WO2023010246A1 - 混合动力***及车辆 - Google Patents

混合动力***及车辆 Download PDF

Info

Publication number
WO2023010246A1
WO2023010246A1 PCT/CN2021/110081 CN2021110081W WO2023010246A1 WO 2023010246 A1 WO2023010246 A1 WO 2023010246A1 CN 2021110081 W CN2021110081 W CN 2021110081W WO 2023010246 A1 WO2023010246 A1 WO 2023010246A1
Authority
WO
WIPO (PCT)
Prior art keywords
power system
hybrid power
brake
clutch unit
engine
Prior art date
Application number
PCT/CN2021/110081
Other languages
English (en)
French (fr)
Inventor
史时文
Original Assignee
舍弗勒技术股份两合公司
史时文
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 舍弗勒技术股份两合公司, 史时文 filed Critical 舍弗勒技术股份两合公司
Priority to PCT/CN2021/110081 priority Critical patent/WO2023010246A1/zh
Publication of WO2023010246A1 publication Critical patent/WO2023010246A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present application relates to the field of vehicles, and more particularly to a hybrid system and a vehicle including the hybrid system.
  • An existing dual-motor hybrid power system includes an engine, a first motor, a second motor and a typical Simpson planetary gear mechanism.
  • the first electric machine is a generator
  • the second electric machine is an electric motor.
  • the Simpson planetary gear mechanism includes a first planetary row and a second planetary row arranged side by side, the first planetary row includes the first sun gear, the first planetary gear and the first ring gear meshing with each other, and the second planetary row includes meshing second sun gear, second planetary gears and second ring gear.
  • the first ring gear is fixedly connected with the second planetary gear carrier, and the second ring gear is fixedly connected with the first planetary gear carrier.
  • hybrid power system by setting corresponding clutches and brakes in the hybrid power system, it is possible to make the hybrid power system realize different working modes such as pure motor drive mode, pure engine drive mode and hybrid drive mode, etc., for pure motor drive mode and pure engine drive mode, which can be selected among three drive gears.
  • the present application is made based on the defects of the above-mentioned prior art.
  • An object of the present application is to provide a novel hybrid power system, which can realize the same working mode as the hybrid power system described in the background art, and has a simpler structure and lower cost.
  • Another object of the present application is to provide a vehicle including the above hybrid system.
  • the hybrid power system includes a first motor, a second motor, a first clutch unit, a second clutch unit, a first brake, a second brake and a planetary gear mechanism,
  • the planetary gear mechanism includes a first sun gear, a second sun gear, a first planetary gear, a second planetary gear, a planetary gear carrier and a ring gear, and the first sun gear and the second sun gear are coaxial
  • the first sun gear is always meshed with the first planetary gear
  • the first planetary gear is always meshed with the second planetary gear
  • the second sun gear is always meshed with the second planetary gear meshing
  • the second planetary gear is always meshed with the ring gear
  • the planetary gear carrier is installed on the first planetary gear and the second planetary gear so that the three can rotate around the first sun gear and the second planetary gear
  • the second sun gear rotates
  • the ring gear is used for transmission coupling with the external components of the planetary gear mechanism
  • the first motor is used for constant transmission connection with the engine, and the second motor is constant transmission connection with the first sun gear.
  • the first clutch unit When the first clutch unit is engaged, the first motor and the first sun gear realize Transmission connection, when the first clutch unit is separated, the first motor is disconnected from the first sun gear, and when the second clutch unit is engaged, the first motor is connected to the second sun gear, When the second clutch unit is disengaged, the first motor is decoupled from the second sun gear,
  • the planetary gear carrier When the first brake is engaged, the planetary gear carrier is fixed, when the first brake is disengaged, the planetary gear carrier can rotate, when the second brake is engaged, the second sun gear is fixed, and the second brake is disengaged At this time, the second sun gear can rotate.
  • the first clutch unit and the second clutch unit are arranged side by side to form a dual clutch, and the dual clutch is located radially inside the rotor of the first electric motor.
  • first clutch unit and the second clutch unit are wet clutch units, and the first brake and the second brake are wet brakes.
  • the hybrid power system further includes a control module, and the control module can control the hybrid power system so that the hybrid power system realizes a pure motor drive mode, wherein
  • the engine When the hybrid system is in the pure motor drive mode, the engine is in a non-running state, the first motor is in a non-running state, the second motor is in a driving state, the first clutch unit and the The second clutch unit is disengaged, the first brake or the second brake is engaged, and the second motor transmits torque to the planetary gear mechanism for driving.
  • the hybrid power system further includes a control module, and the control module can control the hybrid power system so that the hybrid power system realizes a pure engine driving mode, wherein
  • the engine When the hybrid power system is in the pure engine driving mode, the engine is in a driving state, the first motor is in a non-running state, the second motor is in a non-running state, the first clutch unit is engaged, the second clutch unit is disengaged, the first brake or the second brake is engaged, and the engine transmits torque to the planetary gear mechanism for driving; or
  • the engine When the hybrid power system is in the pure engine driving mode, the engine is in a driving state, the first motor is in a non-running state, the second motor is in a non-running state, the first clutch unit is engaged, The second clutch unit is engaged, both the first brake and the second brake are disengaged, and the engine transmits torque to the planetary gear mechanism for driving.
  • the hybrid power system further includes a control module, and the control module can control the hybrid power system so that the hybrid power system realizes a hybrid power driving mode, wherein
  • the engine When the hybrid system is in the hybrid driving mode, the engine is in a driving state, the first motor is in a non-running state, the second motor is in a driving state, the first clutch unit is engaged, and the The second clutch unit is disengaged, the first brake or the second brake is engaged, and the engine and the second motor transmit torque to the planetary gear mechanism for driving.
  • the hybrid power system further includes a control module, and the control module is capable of controlling the hybrid power system so that the hybrid power system realizes a range-extending driving mode, wherein
  • the engine When the hybrid power system is in the extended-range drive mode, the engine is in the driving state, the first motor is in the generating state, the second motor is in the driving state, the first clutch unit and the second Both clutch units are disengaged, the first brake or the second brake is engaged, the engine drives the first motor for generating electricity, and the second motor transmits torque to the planetary gear mechanism for driving.
  • the hybrid power system further includes a control module, and the control module can control the hybrid power system so that the hybrid power system realizes a braking energy recovery mode, wherein
  • the engine When the hybrid system is in the braking energy recovery mode, the engine is in a non-running state, the first motor is in a non-running state, the second motor is in a generating state, the first clutch unit and Both the second clutch units are engaged, the first brake and the second brake are both disengaged, and the torque from the planetary gear mechanism drives the second motor to generate electricity.
  • the hybrid power system further includes a control module, and the control module can control the hybrid power system so that the hybrid power system realizes the engine mode when driving, wherein
  • the hybrid power system When the hybrid power system is in the engine-on-drive mode, the engine is in a non-working state and is to be started, the first electric motor is in a driving state, the second electric motor is in a driving state, and the first clutch unit and the second clutch unit are disengaged, the first brake is engaged, the second brake is disengaged, the second motor transmits torque to the planetary gear mechanism for driving, the first motor actuates the said engine.
  • the present application also provides the following vehicle, which includes the hybrid power system described in any one of the above technical solutions.
  • the present application provides a new type of hybrid power system and vehicle, the hybrid power system includes an engine, two electric motors, a double clutch and a transmission with a so-called Ravina planetary gear mechanism and two brakes , the hybrid power system can achieve the same or even more working modes than the hybrid power system using the Simpson planetary gear mechanism described in the background technology through a reasonable structural design, and the hybrid power system has a simpler structure, a more compact size and a lower cost Low.
  • FIG. 1 is a schematic diagram showing the topology of a hybrid power system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram showing a torque transmission path of the hybrid system in FIG. 1 in a pure motor driving mode, wherein the dotted line indicates a driving torque transmission path of a second electric motor.
  • FIG. 3A is a schematic diagram illustrating torque transfer paths of the hybrid system in FIG. 1 in a first pure engine-driven mode and a second pure engine-driven mode, wherein the dashed line represents the drive torque transfer path of the engine.
  • FIG. 3B is a schematic diagram illustrating a torque transmission path of the hybrid system in FIG. 1 in a third engine-only driving mode, where the dotted line represents the driving torque transmission path of the engine.
  • FIG. 4 is a schematic diagram showing a torque transmission path of the hybrid system in FIG. 1 in a hybrid driving mode, wherein a dotted line indicates a driving torque transmission path of an engine and a second electric machine.
  • FIG. 5 is a schematic diagram showing the torque transmission path of the hybrid system in FIG. 1 in the extended-range driving mode, wherein the dotted line indicates the driving torque transmission path of the engine and the second electric machine.
  • FIG. 6 is a schematic diagram showing a torque transmission path of the hybrid power system in FIG. 1 in a braking energy recovery mode, wherein the dotted line indicates a torque transmission path to the second electric machine.
  • FIG. 7 is a schematic diagram illustrating a torque transmission path in an engine-on-drive mode of the hybrid system in FIG. 1 , wherein dashed lines indicate driving torque transmission paths of the first electric machine and the second electric machine.
  • transmission coupling refers to a connection between two components capable of transmitting torque, and unless otherwise specified, means a direct connection or an indirect connection between the two components.
  • a hybrid power system includes two motors (the first motor EM1 and the second motor EM2), a double clutch (including the first clutch unit C1 and the second clutch unit C2) , transmission, differential DM, two half shafts HS1 and HS2 and battery (not shown).
  • the crankshaft CS of the engine ICE is always drivingly coupled with the rotor support of the first electric machine EM1 via the dual mass flywheel DMF.
  • the torque of the engine ICE can be transmitted to the first electric machine EM1 to drive the first electric machine EM1 to generate electricity; in addition, the torque of the first electric machine EM1 can be transmitted to the engine ICE to start the engine ICE.
  • the first electric machine EM1 includes a stator, a rotor capable of rotating relative to the stator, and a rotor bracket fixed to the rotor.
  • the rotor carrier is also connected in a rotationally fixed manner to the outer hubs of the first clutch unit C1 and the second clutch unit C2 of the dual clutch.
  • the first motor EM1 is also electrically connected to the battery.
  • the first electric machine EM1 when the first electric machine EM1 is supplied with electric energy by the battery, the first electric machine EM1 can start the engine ICE as a motor, and when the first electric machine EM1 obtains the torque from the engine ICE, the first electric machine EM1 serves as a generator to supply power to the battery. Charge.
  • the second electric machine EM2 includes a stator and a rotor capable of rotating relative to the stator.
  • the rotor carrier of the second electric machine EM2 is permanently coupled to the first sun gear SU1 of the planetary gear mechanism via the third input shaft S3 of the transmission.
  • the second motor EM2 is also electrically connected to the battery. In this way, when the second electric motor EM2 is supplied with electric energy by the battery, the second electric motor EM2 can transmit driving torque to the first sun gear SU1 as a motor, and when the second electric motor EM2 obtains the torque from the first sun gear SU1, The second electric machine EM2 acts as a generator to charge the battery.
  • the dual clutch (the first clutch unit C1 and the second clutch unit C2) is, for example, a wet friction clutch, that is to say, the dual clutch can use hydraulic oil to control the engagement and disengagement of its clutch units C1 and C2.
  • the dual clutch is integrated into the radial inner side of the rotor of the first electric machine EM1, so that the double clutch and the first electric machine EM1 are overlapped in the axial direction, so that the axial size of the entire hybrid power system can be shortened.
  • the dual clutch includes a first clutch unit C1 and a second clutch unit C2 arranged side by side, and each clutch unit C1, C2 includes an outer hub and an inner hub capable of relative rotation and friction between the outer hub and the inner hub.
  • the disk and the pressure plate, the friction disk can be installed on the outer hub, the pressure plate can be installed on the inner hub, the friction disk and the pressure plate are arranged alternately.
  • the clutch units C1, C2 are engaged when the friction disc and the pressure plate abut against each other, and are disengaged when the friction disc and the pressure plate are separated from each other.
  • the outer hubs of the two clutch units C1, C2 are connected in a rotationally fixed manner to the rotor carrier of the first electric machine EM1, so that the outer hubs of the two clutch units C1, C2 can be connected together with the rotor carrier of the first electric machine EM1. turn.
  • the inner hub of the first clutch unit C1 is connected in a rotationally fixed manner to the first input shaft S1 of the transmission, and the inner hub of the second clutch unit C2 is connected in a rotationally fixed manner to the second input shaft S2 of the transmission.
  • the transmission includes a first input shaft S1 , a second input shaft S2 , a third input shaft S3 and an output shaft S4 .
  • the first input shaft S1 is a solid shaft
  • the second input shaft S2 is a hollow shaft
  • the first input shaft S1 passes through the inside of the second input shaft S2, that is, the second input shaft S2 is outside the first input shaft S1
  • the first The central axis of the input shaft S1 coincides with the central axis of the second input shaft S2.
  • the first input shaft S1 and the second input shaft S2 are respectively independently rotatable.
  • the central axis of the third input shaft S3 is consistent with the central axes of the first input shaft S1 and the second input shaft S2, and the output shaft S4 is in the radial direction of the transmission with the first input shaft S1, the second input shaft S2 and the third input shaft S3. They are spaced apart and arranged in parallel upward.
  • the transmission also includes a so-called Ravina planetary gear unit.
  • This planetary gear mechanism includes a first sun gear SU1 and a second sun gear SU2 arranged side by side, and the first sun gear SU1 and the second sun gear SU2 are coaxially arranged.
  • the first input shaft S1 passes through the second sun gear SU2 and is connected to the first sun gear SU1 in a rotationally fixed manner, so that the first input shaft S1 and the first sun gear SU1 can rotate together.
  • the second input shaft S2 is connected to the second sun gear SU2 in a rotationally fixed manner, so that the second input shaft S2 and the second sun gear SU2 can rotate together.
  • the third input shaft S3 is located on the side opposite to the side where the first input shaft S1 is located.
  • the third input shaft S3 is rotationally connected to the first sun gear SU1 so that the third input shaft S3 and the first sun gear SU1 can rotate together.
  • the planetary gear mechanism further includes two kinds of planetary gears (a plurality of first planetary gears PG1 and a plurality of second planetary gears PG2 ) and a planetary gear carrier P installed on the two kinds of planetary gears PG1 , PG2 .
  • the axial length of the second planetary gear PG2 is greater than the axial length of the first planetary gear PG1.
  • One second planetary gear PG2 and one planetary gear PG1 form a group, and each group of planetary gears is evenly distributed in the circumferential direction of the planetary gear mechanism.
  • the plurality of first planetary gears PG1 are located radially outside of the first sun gear SU1 and are always in mesh with the first sun gear SU1 .
  • the multiple second planetary gears PG2 are located radially outside the second sun gear SU2 and the multiple first planetary gears PG1, and the second planetary gears PG2 are always in mesh with the corresponding first planetary gears PG1, and the multiple second planetary gears
  • the gear PG2 is also always in mesh with the second sun gear SU2.
  • the planetary gear carrier P is installed on the plurality of first planetary gears PG1 and the plurality of second planetary gears PG2, and the planetary gear carrier P can revolve around the first planetary gear PG1 and the plurality of second planetary gears PG2 together.
  • the sun gear SU1 and the second sun gear SU2 rotate.
  • the planetary gear mechanism further includes a ring gear R, which is located on the radially outer side of the second planetary gear PG2 and is always drivingly coupled with the second planetary gear PG2 .
  • the ring gear R is used to transmit torque to the outside of the planetary gear mechanism or receive torque from the outside of the planetary gear mechanism.
  • the transmission also includes a first brake B1 and a second brake B2.
  • Both the first brake B1 and the second brake B2 may be wet brakes, that is to say, the engagement and disengagement of the first brake B1 and the second brake B2 can be controlled by hydraulic oil.
  • the first brake B1 is attached to the carrier P of the planetary gear mechanism and the case of the transmission. In this way, when the first brake B1 is engaged, the planetary carrier P is fixed and cannot rotate relative to the case of the transmission, and when the first brake B1 is disengaged, the planetary carrier P can rotate relative to the case of the transmission.
  • the second brake B2 is attached to the second sun gear SU2 and the case of the transmission. In this way, when the second brake B2 is engaged, the second sun gear SU2 is fixed relative to the transmission housing, and when the second brake B2 is disengaged, the second sun gear SU2 is rotatable relative to the transmission housing.
  • the transmission also includes a first gear G1 and a second gear G2. Both the first gear G1 and the second gear G2 are mounted on the output shaft S4 in a rotationally fixed manner, so that the first gear G1 and the second gear G2 can rotate together with the output shaft S4.
  • the first gear G1 is always in mesh with the ring gear R of the planetary gear mechanism, and the second gear G2 is always in mesh with the input gear of the differential DM.
  • the differential DM may be a bevel gear differential.
  • the differential DM is always in driving connection with the output shaft S4 via the gear pair formed by the second gear G2 and the input gear of the differential.
  • the differential DM is not included in the transmission, but it is also possible to integrate the differential DM into the transmission as needed.
  • one ends of the two half shafts HS1 and HS2 are respectively installed on the bevel gears of the differential DM, and the other ends are respectively installed on two wheels (not shown in the figure).
  • the hybrid power system includes a control module (not shown in the figure), which can control the hybrid power system so that the hybrid power system has multiple operating modes, including but Not limited to pure motor drive mode, pure engine drive mode, hybrid drive mode, range-extended drive mode, braking energy recovery mode, and engine start-up mode while driving.
  • a control module not shown in the figure
  • the following table 1 shows the engine ICE, the first motor EM1, the second motor EM2, the first clutch unit C1, the second clutch unit C2, the first brake B1, and the second brake B2 in the above-mentioned exemplary working modes working status.
  • EV1 to EV2 represent two pure motor drive modes.
  • ICE1 to ICE3 represent three pure engine driving modes.
  • HV1 to HV2 represent two hybrid drive modes.
  • REV1 to REV2 represent two range-extended driving modes.
  • REC means braking energy recovery mode.
  • RES indicates an engine mode that is activated while driving (for example, while the vehicle is running).
  • ICE, EM1, EM2, C1, C2, B1, and B2 in the first row in Table 1 correspond to the reference numerals in Fig. 1 respectively, that is, respectively represent the engine, the first Motor, second motor, first clutch unit, second clutch unit, first brake, second brake.
  • control module of the hybrid power system in Fig. 1 can control the hybrid power system so that the hybrid power system realizes two pure motor driving modes EV1 to EV2.
  • the engine ICE is not running
  • the first motor EM1 is in a non-running state
  • the second motor EM2 is in a driving state
  • the first clutch unit C1 is separated, and the second clutch unit C2 is separated;
  • the first brake B1 is engaged and the second brake B2 is disengaged.
  • the second motor EM2 passes through the third input shaft S3 ⁇ first sun gear SU1 ⁇ first planetary gear PG1 ⁇ second planetary gear PG2 ⁇ ring gear R ⁇ first gear G1 ⁇ output shaft S4 ⁇
  • the second gear G2 transmits torque to the differential DM for driving.
  • the engine ICE is not running
  • the first motor EM1 is in a non-running state
  • the second motor EM2 is in a driving state
  • the first clutch unit C1 is separated, and the second clutch unit C2 is separated;
  • the first brake B1 is disengaged and the second brake B2 is engaged.
  • the second motor EM2 passes through the third input shaft S3 ⁇ first sun gear SU1 ⁇ first planetary gear PG1 ⁇ second planetary gear PG2 ⁇ ring gear R ⁇ first gear G1 ⁇ output shaft S4 ⁇
  • the second gear G2 transmits torque to the differential DM for driving.
  • the torque transmission path in the second pure motor driving mode EV2 is the same as the torque transmission path in the first pure motor driving mode EV1, due to the working state of the two brakes B1, B2 in the two pure motor driving modes EV1, EV2 Therefore, the transmission ratio in the torque transmission path is different, which can be applied to different vehicle driving conditions.
  • control module of the hybrid power system in FIG. 1 can control the hybrid power system so that the hybrid power system realizes three pure engine driving modes ICE1 to ICE3.
  • Engine ICE is in driving state
  • the first motor EM1 is in a non-running state
  • the second motor EM2 is in a non-running state
  • the first clutch unit C1 is engaged, and the second clutch unit C2 is disengaged;
  • the first brake B1 is engaged and the second brake B2 is disengaged.
  • the engine ICE passes through the crankshaft CS ⁇ dual mass flywheel DMF ⁇ first clutch unit C1 ⁇ first sun gear SU1 ⁇ first planetary gear PG1 ⁇ second planetary gear PG2 ⁇ ring gear R ⁇ first gear G1 ⁇ output shaft S4 ⁇ second gear G2 transmits torque to differential DM for driving.
  • Engine ICE is in driving state
  • the first motor EM1 is in a non-running state
  • the second motor EM2 is in a non-running state
  • the first clutch unit C1 is engaged, and the second clutch unit C2 is disengaged;
  • the first brake B1 is disengaged and the second brake B2 is engaged.
  • the engine ICE passes through the crankshaft CS ⁇ dual mass flywheel DMF ⁇ first clutch unit C1 ⁇ first sun gear SU1 ⁇ first planetary gear PG1 ⁇ second planetary gear PG2 ⁇ ring gear R ⁇ first gear G1 ⁇ output shaft S4 ⁇ second gear G2 transmits torque to differential DM for driving.
  • the torque transmission path in the second pure engine driving mode ICE2 is the same as that in the first pure engine driving mode ICE1, due to the working state of the two brakes B1, B2 in the two pure engine driving modes ICE1, ICE2 Therefore, the transmission ratio in the torque transmission path is different, which can be applied to different vehicle driving conditions.
  • Engine ICE is in driving state
  • the first motor EM1 is in a non-running state
  • the second motor EM2 is in a non-running state
  • the first clutch unit C1 is engaged, and the second clutch unit C2 is engaged;
  • the first brake B1 is disengaged, and the second brake B2 is disengaged.
  • control module of the hybrid power system in FIG. 1 can control the hybrid power system so that the hybrid power system realizes two hybrid power driving modes HV1 to HV2.
  • Engine ICE is in driving state
  • the first motor EM1 is in a non-running state
  • the second motor EM2 is in a driving state
  • the first clutch unit C1 is engaged, and the second clutch unit C2 is disengaged;
  • the first brake B1 is engaged and the second brake B2 is disengaged.
  • the second electric motor EM2 passes through the third input shaft S3 ⁇ first sun gear SU1 ⁇ first planetary gear PG1 ⁇ second planetary gear PG2 ⁇ ring gear R ⁇ first gear G1 ⁇ output shaft S4 ⁇
  • the second gear G2 transmits torque to the differential DM for driving; the engine ICE via the crankshaft CS ⁇ dual mass flywheel DMF ⁇ first clutch unit C1 ⁇ first sun gear SU1 ⁇ first planetary gear PG1 ⁇ second planetary gear PG2 ⁇ Ring gear R ⁇ First gear G1 ⁇ Output shaft S4 ⁇ Second gear G2 transmits torque to differential DM for driving.
  • Engine ICE is in driving state
  • the first motor EM1 is in a non-running state
  • the second motor EM2 is in a driving state
  • the first clutch unit C1 is engaged, and the second clutch unit C2 is disengaged;
  • the first brake B1 is disengaged and the second brake B2 is engaged.
  • the second motor EM2 passes through the third input shaft S3 ⁇ first sun gear SU1 ⁇ first planetary gear PG1 ⁇ second planetary gear PG2 ⁇ ring gear R ⁇ first gear G1 ⁇ output shaft S4 ⁇
  • the second gear G2 transmits torque to the differential DM for driving; the engine ICE via the crankshaft CS ⁇ dual mass flywheel DMF ⁇ first clutch unit C1 ⁇ first sun gear SU1 ⁇ first planetary gear PG1 ⁇ second planetary gear PG2 ⁇ Ring gear R ⁇ First gear G1 ⁇ Output shaft S4 ⁇ Second gear G2 transmits torque to differential DM for driving.
  • the torque transmission path in the second hybrid driving mode HV2 is the same as that in the first hybrid driving mode HV1, due to the operating state of the two brakes B1, B2 in the two hybrid driving modes HV1, HV2 Therefore, the transmission ratio in the torque transmission path is different, which can be applied to different vehicle driving conditions.
  • control module of the hybrid power system in FIG. 1 can also control the hybrid power system so that the hybrid power system realizes two extended-range driving modes REV1 and REV2.
  • Engine ICE is in driving state
  • the first motor EM1 is in a power generation state
  • the second motor EM2 is in a driving state
  • the first clutch unit C1 is separated, and the second clutch unit C2 is separated;
  • the first brake B1 is engaged and the second brake B2 is disengaged.
  • the second motor EM2 passes through the third input shaft S3 ⁇ first sun gear SU1 ⁇ first planetary gear PG1 ⁇ second planetary gear PG2 ⁇ ring gear R ⁇ first gear G1 ⁇ output shaft S4 ⁇
  • the second gear G2 transmits torque to the differential DM for driving; the engine ICE transmits torque to the first electric machine EM1 via the crankshaft CS ⁇ dual mass flywheel DMF for generating electricity.
  • Engine ICE is in driving state
  • the first motor EM1 is in a power generation state
  • the second motor EM2 is in a driving state
  • the first clutch unit C1 is separated, and the second clutch unit C2 is separated;
  • the first brake B1 is disengaged and the second brake B2 is engaged.
  • the second motor EM2 passes through the third input shaft S3 ⁇ first sun gear SU1 ⁇ first planetary gear PG1 ⁇ second planetary gear PG2 ⁇ ring gear R ⁇ first gear G1 ⁇ output shaft S4 ⁇
  • the second gear G2 transmits torque to the differential DM for driving; the engine ICE transmits torque to the first electric machine EM1 via the crankshaft CS ⁇ dual mass flywheel DMF for generating electricity.
  • the torque transmission path in the second extended-range driving mode REV2 is the same as that in the first extended-range driving mode REV1, due to the working state of the two brakes B1, B2 in the two extended-range driving modes REV1, REV2 Therefore, the transmission ratio in the torque transmission path is different, which can be applied to different vehicle driving conditions.
  • control module of the hybrid power system in FIG. 1 can also control the hybrid power system so that the hybrid power system realizes the braking energy recovery mode REC.
  • the engine ICE is not running
  • the first motor EM1 is in a non-running state
  • the second electric machine EM2 is in the state of generating electricity
  • the first clutch unit C1 is engaged, and the second clutch unit C2 is engaged;
  • the first brake B1 is disengaged, and the second brake B2 is disengaged.
  • the torque from the wheels passes through two half shafts HS1, HS2 ⁇ differential DM ⁇ second gear G2 ⁇ output shaft S4 ⁇ first gear G1 ⁇ ring gear R ⁇ second planetary gear Wheel PG2 ⁇ first planetary gear PG1 ⁇ first sun gear SU1 transmits torque to second motor EM2 for power generation; on the other hand, torque from the wheels passes through two half shafts HS1, HS2 ⁇ differential DM ⁇ second Gear G2 ⁇ output shaft S4 ⁇ first gear G1 ⁇ ring gear R ⁇ second planetary gear PG2 ⁇ second sun gear SU2 ⁇ second input shaft S2 ⁇ second clutch unit C2 ⁇ first clutch unit C1 ⁇ first input shaft S1 ⁇ The first sun gear SU1 transmits torque to the second electric machine EM2 for power generation.
  • control module of the hybrid power system in FIG. 1 can also control the hybrid power system so that the engine mode RES is activated when the hybrid power system is driven.
  • the engine ICE is not running and is waiting to be started;
  • the first motor EM1 is in a driving state
  • the second motor EM2 is in a driving state
  • the first clutch unit C1 is separated, and the second clutch unit C2 is separated;
  • the first brake B1 is engaged and the second brake B2 is disengaged.
  • the second electric motor EM2 outputs via the third input shaft S3 ⁇ first sun gear SU1 ⁇ first planetary gear PG1 ⁇ second planetary gear PG2 ⁇ ring gear R ⁇ first gear G1 ⁇ output Shaft S4 ⁇ second gear G2 transmits torque to differential DM for driving; on the other hand, first electric machine EM1 transmits torque to engine ICE via dual mass flywheel DMF and crankshaft CS to start the engine.
  • the hybrid system of the present application can realize various working modes as required, and has the same or more working modes as the hybrid system described in the background art, so as to be applicable to various driving states of the vehicle.
  • the engine ICE can start to work when the vehicle is at a low speed (for example, 25 km/h), which reduces the power requirement for the second electric machine EM2 and can reduce the cost of the second electric machine EM2.
  • the first electric machine EM1 is used for driving when the engine ICE is started, in other cases the first electric machine EM1 is used for power generation.
  • the present application also provides a vehicle including the above-mentioned hybrid system, which has the same functions and effects as the above-mentioned hybrid system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

提供一种混合动力***,其包括第一电机(EM1)、第二电机(EM2)、第一离合单元(C1)、第二离合单元(C2)、第一制动器(B1)、第二制动器(B2)和拉维纳式行星齿轮机构。该混合动力***通过合理的结构设计能够实现与足够的工作模式,并且该混合动力***结构更加简单,尺寸更紧凑且成本更低。还提供一种包括上述混合动力***的车辆。

Description

混合动力***及车辆 技术领域
本申请涉及车辆领域,更具体地涉及混合动力***及包括该混合动力***的车辆。
背景技术
在一种现有的双电机混合动力***中,包括发动机、第一电机、第二电机和一个典型的辛普森行星齿轮机构。第一电机为发电机,第二电机为电动机。在该辛普森行星齿轮机构中包括并排布置的第一行星排和第二行星排,第一行星排包括彼此啮合的第一太阳轮、第一行星轮和第一齿圈,第二行星排包括彼此啮合的第二太阳轮、第二行星轮和第二齿圈。第一齿圈与第二行星轮架固定连接,第二齿圈与第一行星轮架固定连接。
进一步地,通过在该混合动力***中设置对应的离合器和制动器,能够使得该混合动力***实现例如纯电机驱动模式、纯发动机驱动模式和混合动力驱动模式等的不同工作模式,对于纯电机驱动模式和纯发动机驱动模式,可以在三个驱动挡位中进行选择。
但是,由于这种混合动力***采用了辛普森行星齿轮机构,因而需要两个齿圈和两个新型轮架,导致整个混合动力***的结构较为复杂且成本较高。
发明内容
基于上述现有技术的缺陷而做出了本申请。本申请的一个目的在于提供一种新型的混合动力***,其能够实现与背景技术中所述的混合动力***同样的工作模式,并且结构更简单且成本更低。本申请的另一个目的在于提供 一种包括上述混合动力***的车辆。
为了实现上述发明目的,本申请采用如下的技术方案。
本申请提供了一种如下的混合动力***,所述混合动力***包括第一电机、第二电机、第一离合单元、第二离合单元、第一制动器、第二制动器和行星齿轮机构,
所述行星齿轮机构包括第一太阳轮、第二太阳轮、第一行星轮、第二行星轮、行星轮架和齿圈,所述第一太阳轮和所述第二太阳轮以同轴的方式并排配置,所述第一太阳轮与所述第一行星轮始终啮合,所述第一行星轮与所述第二行星轮始终啮合,所述第二太阳轮与所述第二行星轮始终啮合,所述第二行星轮与所述齿圈始终啮合,所述行星轮架安装于所述第一行星轮和所述第二行星轮使得三者能够绕着所述第一太阳轮和所述第二太阳轮转动,所述齿圈用于与所述行星齿轮机构外部的部件传动联接,
所述第一电机用于与发动机始终传动联接,所述第二电机与所述第一太阳轮始终传动联接,所述第一离合单元接合时所述第一电机与所述第一太阳轮实现传动联接,所述第一离合单元分离时所述第一电机与所述第一太阳轮解除传动联接,所述第二离合单元接合时所述第一电机与所述第二太阳轮传动联接,所述第二离合单元分离时所述第一电机与所述第二太阳轮解除传动联接,
所述第一制动器接合时所述行星轮架固定,所述第一制动器分离时所述行星轮架能够转动,所述第二制动器接合时所述第二太阳轮固定,所述第二制动器分离时所述第二太阳轮能够转动。
在一个可选的方案中,所述第一离合单元和所述第二离合单元并排配置以构成双离合器,所述双离合器位于所述第一电机的转子的径向内侧。
在一个可选的方案中,所述第一离合单元和所述第二离合单元为湿式离合单元,所述第一制动器和所述第二制动器为湿式制动器。
在一个可选的方案中,所述混合动力***还包括控制模块,所述控制模块能够控制所述混合动力***使所述混合动力***实现纯电机驱动模式,其中
当所述混合动力***处于所述纯电机驱动模式时,所述发动机处于非运行状态,所述第一电机处于非运行状态,所述第二电机处于驱动状态,所述第一离合单元和所述第二离合单元均分离,所述第一制动器或所述第二制动器接合,所述第二电机向所述行星齿轮机构传递扭矩以用于驱动。
在一个可选的方案中,所述混合动力***还包括控制模块,所述控制模块能够控制所述混合动力***使所述混合动力***实现纯发动机驱动模式,其中
当所述混合动力***处于所述纯发动机驱动模式时,所述发动机处于驱动状态,所述第一电机处于非运行状态,所述第二电机处于非运行状态,所述第一离合单元接合,所述第二离合单元分离,所述第一制动器或所述第二制动器接合,所述发动机向所述行星齿轮机构传递扭矩以用于驱动;或者
当所述混合动力***处于所述纯发动机驱动模式时,所述发动机处于驱动状态,所述第一电机处于非运行状态,所述第二电机处于非运行状态,所述第一离合单元接合,所述第二离合单元接合,所述第一制动器和所述第二制动器均分离,所述发动机向所述行星齿轮机构传递扭矩以用于驱动。
在一个可选的方案中,所述混合动力***还包括控制模块,所述控制模块能够控制所述混合动力***使所述混合动力***实现混合动力驱动模式,其中
当所述混合动力***处于所述混合动力驱动模式时,所述发动机处于驱动状态,所述第一电机处于非运行状态,所述第二电机处于驱动状态,所述第一离合单元接合,所述第二离合单元分离,所述第一制动器或所述第二制动器接合,所述发动机和所述第二电机向所述行星齿轮机构传递扭矩以用于 驱动。
在一个可选的方案中,所述混合动力***还包括控制模块,所述控制模块能够控制所述混合动力***使所述混合动力***实现增程驱动模式,其中
当所述混合动力***处于所述增程驱动模式时,所述发动机处于驱动状态,所述第一电机处于发电状态,所述第二电机处于驱动状态,所述第一离合单元和所述第二离合单元均分离,所述第一制动器或所述第二制动器接合,所述发动机驱动所述第一电机用于发电,所述第二电机向所述行星齿轮机构传递扭矩以用于驱动。
在一个可选的方案中,所述混合动力***还包括控制模块,所述控制模块能够控制所述混合动力***使所述混合动力***实现制动能量回收模式,其中
当所述混合动力***处于所述制动能量回收模式时,所述发动机处于非运行状态,所述第一电机处于非运行状态,所述第二电机处于发电状态,所述第一离合单元和所述第二离合单元均接合,所述第一制动器和所述第二制动器均分离,来自所述行星齿轮机构的扭矩驱动所述第二电机发电。
在一个可选的方案中,所述混合动力***还包括控制模块,所述控制模块能够控制所述混合动力***使所述混合动力***实现驱动时启动发动机模式,其中
当所述混合动力***处于所述驱动时启动发动机模式时,所述发动机处于非工作状态并且待启动,所述第一电机处于驱动状态,所述第二电机处于驱动状态,所述第一离合单元和所述第二离合单元均分离,所述第一制动器接合,所述第二制动器分离,所述第二电机向所述行星齿轮机构传递扭矩以用于驱动,所述第一电机启动所述发动机。
本申请还提供了一种如下的车辆,其包括以上技术方案中任意一项技术方案所述的混合动力***。
通过采用上述技术方案,本申请提供了一种新型的混合动力***及车辆,该混合动力***包括发动机、两个电机、一个双离合器以及具有所谓的拉维纳行星齿轮机构和两个制动器的变速器,该混合动力***通过合理的结构设计能够实现与背景技术中说明的采用辛普森行星齿轮机构的混合动力***相同甚至更多的工作模式,并且该混合动力***结构更加简单,尺寸更紧凑且成本更低。
附图说明
图1是示出了根据本申请的一实施例的混合动力***的拓扑结构的示意图。
图2是示出了图1中的混合动力***在纯电机驱动模式下的扭矩传递路径的示意图,其中虚线表示第二电机的驱动扭矩传递路径。
图3A是示出了图1中的混合动力***在第一纯发动机驱动模式和第二纯发动机驱动模式下的扭矩传递路径的示意图,其中虚线表示发动机的驱动扭矩传递路径。
图3B是示出了图1中的混合动力***在第三纯发动机驱动模式下的扭矩传递路径的示意图,其中虚线表示发动机的驱动扭矩传递路径。
图4是示出了图1中的混合动力***在混合动力驱动模式下的扭矩传递路径的示意图,其中虚线表示发动机和第二电机的驱动扭矩传递路径。
图5是示出了图1中的混合动力***在增程驱动模式下的扭矩传递路径的示意图,其中虚线表示发动机和第二电机的驱动扭矩传递路径。
图6是示出了图1中的混合动力***在制动能量回收模式下的扭矩传递路径的示意图,其中虚线表示向第二电机传递的扭矩传递路径。
图7是示出了图1中的混合动力***在驱动时启动发动机模式下的扭矩传递路径的示意图,其中虚线表示第一电机和第二电机的驱动扭矩传递路 径。
附图标记说明
ICE发动机 CS曲轴 DMF双质量飞轮 EM1第一电机 EM2第二电机 C1第一离合单元 C2第二离合单元 B1第一制动器 B2第二制动器 SU1第一太阳轮 SU2第二太阳轮 PG1第一行星轮 PG2第二行星轮 P行星轮架 R齿圈 S1第一输入轴 S2第二输入轴 S3第三输入轴 S4输出轴 G1第一齿轮 G2第二齿轮 DM差速器 HS1第一半轴 HS2第二半轴。
具体实施方式
以下将结合说明书附图详细说明本申请的具体实施例。应当理解,这些具体的说明仅用于示教本领域技术人员如何实施本申请,而不用于穷举本申请的所有可行的方式,也不用于限制本申请的范围。
需要说明的是,在本申请中,“传动联接”是指两个部件之间能够传递扭矩地连接,如无特殊说明,表示这两个部件之间直接连接或者间接连接。
(根据本申请的一实施例的混合动力***的结构)
如图1所示,根据本申请的一实施例的混合动力***包括两个电机(第一电机EM1和第二电机EM2)、一个双离合器(包括第一离合单元C1和第二离合单元C2)、变速器、差速器DM、两根半轴HS1和HS2以及电池(未示出)。
具体地,在本实施例中,发动机ICE的曲轴CS经由双质量飞轮DMF与第一电机EM1的转子支架始终传动联接。由此,发动机ICE的扭矩能够传递到第一电机EM1,以驱动第一电机EM1进行发电;另外,第一电机EM1的扭矩能够传递到发动机ICE,以启动发动机ICE。
在本实施例中,第一电机EM1包括定子、能够相对于定子转动的转子以及与转子固定的转子支架。第一电机EM1的转子支架除了与发动机ICE的曲 轴CS传动联接之外,转子支架还与双离合器的第一离合单元C1的外毂和第二离合单元C2的外毂抗扭地连接。另外,第一电机EM1还与电池电连接。这样,在第一电机EM1由电池供给电能的情况下,第一电机EM1作为电动机能够启动发动机ICE,在第一电机EM1获得来自发动机ICE的扭矩的情况下,第一电机EM1作为发电机向电池充电。
在本实施例中,第二电机EM2包括定子、能够相对于定子转动的转子。第二电机EM2的转子支架经由变速器的第三输入轴S3与行星齿轮机构的第一太阳轮SU1始终传动联接。另外,第二电机EM2还与电池电连接。这样,在第二电机EM2由电池供给电能的情况下,第二电机EM2作为电动机能够向第一太阳轮SU1传递驱动扭矩,在第二电机EM2获得来自第一太阳轮SU1的扭矩的情况下,第二电机EM2作为发电机向电池充电。
在本实施例中,双离合器(第一离合单元C1和第二离合单元C2)例如为湿式摩擦离合器,也就是说双离合器可以利用液压油控制其离合单元C1、C2的接合和分离。双离合器整合到第一电机EM1的转子的径向内侧,使得双离合器与第一电机EM1在轴向上重叠配置,这样能够缩短整个混合动力***的轴向尺寸。具体地,双离合器包括并排布置的第一离合单元C1和第二离合单元C2,每个离合单元C1、C2均包括能够相对转动的外毂和内毂以及位于外毂和内毂之间的摩擦盘和压板,摩擦盘可以安装于外毂,压板可以安装于内毂,摩擦盘和压板交替地布置。当摩擦盘和压板彼此抵接时离合单元C1、C2接合,当摩擦盘和压板彼此分离时离合单元C1、C2分离。如上所述地,两个离合单元C1、C2的外毂均与第一电机EM1的转子支架抗扭地连接,使得两个离合单元C1、C2的外毂能够与第一电机EM1的转子支架一起转动。第一离合单元C1的内毂与变速器的第一输入轴S1抗扭地连接,第二离合单元C2的内毂与变速器的第二输入轴S2抗扭地连接。这样,当双离合器的第一离合单元C1接合/分离时,第一电机EM1的转子支架与变速器的第一输入轴S1实现传动联接/解除传动联接;当双离合器的第二离合单元C2接合/分离时,第一电机EM1的转子支架与变速器的第二输入轴S2实现传动联接/解除传动 联接。
在本实施例中,如图1所示,变速器包括第一输入轴S1、第二输入轴S2、第三输入轴S3和输出轴S4。第一输入轴S1是实心轴,第二输入轴S2是空心轴,第一输入轴S1穿过第二输入轴S2的内部,即第二输入轴S2外套于第一输入轴S1,并且第一输入轴S1的中心轴线与第二输入轴S2的中心轴线一致。第一输入轴S1和第二输入轴S2能够分别独立地转动。第三输入轴S3的中心轴线与第一输入轴S1和第二输入轴S2的中心轴线一致,输出轴S4与第一输入轴S1、第二输入轴S2和第三输入轴S3在变速器的径向上间隔开地平行配置。
变速器还包括所谓的拉维纳行星齿轮机构。该行星齿轮机构包括并排配置第一太阳轮SU1和第二太阳轮SU2,第一太阳轮SU1与第二太阳轮SU2同轴配置。如图1所示,第一输入轴S1穿过第二太阳轮SU2并且与第一太阳轮SU1抗扭地连接,使得第一输入轴S1与第一太阳轮SU1能够一起转动。第二输入轴S2与第二太阳轮SU2抗扭地连接,使得第二输入轴S2与第二太阳轮SU2能够一起转动。第三输入轴S3位于第一输入轴S1所在侧的相反侧,第三输入轴S3与第一太阳轮SU1抗扭地连接,使得第三输入轴S3与第一太阳轮SU1能够一起转动。
进一步地,行星齿轮机构还包括两种行星轮(多个第一行星轮PG1和多个第二行星轮PG2)以及安装于这两种行星轮PG1、PG2的行星轮架P。第二行星轮PG2的轴向长度大于第一行星轮PG1的轴向长度,一个第二行星轮PG2与一个行星轮PG1构成一组,各组行星轮在行星齿轮机构的周向上均匀分布。多个第一行星轮PG1位于第一太阳轮SU1的径向外侧,并且与第一太阳轮SU1始终处于啮合状态。多个第二行星轮PG2位于第二太阳轮SU2以及多个第一行星轮PG1的径向外侧,第二行星轮PG2分别与对应的第一行星轮PG1始终处于啮合状态,多个第二行星轮PG2还与第二太阳轮SU2始终处于啮合状态。行星轮架P安装于多个第一行星轮PG1和多个第二行星轮PG2,并且行星轮架P能够随着多个第一行星轮PG1和多个第二行星轮PG2一起绕着第一太阳轮SU1和第二太阳轮SU2转动。
进一步地,行星齿轮机构还包括齿圈R,齿圈R位于第二行星轮PG2的径向外侧且与第二行星轮PG2始终传动联接。齿圈R用于向行星齿轮机构的外部传递扭矩或者接收来自行星齿轮机构外部的扭矩。
变速器还包括第一制动器B1和第二制动器B2。第一制动器B1和第二制动器B2均可以是湿式制动器,也就是说第一制动器B1和第二制动器B2能够通过液压油控制它们的接合和分离。第一制动器B1安装于行星齿轮机构的行星轮架P以及变速器的壳体。这样,第一制动器B1接合时行星轮架P相对于变速器的壳体固定而不能转动,第一制动器B1分离时行星轮架P能够相对于变速器的壳体转动。第二制动器B2安装于第二太阳轮SU2和变速器的壳体。这样,第二制动器B2接合时第二太阳轮SU2相对于变速器的壳体固定,第二制动器B2分离时第二太阳轮SU2能够相对于变速器的壳体转动。
变速器还包括第一齿轮G1和第二齿轮G2。第一齿轮G1和第二齿轮G2均抗扭地安装于输出轴S4,这样第一齿轮G1和第二齿轮G2能够随着输出轴S4一起转动。第一齿轮G1与行星齿轮机构的齿圈R始终处于啮合状态,第二齿轮G2与差速器DM的输入齿轮始终处于啮合状态。
在本实施例中,差速器DM可以为锥齿轮差速器。差速器DM经由第二齿轮G2和差速器的输入齿轮构成的齿轮副与输出轴S4始终传动联接。在本实施例中,差速器DM不包括在变速器中,但是根据需要也可以将差速器DM整合到变速器中。而且,两根半轴HS1和HS2的一端分别安装于差速器DM的锥齿轮,另一端分别安装于两个车轮(图中未示出)。
这样,通过以上结构,实现了一种新型的混合动力***,与背景技术中说明的混合动力***相比,其结构简单,尺寸较短且成本较低。
以上详细地说明了根据本申请的一实施例的混合动力***的具体结构,以下将说明该混合动力***的工作模式。
(根据本申请的一实施例的混合动力***的工作模式)
在图1中示出的根据本申请的一实施例的混合动力***包括控制模块(图中未示出),该控制模块能够控制混合动力***使得该混合动力***具 有多种工作模式,包括但不限于纯电机驱动模式、纯发动机驱动模式、混合动力驱动模式、增程驱动模式、制动能量回收模式和驱动时启动发动机模式。
在以下的表1中示出了上述示例性的工作模式中发动机ICE、第一电机EM1、第二电机EM2、第一离合单元C1、第二离合单元C2、第一制动器B1、第二制动器B2的工作状态。
【表1】
模式 ICE EM1 EM2 C1 C2 B1 B2
EV1          
EV2          
ICE1        
ICE2        
ICE3        
HV1      
HV2      
REV1      
REV2      
REC        
RES        
对于以上表1中的内容进行如下说明。
1.关于表1中的模式
EV1至EV2表示两种纯电机驱动模式。
ICE1至ICE3表示三种纯发动机驱动模式。
HV1至HV2表示两种混合动力驱动模式。
REV1至REV2表示两种增程驱动模式。
REC表示制动能量回收模式。
RES表示驱动时(例如,车辆行驶时)启动发动机模式。
2.表1中的第一行中的ICE、EM1、EM2、C1、C2、B1、B2分别与图1中附图标记相对应,即分别表示图1的混合动力***中的发动机、第一电机、第二电机、第一离合单元、第二离合单元、第一制动器、第二制动器。
3.关于符号“█”
对于表1中ICE、EM1、EM2所在的列,有该符号表示发动机ICE、第一电机EM1、第二电机EM2处于运行状态,没有该符号表示发动机ICE、第一电机EM1、第二电机EM2处于非运行状态。
对于表1中的C1、C2所在的列,有该符号表示第一离合单元C1、第二离合单元C2接合,没有该符号表示第一离合单元C1、第二离合单元C2分离。
对于表1中的B1、B2所在的列,有该符号表示第一制动器B1、第二制动器B2接合,没有该符号表示第一制动器B1、第二制动器B2分离。
结合以上的表1,对图1中的混合动力***的工作模式进行更具体的说明。
如表1所示,图1中的混合动力***的控制模块能够控制混合动力***使混合动力***实现两种纯电机驱动模式EV1至EV2。
当混合动力***处于第一纯电机驱动模式EV1时,
发动机ICE处于非运行状态;
第一电机EM1处于非运行状态;
第二电机EM2处于驱动状态;
第一离合单元C1分离,第二离合单元C2分离;
第一制动器B1接合,第二制动器B2分离。
这样,如图2所示,第二电机EM2经由第三输入轴S3→第一太阳轮SU1→第一行星轮PG1→第二行星轮PG2→齿圈R→第一齿轮G1→输出轴S4→第二齿轮G2向差速器DM传递扭矩以用于驱动。
当混合动力***处于第二纯电机驱动模式EV2时,
发动机ICE处于非运行状态;
第一电机EM1处于非运行状态;
第二电机EM2处于驱动状态;
第一离合单元C1分离,第二离合单元C2分离;
第一制动器B1分离,第二制动器B2接合。
这样,如图2所示,第二电机EM2经由第三输入轴S3→第一太阳轮SU1→第一行星轮PG1→第二行星轮PG2→齿圈R→第一齿轮G1→输出轴S4→第二齿轮G2向差速器DM传递扭矩以用于驱动。虽然在第二纯电机驱动模式EV2中的扭矩传递路径与第一纯电机驱动模式EV1的扭矩传递路径相同,但是由于在两种纯电机驱动模式EV1、EV2中两个制动器B1、B2的工作状态不同,因而扭矩传递路径中传动比不同,可以适用于不同的车辆行驶状况。
进一步地,如表1所示,图1中的混合动力***的控制模块能够控制混合动力***使混合动力***实现三种纯发动机驱动模式ICE1至ICE3。
当混合动力***处于第一纯发动机驱动模式ICE1时,
发动机ICE处于驱动状态;
第一电机EM1处于非运行状态;
第二电机EM2处于非运行状态;
第一离合单元C1接合,第二离合单元C2分离;
第一制动器B1接合,第二制动器B2分离。
这样,如图3A所示,发动机ICE经由曲轴CS→双质量飞轮DMF→第一离合单元C1→第一太阳轮SU1→第一行星轮PG1→第二行星轮PG2→齿圈R→第一齿轮G1→输出轴S4→第二齿轮G2向差速器DM传递扭矩以用于驱动。
当混合动力***处于第二纯发动机驱动模式ICE2时,
发动机ICE处于驱动状态;
第一电机EM1处于非运行状态;
第二电机EM2处于非运行状态;
第一离合单元C1接合,第二离合单元C2分离;
第一制动器B1分离,第二制动器B2接合。
这样,如图3A所示,发动机ICE经由曲轴CS→双质量飞轮DMF→第一离 合单元C1→第一太阳轮SU1→第一行星轮PG1→第二行星轮PG2→齿圈R→第一齿轮G1→输出轴S4→第二齿轮G2向差速器DM传递扭矩以用于驱动。虽然在第二纯发动机驱动模式ICE2中的扭矩传递路径与第一纯发动机驱动模式ICE1的扭矩传递路径相同,但是由于在两种纯发动机驱动模式ICE1、ICE2中两个制动器B1、B2的工作状态不同,因而扭矩传递路径中传动比不同,可以适用于不同的车辆行驶状况。
当混合动力***处于第三纯发动机驱动模式ICE3时,
发动机ICE处于驱动状态;
第一电机EM1处于非运行状态;
第二电机EM2处于非运行状态;
第一离合单元C1接合,第二离合单元C2接合;
第一制动器B1分离,第二制动器B2分离。
这样,如图3B所示,一方面,发动机ICE经由曲轴CS→双质量飞轮DMF→第一离合单元C1→第一太阳轮SU1→第一行星轮PG1→第二行星轮PG2→齿圈R→第一齿轮G1→输出轴S4→第二齿轮G2向差速器DM传递扭矩以用于驱动;另一方面,发动机ICE经由曲轴CS→双质量飞轮DMF→第二离合单元C2→第二太阳轮SU2→第二行星轮PG2→齿圈R→第一齿轮G1→输出轴S4→第二齿轮G2向差速器DM传递扭矩以用于驱动。
进一步地,如表1所示,图1中的混合动力***的控制模块能够控制混合动力***使混合动力***实现两种混合动力驱动模式HV1至HV2。
当混合动力***处于第一混合动力驱动模式HV1时,
发动机ICE处于驱动状态;
第一电机EM1处于非运行状态;
第二电机EM2处于驱动状态;
第一离合单元C1接合,第二离合单元C2分离;
第一制动器B1接合,第二制动器B2分离。
这样,如图4所示,第二电机EM2经由第三输入轴S3→第一太阳轮SU1 →第一行星轮PG1→第二行星轮PG2→齿圈R→第一齿轮G1→输出轴S4→第二齿轮G2向差速器DM传递扭矩以用于驱动;发动机ICE经由曲轴CS→双质量飞轮DMF→第一离合单元C1→第一太阳轮SU1→第一行星轮PG1→第二行星轮PG2→齿圈R→第一齿轮G1→输出轴S4→第二齿轮G2向差速器DM传递扭矩以用于驱动。
当混合动力***处于第二混合动力驱动模式HV2时,
发动机ICE处于驱动状态;
第一电机EM1处于非运行状态;
第二电机EM2处于驱动状态;
第一离合单元C1接合,第二离合单元C2分离;
第一制动器B1分离,第二制动器B2接合。
这样,如图4所示,第二电机EM2经由第三输入轴S3→第一太阳轮SU1→第一行星轮PG1→第二行星轮PG2→齿圈R→第一齿轮G1→输出轴S4→第二齿轮G2向差速器DM传递扭矩以用于驱动;发动机ICE经由曲轴CS→双质量飞轮DMF→第一离合单元C1→第一太阳轮SU1→第一行星轮PG1→第二行星轮PG2→齿圈R→第一齿轮G1→输出轴S4→第二齿轮G2向差速器DM传递扭矩以用于驱动。虽然在第二混合动力驱动模式HV2中的扭矩传递路径与第一混合动力驱动模式HV1的扭矩传递路径相同,但是由于在两种混合动力驱动模式HV1、HV2中两个制动器B1、B2的工作状态不同,因而扭矩传递路径中传动比不同,可以适用于不同的车辆行驶状况。
进一步地,如表1所示,图1中的混合动力***的控制模块还能够控制混合动力***使混合动力***实现两种增程驱动模式REV1、REV2。
当混合动力***处于第一增程驱动模式REV1时,
发动机ICE处于驱动状态;
第一电机EM1处于发电状态;
第二电机EM2处于驱动状态;
第一离合单元C1分离,第二离合单元C2分离;
第一制动器B1接合,第二制动器B2分离。
这样,如图5所示,第二电机EM2经由第三输入轴S3→第一太阳轮SU1→第一行星轮PG1→第二行星轮PG2→齿圈R→第一齿轮G1→输出轴S4→第二齿轮G2向差速器DM传递扭矩以用于驱动;发动机ICE经由曲轴CS→双质量飞轮DMF向第一电机EM1传递扭矩以用于发电。
当混合动力***处于第二增程驱动模式REV2时,
发动机ICE处于驱动状态;
第一电机EM1处于发电状态;
第二电机EM2处于驱动状态;
第一离合单元C1分离,第二离合单元C2分离;
第一制动器B1分离,第二制动器B2接合。
这样,如图5所示,第二电机EM2经由第三输入轴S3→第一太阳轮SU1→第一行星轮PG1→第二行星轮PG2→齿圈R→第一齿轮G1→输出轴S4→第二齿轮G2向差速器DM传递扭矩以用于驱动;发动机ICE经由曲轴CS→双质量飞轮DMF向第一电机EM1传递扭矩以用于发电。虽然在第二增程驱动模式REV2中的扭矩传递路径与第一增程驱动模式REV1的扭矩传递路径相同,但是由于在两种增程驱动模式REV1、REV2中两个制动器B1、B2的工作状态不同,因而扭矩传递路径中传动比不同,可以适用于不同的车辆行驶状况。
进一步地,如表1所示,图1中的混合动力***的控制模块还能够控制混合动力***使混合动力***实现制动能量回收模式REC。
当混合动力***处于制动能量回收模式REC时,
发动机ICE处于非运行状态;
第一电机EM1处于非运行状态;
第二电机EM2处于发电状态;
第一离合单元C1接合,第二离合单元C2接合;
第一制动器B1分离,第二制动器B2分离。
这样,如图6所示,一方面,来自车轮的扭矩经由两根半轴HS1、HS2 →差速器DM→第二齿轮G2→输出轴S4→第一齿轮G1→齿圈R→第二行星轮PG2→第一行星轮PG1→第一太阳轮SU1向第二电机EM2传递扭矩以用于发电;另一方面,来自车轮的扭矩经由两根半轴HS1、HS2→差速器DM→第二齿轮G2→输出轴S4→第一齿轮G1→齿圈R→第二行星轮PG2→第二太阳轮SU2→第二输入轴S2→第二离合单元C2→第一离合单元C1→第一输入轴S1→第一太阳轮SU1向第二电机EM2传递扭矩以用于发电。
进一步地,如表1所示,图1中的混合动力***的控制模块还能够控制混合动力***使混合动力***实现驱动时启动发动机模式RES。
当混合动力***处于驱动时启动发动机模式RES时,
发动机ICE处于非运行状态,并且待启动;
第一电机EM1处于驱动状态;
第二电机EM2处于驱动状态;
第一离合单元C1分离,第二离合单元C2分离;
第一制动器B1接合,第二制动器B2分离。
这样,如图7所示,一方面,第二电机EM2经由第三输入轴S3→第一太阳轮SU1→第一行星轮PG1→第二行星轮PG2→齿圈R→第一齿轮G1→输出轴S4→第二齿轮G2向差速器DM传递扭矩以用于驱动;另一方面,第一电机EM1经由双质量飞轮DMF和曲轴CS向发动机ICE传递扭矩,以启动发动机。
由此,本申请的混合动力***能够根据需要实现各种工作模式,具有与背景技术中说明的混合动力***相同或更多的工作模式,从而适用车辆的各种不同的行驶状态。
应当理解,上述实施方式仅是示例性的,不用于限制本申请。本领域技术人员可以在本申请的教导下对上述实施方式做出各种变型和改变,而不脱离本申请的范围。另外,进行如下的补充说明。
i.虽然在以上的具体实施方式中没有明确说明,但是应当理解,由于发动机能够经由三个挡位(对应上述三个发动机驱动模式中的不同的扭矩传递路径,从而具有不同的传动比)向变速器输入扭矩,因而整个***具有更好 的加速性能。由此,发动机ICE能够从车辆处于低速状态(例如25km/h)下开始工作,这降低了对第二电机EM2的动力要求,能够降低第二电机EM2的成本。
另外,由于采用上述拉维纳行星齿轮机构,而且将双离合器设置在第一电机EM1的转子的径向内侧,因而缩短了整个***的轴向长度。进一步地,本申请的***与采用辛普森行星齿轮机构的混合动力***相比降低了成本。
ii.虽然在以上的具体实施方式中未进行明确说明,可以理解,除了在启动发动机ICE时第一电机EM1用于驱动,其它情况下第一电机EM1用于发电。
iii.本申请还提供了一种包括上述混合动力***的车辆,其具有上述混合动力***同样的功能和效果。

Claims (10)

  1. 一种混合动力***,所述混合动力***包括第一电机(EM1)、第二电机(EM2)、第一离合单元(C1)、第二离合单元(C2)、第一制动器(B1)、第二制动器(B2)和行星齿轮机构,
    所述行星齿轮机构包括第一太阳轮(SU1)、第二太阳轮(SU2)、第一行星轮(PG1)、第二行星轮(PG2)、行星轮架(P)和齿圈(R),所述第一太阳轮(SU1)和所述第二太阳轮(SU2)以同轴的方式并排配置,所述第一太阳轮(SU1)与所述第一行星轮(PG1)始终啮合,所述第一行星轮(PG1)与所述第二行星轮(PG2)始终啮合,所述第二太阳轮(SU2)与所述第二行星轮(PG2)始终啮合,所述第二行星轮(PG2)与所述齿圈(R)始终啮合,所述行星轮架(P)安装于所述第一行星轮(PG1)和所述第二行星轮(PG2)使得三者能够绕着所述第一太阳轮(SU1)和所述第二太阳轮(SU2)转动,所述齿圈(R)用于与所述行星齿轮机构外部的部件传动联接,
    所述第一电机(EM1)用于与发动机(ICE)始终传动联接,所述第二电机(EM2)与所述第一太阳轮(SU1)始终传动联接,所述第一离合单元(C1)接合时所述第一电机(EM1)与所述第一太阳轮(SU1)实现传动联接,所述第一离合单元(C1)分离时所述第一电机(EM1)与所述第一太阳轮(SU1)解除传动联接,所述第二离合单元(C2)接合时所述第一电机(EM1)与所述第二太阳轮(SU2)传动联接,所述第二离合单元(C2)分离时所述第一电机(EM1)与所述第二太阳轮(SU2)解除传动联接,
    所述第一制动器(B1)接合时所述行星轮架(P)固定,所述第一制动器(B1)分离时所述行星轮架(P)能够转动,所述第二制动器(B2)接合时所述第二太阳轮(SU2)固定,所述第二制动器(B2)分离时所述第二太阳轮(SU2)能够转动。
  2. 根据权利要求1所述的混合动力***,其特征在于,所述第一离合单元(C1)和所述第二离合单元(C2)并排配置以构成双离合器,所述双离 合器位于所述第一电机(EM1)的转子的径向内侧。
  3. 根据权利要求1或2所述的混合动力***,其特征在于,所述第一离合单元(C1)和所述第二离合单元(C2)为湿式离合单元,所述第一制动器(B1)和所述第二制动器(B2)为湿式制动器。
  4. 根据权利要求1至3中任一项所述的混合动力***,其特征在于,所述混合动力***还包括控制模块,所述控制模块能够控制所述混合动力***使所述混合动力***实现纯电机驱动模式,其中
    当所述混合动力***处于所述纯电机驱动模式时,所述发动机(ICE)处于非运行状态,所述第一电机(EM1)处于非运行状态,所述第二电机(EM2)处于驱动状态,所述第一离合单元(C1)和所述第二离合单元(C2)均分离,所述第一制动器(B1)或所述第二制动器(B2)接合,所述第二电机(EM2)向所述行星齿轮机构传递扭矩以用于驱动。
  5. 根据权利要求1至4中任一项所述的混合动力***,其特征在于,所述混合动力***还包括控制模块,所述控制模块能够控制所述混合动力***使所述混合动力***实现纯发动机驱动模式,其中
    当所述混合动力***处于所述纯发动机驱动模式时,所述发动机(ICE)处于驱动状态,所述第一电机(EM1)处于非运行状态,所述第二电机(EM2)处于非运行状态,所述第一离合单元(C1)接合,所述第二离合单元(C2)分离,所述第一制动器(B1)或所述第二制动器(B2)接合,所述发动机(ICE)向所述行星齿轮机构传递扭矩以用于驱动;或者
    当所述混合动力***处于所述纯发动机驱动模式时,所述发动机(ICE)处于驱动状态,所述第一电机(EM1)处于非运行状态,所述第二电机(EM2)处于非运行状态,所述第一离合单元(C1)接合,所述第二离合单元(C2)接合,所述第一制动器(B1)和所述第二制动器(B2)均分离,所述发动机(ICE)向所述行星齿轮机构传递扭矩以用于驱动。
  6. 根据权利要求1至5中任一项所述的混合动力***,其特征在于,所述混合动力***还包括控制模块,所述控制模块能够控制所述混合动力***使所述混合动力***实现混合动力驱动模式,其中
    当所述混合动力***处于所述混合动力驱动模式时,所述发动机(ICE)处于驱动状态,所述第一电机(EM1)处于非运行状态,所述第二电机(EM2)处于驱动状态,所述第一离合单元(C1)接合,所述第二离合单元(C2)分离,所述第一制动器(B1)或所述第二制动器(B2)接合,所述发动机(ICE)和所述第二电机(EM2)向所述行星齿轮机构传递扭矩以用于驱动。
  7. 根据权利要求1至6中任一项所述的混合动力***,其特征在于,所述混合动力***还包括控制模块,所述控制模块能够控制所述混合动力***使所述混合动力***实现增程驱动模式,其中
    当所述混合动力***处于所述增程驱动模式时,所述发动机(ICE)处于驱动状态,所述第一电机(EM1)处于发电状态,所述第二电机(EM2)处于驱动状态,所述第一离合单元(C1)和所述第二离合单元(C2)均分离,所述第一制动器(B1)或所述第二制动器(B2)接合,所述发动机(ICE)驱动所述第一电机(EM1)用于发电,所述第二电机(EM2)向所述行星齿轮机构传递扭矩以用于驱动。
  8. 根据权利要求1至7中任一项所述的混合动力***,其特征在于,所述混合动力***还包括控制模块,所述控制模块能够控制所述混合动力***使所述混合动力***实现制动能量回收模式,其中
    当所述混合动力***处于所述制动能量回收模式时,所述发动机(ICE)处于非运行状态,所述第一电机(EM1)处于非运行状态,所述第二电机(EM2)处于发电状态,所述第一离合单元(C1)和所述第二离合单元(C2)均接合,所述第一制动器(B1)和所述第二制动器(B2)均分离,来自所述行星齿轮机构的扭矩驱动所述第二电机(EM2)发电。
  9. 根据权利要求1至8中任一项所述的混合动力***,其特征在于,所述混合动力***还包括控制模块,所述控制模块能够控制所述混合动力***使所述混合动力***实现驱动时启动发动机模式,其中
    当所述混合动力***处于所述驱动时启动发动机模式时,所述发动机(ICE)处于非工作状态并且待启动,所述第一电机(EM1)处于驱动状态,所述第二电机(EM2)处于驱动状态,所述第一离合单元(C1)和所述第二离合单元(C2)均分离,所述第一制动器(B1)接合,所述第二制动器(B2)分离,所述第二电机(EM2)向所述行星齿轮机构传递扭矩以用于驱动,所述第一电机(EM1)启动所述发动机(ICE)。
  10. 一种车辆,其包括权利要求1至9中任一项所述的混合动力***。
PCT/CN2021/110081 2021-08-02 2021-08-02 混合动力***及车辆 WO2023010246A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/110081 WO2023010246A1 (zh) 2021-08-02 2021-08-02 混合动力***及车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/110081 WO2023010246A1 (zh) 2021-08-02 2021-08-02 混合动力***及车辆

Publications (1)

Publication Number Publication Date
WO2023010246A1 true WO2023010246A1 (zh) 2023-02-09

Family

ID=85154882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110081 WO2023010246A1 (zh) 2021-08-02 2021-08-02 混合动力***及车辆

Country Status (1)

Country Link
WO (1) WO2023010246A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101992679A (zh) * 2009-08-24 2011-03-30 上海华普国润汽车有限公司 双行星排四轴混合动力传动装置
CN102490586A (zh) * 2011-11-25 2012-06-13 天津中德传动有限公司 节能环保型混合动力传动机构
CN103057395A (zh) * 2013-01-31 2013-04-24 长城汽车股份有限公司 混合动力变速器
CN103204056A (zh) * 2013-01-31 2013-07-17 长城汽车股份有限公司 混合动力驱动总成
CN106976389A (zh) * 2017-02-14 2017-07-25 北京理工大学 双模式混合动力传动装置
WO2020074675A1 (de) * 2018-10-10 2020-04-16 Hofer Powertrain Innovation Gmbh Dediziertes hybridgetriebe, insbesondere als teil eines antriebsstrangs und betriebsweise eines solchen antriebsstrangs

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101992679A (zh) * 2009-08-24 2011-03-30 上海华普国润汽车有限公司 双行星排四轴混合动力传动装置
CN102490586A (zh) * 2011-11-25 2012-06-13 天津中德传动有限公司 节能环保型混合动力传动机构
CN103057395A (zh) * 2013-01-31 2013-04-24 长城汽车股份有限公司 混合动力变速器
CN103204056A (zh) * 2013-01-31 2013-07-17 长城汽车股份有限公司 混合动力驱动总成
CN106976389A (zh) * 2017-02-14 2017-07-25 北京理工大学 双模式混合动力传动装置
WO2020074675A1 (de) * 2018-10-10 2020-04-16 Hofer Powertrain Innovation Gmbh Dediziertes hybridgetriebe, insbesondere als teil eines antriebsstrangs und betriebsweise eines solchen antriebsstrangs

Similar Documents

Publication Publication Date Title
CN106696676B (zh) 包括模块化传动单元的动力系
CN109130830B (zh) 用于混合动力车辆的变速器及动力***
US9707834B2 (en) Vehicle transmission with common carrier planetary gear set
US7762366B2 (en) Axle drive unit for a hybrid electric vehicle
US9193252B2 (en) Two motor electric drive hybrid transmission
JP6611933B2 (ja) ダイナミッククラッチを有するハイブリッド全輪駆動システム
US8317648B2 (en) Single mode compound power-split hybrid transmission
US8974338B2 (en) Two-mode electrically-variable transmission with offset motor and two planetary gear sets
JP2000142139A (ja) 混成駆動装置
US8512189B2 (en) Hybrid powertrain with compound-split EVT drive axle and electric drive axle
JP2004066898A (ja) ハイブリッド駆動装置並びにそれを搭載した自動車
WO2020048105A1 (zh) 用于混合动力车辆的变速器及动力***
JP2009067212A (ja) ハイブリッド駆動装置
WO2020010869A1 (zh) 用于混合动力车辆的动力***
JP2008114811A (ja) ハイブリッド駆動装置
CN108909433B (zh) 用于混合动力车辆的动力***
CN107599819B (zh) 一种插电式混合动力专用汽车的动力传动***
CN106494216B (zh) 插电式混合动力车辆前驱动力***
US10272766B2 (en) Transmission, hybrid drive train, and drive train for an electric vehicle
WO2023010246A1 (zh) 混合动力***及车辆
WO2023028922A1 (zh) 混合动力***及车辆
US20220325781A1 (en) Gear Assembly for Use in Electric Drive Transmissions
WO2020093302A1 (zh) 混合动力模块和车辆
GB2385905A (en) Tandem torque converter
CN115723551A (zh) 单挡混合动力***及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE