WO2019178796A1 - 混合动力变速器及混合动力汽车 - Google Patents

混合动力变速器及混合动力汽车 Download PDF

Info

Publication number
WO2019178796A1
WO2019178796A1 PCT/CN2018/079944 CN2018079944W WO2019178796A1 WO 2019178796 A1 WO2019178796 A1 WO 2019178796A1 CN 2018079944 W CN2018079944 W CN 2018079944W WO 2019178796 A1 WO2019178796 A1 WO 2019178796A1
Authority
WO
WIPO (PCT)
Prior art keywords
planetary gear
engine
gear mechanism
coupled
clutch
Prior art date
Application number
PCT/CN2018/079944
Other languages
English (en)
French (fr)
Inventor
邱志凌
付军
罗大国
李鹏鹏
苟世全
祝林
林霄喆
王瑞平
Original Assignee
浙江吉利控股集团有限公司
宁波上中下自动变速器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江吉利控股集团有限公司, 宁波上中下自动变速器有限公司 filed Critical 浙江吉利控股集团有限公司
Priority to EP18910378.1A priority Critical patent/EP3750734B1/en
Priority to PCT/CN2018/079944 priority patent/WO2019178796A1/zh
Priority to CN201880091329.XA priority patent/CN111936335B/zh
Priority to US17/040,072 priority patent/US11186161B2/en
Publication of WO2019178796A1 publication Critical patent/WO2019178796A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/46Gearings having only two central gears, connected by orbital gears
    • F16H3/58Gearings having only two central gears, connected by orbital gears with sets of orbital gears, each consisting of two or more intermeshing orbital gears
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to the field of automobiles, and more particularly to a hybrid transmission and a hybrid vehicle.
  • Hybrid vehicles typically use two sources of energy to drive a vehicle: a conventional internal combustion engine (ICE) for liquid fuel and an electric motor (EM) for electric energy.
  • ICE internal combustion engine
  • EM electric motor
  • the P2 parallel mode in which the motor is connected in parallel to the input shaft of the transmission
  • the power separation method in which the motor is connected in parallel to the output shaft of the transmission.
  • the former is widely used in hybrid cars produced in Europe, while the latter is commonly used in Japanese cars.
  • the P2 hybrid system can drive the engine and the motor separately at multiple speeds, or the engine and the motor can be driven at the same time, so that the vehicle has good acceleration performance.
  • the motor is driven separately, the engine and the motor output shaft are disengaged, reducing driving resistance and high fuel economy.
  • the hybrid transmission system requires two to three clutches and a plurality of shifting mechanisms, and is high in manufacturing cost and large in space, and is difficult to be used in mid- and low-end models.
  • FIG. 1 Choinese patent CN102770689A
  • the engine E is coupled to the carrier CA
  • the first rotating electrical machine MG1 is coupled to the sun gear S
  • the inner ring gear R is outputted to the output shaft via the gear pair 22', 42'. 41'.
  • the power of the engine is used to drive the MG1 rotor to generate electricity, and the remaining power drives the wheels through the ring gear.
  • the second rotary electric machine MG2 drives the wheels W via the gear pairs 37', 42' and 43', 46' and the differential DF at a low speed.
  • the engine can also be used to assist in driving the wheels when the speed is high or the battery potential is low.
  • the hybrid transmission mode has a simple structure and a small footprint, and is widely used in Japanese automobiles.
  • this hybrid transmission method also has the following disadvantages:
  • a first object of the present invention is to provide a hybrid transmission to solve the technical problem that the engine and the output shaft of the driving rotary electric machine cannot be disengaged in the prior art, and the engine drag resistance affects the driving efficiency when the rotary electric machine is driven.
  • a second object of the present invention is to provide a hybrid vehicle using the above hybrid transmission.
  • the present invention provides a hybrid transmission including an engine, a generator, an electric motor, a first planetary gear mechanism, a clutch, and a second planetary gear mechanism;
  • the engine, the generator, and the motor are coaxially disposed;
  • crankshaft of the engine is coupled to the first planetary gear mechanism, and the first planetary gear mechanism is coupled to a rotor of the generator to drive the rotor to rotate;
  • the clutch includes a first transmission end and a second transmission end that are engageable or disengageable; the first transmission end is coupled to the first planetary gear mechanism, and the second transmission end is coupled to the second planetary gear mechanism Ring gear connection;
  • the ring gear also has an output gear for driving a wheel, and a rotor of the motor is coupled to a sun gear shaft of the second planetary gear mechanism.
  • the ring gear also has an output gear for driving the wheel.
  • first planetary gear mechanism is disposed coaxially with the engine.
  • the second planetary gear mechanism is disposed coaxially with the engine.
  • the first planetary gear mechanism is capable of increasing the speed of the engine and driving the generator to rotate.
  • the first planetary gear mechanism is configured as a single row of planetary gear trains, and the planet carrier of the first planetary gear mechanism respectively connects a crankshaft of the engine, a first transmission end of the clutch, and the first planet A planet gear of a gear mechanism, the sun gear of the first planetary gear mechanism being coupled to a rotor of the generator.
  • the first planetary gear mechanism is configured as a double-row planetary gear train, and the sun gear of the first planetary gear mechanism is respectively coupled to a crankshaft of the engine and a rotor of the generator, the first planetary gear A ring gear of the mechanism is coupled to the first drive end of the clutch.
  • the carrier of the first planetary gear mechanism is configured to be of a rotary type.
  • the carrier of the second planetary gear mechanism is configured to be stationary, and the second planetary gear mechanism is capable of raising the output torque of the motor.
  • the clutch employs a drum clutch, the inner drum of the clutch is a first transmission end, and the outer drum of the clutch is a second transmission end.
  • the hybrid transmission further includes a damper coupled to a crankshaft of the engine.
  • the generator is further electrically coupled to the engine for driving the engine to rotate.
  • the present invention also provides another hybrid transmission including an engine, a generator, an electric motor, a clutch, and a third planetary gear train;
  • the engine, the generator, and the motor are coaxially disposed;
  • crankshaft of the engine is coupled to a rotor of the generator to drive the rotor to rotate;
  • the clutch includes a first transmission end and a second transmission end that are engageable or disengageable; the first transmission end is coupled to a rotor of the generator, and the second transmission end is coupled to a tooth of the third planetary gear mechanism Circle connection
  • the ring gear also has an output gear for driving a wheel, and a rotor of the motor is coupled to a sun gear shaft of the third planetary gear mechanism.
  • the carrier of the third planetary gear mechanism is configured to be fixed, and the third planetary gear mechanism can increase the output torque of the motor.
  • the clutch adopts a drum clutch, the inner drum of the clutch is a first transmission end, and the outer drum of the clutch is a second transmission end.
  • the hybrid transmission further includes a damper coupled to a crankshaft of the engine.
  • a hybrid vehicle provided by the present invention includes a wheel, a wheel transmission mechanism, a differential, and a hybrid transmission as described above; the wheel is coupled to the differential via an axle, The wheel drive mechanism is coupled to the differential and the output gear, respectively.
  • the wheel transmission mechanism includes an output shaft, an output shaft driven gear and an output shaft drive gear; the output shaft driven gear and the output shaft drive gear are coaxially connected, and the output shaft drive gear is used to connect the differential
  • the ring gear of the output shaft is used to connect the output gear.
  • the engine, the generator and the motor are arranged coaxially.
  • the crankshaft of the engine is connected to the generator rotor through the first planetary gear structure or the crankshaft, which improves the gear transmission precision and improves the NVH performance (noise, vibration and harshness) Degree), which simplifies manufacturing and reduces costs.
  • the present invention disengages the engine from the motor through a disengageable clutch, thereby reducing engine drag resistance when the motor is driven, and improving fuel economy.
  • the torque of the generator is controlled to 0, and the engine torque can be transmitted through the clutch.
  • the torque of the electric motor is also transmitted to the wheel transmission mechanism through the corresponding planetary gear mechanism, and the torque of the two source powers is superimposed on the wheel transmission mechanism to maximize the acceleration performance of the vehicle.
  • the hybrid vehicle provided by the present invention adopts the above-described hybrid transmission and has the advantages of the hybrid transmission.
  • FIG. 1 is a schematic structural view of a hybrid transmission in the prior art
  • FIG. 2 is a schematic diagram of a power transmission structure of a hybrid vehicle (using a single-row planetary gear mechanism) according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of a rotational speed of a single-row planetary gear mechanism according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a power transmission structure of a hybrid vehicle (using a double-row planetary gear mechanism) according to Embodiment 1 of the present invention
  • FIG. 5 is a schematic diagram of a rotational speed of a double-row planetary gear mechanism according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a power transmission structure of a hybrid vehicle according to Embodiment 2 of the present invention.
  • Icons 1-engine; 2-crankshaft; 3-damper; 4-first planetary gear mechanism; 41, 61, 61'-ring gear; 42, 63, 63'-planetary; 43, 65, 65' - sun gear; 44, 62, 62'-planetary; 5-generator; 51, 92-rotor; 52, 91-stator; 6-second planetary gear mechanism; 6'-third planetary gear mechanism; 64'-sun axle;7-clutch;8,8'-output gear;9-motor;16-output shaft driven gear;17-output shaft drive gear;18-output shaft;19-differential ring gear;20 - differential; 21 - wheels.
  • the present invention provides a hybrid transmission including an engine 1, a generator 5, an electric motor 9, a first planetary gear mechanism 4, a clutch 7, and a second planetary gear mechanism 6.
  • the engine 1, the generator 5 and the electric motor 9 are coaxially arranged;
  • the crankshaft 2 of the engine 1 is connected to the first planetary gear mechanism 4, and the engine 1 can drive the first planetary gear mechanism 4 to operate by the crankshaft 2.
  • the first planetary gear mechanism sun gear 43 is connected to the rotor 51 of the generator 5 to drive the rotor to rotate.
  • the generator 5 can also provide a driving torque for the starting engine 1.
  • the clutch 7 includes a first transmission end and a second transmission end that are engageable or disengageable; the first transmission end is coupled to the carrier 42 of the first planetary gear mechanism, and the second transmission end is coupled to the ring gear 61 of the second planetary gear mechanism 6
  • the ring gear 61 also has an output gear 8 for driving the wheel.
  • the rotor 92 of the motor 9 is coupled to the sun gear shaft 64 of the second planetary gear mechanism 6, and the motor 9 can drive the second planetary gear mechanism 6 to rotate by the sun gear shaft 64.
  • the first transmission end and the second transmission end of the clutch 7 are in an engaged state, and the first transmission end is driven by the first planetary gear mechanism 4 to drive the second transmission end to rotate; the first transmission end and the second transmission end In the disengaged state, the first transmission end does not drive the second transmission end to rotate synchronously, and at the same time, the motor 9 can be rotated by the second planetary gear mechanism 6 alone, thereby driving the wheel 21 through the output gear 8, reducing the drag by the engine 1 The effect of ⁇ resistance.
  • the hybrid transmission of the present invention has three prime movers: an internal combustion engine that consumes liquid fuel, a generator 5 that is primarily used to generate electrical energy, and an electric motor 9 that primarily converts electrical energy into mechanical energy.
  • the generator 5 can also be used to start the engine 1, which can also be used to generate electricity when recovering vehicle braking energy.
  • the first planetary gear mechanism 4 is disposed coaxially with the engine 1.
  • the coaxial arrangement here means that the crankshaft 2 of the engine 1 is coaxially arranged with the sun gear 43 of the first planetary gear mechanism 4.
  • the second planetary gear mechanism 6 is arranged coaxially with the engine 1.
  • the coaxial configuration herein means that the crankshaft 2 of the engine 1 is coaxially disposed with the sun gear 65 of the second planetary gear mechanism 6.
  • the entire transmission has only two axes (ie, the engine 1 crankshaft 2 and The output shaft 18) not only improves the accuracy of the gear transmission, improves the performance of NVH (noise, vibration and harshness), but also simplifies the manufacturing difficulty and reduces the cost.
  • NVH noise, vibration and harshness
  • the first planetary gear mechanism 4 can adopt a plurality of different structural types.
  • the first planetary gear mechanism 4 of two different configurations will be mainly described.
  • the first planetary gear mechanism 4 is configured as a single-row planetary gear train including a ring gear 41, a carrier 42, a sun gear 43, and three planetary gears 44; a ring gear 41 Fixed to the reducer housing, the ring gear 41 is meshed with the sun gear 43 via the planet gears 44, the planet carrier 42 is coupled to the planet gears 44, and the planet carrier 42 of the first planetary gear mechanism 4 is configured to be rotatable.
  • the carrier 42 of the first planetary gear mechanism 4 is respectively connected to the crankshaft 2 of the engine 1, the first transmission end of the clutch 7, and the planetary gear 44, the sun gear 43 of the first planetary gear mechanism 4 and the rotor of the generator 5. 51 connections.
  • the sun gear 43 is transmitted to the rotor 51 of the generator 5 to drive the rotation of the rotor 51 and the stator 52 to generate electricity.
  • the second planetary gear mechanism 6 has a carrier 63, a sun gear 65, a sun gear shaft 64, a planetary gear 62 and a ring gear 61.
  • the carrier 63 is configured to be fixed, and the carrier 63 is fixedly connected to the transmission housing.
  • the ring gear 61 and the sun gear 65 are meshed and coupled by a planetary gear 62.
  • the ring gear 61 is coupled to the second transmission end of the clutch 7, and the ring gear 61 is further provided with an output gear 8 for The external wheel drive mechanism is coupled, and the sun gear 65 is coupled to the rotor 92 of the motor 9 via the sun gear shaft.
  • the second planetary gear mechanism 6 is also capable of raising the output torque of the motor 9.
  • the hybrid transmission of the above structure provided by the present invention can realize the following common functions:
  • the generator 5 After the crankshaft 2 of the engine 1 is increased in speed by the first planetary gear mechanism 4, the power is transmitted to the rotor 51 of the generator 5, and the generator 5 is rotated to start the engine 1. Conversely, when the engine 1 is running, the generator 5 can be driven to charge the battery.
  • n s1 ( ⁇ 1 +1)n c1 (1)
  • ⁇ 1 is the gear ratio of the ring gear 41 and the sun gear 43.
  • ⁇ 1 takes values from 2 to 3.
  • n c1 is the rotational speed of the carrier 42, that is, the rotational speed of the engine 1, and the purpose of providing the first planetary gear mechanism 4 is to increase the speed of the engine 1 and then drive the generator 5 to operate.
  • the high-efficiency charging speed of the generator 5 is greater than 2000 RPM, which is much higher than the idle speed of the engine 1.
  • the use of the first planetary gear mechanism 4 in the technical solution of the present application enables the engine 1 to be efficiently charged at the time of idling.
  • the first transmission end and the second transmission end of the engagement clutch 7 can transmit all or part of the power of the engine 1 to the external wheel transmission mechanism via the second planetary gear mechanism 6, thereby driving the wheels to operate.
  • the engine 1 When the engine 1 is selected to be driven separately, a certain amount of power can be distributed to charge the vehicle battery via the generator 5. The remaining power of the engine 1 can be distributed to the generator 5 according to the running condition of the vehicle, thereby improving fuel economy.
  • the torque of the generator 5 can be controlled to zero at the full throttle, and all of the engine 1 power is distributed to the wheel transmission mechanism to ensure vehicle acceleration.
  • the first drive end and the second drive end of the clutch 7 are disengaged, and the motor 9 is started.
  • the rotor 92 of the motor 9 drives the ring gear 61 to rotate in the opposite direction via the sun gear 65 of the second planetary gear mechanism 6 (see n r in FIG. 3). ). Since the carrier 63 of the second planetary gear mechanism 6 is fixed, the torque on the ring gear 61 is:
  • T s2 is the torque of the sun gear 65, that is, the motor 9, and T r2 is the torque received by the ring gear 61, and the torque is transmitted to the wheel transmission mechanism via the output gear 8 of the ring gear 61.
  • ⁇ 2 is the gear ratio of the ring gear 61 to the sun gear 65. Generally, the ⁇ 2 value is set between 2 and 3.
  • the second planetary gear mechanism 6 increases the torque of the motor 9 by more than two times, effectively reducing the size of the motor or improving the acceleration performance of the vehicle.
  • the motor 9 and the engine 1 are started, and the clutch 7 is engaged.
  • the torque of the engine 1 is subtracted from the torque of the drag generator 5, and then transmitted to the ring gear 61 of the second planetary gear mechanism 6 via the clutch 7.
  • the torque of the motor 9 is also superimposed on the ring gear 61 after being amplified by the second planetary gear mechanism 6.
  • T 8 T e + ⁇ 2 T s2 (3)
  • T e is the output torque of the engine 1
  • ⁇ 2 is the gear ratio of the ring gear 61 and the sun gear 65
  • T s2 is the torque of the sun gear 65, that is, the motor 9
  • T 8 is the output gear 8 Output torque, which is equivalent to twice the output torque of the normal engine 1, so as to ensure good acceleration performance of the car.
  • the vehicle inertia drags the output gear 8 and the ring gear 61 of the second planetary gear mechanism 6 via the wheel transmission mechanism.
  • the first transmission end and the second transmission end of the control clutch 7 are disengaged, and the inertial force acting on the ring gear 61 is rotated by the second planetary gear mechanism 6 to rotate the sun gear 65.
