WO2023028911A1 - 单挡混合动力***及车辆 - Google Patents

单挡混合动力***及车辆 Download PDF

Info

Publication number
WO2023028911A1
WO2023028911A1 PCT/CN2021/115912 CN2021115912W WO2023028911A1 WO 2023028911 A1 WO2023028911 A1 WO 2023028911A1 CN 2021115912 W CN2021115912 W CN 2021115912W WO 2023028911 A1 WO2023028911 A1 WO 2023028911A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
motor
engine
power system
speed hybrid
Prior art date
Application number
PCT/CN2021/115912
Other languages
English (en)
French (fr)
Inventor
王莹
Original Assignee
舍弗勒技术股份两合公司
王莹
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司, 王莹 filed Critical 舍弗勒技术股份两合公司
Priority to CN202180097157.9A priority Critical patent/CN117203075A/zh
Priority to PCT/CN2021/115912 priority patent/WO2023028911A1/zh
Publication of WO2023028911A1 publication Critical patent/WO2023028911A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present application relates to the field of vehicles, and more specifically to a single-speed hybrid system and a vehicle including the single-speed hybrid system.
  • an existing hybrid power system includes an engine ICE, a first electric machine EM1, a second electric machine EM2 and a transmission T, wherein the first electric machine EM1 is mainly used as a generator, and the second electric machine EM2 is mainly used Used as a motor.
  • the hybrid power system can work in multiple working modes including series working mode and parallel working mode. Regardless of the working mode, when the engine ICE is used for driving, the transmission T has only one gear available, and when the second electric motor EM2 is used for driving, the transmission T also has only one gear available. Therefore, the hybrid system may be called a single-speed hybrid system.
  • the present application is made based on the defects of the above-mentioned prior art.
  • One purpose of this application is to provide a new type of single-speed hybrid power system, which can realize the same or more working modes as the single-speed hybrid power system described in the background art, and has a smaller axial length and lower cost .
  • Another object of the present application is to provide a vehicle including the above-mentioned single-speed hybrid system.
  • the present application provides a single-speed hybrid power system as follows.
  • the single-speed hybrid power system includes a first motor, a second motor, a clutch and a transmission.
  • the first motor is configured coaxially with the engine and used for The engine is always transmission-coupled, the second motor is arranged in parallel with the first motor and is arranged to be staggered with the first motor in the radial direction of the first motor,
  • the transmission includes a first input shaft, a second input shaft, an intermediate shaft, a first gear, a second gear, and a third gear, and the first input shaft is controllably coupled to the first motor via the clutch , the second input shaft is always in transmission connection with the second motor,
  • the first gear is connected torsionally fixed to the first input shaft
  • the second gear is connected torsionally fixed to the second input shaft
  • the third gear is connected torsionally fixed to the intermediate shaft
  • the first The gear is always in mesh with the third gear
  • the second gear is always in mesh with the third gear
  • the first gear has external teeth
  • the second gear has external teeth
  • the third gear has external teeth and internal teeth
  • the first gear and the third gear are always In an external meshing state
  • the second gear and the third gear are always in an internal meshing state
  • the transmission further includes a fourth gear, the fourth gear is connected to the intermediate shaft in a torque-resistant manner,
  • the single-speed hybrid power system further includes a differential, and the input gear of the differential is always in mesh with the fourth gear.
  • the clutch is located radially inside the rotor of the first electric machine.
  • the single-gear hybrid system further includes a control module, and the control module is capable of controlling the single-gear hybrid system so that the single-gear hybrid system realizes a pure motor drive mode,
  • the second motor when the single-speed hybrid system is in the pure motor driving mode, the second motor is in a driving state, the clutch is disengaged, and the second motor transmits torque to the transmission for driving.
  • the single-speed hybrid system further includes a control module and the engine, and the control module can control the single-speed hybrid system so that the single-speed hybrid system realizes pure engine driving model,
  • the single-speed hybrid system When the single-speed hybrid system is in the pure engine driving mode, the engine is in the driving state, the second electric motor is in the non-working state, the clutch is engaged, and the engine transmits torque to the transmission for use to drive.
  • the single-speed hybrid power system further includes a control module and the engine, and the control module can control the single-speed hybrid power system so that the single-speed hybrid power system realizes hybrid driving model,
  • the engine When the single-speed hybrid system is in the hybrid driving mode, the engine is in the driving state, the second electric motor is in the driving state, the clutch is engaged, and the engine and the second electric motor are driving to the The transmission transmits torque for drive.
  • the single-gear hybrid system further includes a control module and the engine, and the control module can control the single-gear hybrid system to enable the single-gear hybrid system to start when driving engine mode,
  • the single-gear hybrid system When the single-gear hybrid system is in the engine start mode while driving, the engine is ready to start, the first electric motor is in the driving state, the second electric motor is in the driving state, the clutch is disengaged, and the second electric motor is in the driving state.
  • the second electric machine transmits torque to the transmission for driving, and the first electric machine transmits torque to the engine to start the engine.
  • the single-gear hybrid system further includes a control module, and the control module is capable of controlling the single-gear hybrid system so that the single-gear hybrid system realizes a braking energy recovery mode,
  • the second motor When the single-speed hybrid power system is in the braking energy recovery mode, the second motor is in a power generation state, the clutch is disengaged, and the second motor receives torque from the transmission for power generation.
  • the present application also provides the following vehicle, which includes the single-speed hybrid power system described in any one of the above technical solutions.
  • the present application provides a novel single-speed hybrid power system and a vehicle including the single-speed hybrid power system.
  • the single-speed hybrid power system includes a first motor, a second motor, a clutch and a transmission.
  • the first motor is configured coaxially with the engine, and the first motor is used for constant transmission connection with the engine, and the second motor is arranged in parallel with the first motor and arranged in a radial direction staggered with the first motor.
  • the transmission includes a first input shaft, a second input shaft, an intermediate shaft, a first gear, a second gear and a third gear.
  • the first input shaft is connected to the first motor via a clutch in a controlled manner, and the second input shaft is connected to the second gear.
