かを判断する。即ち、基準合計所要時間Ttcが、減速時合計所要時間Ttd又は増速時合計所要時間Ttaよりも長いか否かが判断される。
 基準合計所要時間Ttcが、減速時合計所要時間Ttd又は増速時合計所要時間Ttaよりも長いということは、走行速度の減速又は増速が必要であることを意味する為、ステップS17に処理を移行する。
 一方、基準合計所要時間Ttcが、3種類の合計所要時間Ttのうちで最も短い場合、現時点で設定されている走行速度の設定が、最も合計所要時間Ttが短くなる設定であることを意味する。この場合、現時点における走行速度の設定を調整する必要はない為、ステップS11に処理を戻す。
 ステップS17では、基準合計所要時間Ttcが減速時合計所要時間Ttdよりも長いか否かを判断する。この場合、現時点で設定されている走行速度よりも、走行速度の減速調整を行った方が、充電ステーションCSの充電完了までに要する時間を短くできることを意味する為、ステップS18に処理を進める。
 一方、基準合計所要時間Ttcが減速時合計所要時間Ttdよりも長くない場合には、ステップS19に処理を移行する。上述したように、ステップS16において、基準合計所要時間Ttcが減速時合計所要時間Ttd及び増速時合計所要時間Ttaよりも短い場合は、ステップS11に戻るように構成されている。従って、ステップS17の判断処理において、ステップS19に移行する場合は、基準合計所要時間Ttcが増速時合計所要時間Ttaよりも長い場合に相当する。
 ステップS18では、現時点で設定されている走行速度よりも減速した方が、合計所要時間の短縮につながる為、走行速度減速処理を実行する。走行速度減速処理では、現時点に係る走行速度の設定を、減速時合計所要時間Ttdに係る走行速度に更新する。この時、車両Aの走行制御に関する目標値も更新され、新たに更新された走行速度に関する通知も行われる。走行速度減速処理を終了すると、ステップS11に処理を戻す。
 そして、ステップS19においては、現時点で設定されている走行速度よりも増速した方が、合計所要時間の短縮につながる為、走行速度増速処理を実行する。走行速度増速処理では、現時点に係る走行速度の設定を、増速時合計所要時間Ttaに係る走行速度に更新する。この時、車両Aの走行制御に関する目標値も更新され、新たに更新された走行速度に関する通知も行われる。走行速度増速処理を終了すると、ステップS11に処理を戻す。
 第2実施形態に係るエネルギマネージャ1は、バッテリ管理プログラムのステップS11~ステップS19の処理を繰り返すことで、現在地から充電ステーションCSへの走行速度を、合計所要時間Ttが最も短くなる最適な設定にすることができる。
 続いて、第2実施形態に係るバッテリ管理プログラムの効果について、図8、図9を参照して説明する。尚、図8は、走行速度の調整がバッテリ温度Tbの変化に与える影響を示しており、走行速度の調整が行われなかった場合のバッテリ温度を基準時バッテリ温度Tbnと示している。又、走行速度の減速調整が行われた場合のバッテリ温度を減速時バッテリ温度Tbdと示し、走行速度の増速調整が行われた場合のバッテリ温度を増速時バッテリ温度Tbaと示している。
 そして、図9は、走行速度の調整が充電率の変化に与える影響を示しており、走行速度の調整が行われなかった場合のバッテリBの充電率を基準時充電率Crnと示している。又、走行速度の減速調整が行われた場合のバッテリBの充電率を減速時充電率Crdと示し、走行速度の増速調整が行われた場合のバッテリBの充電率を増速時充電率Craと示している。
 更に、図8、図9における時間t0、時間tsc、時間tsd、時間tsa、時間tfc、時間tfd、時間tfaは、それぞれ同じ時間を示している。時間t0は、第2実施形態に係るバッテリ管理プログラムによる制御開始時点を示している。
 先ず、走行速度調整が行われなかった場合のバッテリ温度Tb、バッテリBの充電率の変化について説明する。時間t0にて制御が開始されると、車両Aは、充電ステーションCSへ走行すると同時に、温調システム42によりバッテリBの冷却が行われる。
 この時、バッテリBには、車両Aの走行に伴う出力による自己発熱が生じると共に、温調システム42による冷却が行われ、充電ステーションCSへ向かって走行していくと同時に、バッテリ温度Tbは低下していく。図9に示すように、バッテリBの充電率についても、車両Aの走行に伴う出力及び温調システム42の作動に伴う出力によって、充電ステーションCSに向かって走行していくと同時に低下していく。
 時間tscは、走行速度の調整が行われなかった場合に、車両Aが充電ステーションCSに到着し、充電ステーションCSにおける充電が開始された時点を示している。この場合の到着時バッテリ温度は、目標バッテリ温度TbOに到達している。