  • the sun gear 65 drives the motor 9 through the sun gear shaft 64.
  • the rotor 92 acts on the stator 91 to generate electricity, thereby achieving recovery of braking energy.
  • the technical solution adopting the above structural form 1 is suitable for a hybrid vehicle in which the engine 1 has a low idle speed, a large battery capacity, and is mainly driven by a motor.
  • the double-row planetary gear mechanism includes a ring gear 41, a carrier 42, a sun gear 43, and two sets of planet wheels 44.
  • each set of planet wheels 44 is provided with three, and the first set of planet wheels 44 are meshed with the sun gear 43.
  • the second set of planet gears 44 are respectively meshed with the corresponding first set of planet gears 44 and the ring gear 41.
  • the planet carrier 42 is coupled to the respective planet gears 44, which are respectively coupled to the crankshaft 2 and the generator 5 of the engine 1.
  • the rotor 51 is connected, and the ring gear 41 of the first planetary gear mechanism 4 is also connected to the first transmission end of the clutch 7.
  • the planet carrier 42 is configured in a fixed type.
  • Figure 5 shows the direction of rotation of each of the gears in the double row planetary gear mechanism.
  • the reason for switching to the double-row planetary gear mechanism is to keep the ring gear 41 rotating in the same direction as the sun gear 43 in order to use the conventionally-rotated engine 1.
  • the connection manner of the first planetary gear mechanism 4 can effectively increase the torque of the engine 1 by the above improvement.
  • the torque output on the ring gear 41 is:
  • T e is the output torque of the engine 1 minus the drag torque value of the generator 5
  • ⁇ 1 is the gear ratio of the ring gear 41 and the sun gear 43.
  • T r1 will be 3 times the torque of the engine 1 .
  • T 8 ⁇ 1 T e + ⁇ 2 T s2 (5)
  • the carrier 63 of the second planetary gear mechanism 6 is configured to be stationary, and the second planetary gear mechanism 6 is capable of raising the output torque of the motor 9.
  • the second planetary gear mechanism 6 has a carrier 63, a sun gear 65, a sun gear shaft 64, a planetary gear 62 and a ring gear 61.
  • the carrier 63 is configured to be fixed, and the carrier 63 is fixedly connected to the transmission housing.
  • the ring gear 61 and the sun gear 65 are meshed and coupled by a planetary gear 62.
  • the ring gear 61 is coupled to the second transmission end of the clutch 7, and the ring gear 61 is further provided with an output gear 8 for The external wheel drive mechanism is coupled, and the sun gear 65 is coupled to the rotor 92 of the motor 9 via the sun gear shaft 64.
  • the second planetary gear mechanism 6 is also capable of raising the output torque of the motor 9.
  • the clutch 7 employs a drum clutch 7, the inner drum of the clutch 7 serves as the first transmission end, and the outer drum of the clutch 7 serves as the second transmission end. .
  • the hybrid transmission further comprises a damper 3 connected to the crankshaft 2 of the engine 1.
  • the damper 3 functions to reduce the vibration generated when the crankshaft 2 of the engine 1 and the first planetary gear mechanism 4 are driven, and to improve the NVH (noise, vibration, and acoustic vibration roughness) performance.
  • the generator 5 is also coupled to the crankshaft of the engine for starting the engine 1.
  • Embodiment 2 of the present invention further provides another hybrid transmission structure which is based on the improvement of the hybrid transmission using the double planetary gear mechanism provided in the first embodiment, and the mixing provided in this embodiment In the power transmission, the first planetary gear mechanism 4 is omitted, making the overall structure simpler.
  • the hybrid transmission includes an engine 1, a generator 5, an electric motor 9, a clutch 7, and a third planetary gear train 6'.
  • the engine 1, the generator 5 and the electric motor 9 are coaxially arranged;
  • the crankshaft 2 of the engine 1 is connected to the rotor 51 of the generator 5 to drive the rotor 51 to rotate; and the generator 5 is driven to generate electricity.
  • the generator 5 can charge the vehicle battery on the one hand and the engine on the other hand. 1 Provide starting torque.
  • the clutch 7 includes a first transmission end and a second transmission end that are engageable or disengageable; the first transmission end is coupled to the rotor of the generator 5, and the second transmission end is coupled to the ring gear 61' of the third planetary gear mechanism 6';
  • the ring gear 61' also has an output gear 8 for driving the wheel, and the rotor of the motor 9 is coupled to the sun gear shaft 64' of the third planetary gear mechanism 6'.
  • the first transmission end and the second transmission end of the clutch 7 are in an engaged state, and the first transmission end is rotatable together with the second transmission end under the driving of the rotor 51 of the generator 5; the first transmission end and the second transmission end In the disengaged state, the first transmission end does not rotate synchronously with the second transmission end, and at the same time, the motor 9 can be rotated by the third planetary gear mechanism 6' alone, thereby driving the wheel through the output gear 8, reducing the drag by the engine 1 The effect of ⁇ resistance.
  • the hybrid transmission provided by the second embodiment of the present invention also has three prime movers: an internal combustion engine that consumes liquid fuel, a generator 5 that mainly generates electric energy, and an electric motor 9 that mainly converts electric energy into mechanical energy.
  • the generator 5 can also be used to start the engine 1, which can also be used to generate electricity when recovering vehicle braking energy.
  • the carrier 63' of the third planetary gear mechanism 6' is configured to be stationary, and the third planetary gear mechanism 6' is capable of raising the output torque of the motor 9.
  • the third planetary gear mechanism 6' in this embodiment is equivalent to the second planetary gear mechanism 6 in the first embodiment, and both have a common function, and the details thereof will not be described herein.
  • the clutch 7 employs a drum clutch 7, the inner drum of the clutch 7 serves as a first transmission end, and the outer drum of the clutch 7 serves as a second transmission end.
  • the hybrid transmission further comprises a damper 3 connected to the crankshaft 2 of the engine 1.
  • the function of the damper is to reduce the vibration generated when the crankshaft 2 of the engine 1 and the rotor of the generator 5 are driven, and to improve the NVH (noise, vibration and harshness) performance.
  • the first planetary gear mechanism 4 is omitted, the crankshaft 2 of the engine 1 is directly connected to the rotor of the generator 5, and the engine 1 speed and torque are not amplified, and the technical solution is more suitable for some engines 1 Hybrid electric vehicle for efficient power generation and extended range.
  • a hybrid vehicle provided by an embodiment of the present invention includes a wheel 21, a wheel transmission mechanism, a differential 20, and the mixing provided in the first embodiment or the second embodiment. Power transmission.
  • the wheel 21 is coupled to the differential 20 via an axle, and the wheel drive is in driving communication with the differential 20 and the output gear 8 of the hybrid transmission, respectively.
  • the wheel transmission mechanism includes an output shaft 18, an output shaft driven gear 16 and an output shaft drive gear 17; the output shaft driven gear 16 and the output shaft drive gear 17 are coaxially connected, and the output shaft drive gear 17 is used to connect the differential
  • the ring gear 19 of the output shaft 16 is used to connect the output gear 8.
  • the power of the output gear 8 in the hybrid transmission is sequentially transmitted to the wheels 21 via the output shaft driven gear 16, the output shaft 18, the output shaft drive gear 17, and the differential 20, thereby driving the wheels to rotate.
  • the engine 1, the generator 5, and the motor 9 are coaxially arranged, and the crankshaft 2 of the engine 1 is directly connected to the rotor of the generator 5 through the first planetary gear structure or the crankshaft 2, which improves gear transmission accuracy and improves NVH performance ( Noise, vibration and harshness of the sound) simplify manufacturing and reduce costs.
  • the present invention disengages the engine 1 from the motor 9 by a disengageable clutch 7, thereby reducing the drag resistance of the engine 1 when the motor 9 is driven. Improve fuel economy.
  • the torque of the generator 5 can be controlled to 0 when the engine 1 is driven and requires a large acceleration.
  • the torque of the engine 1 can all be transmitted through the clutch 7 to the wheel drive. If the electric motor 9 is also driven, the torque of the electric motor 9 is also transmitted to the wheel transmission mechanism through the corresponding planetary gear mechanism, and the torque of the two source powers is superimposed on the wheel transmission mechanism to maximize the acceleration performance of the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Arrangement Of Transmissions (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种混合动力变速器以及具有该混合动力变速器的汽车,其中发动机(1)、发电机(5)和电动机(9)同轴配置,第一行星齿轮机构(4)分别连接发动机(1)的曲轴(2)及发电机(5)的转子(51);离合器(7)包括能够接合或者脱离的与第一行星齿轮机构(4)的行星架(42)连接的第一传动端和与第二行星齿轮机构(6)的齿圈(61)连接的第二传动端;电动机(9)的转子(92)与第二行星齿轮机构(6)的太阳轮轴(64)连接;当电动机(9)驱动时,离合器(7)与发动机(1)和发电机(5)脱离,避免了发动机(1)拖拽阻力;在需要大加速度时,离合器(7)结合,可将发动机(1)和电动机(9)的全部扭矩线性叠加以提高车辆的动力性。

Description

混合动力变速器及混合动力汽车 技术领域
本发明涉及汽车领域,特别是涉及一种混合动力变速器及混合动力汽车。
背景技术
混合动力汽车一般使用两种能源来驱动的车辆:液体燃料的常规内燃发动机(ICE)和电能的电动机(EM)。
如何利用这两种能源也有两种常用驱动方式:将电机并联到变速器输入轴的P2并联方式,和将电机并联到变速器输出轴的动力分离方式。前者广泛用于欧州生产的混动车上,而后者却普遍用于日系车上。P2方式的混合动力***可以实现发动机和电动机单独多速驱动,也可发动机和电动机同时驱动,使汽车加速性能良好。在电机单独驱动时,发动机与电机输出轴脱开,减少驱动阻力,燃油经济性较高。但该混动变速***需要两至三个离合器和多个换档机构,制造成本高、占用空间大,难以用于中低档车型上。
另外一种混合动力汽车采用双电机动力分配式传动方案。如图1所示(中国专利CN102770689A),发动机E联到行星架CA,第一旋转电机MG1转子31联到太阳轮S、内齿圈R输出扭矩经齿轮对22’、42’传到输出轴41’.发动机的动力用来拖动MG1转子发电,剩余动力经内齿圈驱动车轮。低速时第二旋转电机MG2经齿轮对37’、42’和43’、46’和差速器DF驱动车轮W。高速或电池电位低时,发动机也可用来辅助驱动车轮。
这种混合动力传递方式的变速器结构简单,占用空间少,在日系汽车中广为应用。但这种混合动力传递方式也有下列缺点:
(i)在第二旋转电机MG2单独驱动时,发动机E和第一旋转电机MG1与输出轴41’无法脱开,它们的拖拽阻力会降低第二旋转电机MG2的驱动效率。
(ii)在要求快速起步或爬坡时,发动机的功率不能全部用来驱动(第一旋转电机MG1分配去一部份),这种混合动力汽车的加速性能往往不能满足使用需求。
发明内容
本发明的第一目的在于提供一种混合动力变速器,以解决现有技术中存在的发动机与驱动旋转电机的输出轴无法脱开,以及旋转电机驱动时发动机拖拽阻力影响驱动效率的技术问题。
本发明第二目的在于提供一种采用上述混合动力变速器的混合动力汽车。
基于上述第一目的,本发明提供的一种混合动力变速器,包括发动机、发电机、电动机、第一行星齿轮机构、离合器和第二行星齿轮机构;
所述发动机、所述发电机和所述电动机同轴配置;
所述发动机的曲轴与所述第一行星齿轮机构连接,所述第一行星齿轮机构连接所述发电机的转子以驱动所述转子转动;
所述离合器包括能够接合或者脱离的第一传动端和第二传动端;所述第一传动端与所述第一行星齿轮机构连接,所述第二传动端与所述第二行星齿轮机构的齿圈连接;
所述齿圈还具有用以驱动车轮的输出齿轮,所述电动机的转子与所述第二行星齿轮机构的太阳轮轴连接。
进一步地,所述齿圈还具有用以驱动车轮的输出齿轮。
进一步地,所述第一行星齿轮机构与所述发动机同轴配置。
进一步地,所述第二行星齿轮机构与所述发动机同轴布置。
进一步地,所述第一行星齿轮机构能够对所述发动机的转速增速并带动所述发电机转动。
进一步地,所述第一行星齿轮机构配置成单排行星齿轮系,所述第一行星齿轮机构的行星架分别连接所述发动机的曲轴、所述离合器的第一传动端和所述第一行星齿轮机构的行星轮,所述第一行星齿轮机构的太阳轮与所述发电机的转子连接。
进一步地,所述第一行星齿轮机构配置成双排行星齿轮系,所述第一行星齿轮机构的太阳轮分别与所述发动机的曲轴和所述发电机的转子连接,所述第一行星齿轮机构的齿圈与所述离合器的第一传动端连接。
进一步地,所述第一行星齿轮机构的行星架配置成转动式。
进一步地,所述第二行星齿轮机构的行星架配置成固定式,所述第二行星齿轮机构能够提升所述电动机的输出扭矩。
进一步地,所述离合器采用鼓式离合器,所述离合器的内鼓为第一传动端,所述离合器的外鼓为第二传动端。
进一步地,该混合动力变速器还包括减振器,所述减振器与所述发动机的曲轴连接。
进一步地,所述发电机还与所述发动机电连接,用以驱动所述发动机转动。
基于上述第一目的,本发明还提供了另外一种混合动力变速器,该混合动力变速器包括发动机、发电机、电动机、离合器和第三行星齿轮系;
所述发动机、所述发电机和所述电动机同轴配置;
所述发动机的曲轴与所述发电机的转子连接以驱动所述转子转动;
所述离合器包括能够接合或者脱离的第一传动端和第二传动端;所述第一传动端与所述发电机的转子连接,所述第二传动端与所述第三行星齿轮机构的齿圈连接;
所述齿圈还具有用以驱动车轮的输出齿轮,所述电动机的转子与所述第三行星齿轮机构的太阳轮轴连接。
进一步的,所述第三行星齿轮机构的行星架配置成固定式,所述第三行星齿轮机构能够提升所述电动机的输出扭矩。
进一步的,所述离合器采用鼓式离合器,所述离合器的内鼓为第一传动端,所述离合器的外鼓为第二传动端。
进一步的,该混合动力变速器还包括减振器,所述减振器与所述发动机的曲轴连接。
基于上述第二目的,本发明的提供的一种混合动力汽车,包括车轮、车轮传动机构、差速器以及如上所述的混合动力变速器;所述车轮通过轮轴与所述差速器连接,所述车轮传动机构分别与所述差速器和所述输出齿轮传动连接。
进一步的,所述车轮传动机构包括输出轴、输出轴被动齿轮和输出轴主动齿轮;所述输出轴被动齿轮和输出轴主动齿轮同轴连接,所述输出轴主动齿轮用以连接所述差速器的齿圈,所述输出轴被动齿轮用以连接所述输出齿轮。
采用上述技术方案,本发明提供的混合动力变速器的有益效果有:
1.将发动机、发电机、电动机同轴布置,发动机的曲轴通过第一行星齿轮结构或者该曲轴直接与发电机转子连接,既提高了齿轮传动精度、提高NVH性能(噪声、振动与声振粗糙度),又简化了制造难度和降低了成本。
2.为降低电动机驱动时,发动机拖拽阻力大的缺陷,本发明通过一个可脱开的离合器将发动机与电动机的脱离开,从而降低电动机驱动时发动机拖拽阻力,提高了燃油经济性。
3.为解决现有双电机分离式混合动力变速器发动机驱动时动力分散的问题,本发明的技术方案中,在需要发动机驱动时将发电机的扭矩控制为0,发动机扭矩就可全部通过离合器传递到车轮传动机构上。若电动机也驱动,该电动机的扭矩通过相对应的行星齿轮机构也传到车轮传动机构上,两个源动力的扭矩叠加在车轮传动机构上,最大限度地提高汽车的加速性能。
本发明提供的混合动力汽车,采用上述的混合动力变速器,具有该混合动力变速器的优点。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的设计。
图1为现有技术中混合动力变速器的结构示意图;
图2为本发明实施例一提供的混合动力汽车(采用单排行星齿轮机构)的动力传输结构示意图;
图3为本发明实施例一采用采用单排行星齿轮机构的转速示意图;
图4为本发明实施例一提供的混合动力汽车(采用双排行星齿轮机构)的动力传输结构示意图;
图5为本发明实施例一采用采用双排行星齿轮机构的转速示意图;
图6为本发明实施例二提供的混合动力汽车的动力传输结构示意图。
图标:1-发动机;2-曲轴;3-减振器;4-第一行星齿轮机构;41、61、61’-齿圈;42、63、63’-行星架;43、65、65’-太阳轮;44、62、62’-行星轮;5-发电机;51、92-转子;52、91-定子;6-第二行星齿轮机构;6’-第三行星齿轮机构;64、64’-太阳轮轴;7-离合器;8、8’-输出齿轮;9-电动机;16-输出轴被动齿轮;17-输出轴主动齿轮;18-输出轴;19-差速器齿圈;20-差速器;21-车轮。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
如图2和图4所示,本发明提供的一种混合动力变速器,包括发动机1、发电机5、电动机9、第一行星齿轮机构4、离合器7和第二行星齿轮机构6。
发动机1、发电机5和电动机9同轴配置;
发动机1的曲轴2与第一行星齿轮机构4连接,发动机1通过曲轴2能够驱动第一行星齿轮机构4运转,第一行星齿轮机构太阳轮43连接发电机5的转子51、以驱动转子转动进行发电,发电机5也可以为启动发动机1提供驱动力矩。
离合器7包括能够接合或者脱离的第一传动端和第二传动端;第一传动端与第一行星齿轮机构的行星架42连接,第二传动端与第二行星齿轮机构6的齿圈61连接;该齿圈61还具有用以驱动车轮的输出齿轮8,电动机9的转子92与第二行星齿轮机构6的太阳轮轴64连接,电动机9能够通过太阳轮轴64带动第二行星齿轮机构6转动。
离合器7的第一传动端和第二传动端处于接合状态下,第一传动端在第一行星齿轮机构4的带动下,能够带动第二传动端进行转动;第一传动端和第二传动端处于脱离的状态下,第一传动端不会带动第二传动端同步转动,同时,电动机9能够单独通过第二行星齿轮机构6转动,进而通过输出齿轮8驱动车轮21,减小受到发动机1拖拽阻力的影响。
本发明的混合动力变速器具有三个原动机:消耗液体燃料的内燃发动机1、主要用来产生电能的发电机5和主要将电能转换成机械能的电动机9。该发电机5也可以用来启动发动机1,电动机9也可以在回收车辆制动能量时用来发电。
可选地,第一行星齿轮机构4与发动机1同轴配置。这里的同轴配置,指的是发动机1的曲轴2与第一行星齿轮机构4的太阳轮43同轴配置。
可选地,第二行星齿轮机构6与发动机1同轴布置。同样地,这里的同轴配置,指的是发动机1的曲轴2与第二行星齿轮机构6的太阳轮65同轴配置。
上述技术方案中,由于发动机1、发电机5、电动机9、第一行星齿轮机构4和第二行星齿轮机构6分别设置为同轴配置,使整个变速器只有两根轴线(即发动机1曲轴2和输出轴18),既提高了齿轮传动的精度、提高NVH(噪声、振动与声振粗糙度)性能,又简化了制造难度和降低了成本。
本实施例中,第一行星齿轮机构4可以采用多种不同的结构类型,下面,主要对两种不同结构的第一行星齿轮机构4进行说明。
结构形式一
请参照图2和图3,第一行星齿轮机构4配置成单排行星齿轮系,该单排行星齿轮机构包括齿圈41、行星架42、太阳轮43和三个行星轮44;齿圈41固定在减速器壳体上,齿圈41与太阳轮43通过行星轮44啮合连接,行星架42与行星轮44连接,第一行星齿轮机构4的行星架42配置成转动式。
具体实施时,第一行星齿轮机构4的行星架42分别连接发动机1的曲轴2、离合器7的第一传动端以及行星轮44,第一行星齿轮机构4的太阳轮43与发电机5的转子51连接。发动机1转动时,通过曲轴2将动力传递至行星架42,该行星架42将一部 分动力传递至离合器7的第一传动端,将另一部分动力通过该第一行星齿轮机构4的行星轮44、太阳轮43传递至发电机5的转子51,以驱动转子51转动和定子52作用发电。
可选地,第二行星齿轮机构6具有行星架63、太阳轮65、太阳轮轴64、行星轮62和齿圈61,该行星架63配置成固定式,行星架63与变速器壳体固定连接,齿圈61和太阳轮65之间通过行星轮62啮合连接,齿圈61与离合器7的第二传动端连接,并且,齿圈61的上还设置有输出齿轮8,该输出齿轮8用以与外部的车轮传动机构连接,太阳轮65通过太阳轮轴与电动机9的转子92连接。第二行星齿轮机构6还能够提升电动机9的输出扭矩。
本发明提供的上述结构的混合动力变速器可以实现下述常用功能:
1.发动机1的启动和充电,2.发动机1单独驱动,3.电动机9单独驱动,4.发动机1和电动机9同时驱动,5.车辆制动能量回收。上述工作原理分别描述如下:
1.发动机1的启动和充电。
发动机1的曲轴2经第一行星齿轮机构4增速后,将动力传递到发电机5的转子51,发电机5转动即可启动发动机1。反之,发动机1运转就可带动发电机5给电池充电。
在图3所示的第一行星齿轮机构4中,发电机5的转速为:
n s1=(α 1+1)n c1          (1)
其中,α 1是齿圈41与太阳轮43的齿数比。一般α 1取值2到3。
n c1是行星架42的转速,即发动机1的转速,设置第一行星齿轮机构4的目的就是将发动机1增速后再带动发电机5运转。一般发电机5的高效充电转速大于2000RPM,远高于发动机1的怠速。而本申请技术方案中采用第一行星齿轮机构4能够使发动机1在怠速时进行高效充电。
2.发动机1单独驱动。
发动机1运转时接合离合器7的第一传动端和第二传动端就可将发动机1的全部或部分动力经第二行星齿轮机构6传到外部车轮传动机构,进而驱动车轮运转。
发动机1选择单独驱动时,还可分配一定功率经发电机5给车载电池进行充电。根据车辆运行情况可将发动机1剩余的动力分配给发电机5,从而提高燃油经济性。在全油门时可将发电机5的扭矩控制为0,将所有发动机1动力分配给车轮传动机构,以保证车辆加速性。
3.3电动机9单独驱动。
脱开离合器7的第一传动端和第二传动端,启动电动机9,该电动机9的转子92经第二行星齿轮机构6的太阳轮65带动齿圈61反方向旋转(如图3中n r)。由于第二行星齿轮机构6的行星架63固定,齿圈61上的扭矩为:
T r2=α 2T s2       (2)
其中,T s2是太阳轮65即电动机9的扭矩,T r2是齿圈61受到的扭距,该扭距经齿圈61上输出齿轮8传递给车轮传动机构。α 2是齿圈61与太阳轮65的齿数比。一般α 2值设在2到3之间。
从公式(2)可看出第二行星齿轮机构6将电动机9扭矩增加了2倍多,有效地减小了电机尺寸或提高了车辆加速性能。
由于在第一行星齿轮机构4和第二行星齿轮机构6之间串联了一个离合器7,脱开此离合器7,电动机9驱动时就没有发动机1的拖曳阻力,从而提高了车辆的燃油经济性。
3.4发动机1和电动机9同时驱动。
同时启动电动机9和发动机1,接合离合器7,发动机1的扭矩减去拖动发电机5的扭矩后,经离合器7传到第二行星齿轮机构6的齿圈61上。电动机9的扭矩经第二行星齿轮机构6放大后也叠加在该齿圈61上。控制发电机5的扭矩为0时,那么,最大输出扭矩(在输出齿轮上)可达:
T 8=T e2T s2       (3)
其中,公式(3)中,T e是发动机1的输出扭矩,α 2是齿圈61与太阳轮65的齿数比,T s2是太阳轮65即电动机9的扭矩,T 8是输出齿轮8的输出扭矩,这个扭矩相当于普通发动机1输出扭矩的两倍,从而可以保证汽车良好的加速性能。
3.5车辆制动能量回收。
在车辆处于减速制动状态时,车辆惯性经车轮传动机构拖动第二行星齿轮机构6的输出齿轮8、齿圈61。控制离合器7的第一传动端和第二传动端脱离开,作用在齿圈61上的惯性能经第二行星齿轮机构6拖动太阳轮65转动,该太阳轮65通过太阳轮轴64驱动电动机9的转子92作用定子91发电,实现制动能的回收。
采用上述的结构形式一的技术方案适合发动机1怠速低,电池容量较大、主要由电机驱动的混动汽车。
对于以发动机1怠速高、扭矩小的混动汽车可采用图4所示的采用双排行星齿轮机构的替代方案。
结构形式二
在图4和图5所示替代方案中,采用双排行星齿轮机构代替了图2和图3中的单排行星齿轮机构。该双排行星齿轮机构包括齿圈41、行星架42、太阳轮43以及两组行星轮44,优选地,每一组行星轮44设置三个,第一组行星轮44与太阳轮43啮合连接,第二组行星轮44分别与对应的第一组的行星轮44以及齿圈41啮合连接,行星架42与各个行星轮44连接,该太阳轮41分别与发动机1的曲轴2和发电机5的转子51 连接,第一行星齿轮机构4的齿圈41还与离合器7的第一传动端连接。该行星架42配置成固定式。
图5显示了该双排行星齿轮机构中各齿轮的转速方向。改用双排行星齿轮机构的原因是保持齿圈41与太阳轮43同向旋转,以便使用传统旋向的发动机1。与图2相比,第一行星齿轮机构4的连接方式通过上述改进,能够有效增大发动机1的扭矩。
齿圈41上输出的扭矩为:
T r1=α 1T e        (4)
其中,T e是发动机1的输出扭矩减去发电机5的拖动扭矩值,α 1是齿圈41与太阳轮43的齿数比。
α 1值若为3,T r1就将是发动机1扭矩放大了3倍。
一旦离合器7接合,那么传到输出齿轮8上的扭矩为:
T 8=α 1T e2T s2          (5)
式中符号定义与式(3)和式(4)中相同.与上述的式(3)相比,采用双排行星齿轮机构的输出扭矩更大。即使没有电动机9,发动机1单独扭矩也足以用来驱动汽车起步。这个方案更适合一些小型发动机1,其功能主要是在高效转速下发电。
可选地,本实施例一提供的混合动力变速器中,第二行星齿轮机构6的行星架63配置成固定式,第二行星齿轮机构6能够提升电动机9的输出扭矩。
可选地,第二行星齿轮机构6具有行星架63、太阳轮65、太阳轮轴64、行星轮62和齿圈61,该行星架63配置成固定式,行星架63与变速器壳体固定连接,齿圈61和太阳轮65之间通过行星轮62啮合连接,齿圈61与离合器7的第二传动端连接,并且,齿圈61的上还设置有输出齿轮8,该输出齿轮8用以与外部的车轮传动机构连接,太阳轮65通过太阳轮轴64与电动机9的转子92连接。第二行星齿轮机构6还能够提升电动机9的输出扭矩。
本发明实施例一中提供的混合动力变速器中,可选地,离合器7采用鼓式离合器7,离合器7的内鼓作为上述的第一传动端,离合器7的外鼓作为上述的第二传动端。
可选地,该混合动力变速器还包括减振器3,减振器3与发动机1的曲轴2连接。减振器3的作用是减小发动机1的曲轴2以及与第一行星齿轮机构4之间传动时引发的振动,提高NVH(噪声、振动与声振粗糙度)性能。
可选地,发电机5还与发动机的曲轴连接,用以启动发动机1。
实施例二
本发明实施例二还提供了另外一种混合动力变速器,该混合动力变速器结构是基于上述实施例一中提供的采用双行星齿轮机构的混合动力变速器做出的改进,在本实施例提供的混合动力变速器中,省去了第一行星齿轮机构4,使整体结构更为简单。
具体请参照图6,该混合动力变速器包括发动机1、发电机5、电动机9、离合器7和第三行星齿轮系6’。
发动机1、发电机5和电动机9同轴配置;
发动机1的曲轴2与发电机5的转子51连接以驱动转子51转动;进而驱动发电机5进行发电,该发电机5在应用时,一方面可以对车载电池进行充电,另一方面可以为发动机1提供启动力矩。
离合器7包括能够接合或者脱离的第一传动端和第二传动端;第一传动端与发电机5的转子连接,第二传动端与第三行星齿轮机构6’的齿圈61’连接;并且,该齿圈61’还具有用以驱动车轮的输出齿轮8,电动机9的转子与第三行星齿轮机构6’的太阳轮轴64’连接。
离合器7的第一传动端和第二传动端处于接合状态下,第一传动端在发电机5的转子51的带动下,能够与第二传动端共同转动;第一传动端和第二传动端处于脱离的状态下,第一传动端不会与第二传动端同步转动,同时,电动机9能够单独通过第三行星齿轮机构6’转动,进而通过输出齿轮8驱动车轮,减小受到发动机1拖拽阻力的影响。
本发明实施例二提供的混合动力变速器同样具有三个原动机:消耗液体燃料的内燃发动机1、主要用来产生电能的发电机5和主要将电能转换成机械能的电动机9。该发电机5也可以用来启动发动机1,电动机9也可以在回收车辆制动能量时用来发电。
可选地,第三行星齿轮机构6’的行星架63’配置成固定式,第三行星齿轮机构6’能够提升电动机9的输出扭矩。这里需要说明的是,本实施例中的第三行星齿轮机构6’等同于实施例一中的第二行星齿轮机构6,两者具有共同的作用,对于其结构这里不再赘述。
可选地,离合器7采用鼓式离合器7,离合器7的内鼓作为第一传动端,离合器7的外鼓作为第二传动端。
可选地,该混合动力变速器还包括减振器3,减振器3与发动机1的曲轴2连接。减震器的作用的是减小发动机1的曲轴2以及与发电机5转子之间传动时引发的振动,提高NVH(噪声、振动与声振粗糙度)性能。
由于本实施技术方案中,省去了第一行星齿轮机构4,发动机1的曲轴2直接与发电机5的转子连接,发动机1转速和扭矩都未进行放大,该技术方案更适合一些发动机1主要用来高效发电增程的混合动力电动车。
实施例三
请再次参照图2、图4和图6,本发明实施例的提供的一种混合动力汽车,包括车轮21、车轮传动机构、差速器20以及如上实施例一或者实施例二中提供的混合动力变速器。
车轮21通过轮轴与差速器20连接,车轮传动机构分别与差速器20和混合动力变速器中的输出齿轮8传动连接。
可选地,车轮传动机构包括输出轴18、输出轴被动齿轮16和输出轴主动齿轮17;输出轴被动齿轮16和输出轴主动齿轮17同轴连接,输出轴主动齿轮17用以连接差速器20的齿圈19,输出轴被动齿轮16用以连接输出齿轮8。
工作时,混合动力变速器中的输出齿轮8的动力依次经输出轴被动齿轮16、输出轴18、输出轴主动齿轮17、差速器20传递到车轮21,进而驱动车轮转动。
工业实用性
1.将发动机1、发电机5、电动机9同轴布置,发动机1的曲轴2通过第一行星齿轮结构或者该曲轴2直接与发电机5转子连接,既提高了齿轮传动精度、提高NVH性能(噪声、振动与声振粗糙度),又简化了制造难度和降低了成本。
2.为降低电动机9驱动时,发动机1拖拽阻力大的缺陷,本发明通过一个可脱开的离合器7将发动机1与电动机9的脱离开,从而降低电动机9驱动时发动机1拖拽阻力,提高了燃油经济性。
3.为解决现有双电机分离式混合动力变速器发动机1驱动时动力分散的问题,本发明的技术方案中,在发动机1驱动并需要大加速度时将可将发电机5的扭矩控制为0,发动机1扭矩就可全部通过离合器7传递到车轮传动机构上。若电动机9也驱动,该电动机9的扭矩通过相对应的行星齿轮机构也传到车轮传动机构上,两个源动力的扭矩叠加在车轮传动机构上,最大限度地提高汽车的加速性能。

Claims (17)

  1. 一种混合动力变速器,其特征在于,包括发动机、发电机、电动机、第一行星齿轮机构、离合器和第二行星齿轮机构;
    所述发动机、所述发电机和所述电动机同轴配置;
    所述发动机的曲轴与所述第一行星齿轮机构连接,所述第一行星齿轮机构连接所述发电机的转子以驱动所述转子转动;
    所述离合器包括能够接合或者脱离的第一传动端和第二传动端;所述第一传动端与所述第一行星齿轮机构连接,所述第二传动端与所述第二行星齿轮机构的齿圈连接,所述第二行星齿轮机构的太阳轮轴与所述电动机的转子连接。
  2. 根据权利要求1所述的混合动力变速器,其特征在于,所述第二行星齿轮机构的齿圈上还具有用以驱动车轮的输出齿轮。
  3. 根据权利要求1或2所述的混合动力变速器,其特征在于,所述第二行星齿轮机构与所述发动机同轴布置。
  4. 根据权利要求1所述的混合动力变速器,其特征在于,所述第一行星齿轮机构能够对所述发动机的转速增速并带动所述发电机转动。
  5. 根据权利要求1-4任一项所述的混合动力变速器,其特征在于,所述第一行星齿轮机构配置成单排行星齿轮系,所述第一行星齿轮机构的行星架分别连接所述发动机的曲轴、所述离合器的第一传动端和所述第一行星齿轮机构的行星轮,所述第一行星齿轮机构的太阳轮与所述发电机的转子连接。
  6. 根据权利要求1-4任一项所述的混合动力变速器,其特征在于,所述第一行星齿轮机构配置成双排行星齿轮系,所述第一行星齿轮机构的太阳轮分别与所述发动机的曲轴和所述发电机的转子连接,所述第一行星齿轮机构的齿圈与所述离合器的第一传动端连接。
  7. 根据权利要求1-6任一项所述的混合动力变速器,其特征在于,所述第一行星齿轮机构的行星架配置成转动式。
  8. 根据权利要求1-7任一项所述的混合动力变速器,其特征在于,所述第二行星齿轮机构的行星架配置成固定式,所述第二行星齿轮机构能够提升所述电动机的输出扭矩。
  9. 根据权利要求1-8任一项所述的混合动力变速器,其特征在于,所述离合器采用鼓式离合器,所述离合器的内鼓为第一传动端,所述离合器的外鼓为第二传动端。
  10. 根据权利要求1-9任一项所述的混合动力变速器,其特征在于,还包括减振器, 所述减振器与所述发动机的曲轴连接。
  11. 根据权利要求1-10任一项所述的混合动力变速器,其特征在于,所述发电机还与所述发动机电连接,用以驱动所述发动机转动。
  12. 一种混合动力变速器,其特征在于,包括发动机、发电机、电动机、离合器和第三行星齿轮系;
    所述发动机、所述发电机和所述电动机同轴配置;
    所述发动机的曲轴与所述发电机的转子连接以驱动所述转子转动;
    所述离合器包括能够接合或者脱离的第一传动端和第二传动端;所述第一传动端与所述发电机的转子连接,所述第二传动端与所述第三行星齿轮机构的齿圈连接;
    所述齿圈还具有用以驱动车轮的输出齿轮,所述电动机的转子与所述第三行星齿轮机构的太阳轮轴连接。
  13. 根据权利要求12所述的混合动力变速器,其特征在于,所述第三行星齿轮机构的行星架配置成固定式,所述第三行星齿轮机构能够提升所述电动机的输出扭矩。
  14. 根据权利要求12所述的混合动力变速器,其特征在于,所述离合器采用鼓式离合器,所述离合器的内鼓为第一传动端,所述离合器的外鼓为第二传动端。
  15. 根据权利要求12-14任一项所述的混合动力变速器,其特征在于,还包括减振器,所述减振器与所述发动机的曲轴连接。
  16. 一种混合动力汽车,其特征在于,包括车轮、车轮传动机构、差速器以及权利要求2-15任一项所述的混合动力变速器;所述车轮通过轮轴与所述差速器连接,所述车轮传动机构分别与所述差速器和所述输出齿轮传动连接。
  17. 根据权利要求16所述的混合动力汽车,其特征在于,所述车轮传动机构包括输出轴、输出轴被动齿轮和输出轴主动齿轮;所述输出轴被动齿轮和输出轴主动齿轮同轴连接,所述输出轴主动齿轮用以连接所述差速器的齿圈,所述输出轴被动齿轮用以连接所述输出齿轮。
PCT/CN2018/079944 2018-03-22 2018-03-22 混合动力变速器及混合动力汽车 WO2019178796A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18910378.1A EP3750734B1 (en) 2018-03-22 2018-03-22 Hybrid transmission and hybrid electric vehicle
PCT/CN2018/079944 WO2019178796A1 (zh) 2018-03-22 2018-03-22 混合动力变速器及混合动力汽车
CN201880091329.XA CN111936335B (zh) 2018-03-22 2018-03-22 混合动力变速器及混合动力汽车
US17/040,072 US11186161B2 (en) 2018-03-22 2018-03-22 Hybrid transmission and hybrid electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/079944 WO2019178796A1 (zh) 2018-03-22 2018-03-22 混合动力变速器及混合动力汽车

Publications (1)

Publication Number Publication Date
WO2019178796A1 true WO2019178796A1 (zh) 2019-09-26

Family

ID=67986642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079944 WO2019178796A1 (zh) 2018-03-22 2018-03-22 混合动力变速器及混合动力汽车

Country Status (4)

Country Link
US (1) US11186161B2 (zh)
EP (1) EP3750734B1 (zh)
CN (1) CN111936335B (zh)
WO (1) WO2019178796A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112659883A (zh) * 2021-01-12 2021-04-16 浙江吉利控股集团有限公司 一种混合动力驱动装置
CN113320374A (zh) * 2021-07-16 2021-08-31 席忠 双电机功率合流混合动力***
CN113771610A (zh) * 2021-08-18 2021-12-10 上海爱跻企业管理咨询合伙企业(有限合伙) 模块化电驱传动装置
CN114893284A (zh) * 2022-04-29 2022-08-12 东风商用车有限公司 一种兼具发电机功能的车用无级调速电控风扇离合***

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208134080U (zh) * 2016-12-21 2018-11-23 舍弗勒技术股份两合公司 驱动装置和机动车
CN113028001A (zh) * 2021-03-04 2021-06-25 盛瑞传动股份有限公司 减速器及汽车
CN113043825A (zh) * 2021-03-11 2021-06-29 席忠 三电机功率分流的混合动力***
DE102021114513A1 (de) * 2021-06-07 2022-12-08 Schaeffler Technologies AG & Co. KG Antriebsstrang für ein Hybridkraftfahrzeug

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101992679A (zh) * 2009-08-24 2011-03-30 上海华普国润汽车有限公司 双行星排四轴混合动力传动装置
CN102310758A (zh) * 2010-07-01 2012-01-11 通用汽车环球科技运作有限责任公司 单离合器、双行星式混合动力构造
US20120142489A1 (en) * 2010-12-03 2012-06-07 Kia Motors Corporation Control system and method for changing speed in starting the engine of a hybrid vehicle
CN102770689A (zh) 2010-03-09 2012-11-07 爱信艾达株式会社 混合动力驱动装置
WO2013121527A1 (ja) * 2012-02-14 2013-08-22 トヨタ自動車株式会社 ハイブリッド車両用駆動装置
CN104235287A (zh) * 2013-06-24 2014-12-24 现代自动车株式会社 混合电动车辆的变速器***
CN107458204A (zh) * 2016-06-06 2017-12-12 比亚迪股份有限公司 动力传动***以及具有其的车辆

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7278941B2 (en) * 2004-07-22 2007-10-09 General Motors Corporation Electrically variable transmission with selective fixed ratio operation
US7220203B2 (en) * 2004-09-01 2007-05-22 General Motors Corporation Electrically variable transmission with selective fixed ratio operation
US7416501B2 (en) * 2005-12-22 2008-08-26 General Motors Corporation Single range electrically variable transmission with lockup clutch and method of operation
CN101451596B (zh) * 2007-12-04 2012-01-11 艾晓林 双模式机电无级变速器
CN101323242B (zh) * 2008-07-24 2010-07-21 上海交通大学 混合动力汽车双行星排机电耦合驱动装置
US8251166B2 (en) * 2009-04-27 2012-08-28 GM Global Technology Operations LLC Hybrid powertrain with assisted starting and method of starting an engine
US20120270691A1 (en) * 2011-03-23 2012-10-25 Chrysler Group Llc Multi-mode electric drive hybrid transmission
DE112012006706B8 (de) * 2012-07-17 2021-03-11 Toyota Jidosha Kabushiki Kaisha Hybridfahrzeug-Antriebsvorrichtung
WO2014080528A1 (ja) * 2012-11-26 2014-05-30 トヨタ自動車株式会社 ハイブリッド車両用駆動装置
JP6020401B2 (ja) * 2013-09-26 2016-11-02 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置
JP2015137091A (ja) * 2014-01-24 2015-07-30 トヨタ自動車株式会社 ハイブリッド車両用駆動装置の制御装置
CN103921667B (zh) * 2014-04-01 2017-04-26 中国第一汽车股份有限公司 一种混合动力***
CN204161081U (zh) * 2014-04-01 2015-02-18 中国第一汽车股份有限公司 一种并联增程式电动汽车动力***
KR101646109B1 (ko) * 2014-10-14 2016-08-05 현대자동차 주식회사 하이브리드 차량용 변속장치
US10578195B2 (en) * 2015-02-17 2020-03-03 Oshkosh Corporation Inline electromechanical variable transmission system
CN106476609B (zh) * 2015-08-31 2019-03-29 比亚迪股份有限公司 动力传动***及具有其的车辆
CN105346371A (zh) * 2015-09-02 2016-02-24 重庆长安汽车股份有限公司 一种混合动力汽车复合行星齿轮组动力耦合机构
CN105564214A (zh) * 2016-01-14 2016-05-11 江苏大学 一种带锁止功能的行星轮系动力耦合装置及其工作方法
US10350983B2 (en) * 2016-03-23 2019-07-16 Toyota Jidosha Kabushiki Kaisha Power transmission system
CN206579468U (zh) * 2017-03-10 2017-10-24 吉林大学 一种双行星排混合动力驱动装置
EP3375650B1 (en) * 2017-03-15 2021-10-20 Toyota Jidosha Kabushiki Kaisha Drive unit for hybrid vehicles
CN206690866U (zh) * 2017-03-29 2017-12-01 吴燕开 一种基于双行星轮行星排机构的两挡传动装置
CN207045126U (zh) * 2017-04-11 2018-02-27 吴燕开 一种采用单行星排机构的混合动力传动装置
CN107697061B (zh) * 2017-09-25 2020-09-04 奇瑞汽车股份有限公司 混合动力驱动***及混合动力汽车
JP2019166939A (ja) * 2018-03-23 2019-10-03 本田技研工業株式会社 ハイブリッド車両の駆動装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101992679A (zh) * 2009-08-24 2011-03-30 上海华普国润汽车有限公司 双行星排四轴混合动力传动装置
CN102770689A (zh) 2010-03-09 2012-11-07 爱信艾达株式会社 混合动力驱动装置
CN102310758A (zh) * 2010-07-01 2012-01-11 通用汽车环球科技运作有限责任公司 单离合器、双行星式混合动力构造
US20120142489A1 (en) * 2010-12-03 2012-06-07 Kia Motors Corporation Control system and method for changing speed in starting the engine of a hybrid vehicle
WO2013121527A1 (ja) * 2012-02-14 2013-08-22 トヨタ自動車株式会社 ハイブリッド車両用駆動装置
CN104235287A (zh) * 2013-06-24 2014-12-24 现代自动车株式会社 混合电动车辆的变速器***
CN107458204A (zh) * 2016-06-06 2017-12-12 比亚迪股份有限公司 动力传动***以及具有其的车辆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3750734A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112659883A (zh) * 2021-01-12 2021-04-16 浙江吉利控股集团有限公司 一种混合动力驱动装置
CN113320374A (zh) * 2021-07-16 2021-08-31 席忠 双电机功率合流混合动力***
CN113771610A (zh) * 2021-08-18 2021-12-10 上海爱跻企业管理咨询合伙企业(有限合伙) 模块化电驱传动装置
CN114893284A (zh) * 2022-04-29 2022-08-12 东风商用车有限公司 一种兼具发电机功能的车用无级调速电控风扇离合***

Also Published As

Publication number Publication date
EP3750734A1 (en) 2020-12-16
CN111936335B (zh) 2022-08-09
EP3750734A4 (en) 2021-03-10
CN111936335A (zh) 2020-11-13
US20210016652A1 (en) 2021-01-21
US11186161B2 (en) 2021-11-30
EP3750734B1 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
WO2019178796A1 (zh) 混合动力变速器及混合动力汽车
CN109130830B (zh) 用于混合动力车辆的变速器及动力***
CN106696676B (zh) 包括模块化传动单元的动力系
US9840140B1 (en) Compound-power-split electrically variable transmissions with motor clutching devices
JP4140647B2 (ja) 動力出力装置およびハイブリッド自動車
US9108505B2 (en) Powersplit powertrain for a hybrid electric vehicle
US11391348B2 (en) Transmission and power system for use in hybrid vehicle
KR100369135B1 (ko) 하이브리드 전기 자동차용 동력 전달 장치
US8597146B2 (en) Powertrain with two planetary gear sets, two motor/generators and multiple power-split operating modes
US10017040B2 (en) Drive unit for a hybrid vehicle
KR101637725B1 (ko) 하이브리드 차량용 변속기
US9109674B2 (en) Enhanced electrically variable drive unit
CN108909433B (zh) 用于混合动力车辆的动力***
JP5172790B2 (ja) 動力伝達装置
US8585521B2 (en) Variable ratio power-split hybrid transmission
CN113479059A (zh) 一种混合动力驱动***及混合动力汽车
CN111055669A (zh) 一种汽车混合动力驱动装置及汽车
KR102238041B1 (ko) 하이브리드 차량의 파워트레인
CN113891814A (zh) 一种混合动力***的控制方法及***
CN113459797B (zh) 一种多速比混动变速器及具有其的车辆
WO2023040136A1 (zh) 变速箱、混合动力总成和车辆
CN215360907U (zh) 用于混合动力汽车的动力传动***
CN216783252U (zh) 双电机混合动力传动机构
CN113874235B (zh) 一种混合动力***
WO2022165673A1 (zh) 双电机混合动力模块及其工作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18910378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018910378

Country of ref document: EP

Effective date: 20200910