  • the motor is always in transmission connection, the first gear is connected torsionally fixed to the first input shaft, the second gear is connected torsionally fixed to the second input shaft, and the third gear is connected torsionally fixedly to the intermediate shaft.
  • the first gear and the third gear are always in meshing state, and the second gear is always in meshing state with the third gear.
  • the first gear is directly connected to the first input shaft
  • the second gear is directly connected to the second input shaft
  • the third gear and the fourth gear are directly connected to the intermediate shaft.
  • the first motor and the second motor are arranged in parallel and staggered, the axial dimension of the whole system is reduced compared with the hybrid power system described in the background art.
  • the coaxial configuration of the first motor and the engine and the parallel and staggered configuration of the first motor and the second motor also improve the packaging space of the entire system, making the single-speed hybrid system of the present application suitable for various vehicle.
  • the engine, the first motor and the second motor are connected to the differential through the common third gear and intermediate shaft, which also simplifies the structure of the single-speed hybrid system and reduces the cost.
  • FIG. 1 is a schematic diagram showing the topology of a conventional single-speed hybrid power system.
  • Fig. 2 is a schematic diagram showing the topology of a single-speed hybrid power system according to an embodiment of the present application.
  • FIG. 3A is a schematic diagram showing the torque transmission path of the single-speed hybrid system in FIG. 2 in the pure motor driving mode, wherein the dotted line indicates the transmission path of the driving torque of the second electric motor.
  • FIG. 3B is a schematic diagram showing the torque transmission path of the single-speed hybrid system in FIG. 2 in the pure engine driving mode, where the dotted line indicates the transmission path of the driving torque of the engine.
  • FIG. 3C is a schematic diagram showing a torque transmission path of the single-speed hybrid system in FIG. 2 in a hybrid driving mode, wherein the dotted line indicates the transmission path of the driving torque of the engine and the second electric machine.
  • FIG. 3D is a schematic diagram showing the torque transmission path of the single-speed hybrid system in FIG. 2 in the engine start mode while driving, wherein the dotted line indicates the transmission path of the driving torque of the first motor and the second motor.
  • FIG. 3E is a schematic diagram showing the torque transmission path of the single-speed hybrid power system in FIG. 2 in the braking energy recovery mode, wherein the dotted line indicates the torque transmission path to the second electric machine.
  • transmission coupling refers to a connection between two components capable of transmitting torque, including direct connection or indirect connection between these two components unless otherwise specified.
  • torque-resistant connection refers to the connection between two parts that can rotate together to transmit torque, for example, the above-mentioned torque-resistant connection can be realized through a spline structure between a gear and a shaft.
  • a single-speed hybrid system includes an engine ICE, a dual-mass flywheel DMF, a first motor EM1, a second motor EM2, a clutch C, a transmission, a differential DM, two half shaft and battery (not shown).
  • the crankshaft of the engine ICE is always drivingly coupled with the rotor support of the first electric machine EM1 via the dual mass flywheel DMF.
  • the dual-mass flywheel DMF is used to attenuate the torsional vibration from the engine ICE, and the hybrid power system of the present application can also use dampers of other structures to achieve the function of attenuating torsional vibration.
  • the torque of the engine ICE can be transmitted to the first electric machine EM1 to drive the first electric machine EM1 to generate electricity; in addition, the torque of the first electric machine EM1 can be transmitted to the engine ICE to start the engine ICE.
  • the first electric machine EM1 includes a stator, a rotor capable of rotating relative to the stator, and a rotor bracket fixed to the rotor.
  • the rotor bracket of the first electric machine EM1 is coupled with the crankshaft of the engine ICE, and the central axis of the rotor of the first electric machine EM1 is coaxial with the central axis of the crankshaft of the engine ICE, so that the first electric machine EM1 and the engine ICE are coaxial configuration.
  • the rotor carrier is also connected in a rotationally fixed manner to the outer hub of the clutch C.
  • the first motor EM1 is also electrically connected to the battery.
  • the first electric machine EM1 when the first electric machine EM1 is supplied with electric energy by the battery, the first electric machine EM1 can start the engine ICE as a motor; Charge.
  • the first electric machine EM1 is mainly used to generate electricity to charge the battery and start the engine ICE.
  • the second electric machine EM2 includes a stator and a rotor capable of rotating relative to the stator.
  • the rotor of the second electric machine EM2 is rotationally connected to the second input shaft S2 of the transmission.
  • the central axis of the rotor of the second motor EM2 and the central axis of the rotor of the first motor EM1 are parallel to each other and staggered by a certain distance, so that the second motor EM2 and the first motor EM1 are arranged in parallel.
  • the second motor EM2 is also electrically connected to the battery. In this way, when the second electric machine EM2 is supplied with electric energy by the battery, the second electric machine EM2 can transmit driving torque to the speed changer as a motor; Charging batteries.
  • the second electric motor EM2 is mainly used for driving and recovering braking energy.
  • the clutch C is, for example, a wet friction clutch, that is to say, the clutch C can use hydraulic oil to control the engagement and disengagement of its clutch units (friction discs and pressure plates).
  • the clutch C is integrated into the radial inner side of the rotor of the first electric machine EM1, so that the clutch C and the first electric machine EM1 are overlapped in the axial direction, so that the axial dimension of the entire single-speed hybrid power system can be shortened.
  • the outer hub of the clutch C is connected torsionally fixed to the rotor support of the first electric machine EM1
  • the inner hub of the clutch C is connected torsionally fixedly to the first input shaft S1 of the transmission. In this way, when the clutch unit of the clutch C is engaged, the rotor support of the first motor EM1 is connected with the first input shaft S1 of the transmission; The transmission coupling between the input shafts S1 is released.
  • the transmission includes a first input shaft S1 , a second input shaft S2 and an intermediate shaft S3 .
  • the first input shaft S1, the second input shaft S2, and the intermediate shaft S3 are arranged in parallel at intervals in the radial direction of the transmission.
  • the transmission also includes a first gear G1, a second gear G2, a third gear G3, and a fourth gear G4.
  • the first gear G1 is connected in a rotationally fixed manner to the first input shaft S1 , the first gear G1 has external teeth.
  • the second gear G2 is connected in a rotationally fixed manner to the second input shaft S2, and the second gear G2 has external teeth.
  • a third gear G3 is connected in a rotationally fixed manner to the countershaft S3, the third gear G3 having both external and internal toothing.
  • the fourth gear G4 is connected in a rotationally fixed manner to the layshaft S3 , and the fourth gear G4 has external teeth.
  • the first gear G1 and the third gear G3 are always in an externally meshed state, so that the first input shaft S1 is always drivingly coupled with the intermediate shaft S3 via a gear pair formed by the first gear G1 and the third gear G3.
  • the second gear G2 and the third gear G3 are always in an internal meshing state, so that the second input shaft S2 is always drivingly coupled with the intermediate shaft S3 through the gear pair formed by the second gear G2 and the third gear G3.
  • the fourth gear G4 is always in external mesh with the input gear of the differential DM, so that the intermediate shaft S3 is always in transmission connection with the differential DM.
  • the differential DM may be a bevel gear differential.
  • the differential DM is not included in the transmission in this embodiment, it is also possible to integrate the differential DM into the transmission as needed. Further, one end of the two axle shafts is respectively installed on the bevel gear of the differential DM, and the other end is respectively installed on two wheels (not shown in the figure).
  • the single-speed hybrid system includes a control module (not shown in the figure), which can control the single-speed hybrid system so that the single-speed hybrid system has multiple
  • There are several working modes including but not limited to pure motor drive mode, pure engine drive mode, hybrid drive mode, engine start mode while driving and braking energy recovery mode.
  • Table 1 below shows the working states of the engine ICE, the first electric machine EM1 , the second electric machine EM2 , and the clutch C in the above exemplary working modes.
  • EV means pure motor drive mode.
  • ENG stands for engine-only drive mode.
  • HV Hybrid Drive Mode
  • RES means start the engine mode while driving.
  • REC means braking energy recovery mode.
  • ICE, EM1, EM2, and C in the first row in Table 1 correspond to the reference numerals in Fig. 2 respectively, that is, respectively represent the engine, the first motor, the second Motor, clutch.
  • control module of the single-gear hybrid power system in Fig. 2 can control the single-gear hybrid power system so that the single-gear hybrid power system realizes the pure motor drive mode EV.
  • Engine ICE can be in non-working state
  • the first motor EM1 can be in a non-working state
  • the second motor EM2 is in a driving state
  • the second motor EM2 transmits torque to the differential DM for driving via the second input shaft S2 ⁇ second gear G2 ⁇ third gear G3 ⁇ intermediate shaft S3 ⁇ fourth gear G4.
  • the engine ICE and the first electric machine EM1 can also be in working state, so that the second electric machine EM2 drives the vehicle to run, and the engine ICE drives the first electric machine EM1 to generate electricity.
  • control module of the single-gear hybrid system in FIG. 2 can control the single-gear hybrid system so that the single-gear hybrid system realizes the pure engine driving mode ENG.
  • Engine ICE is in driving state
  • the first motor EM1 can be in a non-working state
  • the second motor EM2 is in a non-working state
  • the engine ICE transmits torque to the differential DM via the dual mass flywheel DMF ⁇ clutch C ⁇ first input shaft S1 ⁇ first gear G1 ⁇ third gear G3 ⁇ intermediate shaft S3 ⁇ fourth gear G4 for driving.
  • the first electric machine EM1 can be in a working (power generating) state.
  • control module of the single-speed hybrid power system in FIG. 2 can control the single-speed hybrid power system so that the single-speed hybrid power system realizes the hybrid driving mode HV.
  • Engine ICE is in driving state
  • the first motor EM can be in a non-working state
  • the second motor EM2 is in a driving state
  • the second motor EM2 transmits torque to the differential DM for driving via the second input shaft S2 ⁇ second gear G2 ⁇ third gear G3 ⁇ intermediate shaft S3 ⁇ fourth gear G4;
  • the ICE transmits torque to the differential DM for driving via the dual mass flywheel DMF ⁇ clutch C ⁇ first input shaft S1 ⁇ first gear G1 ⁇ third gear G3 ⁇ intermediate shaft S3 ⁇ fourth gear G4.
  • control module of the single-gear hybrid system in FIG. 2 can also control the single-gear hybrid system so that the single-gear hybrid system can start the engine mode RES while driving.
  • the engine ICE is in a non-working state and is waiting to be started;
  • the first motor EM1 is in a driving state
  • the second motor EM2 is in a driving state
  • the second electric motor EM2 transmits torque to the differential DM via the second input shaft S2 ⁇ second gear G2 ⁇ third gear G3 ⁇ intermediate shaft S3 ⁇ fourth gear G4 for
  • the first electric machine EM1 transmits torque to the engine ICE via the dual mass flywheel DMF to start the engine.
  • control module of the single-speed hybrid power system in FIG. 2 can also control the single-speed hybrid power system so that the single-speed hybrid power system realizes the braking energy recovery mode REC.
  • Engine ICE can be in non-working state
  • the first motor EM1 can be in a non-working state
  • the second electric machine EM2 is in the state of generating electricity
  • the torque from the wheels passes through two half shafts ⁇ differential DM ⁇ fourth gear G4 ⁇ intermediate shaft S3 ⁇ third gear G3 ⁇ second gear G2 ⁇ second input shaft S2 to the second
  • the electric machine EM2 transmits torque for generating electricity.
  • the first electric machine EM1 may be in a working (generating) state.
  • the single-speed hybrid power system of the present application can realize various working modes according to needs, and has the same or more working modes than the single-speed hybrid power system described in the background technology, so as to be applicable to various driving states of the vehicle .
  • each shaft (including but not limited to the first input shaft S1, the second input shaft S2 and the intermediate shaft S3), the first electric machine EM1 and the second Both the rotor of the electric motor EM2 and the differential DM are supported by bearings.
  • the bearings may be ball bearings or tapered roller bearings or the like.
  • the engine ICE and the second electric machine EM2 implement power splitting at the intermediate shaft S3.
  • the transmission ratio of the gear pair can be adjusted to match the speed of the engine ICE and the second electric machine EM2, for example, the transmission ratio of the torque transmission path of the second electric machine EM2 can be 2.579, and the torque transmission path of the engine ICE can be The gear ratio can be 0.754, for example.
  • the present application also provides a vehicle comprising the above-mentioned single-speed hybrid system, which has the same functions and effects as the above-mentioned single-speed hybrid system.
  • the single-speed hybrid power system includes a control module
  • the control module can control the single-speed hybrid power system so that the single-speed hybrid power system has multiple working modes.
  • the control module does not have to be mechanically integrated with the single-speed hybrid system, particularly the components or features shown in the drawings, nor does the control module need to be dedicated to controlling the single-speed hybrid system.
  • a control module may comprise a plurality of control units. A part of the sub-modules or control unit of the control module may be a control module or control unit of the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

提供一种单挡混合动力***,其包括第一电机(EM1)、第二电机(EM2)、离合器(C)和变速器。第一电机(EM1)用于与发动机(ICE)同轴配置,并用于与发动机(ICE)始终传动联接,第二电机(EM2)与第一电机(EM1)平行配置且在第一电机(EM1)的径向上与第一电机(EM1)错开地配置。第一电机(EM1)和第二电机(EM2)通过公共的第三齿轮(G3)与中间轴(S3)传动联接。这样,减小了整个***的轴向尺寸,改善了整个***的封装空间,简化了结构且降低了成本。还提供一种包括上述单挡混合动力***的车辆。

Description

单挡混合动力***及车辆 技术领域
本申请涉及车辆领域,更具体地涉及单挡混合动力***及包括该单挡混合动力***的车辆。
背景技术
如图1所示,在一种现有的混合动力***中,包括发动机ICE、第一电机EM1、第二电机EM2和变速器T,其中第一电机EM1主要用作发电机,第二电机EM2主要用作电动机。该混合动力***能够工作在包括串联工作模式和并联工作模式等的多种工作模式下。无论在何种工作模式下,当利用发动机ICE进行驱动时变速器T只有一挡可用,当利用第二电机EM2进行驱动时变速器T也只有一挡可用。因此,该混合动力***可以被称为单挡混合动力***。
但是,在这种单挡混合动力***中,一方面,由于第一电机EM1和第二电机EM2采用同轴的配置方式,因而使得整个单挡混合动力***的轴向长度过长;另一方面,发动机ICE和第一电机EM1需要通过附加的齿轮副和较长的轴实现传动联接,因而导致整个单挡混合动力***的成本较高。
发明内容
基于上述现有技术的缺陷而做出了本申请。本申请的一个目的在于提供一种新型的单挡混合动力***,其能够实现与背景技术中所述的单挡混合动力***同样或更多的工作模式,并且轴向长度更小且成本更低。本申请的另一个目的在于提供一种包括上述单挡混合动力***的车辆。
为了实现上述目的,本申请采用如下的技术方案。
本申请提供了一种如下的单挡混合动力***,所述单挡混合动力***包 括第一电机、第二电机、离合器和变速器,所述第一电机用于与发动机同轴配置,并用于与所述发动机始终传动联接,所述第二电机与所述第一电机平行配置且在所述第一电机的径向上与所述第一电机错开地配置,
所述变速器包括第一输入轴、第二输入轴、中间轴、第一齿轮、第二齿轮和第三齿轮,所述第一输入轴与所述第一电机经由所述离合器受控地传动联接,所述第二输入轴与所述第二电机始终传动联接,
所述第一齿轮与所述第一输入轴抗扭连接,所述第二齿轮与所述第二输入轴抗扭连接,所述第三齿轮与所述中间轴抗扭连接,所述第一齿轮和所述第三齿轮始终处于啮合状态,所述第二齿轮与所述第三齿轮始终处于啮合状态。
在一个可选的方案中,所述第一齿轮具有外齿,所述第二齿轮具有外齿,所述第三齿轮具有外齿和内齿,所述第一齿轮和所述第三齿轮始终处于外啮合状态,所述第二齿轮与所述第三齿轮始终处于内啮合状态。
在另一个可选的方案中,所述变速器还包括第四齿轮,所述第四齿轮与所述中间轴抗扭连接,
所述单挡混合动力***还包括差速器,所述差速器的输入齿轮与所述第四齿轮始终处于啮合状态。
在另一个可选的方案中,所述离合器位于所述第一电机的转子的径向内侧。
在另一个可选的方案中,所述单挡混合动力***还包括控制模块,所述控制模块能够控制所述单挡混合动力***使所述单挡混合动力***实现纯电机驱动模式,
其中,当所述单挡混合动力***处于所述纯电机驱动模式时,所述第二电机处于驱动状态,所述离合器分离,所述第二电机向所述变速器传递扭矩以用于驱动。
在另一个可选的方案中,所述单挡混合动力***还包括控制模块和所述发动机,所述控制模块能够控制所述单挡混合动力***使所述单挡混合动力***实现纯发动机驱动模式,
当所述单挡混合动力***处于所述纯发动机驱动模式时,所述发动机处于驱动状态,所述第二电机处于非工作状态,所述离合器接合,所述发动机向所述变速器传递扭矩以用于驱动。
在另一个可选的方案中,所述单挡混合动力***还包括控制模块和所述发动机,所述控制模块能够控制所述单挡混合动力***使所述单挡混合动力***实现混合动力驱动模式,
当所述单挡混合动力***处于所述混合动力驱动模式时,所述发动机处于驱动状态,所述第二电机处于驱动状态,所述离合器接合,所述发动机和所述第二电机向所述变速器传递扭矩以用于驱动。
在另一个可选的方案中,所述单挡混合动力***还包括控制模块和所述发动机,所述控制模块能够控制所述单挡混合动力***使所述单挡混合动力***实现行驶时启动发动机模式,
当所述单挡混合动力***处于所述行驶时启动发动机模式时,所述发动机待启动,所述第一电机处于驱动状态,所述第二电机处于驱动状态,所述离合器分离,所述第二电机向所述变速器传递扭矩以用于驱动,所述第一电机向所述发动机传递扭矩以启动所述发动机。
在另一个可选的方案中,所述单挡混合动力***还包括控制模块,所述控制模块能够控制所述单挡混合动力***使所述单挡混合动力***实现制动能量回收模式,
当所述单挡混合动力***处于所述制动能量回收模式时,所述第二电机处于发电状态,所述离合器分离,所述第二电机接受来自所述变速器的扭矩以用于发电。
本申请还提供了一种如下的车辆,所述车辆包括以上技术方案中任意一项技术方案所述的单挡混合动力***。
通过采用上述技术方案,本申请提供了一种新型的单挡混合动力***及包括该单挡混合动力***的车辆。该单挡混合动力***包括第一电机、第二电机、离合器和变速器。第一电机用于与发动机同轴配置,并且第一电机用于与发动机始终传动联接,第二电机与第一电机平行配置且在第一电机的径向上与第一电机错开地配置。变速器包括第一输入轴、第二输入轴、中间轴、第一齿轮、第二齿轮和第三齿轮,第一输入轴与第一电机经由离合器受控地传动联接,第二输入轴与第二电机始终传动联接,第一齿轮与第一输入轴抗扭连接,第二齿轮与第二输入轴抗扭连接,第三齿轮与中间轴抗扭连接。第一齿轮和第三齿轮始终处于啮合状态,第二齿轮与第三齿轮始终处于啮合状态。
这里,优选地,第一齿轮与第一输入轴直接连接,第二齿轮与第二输入轴直接连接,第三齿轮和第四齿轮与中间轴直接连接。
这样,由于第一电机与第二电机采用平行配置且错开配置的方案,因而与背景技术中说明的混合动力***相比减小了整个***的轴向尺寸。而且,第一电机与发动机采用同轴配置且第一电机与第二电机采用平行配置且错开配置的方案,还改善了整个***的封装空间,使得本申请的单挡混合动力***适用于各种车辆。进一步地,发动机、第一电机和第二电机都通过公共的第三齿轮和中间轴与差速器实现传动联接,这也简化了单挡混合动力***的结构,降低了成本。
附图说明
图1是示出了一种现有的单挡混合动力***的拓扑结构的示意图。
图2是示出了根据本申请的一实施例的单挡混合动力***的拓扑结构的 示意图。
图3A是示出了图2中的单挡混合动力***在纯电机驱动模式下的扭矩传递路径的示意图,其中虚线表示第二电机的驱动扭矩的传递路径。
图3B是示出了图2中的单挡混合动力***在纯发动机驱动模式下的扭矩传递路径的示意图,其中虚线表示发动机的驱动扭矩的传递路径。
图3C是示出了图2中的单挡混合动力***在混合动力驱动模式下的扭矩传递路径的示意图,其中虚线表示发动机和第二电机的驱动扭矩的传递路径。
图3D是示出了图2中的单挡混合动力***在行驶时启动发动机模式下的扭矩传递路径的示意图,其中虚线表示第一电机和第二电机的驱动扭矩的传递路径。
图3E是示出了图2中的单挡混合动力***在制动能量回收模式下的扭矩传递路径的示意图,其中虚线表示向第二电机传递的扭矩的传递路径。
附图标记说明
T变速器 ICE发动机 DMF双质量飞轮 EM1第一电机 EM2第二电机 C离合器 S1第一输入轴 S2第二输入轴 S3中间轴 G1第一齿轮 G2第二齿轮 G3第三齿轮 G4第四齿轮 DM差速器。
具体实施方式
以下将结合说明书附图详细说明本申请的具体实施例。应当理解,这些具体的说明仅用于示教本领域技术人员如何实施本申请,而不用于穷举本申请的所有可行的方式,也不用于限制本申请的范围。
在本申请中,“传动联接”是指两个部件之间能够传递扭矩地连接,如无特殊说明,包括这两个部件之间直接连接或者间接连接。
在本申请中,“抗扭连接”是指两个部件能够一起转动以传递扭矩地连 接,例如齿轮与轴之间通过花键结构能够实现上述抗扭连接。
(根据本申请的一实施例的单挡混合动力***的结构)
如图2所示,根据本申请的一实施例的单挡混合动力***包括发动机ICE、双质量飞轮DMF、第一电机EM1、第二电机EM2、离合器C、变速器、差速器DM、两根半轴以及电池(未示出)。
具体地,在本实施例中,发动机ICE的曲轴经由双质量飞轮DMF与第一电机EM1的转子支架始终传动联接。双质量飞轮DMF用于衰减来自发动机ICE的扭振,本申请的混合动力***还可以采用其它结构的减振器来实现衰减扭振的功能。由此,发动机ICE的扭矩能够传递到第一电机EM1,以驱动第一电机EM1进行发电;另外,第一电机EM1的扭矩能够传递到发动机ICE,以启动发动机ICE。
在本实施例中,第一电机EM1包括定子、能够相对于定子转动的转子以及与转子固定的转子支架。如上所述,第一电机EM1的转子支架与发动机ICE的曲轴传动联接,第一电机EM1的转子的中心轴线与发动机ICE的曲轴的中心轴线同轴,使得第一电机EM1与发动机ICE实现同轴配置。而且,转子支架还与离合器C的外毂抗扭连接。另外,第一电机EM1还与电池电连接。这样,在第一电机EM1由电池供给电能的情况下,第一电机EM1作为电动机能够启动发动机ICE;在第一电机EM1获得来自发动机ICE的扭矩的情况下,第一电机EM1作为发电机向电池充电。第一电机EM1主要用于发电以向电池充电和启动发动机ICE。
在本实施例中,第二电机EM2包括定子和能够相对于定子转动的转子。第二电机EM2的转子与变速器的第二输入轴S2抗扭连接。第二电机EM2的转子的中心轴线与第一电机EM1的转子的中心轴线彼此平行且错开一定的距离,使得第二电机EM2与第一电机EM1实现平行配置。另外,第二电机EM2还与电池电连接。这样,在第二电机EM2由电池供给电能的情况下,第二电机EM2作为电动机能够向变速器传递驱动扭矩;在第二电机EM2获得来自变 速器的扭矩的情况下,第二电机EM2作为发电机向电池充电。第二电机EM2主要用于驱动和进行制动能量回收。
在本实施例中,离合器C例如为湿式摩擦离合器,也就是说离合器C可以利用液压油控制其离合单元(摩擦盘和压板)的接合和分离。离合器C整合到第一电机EM1的转子的径向内侧,使得离合器C与第一电机EM1在轴向上重叠配置,这样能够缩短整个单挡混合动力***的轴向尺寸。离合器C的外毂与第一电机EM1的转子支架抗扭连接,离合器C的内毂与变速器的第一输入轴S1抗扭连接。这样,当离合器C的离合单元接合时,第一电机EM1的转子支架与变速器的第一输入轴S1实现传动联接;当离合器C的离合单元分离时,第一电机EM1的转子支架与变速器的第一输入轴S1之间解除传动联接。
在本实施例中,如图2所示,变速器包括第一输入轴S1、第二输入轴S2和中间轴S3。第一输入轴S1、第二输入轴S2和中间轴S3在变速器的径向上间隔开地平行配置。
变速器还包括第一齿轮G1、第二齿轮G2、第三齿轮G3和第四齿轮G4。第一齿轮G1与第一输入轴S1抗扭连接,第一齿轮G1具有外齿。第二齿轮G2与第二输入轴S2抗扭连接,第二齿轮G2具有外齿。第三齿轮G3与中间轴S3抗扭连接,第三齿轮G3具有外齿和内齿两者。第四齿轮G4与中间轴S3抗扭连接,第四齿轮G4具有外齿。第一齿轮G1与第三齿轮G3始终处于外啮合状态,使得第一输入轴S1经由第一齿轮G1和第三齿轮G3构成的齿轮副与中间轴S3始终传动联接。第二齿轮G2与第三齿轮G3始终处于内啮合状态,使得第二输入轴S2经由第二齿轮G2和第三齿轮G3构成的齿轮副与中间轴S3始终传动联接。第四齿轮G4与差速器DM的输入齿轮始终处于外啮合状态,使得中间轴S3与差速器DM始终传动联接。
在本实施例中,差速器DM可以为锥齿轮差速器。虽然在本实施例中差速器DM不包括在变速器中,但是根据需要也可以将差速器DM整合到变速器中。进一步地,两根半轴的一端分别安装于差速器DM的锥齿轮,另一端分 别安装于两个车轮(图中未示出)。
这样,通过以上结构,实现了一种新型的单挡混合动力***,与背景技术中说明的单挡混合动力***相比,其轴向长度更小且成本更低。以下将说明该单挡混合动力***的工作模式。
(根据本申请的一实施例的单挡混合动力***的工作模式)
在图2中示出的根据本申请的一实施例的单挡混合动力***包括控制模块(图中未示出),该控制模块能够控制单挡混合动力***使得该单挡混合动力***具有多种工作模式,包括但不限于纯电机驱动模式、纯发动机驱动模式、混合动力驱动模式、行驶时启动发动机模式和制动能量回收模式。
在以下的表1中示出了上述示例性的工作模式中发动机ICE、第一电机EM1、第二电机EM2、离合器C的工作状态。
【表1】
模式 ICE EM1 EM2 C
EV      
ENG    
HV  
RES    
REC      
对于以上表1中的内容进行如下说明。
1.关于表1中的模式
EV表示纯电机驱动模式。
ENG表示纯发动机驱动模式。
HV表示混合动力驱动模式。
RES表示行驶时启动发动机模式。
REC表示制动能量回收模式。
2.表1中的第一行中的ICE、EM1、EM2、C分别与图2中附图标记相对应,即分别表示图2的单挡混合动力***中的发动机、第一电机、第二电机、 离合器。
3.关于符号“█”
对于表1中ICE、EM1、EM2所在的列,有该符号表示发动机ICE、第一电机EM1、第二电机EM2处于工作状态,没有该符号表示发动机ICE、第一电机EM1、第二电机EM2处于非工作状态。
对于表1中的C所在的列,有该符号表示离合器C接合,没有该符号表示离合器C分离。
结合以上的表1,对图2中的单挡混合动力***的工作模式进行更具体的说明。
如表1所示,图2中的单挡混合动力***的控制模块能够控制单挡混合动力***使单挡混合动力***实现纯电机驱动模式EV。
当单挡混合动力***处于纯电机驱动模式EV时,
发动机ICE可以处于非工作状态;
第一电机EM1可以处于非工作状态;
第二电机EM2处于驱动状态;
离合器C分离。
这样,如图3A所示,第二电机EM2经由第二输入轴S2→第二齿轮G2→第三齿轮G3→中间轴S3→第四齿轮G4向差速器DM传递扭矩以用于驱动。
可以理解,在纯电机驱动模式EV中,离合器C分离即可。发动机ICE和第一电机EM1还可以处于工作状态,这样,第二电机EM2驱动车辆行驶,发动机ICE驱动第一电机EM1发电。
进一步地,如表1所示,图2中的单挡混合动力***的控制模块能够控制单挡混合动力***使单挡混合动力***实现纯发动机驱动模式ENG。
当单挡混合动力***处于纯发动机驱动模式ENG时,
发动机ICE处于驱动状态;
第一电机EM1可以处于非工作状态;
第二电机EM2处于非工作状态;
离合器C接合。
这样,如图3B所示,发动机ICE经由双质量飞轮DMF→离合器C→第一输入轴S1→第一齿轮G1→第三齿轮G3→中间轴S3→第四齿轮G4向差速器DM传递扭矩以用于驱动。
可以理解,可选地,在纯发动机驱动模式ENG中,第一电机EM1可以处于工作(发电)状态。
进一步地,如表1所示,图2中的单挡混合动力***的控制模块能够控制单挡混合动力***使单挡混合动力***实现混合动力驱动模式HV。
当单挡混合动力***处于混合动力驱动模式HV时,
发动机ICE处于驱动状态;
第一电机EM可以1处于非工作状态;
第二电机EM2处于驱动状态;
离合器C接合。
这样,如图3C所示,第二电机EM2经由第二输入轴S2→第二齿轮G2→第三齿轮G3→中间轴S3→第四齿轮G4向差速器DM传递扭矩以用于驱动;发动机ICE经由双质量飞轮DMF→离合器C→第一输入轴S1→第一齿轮G1→第三齿轮G3→中间轴S3→第四齿轮G4向差速器DM传递扭矩以用于驱动。
进一步地,如表1所示,图2中的单挡混合动力***的控制模块还能够控制单挡混合动力***使单挡混合动力***实现行驶时启动发动机模式RES。
当单挡混合动力***处于驱动时启动发动机模式RES时,
发动机ICE处于非工作状态,并且待启动;
第一电机EM1处于驱动状态;
第二电机EM2处于驱动状态;
离合器C分离。
这样,如图3D所示,一方面,第二电机EM2经由第二输入轴S2→第二齿轮G2→第三齿轮G3→中间轴S3→第四齿轮G4向差速器DM传递扭矩以用于驱动;另一方面,第一电机EM1经由双质量飞轮DMF向发动机ICE传递扭 矩,以启动发动机。
进一步地,如表1所示,图2中的单挡混合动力***的控制模块还能够控制单挡混合动力***使单挡混合动力***实现制动能量回收模式REC。
当单挡混合动力***处于制动能量回收模式REC时,
发动机ICE可以处于非工作状态;
第一电机EM1可以处于非工作状态;
第二电机EM2处于发电状态;
离合器C分离。
这样,如图3E所示,来自车轮的扭矩经由两根半轴→差速器DM→第四齿轮G4→中间轴S3→第三齿轮G3→第二齿轮G2→第二输入轴S2向第二电机EM2传递扭矩以用于发电。
可以理解,可选地,在制动能量回收模式REC中,第一电机EM1可以处于工作(发电)状态。
由此,本申请的单挡混合动力***能够根据需要实现各种工作模式,具有与背景技术中说明的单挡混合动力***相同或更多的工作模式,从而适用车辆的各种不同的行驶状态。
应当理解,上述实施方式仅是示例性的,不用于限制本申请。本领域技术人员可以在本申请的教导下对上述实施方式做出各种变型和改变,而不脱离本申请的范围。另外,进行如下的补充说明。
i.如图2所示,在本申请的单挡混合动力***中,各轴(包括但不限于第一输入轴S1、第二输入轴S2和中间轴S3)、第一电机EM1和第二电机EM2的转子以及差速器DM均被轴承支撑。轴承可以是球轴承或者圆锥滚子轴承等。
ii.在根据本申请的单挡混合动力***处于混合动力驱动模式时,发动机ICE和第二电机EM2在中间轴S3实现功率分流。为了实现这种功率分流,可以调节齿轮副的传动比来匹配发动机ICE和第二电机EM2的速度,例如第二电机EM2的扭矩传递路径的传动比例如可以为2.579,发动机ICE的扭矩传 递路径的传动比例如可以为0.754。
iii.本申请还提供了一种包括上述单挡混合动力***的车辆,其具有上述单挡混合动力***同样的功能和效果。
iv.可以理解,虽然在上面的描述中,说明了单挡混合动力***包括控制模块,该控制模块能够控制单挡混合动力***使得该单挡混合动力***具有多种工作模式。但是,该控制模块不必与单挡混合动力***,特别是附图中示出的各部件或特征机械地整合在一起,控制模块也不必专门用于控制单挡混合动力***。控制模块可以包括多个控制单元。控制模块的一部分子模块或控制单元可以是车辆的控制模块或控制单元。

Claims (10)

  1. 一种单挡混合动力***,所述单挡混合动力***包括第一电机(EM1)、第二电机(EM2)、离合器(C)和变速器,所述第一电机(EM1)用于与发动机(ICE)同轴配置,并用于与所述发动机(ICE)始终传动联接,所述第二电机(EM2)与所述第一电机(EM1)平行配置且在所述第一电机(EM1)的径向上与所述第一电机(EM1)错开地配置,
    所述变速器包括第一输入轴(S1)、第二输入轴(S2)、中间轴(S3)、第一齿轮(G1)、第二齿轮(G2)和第三齿轮(G3),所述第一输入轴(S1)与所述第一电机(EM1)经由所述离合器(C)受控地传动联接,所述第二输入轴(S2)与所述第二电机(EM2)始终传动联接,
    所述第一齿轮(G1)与所述第一输入轴(S1)抗扭连接,所述第二齿轮(G2)与所述第二输入轴(S2)抗扭连接,所述第三齿轮(G3)与所述中间轴(S3)抗扭连接,所述第一齿轮(G1)和所述第三齿轮(G3)始终处于啮合状态,所述第二齿轮(G2)与所述第三齿轮(G3)始终处于啮合状态。
  2. 根据权利要求1所述的单挡混合动力***,其特征在于,所述第一齿轮(G1)具有外齿,所述第二齿轮(G2)具有外齿,所述第三齿轮(G3)具有外齿和内齿,所述第一齿轮(G1)和所述第三齿轮(G3)始终处于外啮合状态,所述第二齿轮(G2)与所述第三齿轮(G3)始终处于内啮合状态。
  3. 根据权利要求1或2所述的单挡混合动力***,其特征在于,
    所述变速器还包括第四齿轮(G4),所述第四齿轮(G4)与所述中间轴(S3)抗扭连接,
    所述单挡混合动力***还包括差速器,所述差速器的输入齿轮与所述第四齿轮(G4)始终处于啮合状态。
  4. 根据权利要求1至3中任一项所述的单挡混合动力***,其特征在于, 所述离合器(C)位于所述第一电机(EM1)的转子的径向内侧。
  5. 根据权利要求1至4中任一项所述的单挡混合动力***,其特征在于,所述单挡混合动力***还包括控制模块,所述控制模块能够控制所述单挡混合动力***使所述单挡混合动力***实现纯电机驱动模式,
    其中,当所述单挡混合动力***处于所述纯电机驱动模式时,所述第二电机(EM2)处于驱动状态,所述离合器(C)分离,所述第二电机(EM2)向所述变速器传递扭矩以用于驱动。
  6. 根据权利要求1至5中任一项所述的单挡混合动力***,其特征在于,所述单挡混合动力***还包括控制模块和所述发动机(ICE),所述控制模块能够控制所述单挡混合动力***使所述单挡混合动力***实现纯发动机驱动模式,
    当所述单挡混合动力***处于所述纯发动机驱动模式时,所述发动机(ICE)处于驱动状态,所述第二电机(EM2)处于非工作状态,所述离合器(C)接合,所述发动机(ICE)向所述变速器传递扭矩以用于驱动。
  7. 根据权利要求1至6中任一项所述的单挡混合动力***,其特征在于,所述单挡混合动力***还包括控制模块和所述发动机(ICE),所述控制模块能够控制所述单挡混合动力***使所述单挡混合动力***实现混合动力驱动模式,
    当所述单挡混合动力***处于所述混合动力驱动模式时,所述发动机(ICE)处于驱动状态,所述第二电机(EM2)处于驱动状态,所述离合器(C)接合,所述发动机(ICE)和所述第二电机(EM2)向所述变速器传递扭矩以用于驱动。
  8. 根据权利要求1至7中任一项所述的单挡混合动力***,其特征在于,所述单挡混合动力***还包括控制模块和所述发动机(ICE),所述控制模块能够控制所述单挡混合动力***使所述单挡混合动力***实现行驶时启动 发动机模式,
    当所述单挡混合动力***处于所述行驶时启动发动机模式时,所述发动机(ICE)待启动,所述第一电机(EM1)处于驱动状态,所述第二电机(EM2)处于驱动状态,所述离合器(C)分离,所述第二电机(EM2)向所述变速器传递扭矩以用于驱动,所述第一电机(EM1)向所述发动机(ICE)传递扭矩以启动所述发动机(ICE)。
  9. 根据权利要求1至8中任一项所述的单挡混合动力***,其特征在于,所述单挡混合动力***还包括控制模块,所述控制模块能够控制所述单挡混合动力***使所述单挡混合动力***实现制动能量回收模式,
    当所述单挡混合动力***处于所述制动能量回收模式时,所述第二电机(EM2)处于发电状态,所述离合器(C)分离,所述第二电机(EM2)接受来自所述变速器的扭矩以用于发电。
  10. 一种车辆,所述车辆包括权利要求1至9中任一项所述的单挡混合动力***。
PCT/CN2021/115912 2021-09-01 2021-09-01 单挡混合动力***及车辆 WO2023028911A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180097157.9A CN117203075A (zh) 2021-09-01 2021-09-01 单挡混合动力***及车辆
PCT/CN2021/115912 WO2023028911A1 (zh) 2021-09-01 2021-09-01 单挡混合动力***及车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/115912 WO2023028911A1 (zh) 2021-09-01 2021-09-01 单挡混合动力***及车辆

Publications (1)

Publication Number Publication Date
WO2023028911A1 true WO2023028911A1 (zh) 2023-03-09

Family

ID=85411834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115912 WO2023028911A1 (zh) 2021-09-01 2021-09-01 单挡混合动力***及车辆

Country Status (2)

Country Link
CN (1) CN117203075A (zh)
WO (1) WO2023028911A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013151199A (ja) * 2012-01-24 2013-08-08 Toyota Motor Corp ハイブリッド車両
CN103802663A (zh) * 2014-01-28 2014-05-21 广东工业大学 一种混合动力***及其控制方法
CN110466338A (zh) * 2019-08-22 2019-11-19 中汽研(天津)汽车工程研究院有限公司 一种单行星排功率分流混合动力***
CN111907321A (zh) * 2020-07-30 2020-11-10 舍弗勒技术股份两合公司 变速器、车辆用动力***及车辆
CN113320374A (zh) * 2021-07-16 2021-08-31 席忠 双电机功率合流混合动力***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013151199A (ja) * 2012-01-24 2013-08-08 Toyota Motor Corp ハイブリッド車両
CN103802663A (zh) * 2014-01-28 2014-05-21 广东工业大学 一种混合动力***及其控制方法
CN110466338A (zh) * 2019-08-22 2019-11-19 中汽研(天津)汽车工程研究院有限公司 一种单行星排功率分流混合动力***
CN111907321A (zh) * 2020-07-30 2020-11-10 舍弗勒技术股份两合公司 变速器、车辆用动力***及车辆
CN113320374A (zh) * 2021-07-16 2021-08-31 席忠 双电机功率合流混合动力***

Also Published As

Publication number Publication date
CN117203075A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
CN109130830B (zh) 用于混合动力车辆的变速器及动力***
US11391348B2 (en) Transmission and power system for use in hybrid vehicle
US7762366B2 (en) Axle drive unit for a hybrid electric vehicle
US8672068B2 (en) Drive unit for an electric hybrid vehicle
KR101628130B1 (ko) 4륜 구동 하이브리드 차량용 동력전달장치
US9579966B2 (en) Hybrid powertrain for a motor vehicle, hybrid vehicle, and use thereof
KR101459474B1 (ko) 4륜 구동 하이브리드 차량용 변속장치
US8727932B2 (en) Hybrid vehicle drive device
US7699737B2 (en) Electric axle drive unit
US20170001626A1 (en) A method of locking a planetary gearing when driving a vehicle
WO2019218266A1 (zh) 混合动力变速器和车辆
US11299027B2 (en) Power system for hybrid vehicles
US8974338B2 (en) Two-mode electrically-variable transmission with offset motor and two planetary gear sets
WO2019178796A1 (zh) 混合动力变速器及混合动力汽车
WO2019218267A1 (zh) 混合动力变速器和车辆
US20100258367A1 (en) Travel drive system with multiple transmission paths for hybrid vehicle and method using same
US20220194208A1 (en) Hybrid transmission device, engine transmission arrangement, hybrid drivetrain and motor vehicle
CN108909433B (zh) 用于混合动力车辆的动力***
US20220126676A1 (en) Hybrid Transmission Device and Motor Vehicle
WO2023028922A1 (zh) 混合动力***及车辆
WO2023028911A1 (zh) 单挡混合动力***及车辆
CN115723551A (zh) 单挡混合动力***及车辆
WO2023028916A1 (zh) 单挡混合动力***及车辆
US20220203822A1 (en) Hybrid transmission device, engine transmission arrangement, hybrid drivetrain and motor vehicle
WO2023010246A1 (zh) 混合动力***及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955458

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180097157.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE