WO2022269890A1 - 半導体素子を用いたメモリ装置の製造方法 - Google Patents

半導体素子を用いたメモリ装置の製造方法 Download PDF

Info

Publication number
WO2022269890A1
WO2022269890A1 PCT/JP2021/024090 JP2021024090W WO2022269890A1 WO 2022269890 A1 WO2022269890 A1 WO 2022269890A1 JP 2021024090 W JP2021024090 W JP 2021024090W WO 2022269890 A1 WO2022269890 A1 WO 2022269890A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor
forming
impurity
gate
Prior art date
Application number
PCT/JP2021/024090
Other languages
English (en)
French (fr)
Inventor
望 原田
康司 作井
Original Assignee
ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
望 原田
康司 作井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニサンティス エレクトロニクス シンガポール プライベート リミテッド, 望 原田, 康司 作井 filed Critical ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
Priority to PCT/JP2021/024090 priority Critical patent/WO2022269890A1/ja
Priority to TW111122891A priority patent/TWI823432B/zh
Priority to US17/846,319 priority patent/US20220415901A1/en
Publication of WO2022269890A1 publication Critical patent/WO2022269890A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/036Making the capacitor or connections thereto the capacitor extending under the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/05Making the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/33DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor extending under the transistor

Definitions

  • the present invention is a method of manufacturing a memory device using semiconductor elements.
  • the channel In a normal planar MOS transistor, the channel extends horizontally along the upper surface of the semiconductor substrate. In contrast, the SGT channel extends in a direction perpendicular to the upper surface of the semiconductor substrate (see Patent Document 1 and Non-Patent Document 1, for example). For this reason, the SGT enables a higher density semiconductor device compared to a planar MOS transistor.
  • a DRAM Dynamic Random Access Memory
  • a PCM Phase Change Memory
  • Non-Patent Document 4 RRAM (Resistive Random Access Memory, see, for example, Non-Patent Document 4), MRAM (Magneto-resistive Random Access Memory, see, for example, Non-Patent Document 5) that changes the resistance by changing the direction of the magnetic spin by current ) can be highly integrated.
  • DRAM memory cell see Non-Patent Document 6
  • the present application relates to a dynamic flash memory that does not have resistance change elements or capacitors and can be configured only with MOS transistors.
  • FIG. 6 shows the write operation of a DRAM memory cell composed of a single MOS transistor that does not have the capacitor described above, FIG. See Patent Documents 7 to 10).
  • FIG. 6 shows the write operation of the DRAM memory cell.
  • FIG. 6(a) shows a "1" write state.
  • the memory cell is formed on the SOI substrate 100 and includes a source N + layer 103 (hereinafter, a semiconductor region containing a high concentration of donor impurities is referred to as an “N + layer”) to which a source line SL is connected.
  • the drain N + layer 104 connected to the line BL, the gate conductive layer 105 connected to the word line WL, and the floating body 102 of the MOS transistor 110a.
  • a memory cell of the DRAM is composed of these pieces.
  • the SiO 2 layer 101 of the SOI substrate is in contact directly below the floating body 102 .
  • the MOS transistor 110a When "1" is written to the memory cell constituted by one MOS transistor 110a, the MOS transistor 110a is operated in the linear region. That is, the electron channel 107 extending from the source N + layer 103 has a pinch-off point 108 and does not reach the drain N + layer 104 connected to the bit line. In this way, both the bit line BL connected to the drain N + layer 104 and the word line WL connected to the gate conductive layer 105 are set at a high voltage, and the gate voltage is set to about 1/2 of the drain voltage. , the electric field strength is maximized at the pinch-off point 108 near the drain N + layer 104 .
  • the holes 106 generated at the same time charge the floating body 102 . In this case, the generated holes contribute as increments of majority carriers because the floating body 102 is P-type Si.
  • the floating body 102 is filled with the generated holes 106, and when the voltage of the floating body 102 becomes higher than that of the source N + layer 103 by Vb or more, the generated holes are discharged to the source N + layer 103.
  • Vb is the built-in voltage of the PN junction between the source N + layer 103 and the floating body 102 of the P layer, which is about 0.7V.
  • FIG. 6B shows how the floating body 102 is saturated charged with the generated holes 106 .
  • FIG. 6(c) shows how the "1" write state is rewritten to the "0" write state.
  • the voltage of the bit line BL is negatively biased, and the PN junction between the drain N + layer 104 and the floating body 102 of the P layer is forward biased.
  • the holes 106 previously generated in the floating body 102 in the previous cycle flow to the drain N + layer 104 connected to the bit line BL.
  • the capacitance CFB of the floating body 102 is composed of the capacitance CWL between the gate connected to the word line and the floating body 102, and the source N + layer 103 connected to the source line.
  • FIG. 8(a) shows a "1" write state
  • FIG. 8(b) shows a "0" write state.
  • Vb is written to the floating body 102 by writing "1”
  • the floating body 102 is pulled down to a negative bias when the word line returns to 0 V at the end of writing.
  • the negative bias becomes even deeper. Therefore, as shown in FIG. No.
  • This small operating margin is a major problem of the present DRAM memory cell.
  • a method of manufacturing a memory device using a semiconductor element according to the present invention comprises: a first gate conductor layer; a second gate conductor layer; A large number of the first semiconductor pillars are formed inside the first semiconductor pillars by an impact ionization phenomenon or by a gate-induced drain leak current by controlling the voltage applied to the layer and the second impurity layer.
  • a data retention operation of retaining a group of holes or electrons which are carriers, the first gate conductor layer, the second gate conductor layer, the first impurity layer, and the second impurity layer; and a data erasing operation of removing the group of holes or the group of electrons, which are the majority carriers of the first semiconductor pillar, from the inside of the first semiconductor pillar by controlling the voltage applied to the first semiconductor pillar.
  • a second invention is based on the first invention, wherein a step of forming a third impurity layer on the substrate before forming the first semiconductor layer; After forming the first semiconductor pillars, majority carrier impurity atoms from the third impurity layer are diffused into the first semiconductor layer and the second semiconductor layer by a thermal process to form the first semiconductor pillar. a step of forming an impurity layer of (Second invention).
  • a third invention is based on the first invention, wherein a step of forming a fourth impurity layer on the first semiconductor layer; After forming the first semiconductor pillars, majority carrier impurity atoms are diffused from the fourth impurity layer into the first semiconductor layer and, if left, into the second semiconductor layer by a thermal process. forming the second impurity layer by (third invention).
  • a fourth aspect of the invention is characterized in that in the first aspect of the invention, there is a step of removing part or all of the exposed second semiconductor layer before forming the second gate insulating layer. (fourth invention).
  • the impurity concentration of the first semiconductor layer is higher than that of the second semiconductor layer (fifth invention).
  • a sixth invention is based on the above-described first invention, wherein after forming the second gate insulating layer, the first conductor layer surrounds the second gate insulating layer, and the top surface of the first conductor layer is positioned at the second gate insulating layer.
  • An eighth invention is based on the third invention, wherein a step of forming a second mask material layer on the fourth impurity layer; forming the fourth impurity layer and the first semiconductor layer using the second mask material layer as an etching mask; etching the second mask material layer to form a first contact hole; forming a first conductor wiring layer connected to the second impurity layer through the first contact hole; (8th invention).
  • the first impurity layer is connected to a source line
  • the second impurity layer is connected to a bit line
  • the first gate conductor layer is a first drive control line
  • the second gate conductor layer is connected to a word line (ninth invention).
  • FIG. 1 is a structural diagram of a memory device having SGTs according to the first embodiment
  • FIG. FIG. 3 is a diagram for explaining an erase operation mechanism of a memory device having SGTs according to the first embodiment
  • FIG. 4 is a diagram for explaining a write operation mechanism of a memory device having SGTs according to the first embodiment
  • FIG. 2 is a diagram for explaining a read operation mechanism of a memory device having SGTs according to the first embodiment
  • FIG. 2 is a diagram for explaining a read operation mechanism of a memory device having SGTs according to the first embodiment
  • FIG. 4 is a structural diagram showing a method of manufacturing a memory device having SGTs according to the first embodiment
  • FIG. 4 is a structural diagram showing a method of manufacturing a memory device having SGTs according to the first embodiment;
  • FIG. 4 is a structural diagram showing a method of manufacturing a memory device having SGTs according to the first embodiment;
  • FIG. 4 is a structural diagram showing a method of manufacturing a memory device having SGTs according to the first embodiment;
  • FIG. 4 is a structural diagram showing a method of manufacturing a memory device having SGTs according to the first embodiment;
  • FIG. 4 is a structural diagram showing a method of manufacturing a memory device having SGTs according to the first embodiment;
  • FIG. 4 is a structural diagram showing a method of manufacturing a memory device having SGTs according to the first embodiment;
  • FIG. 4 is a structural diagram showing a method of manufacturing a memory device having SGTs according to the first embodiment;
  • FIG. 4 is a structural diagram showing a method of manufacturing a memory device having SGTs according to the first embodiment;
  • FIG. 4 is a structural diagram showing a method of manufacturing
  • FIG. 4 is a diagram for explaining operational problems of a conventional DRAM memory cell that does not have a capacitor;
  • FIG. 4 is a diagram for explaining operational problems of a conventional DRAM memory cell that does not have a capacitor;
  • FIG. 2 illustrates a read operation of a DRAM memory cell without a conventional capacitor;
  • dynamic flash memory a memory device using semiconductor elements
  • FIG. 1 The structure, operation mechanism, and manufacturing method of the dynamic flash memory cell according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 5.
  • FIG. 1 The structure of a dynamic flash memory cell will be described with reference to FIG. Then, a data erasing mechanism will be described with reference to FIG. 2, a data writing mechanism will be described with reference to FIG. 3, and a data writing mechanism will be described with reference to FIG. Then, a method of manufacturing a dynamic flash memory will be described with reference to FIG.
  • FIG. 1 shows the structure of a dynamic flash memory cell according to a first embodiment of the invention.
  • An N + layer 3a (which is an example of the "first impurity layer” in the claims) is provided on a substrate 1 (which is an example of the "substrate” in the claims).
  • a silicon semiconductor pillar 2 (which is an example of a “first semiconductor pillar” in the claims) (hereinafter referred to as a "Si pillar”) is present on the N + layer 3a.
  • a first P layer 7a (which is an example of the "first semiconductor layer” in the scope of claims) (hereinafter, a semiconductor region containing an acceptor impurity is referred to as a "P layer ), and surrounding the P layer 7a is a P layer 7b (which is an example of a "second semiconductor layer” in the claims).
  • P layer a semiconductor region containing an acceptor impurity
  • P layer a semiconductor region containing an acceptor impurity
  • N + layer 3b which is an example of the "second impurity layer” in the claims.
  • a portion of the Si pillar 2 between the N + layers 3a and 3b becomes a channel region 8 (an example of the "channel region” in the claims).
  • a first gate insulating layer 4a (which is an example of the "first gate insulating layer” in the scope of claims) surrounds the lower portion of the Si pillar 2a, and a second gate insulating layer surrounds the upper portion of the Si pillar 2b. 4b (which is an example of the "second gate insulating layer” in the claims).
  • Surrounding the first gate insulating layer 4a is a first gate conductor layer 5a (which is an example of the "first gate conductor layer” in the claims), and surrounding the second gate insulating layer 4b. Then, there is a second gate conductor layer 5b (which is an example of the "second gate conductor layer” in the claims).
  • the first gate conductor layer 5 a and the second gate conductor layer 5 b are separated by an insulating layer 6 .
  • a dynamic flash comprising N + layers 3a and 3b, P layers 7a and 7b, first gate insulating layer 4a, second gate insulating layer 4b, first gate conductor layer 5a and second gate conductor layer 5b is formed.
  • a memory cell 9 is formed.
  • the N + layer 3a serves as a source line SL (an example of a "source line” in the claims), and the N + layer 3b serves as a bit line BL (a "bit line” in the claims).
  • the first gate conductor layer 5a corresponds to the plate line PL (which is an example of the "first drive control line” in the scope of claims), and the second gate conductor layer 5b corresponds to the word line PL (an example of the "first drive control line”). They are connected to lines WL (which are an example of "word lines” in the claims), respectively.
  • the structure is such that the gate capacitance of the first gate conductor layer 5a connected to the plate line PL is larger than the gate capacitance of the second gate conductor layer 5b connected to the word line WL. is desirable.
  • a plurality of dynamic flash memory cells as described above are two-dimensionally arranged on the substrate 1 .
  • the P layer 7b surrounding the P layer 7a should be at least in the portion surrounded by the first gate insulating layer 4a.
  • the portion surrounded by the second gate insulating layer 4b may or may not have the P layer 7b.
  • the acceptor impurity concentration of the P layer 7a may be made higher than that of the P layer 7b.
  • the gate capacitance of the first gate conductor layer 5a connected to the plate line PL is made larger than the gate capacitance of the second gate conductor layer 5b connected to the word line WL.
  • the gate length of the first gate conductor layer 5a is made longer than the gate length of the second gate conductor layer 5b.
  • the gate length of the first gate conductor layer 5a is not made longer than the gate length of the second gate conductor layer 5b, and the thickness of the gate insulation film of the first gate insulation layer 4a is increased. , may be thinner than the thickness of the gate insulating film of the second gate insulating layer 4b.
  • the dielectric constant of the first gate insulating layer 4a may be higher than that of the second gate insulating layer 4b.
  • the gate capacitance of the first gate conductor layer 5a is determined by combining any one of the length of the gate conductor layers 5a and 5b, the film thickness of the gate insulating layers 4a and 4b, and the dielectric constant of the second gate conductor layer 5b. may be larger than the gate capacitance of
  • first gate conductor layer 5a may be divided into two or more, and each of them may be operated synchronously or asynchronously as a conductor electrode of a plate line.
  • second gate conductor layer 5b may be divided into two or more and each may be operated synchronously or asynchronously as a conductor electrode of a word line. This also provides dynamic flash memory operation.
  • a channel region 8 between N + layers 3a and 3b is electrically isolated from substrate 1 and serves as a floating body.
  • This channel region 8 is composed of P layers 7a and 7b, as described with reference to FIG.
  • FIG. 2(a) shows a state in which the hole groups 11 generated by impact ionization in the previous cycle are stored in the channel region 8 before the erasing operation.
  • Hole group 11 is mainly stored in P layer 7a. and.
  • the voltage of the source line SL is set to the negative voltage V ERA during the erasing operation.
  • V ERA is, for example, -3V.
  • the PN junction between the N + layer 3a serving as the source connected to the source line SL and the channel region 8 is forward biased.
  • the threshold voltage of the N channel MOS transistor of dynamic flash memory cell 9 increases due to the substrate bias effect.
  • the threshold voltage of the second gate conductor layer 5b connected to this word line WL is increased.
  • the erased state of this channel region 8 is logical storage data "0". Note that the voltage conditions applied to the bit line BL, the source line SL, the word line WL, and the plate line PL and the potential of the floating body described above are only examples for performing the erase operation, and other operating conditions under which the erase operation can be performed. may be
  • FIG. 3 shows the write operation of the dynamic flash memory cell according to the first embodiment of the invention.
  • 0 V for example, is input to the N + layer 3a connected to the source line SL
  • 3 V for example, is input to the N + layer 3b connected to the bit line BL
  • the plate line PL 2 V for example, is input to the connected first gate conductor layer 5a
  • 5 V for example, is input to the second gate conductor layer 5b connected to the word line WL.
  • an annular inversion layer 12a is formed mainly in the P layer 7b in the channel region 8 inside the first gate conductor layer 5a connected to the plate line PL.
  • the first N-channel MOS transistor having the first gate conductor layer 5a is operated in the linear region.
  • a pinch-off point 13 exists in the inversion layer 12a inside the first gate conductor layer 5a to which the plate line PL is connected.
  • the second N-channel MOS transistor having the second gate conductor layer 5b connected to the word line WL is operated in the saturation region.
  • an inversion layer 12b is formed all over the channel region 8 inside the second gate conductor layer 5b connected to the word line WL without any pinch-off point.
  • the inversion layer 12b formed entirely inside the second gate conductor layer 5b connected to the word line WL serves as a substantial drain of the first N-channel MOS transistor having the first gate conductor layer 5a.
  • the channel region 8 between the first N-channel MOS transistor having the first gate conductor layer 5a and the second N-channel MOS transistor having the second gate conductor layer 5b, which are connected in series, has a second The electric field is maximum at the boundary region of 1 and the impact ionization phenomenon occurs in this region. Since this region is the region on the source side viewed from the second N-channel MOS transistor having the second gate conductor layer 5b connected to the word line WL, this phenomenon is called the source-side impact ionization phenomenon. Due to this source-side impact ionization phenomenon, electrons flow from the N + layer 3a connected to the source line SL toward the N + layer 3b connected to the bit line BL.
  • GIDL gate induced drain leakage
  • the generated hole group 11 is majority carriers in the channel region 8 and charges the channel region 8 with a positive bias. Since the N + layer 3a connected to the source line SL is at 0 V, the channel region 8 is set to the built-in voltage Vb (approximately 0 V) of the PN junction between the N + layer 3a connected to the source line SL and the channel region 8. .7V). When the channel region 8 is positively biased, the threshold voltages of the first N-channel MOS transistor and the second N-channel MOS transistor are lowered due to the substrate bias effect. Thereby, as shown in FIG. 3(c), the threshold voltage of the second N-channel MOS transistor connected to the word line WL is lowered. The write state of this channel area 8 is assigned to logical storage data "1". The generated hole group 11 is mainly stored in the P + layer 7a. This provides a stable substrate bias effect.
  • a second boundary region between N + layer 3a and channel region 8 or a second boundary region between N + layer 3b and channel region 8 is used. Electron-hole pairs may be generated in the boundary region 3 by impact ionization or GIDL current, and the channel region 8 may be charged with the generated hole groups 11 .
  • the voltage conditions applied to the bit line BL, the source line SL, the word line WL, and the plate line PL are examples for performing the write operation, and other operating conditions that allow the write operation may be used.
  • FIGS. 4A and 4B A read operation of the dynamic flash memory cell according to the first embodiment of the present invention will be described with reference to FIGS. 4A and 4B.
  • the read operation of the dynamic flash memory cell will be described with reference to FIGS. 4A(a) to 4A(c).
  • FIG. 4A(a) when channel region 8 is charged to built-in voltage Vb (approximately 0.7 V), the threshold voltage of the N channel MOS transistor is lowered due to the substrate bias effect. This state is assigned to logical storage data "1".
  • FIG. 4A(b) when the memory block selected before writing is in the erased state "0" in advance, the floating voltage VFB of the channel region 8 is VERA +Vb.
  • a write operation randomly stores a write state of "1". As a result, logical storage data of logical "0" and “1" are created for the word line WL.
  • FIG. 4A(c) reading is performed by the sense amplifier using the level difference between the two threshold voltages for the word line
  • the gate capacitance of the second gate conductor layer 5b connected to the word line WL is preferably designed to be smaller than the gate capacitance of the first gate conductor layer 5a connected to the plate line PL. As shown in FIG. 4B(a), the vertical length of the first gate conductor layer 5a connected to the plate line PL is greater than the vertical length of the second gate conductor layer 5b connected to the word line WL.
  • FIG. 4B(b) shows an equivalent circuit of one cell of the dynamic flash memory of FIG. 4B(a).
  • FIG. 4B(c) shows the coupling capacity relationship of the dynamic flash memory.
  • CWL is the capacitance of the second gate conductor layer 5b
  • CPL is the capacitance of the first gate conductor layer 5a
  • CBL is the capacitance between the N + layer 3b serving as the drain and the channel region 8.
  • C SL is the capacitance of the PN junction between the N + layer 3 a serving as the source and the channel region 8 .
  • V ReadWL is the amplitude potential at the time of reading the word line WL.
  • ⁇ V FB can be reduced by reducing the contribution of C WL compared to the total capacitance C PL +C WL +C BL +C SL of the channel region 8 .
  • the memory cell in plan view .DELTA.V.sub.FB may be made even smaller without reducing the integration density.
  • the voltage conditions applied to the bit line BL, the source line SL, the word line WL, and the plate line PL, and the potential of the floating body described above are examples for performing the read operation, and other operating conditions under which the read operation can be performed. may be
  • FIG. 5A to 5G show a method of manufacturing the dynamic flash memory of the first embodiment.
  • (a) is a plan view of a dynamic flash memory cell;
  • FIG. (b) is a vertical sectional view taken along line X-X' in FIG. (a).
  • (c) is a vertical sectional view along line Y-Y' in FIG. (a).
  • many dynamic flash memory cells are arranged two-dimensionally.
  • an N + layer 21 (the “substrate” in the claims) is grown from below by, for example, an epitaxial crystal growth method. 3), a P layer 22, and an N + layer 23 (which is an example of a "fourth impurity layer” in the claims).
  • circular mask material layers 24aa, 24ab, 24ba, and 24bb are formed on the N + layer 23 in plan view. Note that the mask material layers 24aa to 24bb may be formed of a plurality of material layers.
  • N + layer 23 is etched using mask material layers 24aa to 24bb (an example of the "second mask material layer” in the claims) as masks.
  • an N + layer 23 is etched to form an N + layer 21a
  • a P layer 22a which is an example of the "first semiconductor layer” in the claims
  • 22b, 22c, 22d, and N + layers 23a, 23b. , 23c and 23d are formed.
  • the upper portions of the mask material layers 24aa-24bb are etched.
  • a P layer 27 of Si is formed on the entire surface using, for example, ALD (Atomic Layer Deposition).
  • a SiO 2 layer (not shown) is then applied all over. Then, a CMP (Chemical Mechanical Polishing) method is used to polish such that the upper surfaces are aligned with the upper surfaces of the P layers 27a to 27d. Then, the SiO 2 layer is etched by RIE (Reactive Ion Etching). As a result, SiO 2 layers 29 are formed on the bottom side surfaces of the P layers 27a to 27d, as shown in FIG. 5E. Then, an HfO 2 layer 30 is formed to cover the entire surface and serve as a gate insulating layer. Then, a gate conductor layer such as a TiN layer 31a (an example of the "first gate conductor layer" in the claims) surrounding the lower side surface of the HfO 2 layer 30 is formed.
  • RIE Reactive Ion Etching
  • the exposed HfO 2 layer 30 is etched to form an HfO 2 layer 30a (which is an example of the "first gate insulating layer” in the claims).
  • an HfO 2 layer 32 (which is an example of the "second gate insulating layer” in the scope of claims) that will serve as a gate insulating layer is formed over the entire surface.
  • a TiN layer (not shown) is formed so as to surround the side surface of the HfO 2 layer 32 and have its top surface positioned near the lower ends of the N + layers 23A to 23D.
  • SiN silicon nitride
  • the SiN film is etched by RIE to form SiN layers 35a and 35b surrounding the HfO 2 layer 32 (an example of the "first mask material layer” in the scope of claims).
  • the TiN layer is etched using the SiN layers 35a and 35b as masks to form TiN layers 33a and 33b (which are examples of the "second gate conductor layer” in the claims).
  • the distance between the Si pillars 25a and 25b and the thickness of the SiN layer 35a are set so that the SiN layer 33a is formed by connecting the Si pillars 25a and 25b aligned in the XX' direction in plan view. do.
  • the distance between the Si pillars 25c and 25d and the thickness of the SiN layer 35b are set such that the SiN layer 33b is formed by connecting the Si pillars 25c and 25d arranged in the XX' direction.
  • the distances between the Si pillars 25a and 25c and between the Si pillars 25b and 25d are set so that the TiN layers 33a and 33b are formed apart from each other.
  • TiN layers 33a and 33b are formed, which are connected between the Si pillars 25a and 25b and between the Si pillars 25c and 25d and separated between the Si pillars 25a and 25c and between the Si pillars 25b and 25d.
  • the exposed P layers 27a to 27d may be oxidized and then the oxidized layer removed.
  • the HfO 2 layer 32 and the TiN layers 33a and 33b may be formed after removing the P layers 27a to 27d by etching.
  • a SiO 2 layer (not shown) by CVD.
  • the entire structure is polished by the CMP method so that the upper surface positions thereof coincide with the upper surface positions of the mask material layers 24aa to 24bb.
  • a SiO 2 layer 34 is formed surrounding the SiN layers 35a and 35b, as shown in FIG. 5G.
  • the mask material layers 24aa to 24bb are etched to form contact holes 37aa, 37ab, 37ba and 37bb.
  • a conductor wiring layer 38a connected to the N + layers 23A and 23C through the contact holes 37aa and 37ba and a conductor wiring layer 38b connected to the N + layers 23B and 23D through the contact holes 37ab and 37bb are formed.
  • the N + layer 21A is connected to the source line SL
  • the TiN layer 31a is connected to the plate line (PL)
  • the TiN layers 33a and 33b are connected to the word line WL
  • the N + layers 23A and 23C are connected to the bit through the conductor electrode layer 38a.
  • the N + layers 23B and 23D are connected to the bit line BL2 via the conductor electrode layer 38b.
  • a dynamic flash memory cell is thus formed on the P-layer substrate 20 .
  • FIG. 1 has been described using the Si pillar 2 having a rectangular vertical cross section, the vertical cross section may be trapezoidal.
  • the shape of the portion of the Si pillar 2 surrounded by the first gate insulating layer 4a and the second gate insulating layer 4b may be different, such as a rectangular shape and a trapezoidal shape.
  • the shape of the portion surrounded by the TiN layer 31a and the portions surrounded by the TiN layers 33a and 33b may be rectangular or trapezoidal.
  • the dynamic flash memory operation can be performed.
  • the dynamic flash memory operation can also be performed by dividing the first gate conductor layer 5a into a plurality of conductor layers and driving each one synchronously or asynchronously.
  • the second gate conductor layer 5b can be divided into multiple conductor layers and driven synchronously or asynchronously to achieve dynamic flash memory operation.
  • the TiN layer 31a corresponding to the first gate conductor layer 5a and the TiN layers 33a and 33b corresponding to the second gate conductor layer 33a and 33b may be separately formed. good.
  • the N + layer 3a in FIG. 1 may be extended over the substrate 1 to serve also as the wiring conductor layer of the source line SL.
  • a conductor layer such as a W layer may be connected to the N + layer 3a.
  • a conductor layer made of a metal such as a W layer or an alloy may be connected to the N + layer 21A outside the area where many dynamic flash memory cells are formed two-dimensionally.
  • a dynamic flash memory operation is also performed in a structure in which the conductivity polarities of N + layers 3a, 3b and P layers 7a, 7b are reversed.
  • majority carriers in the Si pillar 2 become electrons. Therefore, the electron group generated by impact ionization is stored in the channel region 8, and the "1" state is set.
  • heat treatment is performed to diffuse donor impurities from the N + layers 21a, 23a to 23d into the P layer 27 to form N + layers 21A, 23A to 23D.
  • the N + layers 21A, 23A to 23D may be formed by a subsequent thermal process.
  • the TiN layer 31a is formed to be connected between the Si pillars 25a to 25d. to form a TiN layer connected between the Si pillars 25a and 25b and also connected to a plate line connected between the Si pillars 25c and 25d.
  • the etching using the SiN layers 35a and 35b as a mask is stopped on the HfO 2 layer 32, but the HfO 2 layer 32 and the TiN layer 31a may also be etched.
  • a TiN layer connected to the plate line having the same shape as the TiN layers 33a and 33b connected to the word line in plan view is formed. Normal dynamic flash memory operation is also achieved in this case.
  • This embodiment provides the following features.
  • feature 1 In the cell in plan view shown in FIG. 1, the logic "1" state is set by the presence of holes held in the channel region 8.
  • FIG. This group of holes is mainly accumulated in the central P layer 7a of the channel region 8.
  • FIGS. 5B and 5C after the P layers 22a to 22b are formed, the P layer 27 is covered by the ALD method, thereby increasing the Si pillars 25a to 25d in plan view.
  • the formation of the P layer 27 can further increase the diameters of the Si pillars 25a to 25d. As a result, the retention characteristics can be further improved.
  • it since it is effective in reducing the cell area, it is possible to increase the integration density of the dynamic flash memory.
  • the hole groups generated by the impact ionization phenomenon are mainly stored in the P layer 7a (corresponding to the P layers 22a to 22d in FIG. 5G).
  • the acceptor impurity concentration of the P layer 7a higher than that of the P layer 7b (corresponding to the P layers 27a to 27d in FIG. 5G)
  • the electron current flowing between the N + layers 3a and 3b in the read operation increases 7b.
  • the electron current channel of the P layer 7b is separated from the floating body of the P layer 7a portion storing the hole groups 11, and a more stable floating body voltage is maintained. This allows the dynamic flash memory to operate stably, leading to higher performance.
  • the gate conductor layers 5a and 31a connected to the plate line PL may be a single layer or a combination of a plurality of conductor material layers.
  • the gate conductor layers 5b, 33a, 33b connected to the word lines WL may be formed of a single layer or a combination of multiple conductor material layers.
  • the outside of the gate conductor layer may be connected to a wiring metal layer such as W, for example. This also applies to other embodiments according to the present invention.
  • the vertical length of the first gate conductor layer 5a connected to the plate line PL is made longer than the vertical length of the first gate conductor layer 5b connected to the word line WL.
  • the addition of the plate line PL alone reduces the capacitive coupling ratio (C WL /(C PL +C WL +C BL +C SL )) of the word line WL to the channel region 8 .
  • the potential variation ⁇ V FB of the channel region 8 of the floating body becomes small.
  • the voltage of the plate line PL in the description of the first embodiment may be applied with a fixed voltage of 2 V, for example, regardless of each operation mode. Also, the voltage of the plate line PL may be applied, for example, 0 V only when erasing. Also, the voltage of the plate line PL may be a fixed voltage or a voltage that varies with time as long as it satisfies the conditions for dynamic flash memory operation.
  • the shape of the Si pillars 2, 25a to 25d in plan view was circular, it may be other than circular, such as an ellipse or a shape elongated in one direction.
  • the source line SL is negatively biased during the erasing operation to pull out the group of holes in the channel region 8 which is the floating body FB.
  • the erase operation may be performed with a negative bias, or with both the source line SL and the bit line BL negatively biased. Alternatively, the erase operation may be performed under other voltage conditions. This also applies to other embodiments according to the present invention.
  • an N-type or P-type impurity layer may be provided between the N + layer 3a and the Si pillar 2.
  • An N-type or P-type impurity layer may be provided between the N + layer 3 b and the Si pillar 2 . This also applies to FIG. 5G.
  • the P layer 7a and the P layer 7b may be formed of different semiconductor material layers. This also applies to FIG. 5G.
  • the N + layers 3a, 3b of FIG. 1 may be formed of Si or other semiconductor material layers containing donor impurities. Also, the N + layer 3a and the N + layer 3b may be formed of different semiconductor material layers. This also applies to FIG. 5G.
  • FIGS. 5A to 5G an embodiment in which the Si pillars 25a to 25d are arranged in a square lattice pattern in plan view has been described, but they may be arranged in an orthorhombic lattice pattern.
  • one dynamic flash memory cell is formed on the substrate 1 in FIG. 1, a plurality of dynamic flash memory cells may be formed in the vertical direction. This is also the case in FIGS. 5A-5G.
  • a P layer, SOI, or multi-layer well may be used as the substrate 1 in FIG.
  • SOI or multi-layer wells may be used in place of the P-layer substrate 20 in FIGS. 5A-5G.
  • a high-density and high-performance dynamic flash memory can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

P層基板20上にソース線SLに繋がるN+層21A、Si柱25a~25d、ビット線BLに繋がるN+層23A~23D、Si柱25a~25dの下部と上部を囲むゲート絶縁層HfO2層30a、30b、プレート線PLに繋がるTiN層31aと、ワード線WLに繋がるTiN層32、32bを形成する工程を有し、Si柱25a~25dをP層27a~27dと、これらを囲んで堆積したP層27a~27dを形成して、行列状に配置された複数のダイナミック フラッシュ メモリセルを形成する。

Description

半導体素子を用いたメモリ装置の製造方法
 本発明は、半導体素子を用いたメモリ装置の製造方法。
 近年、LSI(Large Scale Integration)技術開発において、メモリ素子の高集積化と高性能化が求められている。
 通常のプレナー型MOSトランジスタでは、チャネルが半導体基板の上表面に沿う水平方向に延在する。これに対して、SGTのチャネルは、半導体基板の上表面に対して垂直な方向に延在する(例えば、特許文献1、非特許文献1を参照)。このため、SGTはプレナー型MOSトランジスタと比べ、半導体装置の高密度化が可能である。このSGTを選択トランジスタとして用いて、キャパシタを接続したDRAM(Dynamic Random Access Memory、例えば、非特許文献2を参照)、抵抗変化素子を接続したPCM(Phase Change Memory、例えば、非特許文献3を参照)、RRAM(Resistive Random Access Memory、例えば、非特許文献4を参照)、電流により磁気スピンの向きを変化させて抵抗を変化させるMRAM(Magneto-resistive Random Access Memory、例えば、非特許文献5を参照)などの高集積化を行うことができる。また、キャパシタを有しない、1個のMOSトランジスタで構成された、DRAMメモリセル(非特許文献6を参照)などがある。本願は、抵抗変化素子やキャパシタを有しない、MOSトランジスタのみで構成可能な、ダイナミック フラッシュ メモリに関する。
 図6に、前述したキャパシタを有しない、1個のMOSトランジスタで構成された、DRAMメモリセルの書込み動作を、図7に、動作上の問題点を、図8に、読出し動作を示す(非特許文献7~10を参照)。
 図6にDRAMメモリセルの書込み動作を示す。図6(a)は、“1”書込み状態を示している。ここで、メモリセルは、SOI基板100に形成され、ソース線SLが接続されるソースN+層103(以下、ドナー不純物を高濃度で含む半導体領域を「N+層」と称する。)、ビット線BLが接続されるドレインN+層104、ワード線WLが接続されるゲート導電層105、MOSトランジスタ110aのフローティングボディ(Floating Body)102により構成され、キャパシタを有さず、MOSトランジスタ110aが1個でDRAMのメモリセルが構成されている。なお、フローティングボディ102直下には、SOI基板のSiO2層101が接している。この1個のMOSトランジスタ110aで構成されたメモリセルの“1”書込みを行う際には、MOSトランジスタ110aを線形領域で動作させる。すなわち、ソースN+層103から延びる電子のチャネル107には、ピンチオフ点108があり、ビット線が接続しているドレインN+層104までには、到達していない。このようにドレインN+層104に接続されたビット線BLとゲート導電層105に接続されたワード線WLを共に高電圧にして、ゲート電圧をドレイン電圧の約1/2程度で、MOSトランジスタ110aを動作させると、ドレインN+層104近傍のピンチオフ点108において、電界強度が最大となる。この結果、ソースN+層103からドレインN+層104に向かって流れる加速された電子は、Siの格子に衝突して、その時に失う運動エネルギーによって、電子・正孔対が生成される(インパクトイオン化現象)。発生した大部分の電子(図示せず)は、ドレインN+層104に到達する。また、ごく一部のとても熱い電子は、ゲート酸化膜109を飛び越えて、ゲート導電層105に到達する。そして、同時に発生した正孔106は、フローティングボディ102を充電する。この場合、発生した正孔は、フローティングボディ102がP型Siのため、多数キャリアの増分として、寄与する。フローティングボディ102は、生成された正孔106で満たされ、フローティングボディ102の電圧がソースN+層103よりもVb以上に高くなると、さらに生成された正孔は、ソースN+層103に放電する。ここで、Vbは、ソースN+層103とP層のフローティングボディ102との間のPN接合のビルトイン電圧であり、約0.7Vである。図6(b)は、生成された正孔106でフローティングボディ102が飽和充電された様子を示している。
 次に、図6(c)を用いて、メモリセル110の“0”書込み動作を説明する。共通な選択ワード線WLに対して、ランダムに“1”書込みのメモリセル110aと“0”書込みのメモリセル110bが存在する。図6(c)は、“1”書込み状態から“0”書込み状態に書き換わる様子を示している。“0”書込み時には、ビット線BLの電圧を負バイアスにして、ドレインN+層104とP層のフローティングボディ102との間のPN接合を順バイアスにする。この結果、フローティングボディ102に予め前サイクルで生成された正孔106は、ビット線BLに接続されたドレインN+層104に流れる。書込み動作が終了すると、生成された正孔106で満たされたメモリセル110a(図6(b))と、生成された正孔が吐き出されたメモリセル110b(図6(c))の2つのメモリセルの状態が得られる。正孔106で満たされたメモリセル110aのフローティングボディ102の電位は、生成された正孔がいないフローティングボディ102よりも高くなる。したがって、メモリセル110aのしきい値電圧は、メモリセル110bのしきい値電圧よりも低くなる。その様子を図6(d)に示す。
 次に、この1個のMOSトランジスタで構成されたメモリセルの動作上の問題点を図7を用いて、説明する。図7(a)に示したように、フローティングボディ102の容量CFBは、ワード線の接続されたゲートとフローティングボディ102間の容量CWLと、ソース線の接続されたソースN+層103とフローティングボディ102との間のPN接合の接合容量CSLと、ビット線の接続されたドレインN+層103とフローティングボディ102との間のPN接合の接合容量CBLとの総和で、
CFB = CWL + CBL + CSL (1)
で表される。したがって、書込み時にワード線電圧VWLが振幅すると、メモリセルの記憶ノード(接点)となるフローティングボディ102の電圧も、その影響を受ける。その様子を図7(b)に示している。書込み時にワード線電圧VWLが0VからVProgWLに上昇すると、フローティングボディ102の電圧VFBは、ワード線電圧が変化する前の初期状態の電圧VFB1からVFB2へのワード線との容量結合によって上昇する。その電圧変化量ΔVFBは、
ΔVFB = VFB2 - VFB1
       = CWL / (CWL + CBL + CSL) × VProgWL (2)
で表される。
ここで、
β= CWL / (CWL + CBL + CSL)          (3)
で表され、βをカップリング率と呼ぶ。このようなメモリセルにおいて、CWLの寄与率が大きく、例えば、CWL:CBL:CSL=8:1:1である。この場合、β=0.8となる。ワード線が、例えば、書込み時の5Vから、書込み終了後に0Vになると、ワード線とフローティングボディ102との容量結合によって、フローティングボディ102が、5V×β=4Vも振幅ノイズを受ける。このため、書込み時のフローティングボディ“1”電位と“0”電位との電位差マージンを十分に取れない問題点があった。
 図8に読出し動作を示す。図8(a)は、“1”書込み状態を、図8(b)は、“0”書込み状態を示している。しかし、実際には、“1”書込みでフローティングボディ102にVbが書き込まれていても、書込み終了でワード線が0Vに戻ると、フローティングボディ102は、負バイアスに引き下げられる。“0”が書かれる際には、さらに深く負バイアスになってしまうため、図12(c)に示すように、書込みの際に“1”と“0”との電位差マージンを十分に大きく出来ない。この動作マージンが小さいことが、本DRAMメモリセルの大きい問題であった。加えて、このDRAMメモリセルを高密度化する課題がある。
特開平2-188966号公報 特開平3-171768号公報 特許第3957774号公報
Hiroshi Takato, Kazumasa Sunouchi, Naoko Okabe, Akihiro Nitayama, Katsuhiko Hieda, Fumio Horiguchi, and Fujio Masuoka: IEEE Transaction on Electron Devices, Vol.38, No.3, pp.573-578 (1991) H. Chung, H. Kim, H. Kim, K. Kim, S. Kim, K. Dong, J. Kim, Y.C. Oh, Y. Hwang, H. Hong, G. Jin, and C. Chung: "4F2 DRAM Cell with Vertical Pillar Transistor(VPT)," 2011 Proceeding of the European Solid-State Device Research Conference, (2011) H. S. Philip Wong, S. Raoux, S. Kim, Jiale Liang, J. R. Reifenberg, B. Rajendran, M. Asheghi and K. E. Goodson: "Phase Change Memory," Proceeding of IEEE, Vol.98, No 12, December, pp.2201-2227 (2010) T. Tsunoda, K .Kinoshita, H. Noshiro, Y. Yamazaki, T. Iizuka, Y. Ito, A. Takahashi, A. Okano, Y. Sato, T. Fukano, M. Aoki, and Y. Sugiyama : "Low Power and high Speed Switching of Ti-doped NiO ReRAM under the Unipolar Voltage Source of less than 3V," IEDM (2007) W. Kang, L. Zhang, J. Klein, Y. Zhang, D. Ravelosona, and W. Zhao: "Reconfigurable Codesign of STT-MRAM Under Process Variations in Deeply Scaled Technology," IEEE Transaction on Electron Devices, pp.1-9 (2015) M. G. Ertosum, K. Lim, C. Park, J. Oh, P. Kirsch, and K. C. Saraswat : "Novel Capacitorless Single-Transistor Charge-Trap DRAM (1T CT DRAM) Utilizing Electron," IEEE Electron Device Letter, Vol. 31, No.5, pp.405-407 (2010) E. Yoshida, and T. Tanaka: "A Capacitorless 1T-DRAM Technology Using Gate-Induced Drain-Leakage (GIDL) Current for Low-Power and High-Speed Embedded Memory," IEEE Transactions on Electron Devices, Vol. 53, No. 4, pp. 692-697,Apr. 2006.
 SGTを用いたメモリ装置でキャパシタを無くした、1個のトランジス型のDRAM(ゲインセル)では、ワード線とフローティング状態のSGTのボディとの容量結合カップリングが大きく、データ読み出し時や書き込み時にワード線の電位を振幅させると、直接SGTボディへのノイズとして、伝達されてしまう問題点があった。この結果、誤読み出しや記憶データの誤った書き換えの問題を引き起こし、キャパシタを無くした1トランジス型のDRAM(ゲインセル)の実用化が困難となっていた。そして、上記問題を解決すると共に、DRAMメモリセルを高性能化と、高密度化する必要がある。
 上記の課題を解決するために、本発明に係る半導体素子を用いたメモリ装置の製造方法(第1発明)は、第1のゲート導体層と、第2のゲート導体層と、第1の不純物層と、第2の不純物層と、に印加する電圧を制御して、第1の半導体柱の内部に、インパクトイオン化現象により、またはゲート誘起ドレインリーク電流により形成した前記第1の半導体柱の多数キャリアである正孔群又は電子群を保持するデータ保持動作と、前記第1のゲート導体層と、前記第2のゲート導体層と、前記第1の不純物層と、前記第2の不純物層と、に印加する電圧を制御して、前記第1の半導体柱の内部から前記第1の半導体柱の多数キャリアである前記正孔群又は前記電子群を除去するデータ消去動作と、を行うメモリ装置の製造方法であって、
 基板上に垂直方向に立つ第1の半導体層を形成する工程と、
 前記第1の半導体層を囲んで第2の半導体層を形成して、前記第1の半導体層と前記第2の半導体層よりなる前記第1の半導体柱を形成する工程と、
 前記第2の半導体層の下部を囲んで第1のゲート絶縁層を形成する工程と、
 前記第1のゲート絶縁層を囲んで第1のゲート導体層を形成する工程と、
 垂直方向における、前記第1のゲート導体層より上部の前記第2の半導体層を、除去するか、残存する工程と、
 前記第1のゲート絶縁層に繋がり、且つ前記第2の半導体層、または第1の半導体層の上部を囲んだ第2のゲート絶縁層を形成する工程と、
 前記第2のゲート絶縁層を囲み、且つ前記第1のゲート導体層と離れた前記第2のゲート導体層を形成する工程と、
 前記第1の半導体柱を形成する前に、または形成した後に、前記半導体柱の底部に前記第1の不純物層を形成する工程と、
 前記第1の半導体柱を形成する前に、または形成した後に、前記半導体柱の頂部に前記第2の不純物層を形成する工程と、
 を有することを特徴とする(第1発明)。
 第2発明は、上記の第1発明において、前記第1の半導体層を形成する前に、前記基板上に第3の不純物層を形成する工程と、
 前記第1の半導体柱を形成した後に、熱工程により、前記第3の不純物層より多数キャリア不純物原子を前記第1の半導体層と、前記第2の半導体層と、に拡散させて前記第1の不純物層を形成する工程を、有する、
 ことを特徴とする(第2発明)。
 第3発明は、上記の第1発明において、前記第1の半導体層上に第4の不純物層を形成する工程と、
 前記第1の半導体柱を形成した後に、熱工程により、前記第4の不純物層より多数キャリア不純物原子を前記第1の半導体層と、残存させた場合の前記第2の半導体層と、に拡散させて前記第2の不純物層を形成する工程、を有する、
 ことを特徴とする(第3発明)。
 第4発明は、上記の第1発明において、前記第2のゲート絶縁層を形成する前に、露出している前記第2の半導体層の一部または全てを除去する工程を有することを特徴とする(第4発明)。
 第5発明は、、上記の第1発明において、前記第1の半導体層の不純物濃度を、前記第2の半導体層の不純物濃度より高く形成する(第5発明)。
 第6発明は、、上記の第1発明において、前記第2のゲート絶縁層を形成した後、前記第2のゲート絶縁層を囲み、第1の導体層を、その上面位置が前記第2の不純物層の下端付近になるように形成する工程と、
 前記第1の導体層上にあり、且つ少なくとも前記第2の不純物層を囲んだ第1のマスク材料層を形成する工程と、
 前記第1のマスク材料層をマスクにして、前記第1の導体層をエッチングして、前記第2のゲート導体層を形成する、
 ことを特徴とする(第6発明)。
 第7発明は、上記の第6発明において、前記第1のゲート絶縁層と囲み、且つその上面が前記第1のゲート導体層の上面にある第2の導体層を形成する工程と、
 前記第1のマスク材料層をマスクにして、前記第1の導体層と、前記第2のゲート絶縁層と、前記第2の導体層と、をエッチングする工程を、有し、
 エッチングされた前記第2の導体層が前記第1のゲート導体層となる、
 ことを特徴とする(第7発明)。
 第8発明は、上記の第3発明において、前記第4の不純物層の上に第2のマスク材料層を形成する工程と、
 前記第2のマスク材料層をエッチングマスクにして前記第4の不純物層と、前記第1の半導体層を形成する工程と、
 前記第2のマスク材料層をエッチングして、第1のコンタクトホールを形成する工程と、
 前記第1のコンタクトホールを介して、前記第2の不純物層に繋がった第1の導体配線層を形成する、工程を有する、
 ことを特徴とする(第8発明)。
 第9発明は、上記の第1発明において、前記第1の不純物層がソース線に繋がり、前記第2の不純物層がビット線に繋がり、前記第1のゲート導体層が第1の駆動制御線に繋がり、前記第2のゲート導体層がワード線に繋がっていることを特徴とする(第9発明)。
第1実施形態に係るSGTを有するメモリ装置の構造図である。 第1実施形態に係るSGTを有するメモリ装置の消去動作メカニズムを説明するための図である。 第1実施形態に係るSGTを有するメモリ装置の書込み動作メカニズムを説明するための図である。 第1実施形態に係るSGTを有するメモリ装置の読出し動作メカニズムを説明するための図である。 第1実施形態に係るSGTを有するメモリ装置の読出し動作メカニズムを説明するための図である。 第1実施形態に係るSGTを有するメモリ装置の製造方法を示す構造図である。 第1実施形態に係るSGTを有するメモリ装置の製造方法を示す構造図である。 第1実施形態に係るSGTを有するメモリ装置の製造方法を示す構造図である。 第1実施形態に係るSGTを有するメモリ装置の製造方法を示す構造図である。 第1実施形態に係るSGTを有するメモリ装置の製造方法を示す構造図である。 第1実施形態に係るSGTを有するメモリ装置の製造方法を示す構造図である。 第1実施形態に係るSGTを有するメモリ装置の製造方法を示す構造図である。 従来例のキャパシタを有しない、DRAMメモリセルの動作上の問題点を説明するための図である。 従来例のキャパシタを有しない、DRAMメモリセルの動作上の問題点を説明するための図である。 従来例のキャパシタを有しない、DRAMメモリセルの読出し動作を示す図である。
 以下、本発明に係る、半導体素子を用いたメモリ装置(以後、ダイナミック フラッシュ メモリと呼ぶ)の構造、駆動方式、製造方法について、図面を参照しながら説明する。
(第1実施形態)
 図1~図5を用いて、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルの構造と動作メカニズムと製造方法とを説明する。図1を用いて、ダイナミック フラッシュ メモリセルの構造を説明する。そして、図2を用いてデータ消去メカニズムを、図3を用いてデータ書き込みメカニズムを、図4を用いてデータ書き込みメカニズムを説明する。そして、図5を用いてダイナミック フラッシュ メモリの製造方法を説明する。
 図1に、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルの構造を示す。基板1(特許請求の範囲の「基板」の一例である)上にN+層3a(特許請求の範囲の「第1の不純物層」の一例である)がある。そして、N+層3a上に、シリコン半導体柱2(特許請求の範囲の「第1の半導体柱」の一例である)(以下、シリコン半導体柱を「Si柱」と称する。)がある。Si柱2には、平面視において、中央部に第1のP層7a(特許請求の範囲の「第1の半導体層」の一例である)(以下、アクセプタ不純物を含む半導体領域を「P層」と称する)があり、そして、P層7aを囲んで、P層7b(特許請求の範囲の「第2の半導体層」の一例である)がある。そして、Si柱2の上に、N+層3b(特許請求の範囲の「第2の不純物層」の一例である)がある。N+層3a、3b間のSi柱2の部分がチャネル領域8(特許請求の範囲の「チャネル領域」の一例である)となる。Si柱2aの下部を囲んで第1のゲート絶縁層4a(特許請求の範囲の「第1のゲート絶縁層」の一例である)と、Si柱2bの上部を囲んで第2のゲート絶縁層4b(特許請求の範囲の「第2のゲート絶縁層」の一例である)と、がある。そして、第1のゲート絶縁層4aを囲んで第1のゲート導体層5a(特許請求の範囲の「第1のゲート導体層」の一例である)があり、第2のゲート絶縁層4bを囲んで、第2のゲート導体層5b(特許請求の範囲の「第2のゲート導体層」の一例である)がある。そして、第1のゲート導体層5a、第2のゲート導体層5bは絶縁層6により分離されている。これによりN+層3a、3b、P層7a、7b、第1のゲート絶縁層4a、第2のゲート絶縁層4b、第1のゲート導体層5a、第2のゲート導体層5bからなるダイナミック フラッシュ メモリセル9が形成される。
 そして、図1に示すように、N+層3aはソース線SL(特許請求の範囲の「ソース線」の一例である)に、N+層3bはビット線BL(特許請求の範囲の「ビット線」の一例である)に、第1のゲート導体層5aはプレート線PL(特許請求の範囲の「第1の駆動制御線」の一例である)に、第2のゲート導体層5bはワード線WL(特許請求の範囲の「ワード線」の一例である)に、それぞれ接続している。プレート線PLに接続している、第1のゲート導体層5aのゲート容量は、ワード線WLに接続している、第2のゲート導体層5bのゲート容量よりも、大きくなるような構造を有することが望ましい。メモリ装置では、上述の複数のダイナミック フラッシュ メモリセルが基板1上に2次元状に配置されている。
 なお、P層7aを囲んだP層7bは、少なくとも第1のゲート絶縁層4aで囲まれた部分にあればよい。第2のゲート絶縁層4bで囲まれた部分には、P層7bはあっても、なくても良い。また、P層7aのアクセプタ不純物濃度を、P層7bより大きくしてもよい。
 また、図1では、プレート線PLに接続された第1のゲート導体層5aのゲート容量が、ワード線WLが接続された、第2のゲート導体層5bのゲート容量よりも、大きくなるように第1のゲート導体層5aのゲート長を、第2のゲート導体層5bのゲート長よりも長くしている。しかし、その他にも、第1のゲート導体層5aのゲート長を、第2のゲート導体層5bのゲート長よりも長くせずに、第1のゲート絶縁層4aのゲート絶縁膜の膜厚を、第2のゲート絶縁層4bのゲート絶縁膜の膜厚より薄くしてもよい。また、第1のゲート絶縁層4aの誘電率を、第2のゲート絶縁層4bの誘電率より高くしてもよい。また、ゲート導体層5a、5bの長さ、ゲート絶縁層4a、4bの膜厚、誘電率のいずれかを組み合わせて、第1のゲート導体層5aのゲート容量が、第2のゲート導体層5bのゲート容量より、大きくしてもよい。
 また、第1のゲート導体層5aを2つ以上に分割して、それぞれをプレート線の導体電極として、同期または非同期で動作させてもよい。同様に、第2のゲート導体層5bを2つ以上に分割して、それぞれをワード線の導体電極として、同期または非同期で動作させてもよい。これによっても、ダイナミック フラッシュ メモリ動作がなされる。
 図2を用いて、消去動作メカニズムを説明する。N+層3a、3b間のチャネル領域8は、電気的に基板1から分離され、フローティングボディとなっている。このチャネル領域8は、図1で説明したように、P層7a、7bよりなる。図2(a)に、消去動作前に前のサイクルでインパクトイオン化により生成された正孔群11がチャネル領域8に蓄えられている状態を示す。正孔群11は、主にP層7aに溜められる。そして。図2(b)に示すように、消去動作時には、ソース線SLの電圧を、負電圧VERAにする。ここで、VERAは、例えば、-3Vである。その結果、チャネル領域8の初期電位の値に関係なく、ソース線SLが接続されているソースとなるN+層3aとチャネル領域8のPN接合が順バイアスとなる。その結果、前のサイクルでインパクトイオン化により生成された、チャネル領域8に蓄えられていた、正孔群11が、ソース部のN+層3aに吸い込まれ、チャネル領域8の電位VFBは、VFB=VERA+Vbとなる。ここで、VbはPN接合のビルトイン電圧であり、約0.7Vである。したがって、VERA=-3Vの場合、チャネル領域8の電位は、-2.3Vになる。この値が、消去状態のチャネル領域8の電位状態となる。このため、フローティングボディのチャネル領域8の電位が負の電圧になると、ダイナミック フラッシュ メモリセル9のNチャネルMOSトランジスタのしきい値電圧は、基板バイアス効果によって、高くなる。これにより、図2(c)に示すように、このワード線WLが接続された第2のゲート導体層5bのしきい値電圧は高くなる。このチャネル領域8の消去状態は論理記憶データ“0”となる。なお、上記のビット線BL、ソース線SL、ワード線WL、プレート線PLに印加する電圧条件と、フローティングボディの電位は、消去動作を行うための一例であり、消去動作ができる他の動作条件であってもよい。
 図3に、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルの書込み動作を示す。図3(a)に示すように、ソース線SLの接続されたN+層3aに例えば0Vを入力し、ビット線BLの接続されたN+層3bに例えば3Vを入力し、プレート線PLの接続された第1のゲート導体層5aに、例えば、2Vを入力し、ワード線WLの接続された第2のゲート導体層5bに、例えば、5Vを入力する。その結果、図3(a)に示したように、プレート線PLの接続された第1のゲート導体層5aの内側のチャネル領域8には、環状の反転層12aが主にP層7bに形成され、第1のゲート導体層5aを有する第1のNチャネルMOSトランジスタは線形領域で動作させる。この結果、プレート線PLの接続された第1のゲート導体層5aの内側の反転層12aには、ピンチオフ点13が存在する。一方、ワード線WLの接続された第2のゲート導体層5bを有する第2のNチャネルMOSトランジスタは飽和領域で動作させる。この結果、ワード線WLの接続された第2のゲート導体層5bの内側のチャネル領域8には、ピンチオフ点は存在せずに全面に反転層12bが形成される。このワード線WLの接続された第2のゲート導体層5bの内側に全面に形成された反転層12bは、第1のゲート導体層5aを有する第1のNチャネルMOSトランジスタの実質的なドレインとして働く。この結果、直列接続された第1のゲート導体層5aを有する第1のNチャネルMOSトランジスタと、第2のゲート導体層5bを有する第2のNチャネルMOSトランジスタとの間のチャネル領域8の第1の境界領域で電界は最大となり、この領域でインパクトイオン化現象が生じる。この領域は、ワード線WLの接続された第2のゲート導体層5bを有する第2のNチャネルMOSトランジスタから見たソース側の領域であるため、この現象をソース側インパクトイオン化現象と呼ぶ。このソース側インパクトイオン化現象により、ソース線SLの接続されたN+層3aからビット線BLの接続されたN+層3bに向かって電子が流れる。加速された電子が格子Si原子に衝突し、その運動エネルギーによって、電子・正孔対が生成される。生成された電子の一部は、第1のゲート導体層5aと第2のゲート導体層5bに流れるが、大半はビット線BLの接続されたN+層3bに流れる。また、“1”書込みにおいて、ゲート誘起ドレインリーク(GIDL:Gate Induced Drain Leakage)電流を用いて電子・正孔対を発生させ、生成された正孔群でフローティングボディFB内を満たしてもよい(例えば非特許文献7を参照)。
 そして、図3(b)に示すように、生成された正孔群11は、チャネル領域8の多数キャリアであり、チャネル領域8を正バイアスに充電する。ソース線SLの接続されたN+層3aは、0Vであるため、チャネル領域8はソース線SLの接続されたN+層3aとチャネル領域8との間のPN接合のビルトイン電圧Vb(約0.7V)まで充電される。チャネル領域8が正バイアスに充電されると、第1のNチャネルMOSトランジスタと第2のNチャネルMOSトランジスタのしきい値電圧は、基板バイアス効果によって、低くなる。これにより、図3(c)に示すように、ワード線WLの接続された第2のNチャネルMOSトランジスタのしきい値電圧は、低くなる。このチャネル領域8の書込み状態を論理記憶データ“1”に割り当てる。生成された正孔群11は主にP+層7aに溜められている。これにより、安定な基板バイアス効果が得られる。
 なお、書込み動作時に、上記の第1の境界領域に替えて、N+層3aとチャネル領域8との間の第2の境界領域、または、N+層3bとチャネル領域8との間の第3の境界領域で、インパクトイオン化現象、またはGIDL電流で、電子・正孔対を発生させ、発生した正孔群11でチャネル領域8を充電しても良い。なお、上記のビット線BL、ソース線SL、ワード線WL、プレート線PLに印加する電圧条件は、書き込み動作を行うための一例であり、書き込み動作ができる他の動作条件であってもよい。
 図4A、図4Bを用いて、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルの読出し動作を説明する。図4A(a)~図4A(c)を用いて、ダイナミック フラッシュ メモリセルの読出し動作を説明する。図4A(a)に示すように、チャネル領域8がビルトイン電圧Vb(約0.7V)まで充電されると、NチャネルMOSトランジスタのしきい値電圧が基板バイアス効果によって、低下する。この状態を論理記憶データ“1”に割り当てる。図4A(b)に示すように、書込みを行う前に選択するメモリブロックは、予め消去状態“0”にある場合は、チャネル領域8がフローティング電圧VFBはVERA+Vbとなっている。書込み動作によってランダムに書込み状態“1”が記憶される。この結果、ワード線WLに対して、論理“0”と“1”の論理記憶データが作成される。図4A(c)に示すように、このワード線WLに対する2つのしきい値電圧の高低差を利用して、センスアンプで読出しが行われる。
 図4B(a)~図4B(d)を用いて、本発明の第1実施形態に係るダイナミック フラッシュ メモリセルの読出し動作時の、2つの第1のゲート導体層5aと第2のゲート導体層5bとのゲート容量の大小関係と、これに関係する動作を説明する。ワード線WLの接続する第2のゲート導体層5bのゲート容量は、プレート線PLの接続する第1のゲート導体層5aのゲート容量よりも小さく設計することが望ましい。図4B(a)に示すように、プレート線PLの接続する第1のゲート導体層5aの垂直方向の長さを、ワード線WLの接続する第2のゲート導体層5bの垂直方向の長さより長くして、ワード線WLの接続する第2のゲート導体層5bのゲート容量を、プレート線PLの接続する第1のゲート導体層5aのゲート容量よりも小さくする。図4B(b)に図4B(a)のダイナミック フラッシュ メモリの1セルの等価回路を示す。そして、図4B(c)にダイナミック フラッシュ メモリの結合容量関係を示す。ここで、CWLは第2のゲート導体層5bの容量であり、CPLは第1のゲート導体層5aの容量であり、CBLはドレインとなるN+層3bとチャネル領域8との間のPN接合の容量であり、CSLはソースとなるN+層3aとチャネル領域8との間のPN接合の容量である。図4B(d)に示すように、ワード線WL電圧が振幅すると、その動作がチャネル領域8にノイズとして影響を与える。この時のチャネル領域8の電位変動ΔVFBは、
ΔVFB = CWL/(CPL+CWL+CBL+CSL) × VReadWL  (4)
となる。ここで、VReadWLはワード線WLの読出し時の振幅電位である。式(1)から明らかなようにチャネル領域8の全体の容量CPL+CWL+CBL+CSLに比べて、CWLの寄与率を小さくすれば、ΔVFBは小さくなることが分かる。プレートPLの接続する第1のゲート導体層5aの垂直方向の長さを、ワード線WLの接続する第1のゲート導体層5bの垂直方向の長さより更に長くすることによって、平面視におけるメモリセルの集積度を落すことなく、ΔVFBを更に小さくしてもよい。なお、上記のビット線BL、ソース線SL、ワード線WL、プレート線PLに印加する電圧条件と、フローティングボディの電位は、読み出し動作を行うための一例であり、読み出し動作ができる他の動作条件であってもよい。
 図5A~図5Gに、第1実施形態のダイナミック フラッシュ メモリの製造方法を示す。(a)図はダイナミック フラッシュ メモリセルの平面図である。そして、(b)図は(a)図におけるX-X’線に沿った垂直断面図である。(c)図は(a)図におけるY-Y’線に沿った垂直断面図である。実際のダイナミック フラッシュ メモリ装置では、多くのダイナミック フラッシュ メモリセルが2次元状に配置して形成される。
 図5Aに示すように、P層基板20(特許請求の範囲の「基板」の一例である)の上に、例えばエピタキシャル結晶成長法により、下よりN+層21(特許請求の範囲の「第3の不純物層」の一例である)、P層22、N+層23(特許請求の範囲の「第4の不純物層」の一例である)を形成する。そして、N+層23上に、平面視において、円形状のマスク材料層24aa、24ab、24ba、24bbを形成する。なお、このマスク材料層24aa~24bbは、複数の材料層により形成してもよい。
 次に、図5Bに示すように、マスク材料層24aa~24bb(特許請求の範囲の「第2のマスク材料層」の一例である)をマスクにして、N+層23、P層22、そしてN+層21の上部をエッチングして、N+層21a、P層22a(特許請求の範囲の「第1の半導体層」の一例である)、22b、22c、22d、N+層23a、23b、23c、23dよりなるSi柱25a、25b、25c、25d(図示せず)を形成する。このエッチングでは、マスク材料層24aa~24bbの上部はエッチングされている。
 次に、図5Cに示すように、例えばALD(Atomic Layer Deposition)法を用いて、全体にSiのP層27を形成する。
 次に、図5Dに示すように、熱処理を行い、N+層21a、23a~23dからドナー不純物をP層27に拡散させてN+層21A(特許請求の範囲の「第1の不純物層」の一例である)、23A(特許請求の範囲の「第2の不純物層」の一例である)、23B、23C、23D(図示せず)を形成する。これにより、P層22a~22dを囲んでP層27a(特許請求の範囲の「第2の半導体層」の一例である)、27b、27c、27d(図示せず)が形成される。P層22aとP層27aからなるものは、特許請求の範囲の「第1の半導体柱」の一例である
 次に、全体を覆ってSiO2層(図示せず)を被覆する。そして、CMP(Chemical Mechanical Polishing)法により、上面位置がP層27a~27dの上面位置になるように研磨する。そして、RIE(Reactive Ion Etching)法によりSiO2層をエッチングする。これにより、図5Eに示すように、P層27a~27dの底部側面にSiO2層29を形成する。そして、全体を覆い、ゲート絶縁層となるHfO2層30を形成する。そして、HfO2層30の下部側面を囲んだ、ゲート導体層である、例えばTiN層31a(特許請求の範囲の「第1のゲート導体層」の一例である)を形成する。
 次に、図5Fに示すように、露出しているHfO2層30をエッチングして、HfO2層30a(特許請求の範囲の「第1のゲート絶縁層」の一例である)を形成する。そして、全体にゲート絶縁層となるHfO2層32(特許請求の範囲の「第2のゲート絶縁層」の一例である)を形成する。そして、HfO2層32の側面を囲んで、その上面位置がN+層23A~23Dの下端位置近傍にあるTiN層(図示せず)を形成する。そして、全体に窒化シリコン(SiN)膜(図示せず)を被覆する。そして、RIE法により、SiN膜をエッチングして、HfO2層32を囲んでSiN層35a、35b(特許請求の範囲の「第1のマスク材料層」の一例である)を形成する。そして、SiN層35a、35bをマスクにしてTiN層をエッチングして、TiN層33a、33b(特許請求の範囲の「第2のゲート導体層」の一例である)を形成する。平面視において、SiN層33aが、X-X’線方向に並んだSi柱25a、25b間で繋がって形成されるように、Si柱25a、25b間の距離、SiN層35aの厚さを設定する。同様に、SiN層33bが、X-X’線方向に並んだSi柱25c、25d間で繋がって形成されるように、Si柱25c、25d間の距離、SiN層35bの厚さを設定する。そして、Si柱25a、25c間、及びSi柱25b、25d間の距離を、TiN層33a、33bが離れて形成されるように設定しておく。これにより、Si柱25a、25b間、及びSi柱25c、25d間で繋がり、且つSi柱25a、25c間、及びSi柱25b、25d間で離れたTiN層33a、33bが形成される。なお、HfO2層32を形成する前において、露出したP層27a~27dを、酸化した後、この酸化層を除去してもよい。又は、エッチングにより、P層27a~27dを除去した後にHfO2層32、TiN層33a、33bを形成してもよい。
 次に、全体にCVD法によりSiO2層(図示せず)を被覆する。そして、CMP法により全体を、その上面位置がマスク材料層24aa~24bbの上面位置になるように研磨する。これにより、図5Gに示すように、SiN層35a、35bを囲んでSiO2層34が形成される。そして、マスク材料層24aa~24bbをエッチングしてコンタクトホール37aa、37ab、37ba、37bbを形成する。そして、コンタクトホール37aa、37baを介してN+層23A、23Cと繋がる導体配線層38aと、コンタクトホール37ab、37bbを介してN+層23B、23Dに繋がる導体配線層38bと、を形成する。N+層21Aはソース線SLに繋がり、TiN層31aはプレート線(PL)に繋がり、TiN層33a、33bはワード線WLに繋がり、N+層23A、23Cは導体電極層38aを介してビット線BL1に繋がり、N+層23B、23Dは導体電極層38bを介してビット線BL2に繋がる。これにより、P層基板20上にダイナミック フラッシュ メモリセルが形成される。
 なお、図1は、矩形状の垂直断面を有するSi柱2を用いて説明したが、これら垂直断面形状は台形状に形成されてもよい。また、Si柱2の、第1のゲート絶縁層4a、第2のゲート絶縁層4bで囲まれた部分の形状が矩形状と、台形状というように異なっていてもよい。図5A~5GにおけるSi柱25a~25dにおいて、TiN層31aで囲まれている部分と、TiN層33a、33bで囲まれた部分の形状を、矩形状と、台形状にしてもよい。
 また、図1における、第1のゲート導体層5aは、第1のゲート絶縁層4aの一部を囲んでいても、ダイナミック フラッシュ メモリ動作を行うことができる。また、第1のゲート導体層5aを複数の導体層に分割して、それぞれを同期、または非同期で駆動してもダイナミック フラッシュ メモリ動作を行うことができる。同様に、第2のゲート導体層5bを複数の導体層に分割して、それぞれを同期、または非同期で駆動してもダイナミック フラッシュ メモリ動作を行うことができる。図5A~5Gにおいては、第1のゲート導体層5aに対応しているTiN層31aと、第2のゲート導体層に対応しているTiN層33a、33bと、を分割して形成してもよい。
 また、図1における、N+層3aは基板1上に伸延させて、ソース線SLの配線導体層を兼ねさせてもよい。また、N+層3aに、例えばW層などの導体層を接続してもよい。また、図5A~5Gにおいて、ダイナミック フラッシュ メモリセルが二次元状に多く形成された領域の外側のN+層21Aに、例えばW層などの金属、又は合金による導体層を接続させてもよい。
 また、N+層3a、3b、P層7a、7bのそれぞれの導電性の極性を逆にした構造においても、ダイナミック フラッシュ メモリ動作がなされる。この場合、Si柱2での多数キャリアは電子になる。従って、インパクトイオン化により生成された電子群がチャネル領域8に蓄えられて、“1”状態が設定される。図5A~5Gにおける、N+層21A、23A~23D、P層22a~22d、27の関係においても同様である。
 また、図5Dにおいて、熱処理を行い、N+層21a、23a~23dからドナー不純物をP層27に拡散させてN+層21A、23A~23Dを形成した。これに対して、後の熱工程によりN+層21A、23A~23Dを形成してもよい。
 また、図5EではTiN層31aはSi柱25a~25d間で繋がって形成されたが、ワード線となるTiN層33a、33bを形成する工程において、SiN層35a、35bをマスクにしてTiN層31aまでエッチングして、Si柱25a、25b間に繋がり、同じくSi柱25c、25d間に繋がったプレート線に繋がるTiN層を形成してもよい。
 また、図5Fにおいて、SiN層35a、35bをマスクにしたエッチングをHfO2層32上で止めたが、更にHfO2層32、TiN層31aをエッチングしてもよい。これにより、平面視において、ワード線に繋がるTiN層33a、33bと同じ形状のプレート線に繋がるTiN層が形成される。これにおいても正常なダイナミック フラッシュ メモリ動作がなされる。
 本実施形態は、下記の特徴を供する。
(特徴1)
 図1に示した平面視におけるセルでは、論理“1”状態はチャネル領域8に保持される正孔群の存在によって設定される。この正孔群は主にチャネル領域8の中心部のP層7aに蓄積される。このP層7aの体積が大きいほど、多くの正孔群を保持できる。これは、安定な保持特性に繋がる。これに対して、本実施形態では、図5B、図5Cに示すように、P層22a~22bを形成した後に、ALD法によりP層27を被覆することによって、平面視におけるSi柱25a~25dの面積を大きくした。例えば、平面視において、P層25a~25dの直径をリソグラフィ法によるパターンニングの最大まで拡大した場合、P層27の形成により、Si柱25a~25dの直径を更に大きくできる。これにより、更なる保持特性の向上が図られる。また、セル面積の縮小化に有効であるので、これによりダイナミック フラッシュ メモリの高集積化が図られる。
(特徴2)
 図1では、インパクトイオン化現象によって生じた正孔群は、主にP層7a(図5GにおけるP層22a~22dに対応する)に溜められる。P層7aのアクセプタ不純物濃度を、P層7b(図5GにおけるP層27a~27dに対応する)より大きくすることにより、そして、読み出し動作におけるN+層3a、3b間を流れる電子電流はP層7bを流れる。これにより、読み出し動作において、P層7bの電子電流のチャネルと、正孔群11を溜めているP層7a部のフローティングボディが区分され、より安定したフローティングボディ電圧が維持される。これにより、ダイナミック フラッシュ メモリは安定した動作が出来、高性能化に繋がる。
(特徴3)
 図5Dに示したように、熱処理を行い、N+層21a、23a~23dからドナー不純物をP層27に拡散させてN+層21A、23A~23Dを形成した。これにより、チャネル領域であるP層22a~22d、P層27a~27dが、Si柱25a~25d間でN+層21Aで分離される。そして、N+層23A~23DがSi柱25a~25dの断面全体に広がり形成されることにより、配線導体層37a、37bとP層22a~22d、27a~27dとのショート不良が防止できる。
(その他の実施形態)
 なお、プレート線PLに繋がるゲート導体層5a、31aは、単層または複数の導体材料層を組み合わせて用いてもよい。同じく、ワード線WLに繋がるゲート導体層5b、33a、33bは、単層または複数の導体材料層を組み合わせて用いてもよい。また、ゲート導体層の外側が、例えばWなどの配線金属層に繋がっていてもよい。このことは、本発明に係るその他の実施形態においても同様である。
 なお、図1において、プレート線PLの接続する第1のゲート導体層5aの垂直方向の長さを、ワード線WLの接続する第1のゲート導体層5bの垂直方向の長さより更に長くして、CPL>CWLとした。しかし、プレート線PLを付加することだけでも、ワード線WLのチャネル領域8に対する、容量結合のカップリング比(CWL/(CPL+CWL+CBL+CSL))が小さくなる。その結果、フローティングボディのチャネル領域8の電位変動ΔVFBは、小さくなる。
 また、第1実施形態の説明におけるプレート線PLの電圧は、各動作モードに関わらず、例えば、2Vの固定電圧を印加しても良い。また、プレート線PLの電圧は、消去時のみ、例えば、0Vを印加しても良い。また、プレート線PLの電圧は、ダイナミック フラッシュ メモリ動作ができる条件を満たす電圧であれば、固定電圧、または時間的に変化する電圧を与えてもよい。
 また、Si柱2、25a~25dの平面視における形状は、円形状であったが、円形以外の、例えば楕円、一方方向に長く伸びた形状などであってもよい。
 また、本実施形態の説明では、消去動作時にソース線SLを負バイアスにして、フローティングボディFBであるチャネル領域8内の正孔群を引き抜いていたが、ソース線SLに代わり、ビット線BLを負バイアスにして、あるいは、ソース線SLとビット線BLの両方を負バイアスにして、消去動作を行ってもよい。または、他の電圧条件により、消去動作を行ってもよい。このことは、本発明に係るその他の実施形態においても同様である。
 また、図1において、N+層3aと、Si柱2との間に、N型、またはP型の不純物層があってもよい。また、N+層3bと、Si柱2との間に、N型、またはP型の不純物層があってもよい。このことは、図5Gにおいても同様である。
 また、図1において、P層7a、P層7bは、それぞれが異なる半導体材料層で形成されていてもよい。このことは、図5Gにおいても同様である。
 また、図1のN+層3a、3bは、ドナー不純物を含んだ、Siまたは他の半導体材料層より形成されてもよい。また、N+層3aと、N+層3bと、は異なる半導体材料層で形成されてもよい。このことは、図5Gにおいても同様である。
 また、図5A~5Gでは、平面視において、Si柱25a~25dを正方格子状に配置した実施例を用いて説明したが、斜方格子状に配列させてもよい良い。
 また、図1では、基板1上に1つのダイナミック フラッシュ メモリセルを形成したが、垂直方向に複数のダイナミック フラッシュ メモリセルを形成させてもよい。これは、図5A~5Gにおいても同様である。
 なお、図1の基板1として、P層、SOI,多層ウエルを用いてもよい。同じく、図5A~図5GにおけるP層基板20の代わりに、SOI、または多層ウエルを用いてもよい。
  また、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した各実施形態は、本発明の一実施例を説明するためのものであり、本発明の範囲を限定するものではない。上記実施例及び変形例は任意に組み合わせることができる。さらに、必要に応じて上記実施形態の構成要件の一部を除いても本発明の技術思想の範囲内となる。
 本発明に係る、半導体素子を用いたメモリ装置の製造方法によれば、高密度で、かつ高性能のダイナミック フラッシュ メモリが得られる。
1、20 基板
2 Si柱
3a、3b、21、23、21a、21A、23a、23b、23c、23d、23A、23B、23C、23D N+
4a 第1のゲート絶縁層
4b 第2のゲート絶縁層
5a 第1のゲート導体層
5b 第2のゲート導体層
6 絶縁層
7a、7b、22、22a、22b、22c、22d、27,27a、27b、27c、27d P層
8 チャネル領域
9 ダイナミック フラッシュ メモリセル
11 正孔群
12a、12b 反転層
13 ピンチオフ点
SL ソース線
PL プレート線
WL、WL1,WL2 ワード線
BL、BL1,BL2 ビット線
24aa、24ab、24ba、24bb マスク材料層
29、34 SiO2
30、30a、32 HfO2
31a、33a、33b TiN層
35a、35b SiN層
37aa、37ab、37ba、37bb コンタクトホール
38a、38b 導体電極層

Claims (9)

  1.  第1のゲート導体層と、第2のゲート導体層と、第1の不純物層と、第2の不純物層と、に印加する電圧を制御して、第1の半導体柱の内部に、インパクトイオン化現象により、またはゲート誘起ドレインリーク電流により形成した前記第1の半導体柱の多数キャリアである正孔群又は電子群を保持するデータ保持動作と、前記第1のゲート導体層と、前記第2のゲート導体層と、前記第1の不純物層と、前記第2の不純物層と、に印加する電圧を制御して、前記第1の半導体柱の内部から前記第1の半導体柱の多数キャリアである前記正孔群又は前記電子群を除去するデータ消去動作と、を行うメモリ装置の製造方法であって、
     基板上に垂直方向に立つ第1の半導体層を形成する工程と、
     前記第1の半導体層を囲んで第2の半導体層を形成して、前記第1の半導体層と前記第2の半導体層よりなる前記第1の半導体柱を形成する工程と、
     前記第2の半導体層の下部を囲んで第1のゲート絶縁層を形成する工程と、
     前記第1のゲート絶縁層を囲んで第1のゲート導体層を形成する工程と、
     垂直方向における、前記第1のゲート導体層より上部の前記第2の半導体層を、除去するか、残存する工程と、
     前記第1のゲート絶縁層に繋がり、且つ前記第2の半導体層、または第1の半導体層の上部を囲んだ第2のゲート絶縁層を形成する工程と、
     前記第2のゲート絶縁層を囲み、且つ前記第1のゲート導体層と離れた前記第2のゲート導体層を形成する工程と、
     前記第1の半導体柱を形成する前に、または形成した後に、前記半導体柱の底部に前記第1の不純物層を形成する工程と、
     前記第1の半導体柱を形成する前に、または形成した後に、前記半導体柱の頂部に前記第2の不純物層を形成する工程と、
     を有することを特徴とする半導体素子を用いたメモリ装置の製造方法。
  2.  前記第1の半導体層を形成する前に、前記基板上に第3の不純物層を形成する工程と、
     前記第1の半導体柱を形成した後に、熱工程により、前記第3の不純物層より多数キャリア不純物原子を前記第1の半導体層と、前記第2の半導体層と、に拡散させて前記第1の不純物層を形成する工程を、有する、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置の製造方法。
  3.  前記第1の半導体層上に第4の不純物層を形成する工程と、
     前記第1の半導体柱を形成した後に、熱工程により、前記第4の不純物層より多数キャリア不純物原子を前記第1の半導体層と、残存させた場合の前記第2の半導体層と、に拡散させて前記第2の不純物層を形成する工程、を有する、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置の製造方法。
  4.  前記第2のゲート絶縁層を形成する前に、露出している前記第2の半導体層の一部または全てを除去する工程、を有する、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置の製造方法。
  5.  前記第1の半導体層の不純物濃度を、前記第2の半導体層の不純物濃度より高く形成する、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置の製造方法。
  6.  前記第2のゲート絶縁層を形成した後、前記第2のゲート絶縁層を囲み、第1の導体層を、その上面位置が前記第2の不純物層の下端付近になるように形成する工程と、
     前記第1の導体層上にあり、且つ少なくとも前記第2の不純物層を囲んだ第1のマスク材料層を形成する工程と、
     前記第1のマスク材料層をマスクにして、前記第1の導体層をエッチングして、前記第2のゲート導体層を形成する、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置の製造方法。
  7.  前記第1のゲート絶縁層と囲み、且つその上面が前記第1のゲート導体層の上面にある第2の導体層を形成する工程と、
     前記第1のマスク材料層をマスクにして、前記第1の導体層と、前記第2のゲート絶縁層と、前記第2の導体層と、をエッチングする工程を、有し、
     エッチングされた前記第2の導体層が前記第1のゲート導体層となる、 
     ことを特徴とする請求項6に記載の半導体素子を用いたメモリ装置の製造方法。
  8.  前記第4の不純物層の上に第2のマスク材料層を形成する工程と、
     前記第2のマスク材料層をエッチングマスクにして前記第4の不純物層と、前記第1の半導体層を形成する工程と、
     前記第2のマスク材料層をエッチングして、第1のコンタクトホールを形成する工程と、
     前記第1のコンタクトホールを介して、前記第2の不純物層に繋がった第1の導体配線層を形成する、工程を有する、
     ことを特徴とする請求項3に記載の半導体素子を用いたメモリ装置の製造方法。
  9.  前記第1の不純物層がソース線に繋がり、前記第2の不純物層がビット線に繋がり、前記第1のゲート導体層が第1の駆動制御線に繋がり、前記第2のゲート導体層がワード線に繋がっている、
     ことを特徴とする請求項1に記載の半導体素子を用いたメモリ装置の製造方法。
PCT/JP2021/024090 2021-06-25 2021-06-25 半導体素子を用いたメモリ装置の製造方法 WO2022269890A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/024090 WO2022269890A1 (ja) 2021-06-25 2021-06-25 半導体素子を用いたメモリ装置の製造方法
TW111122891A TWI823432B (zh) 2021-06-25 2022-06-20 使用半導體元件的記憶裝置的製造方法
US17/846,319 US20220415901A1 (en) 2021-06-25 2022-06-22 Method for manufacturing memory device using semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/024090 WO2022269890A1 (ja) 2021-06-25 2021-06-25 半導体素子を用いたメモリ装置の製造方法

Publications (1)

Publication Number Publication Date
WO2022269890A1 true WO2022269890A1 (ja) 2022-12-29

Family

ID=84541255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024090 WO2022269890A1 (ja) 2021-06-25 2021-06-25 半導体素子を用いたメモリ装置の製造方法

Country Status (3)

Country Link
US (1) US20220415901A1 (ja)
TW (1) TWI823432B (ja)
WO (1) WO2022269890A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124209A (ja) * 2006-11-10 2008-05-29 Toshiba Corp 半導体記憶装置
JP2008147514A (ja) * 2006-12-12 2008-06-26 Renesas Technology Corp 半導体記憶装置
WO2014184933A1 (ja) * 2013-05-16 2014-11-20 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Sgtを有する半導体装置の製造方法
JP2020198343A (ja) * 2019-05-31 2020-12-10 キオクシア株式会社 半導体装置及び半導体記憶装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8357964B1 (en) * 2011-09-07 2013-01-22 Rexchip Electronics Corporation Three-dimensional dynamic random access memory with an ancillary electrode structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124209A (ja) * 2006-11-10 2008-05-29 Toshiba Corp 半導体記憶装置
JP2008147514A (ja) * 2006-12-12 2008-06-26 Renesas Technology Corp 半導体記憶装置
WO2014184933A1 (ja) * 2013-05-16 2014-11-20 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド Sgtを有する半導体装置の製造方法
JP2020198343A (ja) * 2019-05-31 2020-12-10 キオクシア株式会社 半導体装置及び半導体記憶装置

Also Published As

Publication number Publication date
TWI823432B (zh) 2023-11-21
TW202306178A (zh) 2023-02-01
US20220415901A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
JP7335661B2 (ja) 半導体素子を用いたメモリ装置の製造方法
WO2022219767A1 (ja) メモリ素子を有する半導体装置
WO2023281728A1 (ja) 半導体素子を用いたメモリ装置
TWI793974B (zh) 使用柱狀半導體元件的記憶裝置
TWI823289B (zh) 具有記憶元件的半導體裝置
WO2022239237A1 (ja) 半導体素子を用いたメモリ装置
WO2023148799A1 (ja) 半導体素子を用いたメモリ装置
WO2023281730A1 (ja) 半導体素子を用いたメモリ装置
JP7057033B1 (ja) 半導体素子を用いたメモリ装置の製造方法
WO2023032193A1 (ja) 半導体素子を用いたメモリ装置
WO2022239099A1 (ja) メモリ素子を有する半導体装置
WO2022168158A1 (ja) 半導体メモリ装置
WO2022269890A1 (ja) 半導体素子を用いたメモリ装置の製造方法
WO2023073765A1 (ja) 半導体メモリ装置の製造方法
WO2022239102A1 (ja) 半導体素子を用いたメモリ装置
WO2022239198A1 (ja) 半導体素子を用いたメモリ装置の製造方法
WO2022180733A1 (ja) 柱状半導体素子を用いたメモリ装置の製造方法
WO2023095324A1 (ja) 半導体メモリ装置と、その製造方法
WO2022208587A1 (ja) 半導体素子を用いたメモリ装置と、その製造方法
WO2022180738A1 (ja) 半導体素子を用いたメモリ装置
WO2023166608A1 (ja) 半導体素子を用いたメモリ装置
WO2023084565A1 (ja) 半導体メモリ装置及び半導体メモリ装置の製造方法
TWI838745B (zh) 使用半導體元件的記憶裝置
TWI823513B (zh) 具有記憶元件之半導體裝置的製造方法
WO2022239192A1 (ja) 半導体素子を用いたメモリ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21946260

Country of ref document: EP

Kind code of ref document: A1