 時間tscにて、充電ステーションCSにおけるバッテリBの充電が開始されると、図9に示すように、基準時充電率Crnが上昇していく。この時、図8に示すように、バッテリBに対する充電電流の供給と、バッテリBの内部抵抗とにより、基準時バッテリ温度Tbnも充電時間の経過に伴って上昇していく。
 時間tfcでは、走行速度の調整が行われなかった場合の基準時充電率Crnが100%になり、充電ステーションCSにおけるバッテリBの充電を完了する。時間tfcにおいて、基準時バッテリ温度Tbnは、バッテリ温度上限値TbU以下を示すので、充電時間をできるだけ短くすることができている。
 図8、図9に示す例において、走行速度の調整が行われなかった場合の充電時間は、時間tscから時間tfcの間で示され、基準合計所要時間Ttcは、時間t0から時間tfcの間によって表される。
 次に、走行速度の減速調整が行われた場合のバッテリ温度Tb、バッテリBの充電率の変化について説明する。時間t0にて制御が開始されると、車両Aは、走行速度の調整が行われなかった場合と同様に、充電ステーションCSへ走行すると同時に、温調システム42によりバッテリBの冷却が行われる。
 この時、走行速度が減速調整されており、バッテリBに対する負荷が小さくなっている為、減速時バッテリ温度Tbdの単位時間当たりの低下度合は、基準時バッテリ温度Tbnよりも大きくなる。この為、充電ステーションCSに到着する前の時点で、減速時バッテリ温度Tbdは、目標バッテリ温度TbOに到達する。その後、目標バッテリ温度TbOを維持するように温調システム42の作動が制御され、充電ステーションCSに到着する。
 時間tsdは、走行速度の減速調整が行われた場合の充電ステーションCSの到着時点であり、且つ、バッテリBの充電開始時点を意味する。この場合も、充電ステーションCSにおけるバッテリBの充電が開始され、時間の経過に伴って、減速時充電率Crdが上昇していく。この時、図9に示すように、バッテリBに対する充電電流の供給と、バッテリBの内部抵抗とにより、減速時バッテリ温度Tbdも充電時間の経過に伴って上昇していく。
 到着時バッテリ温度が目標バッテリ温度TbOになっているため、バッテリ温度Tbがバッテリ温度上限値TbUになることに起因する充電電流の制限を受けることなく、充電ステーションCSの性能を充分に活用して、バッテリBの充電を行うことができる。
 時間tfdは、走行速度の減速調整が行われた場合におけるバッテリBの充電が完了した時点を示す。図8、図9に示すように、時間tfdにおける減速時充電率Crdは100%を示し、減速時バッテリ温度Tbdは、バッテリ温度上限値TbU以下の値を示している。
 図8、図9に示す例において、走行速度の減速調整が行われた場合の充電時間は、時間tsdから時間tfdの間で示され、減速時合計所要時間Ttdは、時間t0から時間tfdの間によって表される。
 続いて、走行速度の増速調整が行われた場合のバッテリ温度Tb、バッテリBの充電率の変化について説明する。時間t0にて制御が開始されると、車両Aは、走行速度の調整が行われなかった場合と同様に、充電ステーションCSへ走行すると同時に、温調システム42によりバッテリBの冷却が行われる。
 この時、走行速度が増速調整されており、バッテリBに対する負荷が大きくなっている為、増速時バッテリ温度Tbaの単位時間当たりの低下度合は、基準時バッテリ温度Tbn、減速時バッテリ温度Tbdよりも小さくなる。又、走行速度を増速調整することで、現在地から充電ステーションCSまでの所要時間も短くなる為、増速時バッテリ温度Tbaが目標バッテリ温度TbOになるように冷却される前に、車両Aが充電ステーションCSに到着する。
 時間tsaは、走行速度の増速調整が行われた場合の充電ステーションCSの到着時点であり、且つ、バッテリBの充電開始時点を意味する。この場合も、充電ステーションCSにおけるバッテリBの充電が開始され、時間の経過に伴って、増速時充電率Craが上昇していく。この時、図9に示すように、バッテリBに対する充電電流の供給と、バッテリBの内部抵抗とにより、増速時バッテリ温度Tbaも充電時間の経過に伴って上昇していく。
 ここで、走行速度の増速調整が行われた場合、到着時バッテリ温度は目標バッテリ温度TbOよりも高い状態である。この為、充電ステーションCSにおけるバッテリBの充電に伴い、増速時バッテリ温度Tbaが上昇していくと、増速時充電率Craが100%になる前に、バッテリ温度上限値TbUに達してしまう。
 増速時バッテリ温度Tbaがバッテリ温度上限値TbUに到達した時点で、充電ステーションCSにて、バッテリBへ供給される充電電流が制限される。この為、図9に示すように、増速時充電率Craの単位時間当たりの増加量は、増速時バッテリ温度Tbaがバッテリ温度上限値TbUに到達した時点から緩やかになる。制限された充電電流によるバッテリBの充電の結果、増速時充電率Craが100%になると、この場合におけるバッテリBの充電を完了する。図8、図9においては、この時点を時間tfaで示している。
 従って、走行速度の増速調整が行われた場合の充電時間は、時間tsaから時間tfaの間で示され、増速時合計所要時間Ttaは、時間t0から時間tfaの間によって表される。
 図8、図9に示す例においては、現在地から充電ステーションCSに到着するまでの所要時間が最も短いのは、走行速度の増速調整を行った場合である。又、それぞれの場合において、バッテリBへの充電が完了した時点を比較すると、時間tfa、時間tfc、時間tfdの順に遅くなっていることがわかる。即ち、図8、図9に示す例の場合、現在地から充電ステーションCSまでの走行速度を増速調整した場合が、充電ステーションCSへの移動及びバッテリBの充電を、最もはやく完了することができる。
 以上説明したように、第2実施形態に係るエネルギマネージャ1によれば、環境情報を利用して、様々な走行速度の調整を行った場合の合計所要時間Ttを推定し、推定結果を比較することで、充電完了までの時間が最も短く走行速度の調整を実現できる。又、第2実施形態においては、走行速度の調整態様として、減速調整に加えて、増速調整も今日呂することができるので、より適切な態様で、バッテリBの充電完了までの期間を短期化することができる。
 (第3実施形態)
 続いて、上述した実施形態と異なる第3実施形態について、図10~図12を参照して説明する。第3実施形態では、走行経路上に複数の充電ステーションCSが配置されている状況に、上述した実施形態で説明した処理内容を適用した場合について説明する。第3実施形態におけるエネルギマネージャ1等の基本的構成は、上述した実施形態と同一である。
 エネルギマネージャ1は、走行経路上に複数の充電ステーションCSが存在する場合、上述した実施形態における合計所要時間Ttの推定結果を用いた走行速度の調整を行い、各充電ステーションCSでの充電の有無を含む運用パターンの検討を行う。
 以下の説明においては、出発地から目的地へ向かう走行経路上に、第1充電ステーションCSa、第2充電ステーションCSbの2つの充電ステーションCSが存在する場合を例に挙げて、図10~図12を用いて説明する。
 上述の具体例の場合、走行経路上に第1充電ステーションCSa、第2充電ステーションCSbが存在する為、第1運用パターン~第3運用パターンの3種類の運用パターンが考えられる。
 第1運用パターンは、出発地から目的地へ向かう過程で、第1充電ステーションCSa及び第2充電ステーションCSbの何れにおいても、バッテリBの充電を行う場合の車両Aの運用パターンを意味する。第2運用パターンは、出発地から目的地へ向かう過程で、第1充電ステーションCSaにてバッテリBの充電を行い、第2充電ステーションCSbは通過する場合の車両Aの運用パターンである。そして、第3運用パターンは、出発地から目的地へ向かう過程で、第1充電ステーションCSaを通過して、第2充電ステーションCSbにてバッテリBの充電を行う場合の車両Aの運用パターンである。
 続いて、上述した処理内容を各運用パターンに適用した場合について、図面を参照して説明する。先ず、第1運用パターンに対して上述した処理内容を適用した場合について、図10を参照して説明する。
 図10に示すように、第1運用パターンでは、第1充電ステーションCSaでの充電、第2充電ステーションCSbの充電が行われる。従って、先ず、出発地から第1充電ステーションCSaまでの走行に関する所要時間及び第1充電ステーションCSaでの充電時間が、上述した第2実施形態に係る処理内容を適用して推定される。
 出発地を現在地に設定して第2実施形態に係る処理内容を適用することで、出発地から第1充電ステーションCSaまでの最適な走行速度として、走行速度Vaが推定され、走行速度Vaで走行した場合の所要時間として、走行時間Traが推定される。又、環境情報を用いて、出発地から第1充電ステーションCSaへ走行速度Vaで走行した場合の到着時状況を推定することができるので、第1充電ステーションCSaにおけるバッテリBの充電時間Tcaを推定することができる。
 次に、第1充電ステーションCSaから第2充電ステーションまでの走行に関する所要時間及び第2充電ステーションCSbでの充電時間が、上述した実施形態に係る処理内容を適用して推定される。
 第1充電ステーションCSaを処理上の現在地に設定して、第2実施形態に係る処理内容を適用することで、第1充電ステーションCSaから第2充電ステーションCSbまでの最適な走行速度として、走行速度Vbが推定される。そして、走行速度Vbで走行した場合の所要時間として、走行時間Trbが推定される。又、環境情報を用いて、第1充電ステーションCSaから第2充電ステーションCSbまで走行速度Vbで走行した場合の到着時状況を推定することができるので、第2充電ステーションCSbにおけるバッテリBの充電時間Tcbを推定することができる。
 続いて、第2充電ステーションCSbを処理上の現在地に設定して、第2実施形態に係る処理内容を適用することで、第2充電ステーションCSbから目的地までの最適な走行速度として、走行速度Vcが推定される。又、走行速度Vcで走行した場合の所要時間として、走行時間Trcが推定される。
 従って、第1運用パターンに係る合計所要時間Ttは、走行時間Tra、充電時間Tca、走行時間Trb、充電時間Tcb、走行時間Trcを合算することで求められる。
 次に、第2運用パターンに対して上述した処理内容を適用した場合について、図11を参照して説明する。図11に示すように、第2運用パターンでは、第1充電ステーションCSaにてバッテリBの充電が行われ、第2充電ステーションCSbでは、バッテリBの充電が行われることなく、車両Aが通過する。
 従って、先ず、出発地から第1充電ステーションCSaまでの走行に関する所要時間及び第1充電ステーションCSaでの充電時間が、上述した第2実施形態に係る処理内容を適用して推定される。
 出発地を現在地に設定して第2実施形態に係る処理内容を適用することで、出発地から第1充電ステーションCSaまでの最適な走行速度として、走行速度Vdが推定され、走行速度Vdで走行した場合の所要時間として、走行時間Trdが推定される。又、環境情報を用いて、出発地から第1充電ステーションCSaへ走行速度Vdで走行した場合の到着時状況を推定することができるので、第1充電ステーションCSaにおけるバッテリBの充電時間Tccを推定することができる。
 ここで、第2運用パターンでは、第2充電ステーションCSbを通過する為、第1充電ステーションCSaから目的地までの走行に関する所要時間が、上述した実施形態に係る処理内容を適用して推定される。
 第1充電ステーションCSaを処理上の現在地に設定して、第2実施形態に係る処理内容を適用することで、第1充電ステーションCSaから目的地までの最適な走行速度として、走行速度Veが推定される。そして、走行速度Veで走行した場合の所要時間として、走行時間Treが推定される。
 従って、第2運用パターンに係る合計所要時間Ttは、出発地から第1充電ステーションCSaまでの走行時間Trd、第1充電ステーションCSaにおける充電時間Tcc、第1充電ステーションCSaから目的地までの走行時間Treを合算して求められる。
 続いて、第3運用パターンに対して上述した処理内容を適用した場合について、図12を参照して説明する。図12に示すように、第3運用パターンでは、第1充電ステーションCSaでは、バッテリBの充電が行われることなく、車両Aが通過し、第2充電ステーションCSbにてバッテリBの充電が行われる。
 従って、出発地から第2充電ステーションCSbまでの走行に関する所要時間及び第2充電ステーションCSbでの充電時間が、上述した第2実施形態に係る処理内容を適用して推定される。出発地を現在地に設定して第2実施形態に係る処理内容を適用することにより、出発地から第2充電ステーションCSbまでの最適な走行速度として、走行速度Vfが推定され、走行速度Vfで走行した場合の所要時間として、走行時間Trfが推定される。
 又、環境情報を用いて、出発地から第2充電ステーションCSbへ走行速度Vfで走行した場合の到着時状況を推定することができるので、第2充電ステーションCSbにおけるバッテリBの充電時間Tcdを推定することができる。
 そして、第2充電ステーションCSbを処理上の現在地に設定して、第2実施形態に係る処理内容を適用することで、第2充電ステーションCSbから目的地までの最適な走行速度として、走行速度Vgが推定される。そして、走行速度Vgで走行した場合の所要時間として、走行時間Trgが推定される。
 従って、第3運用パターンに係る合計所要時間Ttは、出発地から第2充電ステーションCSbまでの走行時間Trf、第2充電ステーションCSbにおける充電時間Tcd、第2充電ステーションCSbから目的地までの走行時間Trgを合算して求められる。
 図10~図12に示すように、第1運用パターン~第3運用パターンの合計所要時間を推定することができるので、走行経路上に複数の充電ステーションCSがある場合に、最も合計所要時間を短くすることができる車両Aの運用パターンを特定することができる。これにより、出発地から目的地まで走行経路を走行する過程で、どこの充電ステーションCSで充電することが、合計所要時間の短縮、目的地到着時間の短縮に貢献するのかを把握することができ、車両A及びバッテリBの効率的な運用を図ることができる。
 尚、上述した具体例では、出発地から目的地までの走行経路上に、第1充電ステーションCSa、第2充電ステーションCSbが存在している構成であったが、この態様に限定されるものではない。走行経路上に存在している充電設備(充電ステーションCS)の数は、2以上であっても良い。
 以上説明したように、第3実施形態に係るエネルギマネージャ1によれば、出発地から目的地までの走行経路上に複数の充電ステーションCSが存在する場合でも、合計所要時間Ttを推定することができる。複数パターンの車両Aの運転態様を検討することが可能となる為、合計所要時間が最も短くなるように、バッテリBの充電を行う充電ステーションCSを選択することができる。
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
 上述した実施形態にて、エネルギマネージャ1をバッテリ管理装置として適用した例について説明したが、この態様に限定されるものではない。例えば、上述した実施形態では、車載コンピュータであるエネルギマネージャ1において、バッテリ管理プログラムを実行している為、本開示に係る技術的思想をバッテリ管理プログラムとして捉えることができる。又、本開示に係る技術的思想をバッテリ管理方法として捉えることも可能である。
 又、上述した実施形態では、温度調整部の一例として、温調システム42を採用していたが、この態様に限定されるものではない。温度調整部としては、バッテリBの温度調整が可能な装置又はシステムであれば、種々の態様を採用することができる。
 そして、上述した第1実施形態では、温度調整の態様として、バッテリの冷却に着目して説明していたが、バッテリBの暖機(加温)を行うように構成することも可能である。
 又、本開示における充電計画は、少なくとも、車両Aが目的地へ向かって将来的に走行する際に、バッテリBの充電に利用される充電設備(充電ステーションCS)を定めていれば良く、少なくとも充電設備の位置情報が環境情報に含まれていればよい。上述した実施形態のように、車両Aが目的地へ向かって将来的に走行する走行経路及び走行経路に配置されている充電設備(充電ステーションCS)が定められている態様も、充電計画の一例に相当する。
 そして、環境情報がバッテリBの充電に利用される充電設備の位置情報で構成されている場合には、以下のように処理を行うことができる。例えば、充電設備の位置情報を用いて、現在地から充電設備までの距離を特定して、走行速度(例えば、法定速度)で除算するによって、充電設備に対する車両Aの到着時刻を推定することができる。このように、充電設備に対する車両Aの到着時刻を推定することにより、上述した実施形態のステップS1、ステップS11の処理を行うことができる。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (10)

  1.  車両(A)に搭載される走行用のバッテリ(B)の状態を管理するバッテリ管理装置であって、
     前記バッテリの温度調整を行う温度調整部(42)と、
     前記車両が目的地へ向かって将来的に走行する際の充電計画に基づく前記バッテリの充電が可能な充電設備に関する情報を含む環境情報を取得する環境情報取得部(10a)と、
     前記環境情報取得部で取得した前記環境情報に基づいて、前記車両が前記充電設備に到着した際の前記バッテリのバッテリ温度を推定する温度推定部(10b)と、
     前記車両の走行及び前記温度調整部の作動を行って前記車両が前記充電設備に到着した際に、効率よく前記バッテリの充電を行うことができる目標バッテリ温度を設定する目標温度設定部(10c)と、
     前記温度推定部により推定された前記バッテリ温度と、前記目標温度設定部で設定された前記目標バッテリ温度とを用いて、前記車両が前記充電設備へ走行する際の走行速度の調整量を定める走行速度調整部(10d)と、を有するバッテリ管理装置。
  2.  前記走行速度調整部は、前記温度推定部により推定された前記バッテリ温度と、前記目標温度設定部で設定された前記目標バッテリ温度との差に応じて、前記車両が前記充電設備へ走行する際の走行速度の調整量を定める請求項1に記載のバッテリ管理装置。
  3.  前記環境情報取得部で取得された前記環境情報に基づいて、前記車両の走行及び前記温度調整部の作動を行って前記車両が前記充電設備に到着するまでに要する所要時間を推定する所要時間推定部(10e)を有し、
     前記走行速度調整部は、現在における前記バッテリ温度と前記目標温度設定部で設定された前記目標バッテリ温度との乖離と、前記所要時間推定部で推定された前記所要時間とを用いて、前記車両が前記充電設備へ走行する際の走行速度の調整量を定める請求項1又は2に記載のバッテリ管理装置。
  4.  前記走行速度調整部は、前記所要時間推定部で推定された前記所要時間が短い程、前記車両の走行速度を大きく減速するように調整する請求項3に記載のバッテリ管理装置。
  5.  前記走行速度調整部は、現在における前記バッテリ温度と前記目標温度設定部で設定された前記目標バッテリ温度との乖離が大きい程、前記車両の走行速度を大きく減速するように調整する請求項3又は4に記載のバッテリ管理装置。
  6.  前記所要時間推定部は、前記車両の走行及び前記温度調整部の作動を行って前記車両が前記充電設備に到着するまでに要する前記所要時間について、現時点における前記車両の前記走行速度に基づく前記所要時間と、調整された前記走行速度に基づく前記所要時間を推定し、
     現時点における前記車両の前記走行速度で走行した場合の前記充電設備における充電時間と、調整された前記走行速度で走行した場合の前記充電設備における充電時間とを推定する充電時間推定部(10f)と、
     現時点における前記車両の前記走行速度で走行した場合の前記所要時間及び前記充電時間を合算した合計時間と、調整された前記走行速度で走行した場合の前記合計時間を推定する合計時間推定部(10g)と、を有し、
     前記走行速度調整部は、調整された前記走行速度で走行した場合の前記合計時間が現時点における前記合計時間よりも短くなるように、前記車両が前記充電設備へ走行する際の前記走行速度の調整量を定める請求項3ないし5の何れか1つに記載のバッテリ管理装置。
  7.  前記充電計画として定められた走行経路に複数の前記充電設備が配置されている場合に、前記充電設備ごとに、前記合計時間推定部による前記合計時間の推定を行い、
     前記走行速度調整部は、前記合計時間推定部による前記合計時間の推定結果を用いて、前記目的地へ前記車両が到着する目的地到着時間が最も短くなるように、前記バッテリの充電を行う前記充電設備の選択及び前記走行速度の調整を行う請求項6に記載のバッテリ管理装置。
  8.  前記車両の乗員に対して情報を伝達する情報伝達部(70)を有し、
     前記走行速度調整部は、前記車両の前記走行速度に関する調整結果を、前記情報伝達部へ出力する請求項1ないし7の何れか1つに記載のバッテリ管理装置。
  9.  前記走行速度調整部は、前記車両の前記走行速度に関する調整結果を、前記車両の前記走行速度に関する制御の目標値に設定する請求項1ないし8の何れか1つに記載のバッテリ管理装置。
  10.  前記走行速度調整部(10d)で前記車両の前記走行速度が調整される条件を満たし、且つ、前記温度調整部(42)の温調性能を調整可能である場合に、前記車両が前記充電設備に到着した際に前記目標バッテリ温度になるように、前記車両の走行と同時に行われる前記温度調整部の温調性能を調整する温調性能調整部(10h)を有する請求項1ないし9の何れか1つに記載のバッテリ管理装置。
PCT/JP2022/030697 2021-09-29 2022-08-11 バッテリ管理装置 WO2023053745A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280065529.4A CN118019657A (zh) 2021-09-29 2022-08-11 电池管理装置
JP2023550434A JPWO2023053745A1 (ja) 2021-09-29 2022-08-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-159156 2021-09-29
JP2021159156 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023053745A1 true WO2023053745A1 (ja) 2023-04-06

Family

ID=85782329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030697 WO2023053745A1 (ja) 2021-09-29 2022-08-11 バッテリ管理装置

Country Status (3)

Country Link
JP (1) JPWO2023053745A1 (ja)
CN (1) CN118019657A (ja)
WO (1) WO2023053745A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117734526A (zh) * 2023-12-07 2024-03-22 江苏南极星新能源技术股份有限公司 一种新能源汽车电池包温度控制方法及***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170293A (ja) * 1996-12-05 1998-06-26 Nissan Motor Co Ltd 電気自動車の経路探索装置
JP2009044887A (ja) * 2007-08-09 2009-02-26 Toyota Motor Corp 車両
JP2013015493A (ja) * 2011-07-06 2013-01-24 Clarion Co Ltd 電気自動車用の情報端末及びクルーズコントロール装置
JP2013184519A (ja) * 2012-03-07 2013-09-19 Nissan Motor Co Ltd ハイブリッド車両の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170293A (ja) * 1996-12-05 1998-06-26 Nissan Motor Co Ltd 電気自動車の経路探索装置
JP2009044887A (ja) * 2007-08-09 2009-02-26 Toyota Motor Corp 車両
JP2013015493A (ja) * 2011-07-06 2013-01-24 Clarion Co Ltd 電気自動車用の情報端末及びクルーズコントロール装置
JP2013184519A (ja) * 2012-03-07 2013-09-19 Nissan Motor Co Ltd ハイブリッド車両の制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117734526A (zh) * 2023-12-07 2024-03-22 江苏南极星新能源技术股份有限公司 一种新能源汽车电池包温度控制方法及***
CN117734526B (zh) * 2023-12-07 2024-06-07 江苏南极星新能源技术股份有限公司 一种新能源汽车电池包温度控制方法及***

Also Published As

Publication number Publication date
JPWO2023053745A1 (ja) 2023-04-06
CN118019657A (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
JP5642253B1 (ja) 車両用エネルギーマネジメント装置
CN110506359B (zh) 电动机动车辆的快速充电电池***的热调节方法
CN109103525A (zh) 用于运行动力电池的方法和电池管理***以及机动车
WO2022242579A1 (zh) 兼容储能充电桩的电动运载工具电量路径规划方法
JP5714073B2 (ja) スマートグリッドシステムおよび車載装置
JP7294245B2 (ja) バッテリ管理装置、バッテリ管理方法及びバッテリ管理プログラム
JP7230705B2 (ja) 配車管理方法、配車管理プログラム及び配車管理装置
KR101870285B1 (ko) 전기자동차의 연속적 충전을 위한 시스템 및 방법
JP2020013726A (ja) 移動体用電源制御システム
JP7230704B2 (ja) エネルギマネージメント方法、及びエネルギマネージメント装置
JP5595456B2 (ja) バッテリ充放電システム
KR101854871B1 (ko) 전기자동차 충전 장치 및 방법
WO2021024732A1 (ja) バッテリ管理装置、バッテリ管理方法及びバッテリ管理プログラム
WO2023053745A1 (ja) バッテリ管理装置
JP7211277B2 (ja) 充電マネージメント方法、及び充電マネージメント装置
KR101923046B1 (ko) 전기자동차를 위한 효율적 차등 충전 시스템
KR20230032024A (ko) 전기자동차의 전기 사용 안내 방법
JP2021178566A (ja) 電動車両の制御装置
CN116021944B (zh) 一种热管理方法、***、域控制器和存储介质
US20210061132A1 (en) Control Unit and Method for Conditioning an Energy Store of a Vehicle
JP5518147B2 (ja) バッテリ充放電システム
JP7367376B2 (ja) 運行管理方法、運行管理システム、及び車載コンピュータ
JP2018114815A (ja) 車両制御装置
WO2023062990A1 (ja) バッテリ管理装置
JP2024067257A (ja) バッテリ温調方法及びバッテリ温調システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875620

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023550434

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE