WO2022227517A1 - 一种增强型导电浆料及电子器件 - Google Patents

一种增强型导电浆料及电子器件 Download PDF

Info

Publication number
WO2022227517A1
WO2022227517A1 PCT/CN2021/132447 CN2021132447W WO2022227517A1 WO 2022227517 A1 WO2022227517 A1 WO 2022227517A1 CN 2021132447 W CN2021132447 W CN 2021132447W WO 2022227517 A1 WO2022227517 A1 WO 2022227517A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive paste
resin
conductive
reinforced
present application
Prior art date
Application number
PCT/CN2021/132447
Other languages
English (en)
French (fr)
Inventor
王汉杰
任中伟
Original Assignee
北京梦之墨科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京梦之墨科技有限公司 filed Critical 北京梦之墨科技有限公司
Publication of WO2022227517A1 publication Critical patent/WO2022227517A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon

Definitions

  • the present application relates to the technical field of new materials, in particular to an enhanced conductive paste and an electronic device.
  • the conductive paste is gradually developed from a single material such as metal and carbon to a composite conductive paste.
  • the composite conductive paste is mostly made of solid conductive medium and carrier material.
  • conductive particles such as silver powder, copper powder, carbon powder, graphene, etc. are mixed with epoxy resin, acrylic resin, polyurethane resin, vinyl chloride-vinyl acetate copolymer resin. , Silicone resin, etc.
  • the conductive paste in the prior art has poor adhesion to the substrate during application, and is easily detached from the substrate, which is limited in application.
  • the present application provides an enhanced conductive paste and an electronic device, which can improve the adhesion between a conductive structure and a substrate in the electronic device.
  • the present application provides an enhanced conductive paste, which adopts the following technical solutions:
  • the reinforced conductive paste is composed of the following materials: 4%-20% resin, 4%-10% curing agent, 50%-80% conductive filler, 5%-35% reinforcing filler, 5% ⁇ 25% of solvent and 0.05% to 4% of auxiliary agent;
  • the reinforcing filler includes whiskers with tensile strength above 1GPa, linear or fibrous reinforcing structure, and a metal layer coated on the outside of the reinforcing structure, The electrical conductivity of the metal layer is better than that of the reinforcing structure; the length of the reinforcing filler is 0.1 ⁇ m ⁇ 25 ⁇ m.
  • the aspect ratio of the reinforcing structure is greater than 3.
  • the reinforcing structure is silicon carbide whiskers, or a mixture of silicon carbide whiskers and carbon fibers.
  • the conductive filler is silver powder, and the metal layer is a silver layer.
  • the thickness of the metal layer is 0.1 ⁇ m-2 ⁇ m.
  • the resin is one or more of polyester resin, polyurethane resin, epoxy resin, acrylic resin, phenolic resin, alkyd resin, silicone resin, vinyl acetate resin, and polyimide resin.
  • the curing agent is one or more of isocyanate-based curing agents, phenolic resin-based curing agents, and amine-based curing agents.
  • the auxiliary agent is one or more of wetting and dispersing agents, substrate wetting agents, accelerators, coupling agents, leveling agents, thixotropic agents, and antioxidants.
  • the application provides an electronic device, which adopts the following technical solutions:
  • the electronic device includes a substrate and a conductive structure on the substrate, the conductive structure being made of the enhanced conductive paste described in any one of the above.
  • the adhesion between the conductive structure and the substrate is greater than 30 N/cm 2 .
  • the present application provides a reinforced conductive paste and an electronic device.
  • the reinforced conductive paste contains a reinforcing filler
  • the reinforcing filler includes whiskers, linear or fibrous reinforcements with a tensile strength above 1 GPa structure, so that the conductive structure made of it can be prevented from falling off due to its own fracture, and the adhesion between the conductive structure and the substrate can be improved;
  • the reinforcing structure is covered with a metal layer, the conductive The performance is better than that of the reinforced structure, and the addition of the reinforcing filler has little adverse effect on the overall electrical properties of the reinforced conductive paste, and will not affect its normal application; on the other hand, since the length of the reinforcing filler is 0.1 ⁇ m ⁇ 25 ⁇ m, which can pass through the holes of silk screen, stencil, etc.
  • the reinforced conductive paste can be suitable for rapid prototyping processes such as screen printing and stencil printing.
  • FIG. 1 is a schematic diagram of an enhanced conductive paste provided by an embodiment of the present application
  • FIG. 2 is a cross-sectional view of a reinforcing filler provided in an embodiment of the present application
  • FIG. 3 is a schematic diagram of an electronic device provided by an embodiment of the present application.
  • the applicant's research on the conductive paste in the prior art found that there are two situations in which the conductive line made of the conductive paste falls off the substrate: (1) The conductive line as a whole is removed from the substrate. 2. After the conductive line is broken, it will fall off from the base material. Among them, the probability of the second situation is higher, especially for pastes with high conductivity requirements, the higher the proportion of silver powder added to improve the conductivity, the lower the strength of the material body, and the easier it is to tear the body during testing.
  • FIG. 1 is a schematic diagram of the enhanced conductive paste provided by the embodiment of the present application.
  • the conductive paste is composed of the following materials: 4% ⁇ 20% resin 1, 50% ⁇ 80% conductive filler 2, 5% ⁇ 35% reinforcing filler 3, 5% ⁇ 25% solvent (not shown), 4% ⁇ 10 % curing agent (not shown) and 0.05% to 4% auxiliary agent (not shown); as shown in FIG.
  • the reinforcing filler 3 includes tensile strength Whiskers, linear or fibrous reinforcing structures 31 above 1 GPa, and metal layers 32 covering the reinforcing structures 31, the electrical conductivity of the metal layers 32 is better than that of the reinforcing structures 31; the length of the reinforcing fillers 3 0.1 ⁇ m to 25 ⁇ m.
  • the weight percentage of the resin in the reinforced conductive paste may be: 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19% or 20%;
  • the weight percentage of the curing agent in the reinforced conductive paste can be: 4%, 5%, 6%, 7%, 8%, 9% or 10%;
  • the weight percentage of the conductive filler in the reinforced conductive paste can be: 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78% , 79% or 80%;
  • the weight percentage of reinforcing filler in the reinforced conductive paste can be: 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33% , 34% or 35%;
  • the weight percentage of the solvent in the enhanced conductive paste can be: 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17% %, 18%, 19%, 20%, 21%, 22%, 23%, 24% or 25%;
  • the weight percentage of additives in the enhanced conductive paste can be: 0.05%, 0.06%, 0.07%, 0.08%, 0.09%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 2%, 3% or 4%.
  • the length of the reinforcing filler may be 0.1 ⁇ m, 0.2 ⁇ m, 0.3 ⁇ m, 0.4 ⁇ m, 0.5 ⁇ m, 0.6 ⁇ m, 0.7 ⁇ m, 0.8 ⁇ m, 0.9 ⁇ m, 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m , 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 11 ⁇ m, 12 ⁇ m, 13 ⁇ m, 14 ⁇ m, 15 ⁇ m, 16 ⁇ m, 17 ⁇ m, 18 ⁇ m, 19 ⁇ m, 20 ⁇ m, 21 ⁇ m, 22 ⁇ m, 23 ⁇ m, 24 ⁇ m or 25 ⁇ m.
  • the reinforcing fillers include whiskers, linear or fibrous reinforcing structures with a tensile strength of 1 GPa or more, so that it can improve The strength of the conductive structure itself can be improved to avoid falling off due to its own fracture, which can improve the adhesion between the conductive structure and the substrate; on the other hand, because the reinforcing structure is covered with a metal layer, the conductivity of the metal layer is better than To enhance the electrical conductivity of the structure, the addition of reinforcing fillers has little adverse effect on the overall electrical properties of the reinforced conductive paste, and will not affect its normal application; It can pass through the holes of silk screen, stencil, etc.
  • the enhanced conductive paste can be applied to rapid prototyping processes such as screen printing and stencil printing.
  • the resin in the embodiments of the present application may be one or at least two of polyester resin, polyurethane resin, epoxy resin, acrylic resin, phenolic resin, alkyd resin, silicone resin, vinyl acetate resin, and polyimide resin. a mixture of species.
  • the conductive filler is one or a mixture of at least two of gold, silver, copper, iron, nickel, aluminum, graphene, carbon black, graphite, silver-coated copper powder, and the like.
  • the shape of the conductive filler is one of flake, spherical, linear, rod, needle, dendritic, etc., or a mixture of at least two.
  • the conductive filler is silver powder, specifically spherical silver powder, flake silver powder or a mixture of the two.
  • the aspect ratio of the reinforcement structure in the embodiment of the present application is greater than 3, wherein the thinner the reinforcement structure is, the more conducive the conductive structure is to transmit stress along the axial direction of the reinforcement structure when the entire conductive structure is stressed, thereby improving the ability of stress dispersion, Furthermore, the tear resistance of the conductive structure is improved, the strength of the conductive structure itself made of the reinforced conductive paste is further improved, and the adhesion between the conductive structure and the substrate is further improved.
  • the aspect ratio of the reinforcement structure may be 4, 5, 6, 7, 8, 9, 10, 15, 20, etc.
  • the reinforcing structures in the embodiments of the present application may be silicon carbide whiskers, carbon fibers, glass fibers, steel fibers, and the like. Further options may be silicon carbide whiskers, or a mixture of silicon carbide whiskers and carbon fibers. In the mixture of the two, the weight percentage of silicon carbide whiskers may be 20% to 80%, such as 20%, 30%, 40%, 50%, 60%, 70% or 80%.
  • silicon carbide whiskers as reinforcing structures are: 1 the tensile strength of silicon carbide whiskers is high, 2 it has a high elastic modulus, and it can properly reduce the destructive deformation of the conductive structure; 3 silicon carbide whiskers Its thermal conductivity is better than that of carbon fiber, which can make the reinforced conductive paste maintain a high thermal conductivity and help to improve the uniform heat dissipation performance.
  • the benefits of carbon fiber as a reinforcing structure are: 1 higher tensile strength and 2 better electrical conductivity. Those skilled in the art can choose according to actual needs.
  • the metal layer in the embodiment of the present application may be a silver layer, a gold layer, a copper layer, a nickel layer, or the like.
  • the metal layer is further selected as the silver layer in the embodiment of the present application, the silver layer not only has a better conductive effect, but also has more stable chemical properties and is not easy to be oxidized.
  • the thicker the metal layer is the better the effect of improving the electrical properties of the reinforcing filler is.
  • the aspect ratio of the reinforcing filler may be reduced, thereby adversely affecting the reinforcing effect.
  • the thinner the metal layer the easier the preparation. , those skilled in the art can select the thickness of the metal layer according to actual needs.
  • the thickness of the metal layer is 0.1 ⁇ m ⁇ 2 ⁇ m, such as 0.2 ⁇ m, 0.3 ⁇ m, 0.4 ⁇ m, 0.5 ⁇ m, 0.6 ⁇ m, 0.7 ⁇ m, 0.8 ⁇ m, 0.9 ⁇ m, 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, etc.
  • the solvent can be selected from ethanol, isopropanol, n-propanol, ethylene glycol, propylene glycol, glycerol, n-butanol, ethylene glycol propyl ether, ethylene glycol butyl ether, and diethylene glycol Diethyl ether, diethylene glycol propyl ether, diethylene glycol butyl ether, propylene glycol propyl ether, propylene glycol butyl ether, dipropylene glycol ethyl ether, dipropylene glycol propyl ether, dipropylene glycol butyl ether, ethylene glycol propyl ether acetate, ethylene glycol butyl Ether acetate, diethylene glycol ethyl ether acetate, diethylene glycol propyl ether acetate, diethylene glycol butyl ether acetate, propylene glycol propyl ether acetate, propylene glycol ether acetate,
  • the curing agent may be one or more of an isocyanate-based curing agent, a phenolic resin-based curing agent, and an amine-based curing agent.
  • the auxiliary agent may be one or more of wetting and dispersing agents, substrate wetting agents, accelerators, coupling agents, leveling agents, thixotropic agents, and antioxidants.
  • the enhanced conductive paste in the embodiments of the present application can be applied to forming processes such as screen printing, flexographic printing, pad printing, extrusion dispensing, stencil printing, etc.
  • the conductive structure can be obtained by heating and curing after forming.
  • the preparation method of the enhanced conductive paste in the embodiment of the present application may include the following steps:
  • Step S1 preparing reinforcing filler
  • the reinforcing structure in the reinforcing filler is carbon fiber, and the metal layer is a silver layer.
  • the preparation process of the reinforcing filler includes: grinding the carbon fiber filaments or chopped strands by ball milling, then sieving, degumming, removing Oil, roughening, sensitization, activation, electroless silver plating, surface coating with antioxidant layer, etc.
  • the reinforcing structure in the reinforcing filler is silicon carbide whiskers
  • the metal layer is a silver layer
  • the preparation process of the reinforcing filler includes: roughening, sensitizing, activating, electroless silver plating, coating the surface with an anti-oxidation layer, etc. link.
  • the reinforcing structure in the reinforcing filler includes both carbon fibers and silicon carbide whiskers, the two are prepared in the above manner, and then mixed to obtain the reinforcing filler.
  • the prepared reinforcing filler further includes an anti-oxidation layer coated on the outside of the metal layer, so as to avoid or reduce the degree of oxidation of the metal layer in the reinforcing filler as much as possible and maintain good electrical conductivity of the metal layer. performance.
  • the material of the anti-oxidation layer may be stearic acid. After the reinforcing filler is filled into the reinforced conductive paste, the stearic acid can be dissolved by the solvent and will not affect the conductivity.
  • Step S2 preparing an organic carrier
  • the resin and the solvent are heated and dissolved to obtain an organic vehicle.
  • Step S3 preparing an enhanced conductive paste
  • the auxiliary agent, the conductive filler and the reinforcing filler are added to the organic carrier in turn, stirred while adding, and then the dispersion can be continued by stirring, ultrasonic, etc. After the dispersion is completed, defoaming, etc., and three-roll grinding to obtain the enhanced conductive paste material.
  • the embodiment of the present application also provides an electronic device, specifically, as shown in FIG. 3 , which is a schematic diagram of the electronic device provided by the embodiment of the present application, the electronic device includes a substrate 10 and a conductive conductor located on the substrate.
  • Structure 20, the conductive structure 20 is made of the enhanced conductive paste described in any one of the above.
  • the conductive structure 20 can be any structure that needs to be conductive, such as conductive lines, conductive layers, conductive connectors, etc., which is not limited here.
  • the adhesion between the conductive structure 20 made of the enhanced conductive paste and the substrate 10 can reach more than 30 N/cm 2 .
  • the reinforced conductive paste is printed on the substrate by screen printing, and then placed in a blast drying oven for heating, sintering and curing.
  • the heating and sintering temperature of the enhanced conductive paste is 120° C. to 200° C., and the sintering time is 10 minutes to 80 minutes.
  • the thickness of the conductive structure may be 10 ⁇ m ⁇ 60 ⁇ m, such as 20 ⁇ m, 30 ⁇ m, 40 ⁇ m or 50 ⁇ m.
  • the substrate may be a flexible substrate or a rigid substrate
  • the flexible substrate may be polyethylene terephthalate (PET), polybutylene terephthalate (PBT) , Polyethylene naphthalate (PEN), polyimide (PI), polyamide (PA) and other films
  • the hard substrate can be FR-4, epoxy glass, glass resin, etc. .
  • the electronic device further includes an electronic element 30 connected to the conductive structure 20 .
  • the electronic component 30 may be a switch, a power supply, a light-emitting device, a sensor, a chip, or the like, which is not limited in this embodiment of the present application.
  • test method of the above square resistance is as follows: both the enhanced conductive paste in the example and the conductive paste in the comparative example are printed on the same PI substrate by screen printing, the printing thickness is 20 ⁇ m, and the self-flowing After leveling for 1 hour, drying at 200°C for 2 hours, the four-probe method was used to test.
  • the above adhesion test method is as follows: adopt the adhesion test method in GBT 17473.4-2008 Microelectronics Technology Precious Metal Slurry Test Method.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

本申请提供一种增强型导电浆料及电子器件,涉及新材料技术领域。本申请提供的增强型导电浆料按重量百分比计,由以下物料组成:4%~20%树脂、4%~10%固化剂、50%~80%导电填料、5%~35%增强填料、5%~25%溶剂和0.05%~4%助剂;所述增强填料包括抗拉强度在1GPa以上的晶须、线状或纤维状的增强结构,以及包覆于所述增强结构外的金属层,所述金属层的导电性能优于所述增强结构的导电性能;所述增强填料的长度为0.1μm~25μm。本申请的技术方案能够提高电子器件中导电结构与基材的附着力。

Description

一种增强型导电浆料及电子器件
本申请要求于2021年4月25日提交中国专利局,申请号为2021104473610,申请名称为“一种增强型导电浆料及电子器件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及新材料技术领域,尤其涉及一种增强型导电浆料及电子器件。
背景技术
近年来,随着电子信息技术的迅猛发展,市场对导电浆料的特异性和功能性要求越来越苛刻。为满足上述要求,导电浆料逐渐由最初的金属、碳等单一材料发展为复合导电浆料。复合导电浆料多采用固态导电介质与载体物质共同制成,例如将导电微粒如银粉、铜粉、碳粉、石墨烯等与环氧树脂、丙烯酸树脂、聚氨酯树脂、氯乙烯-醋酸乙烯共聚树脂、有机硅树脂等复合而成。
申请人发现,现有技术中的导电浆料在应用过程中,与基材的附着力欠佳,容易从基材上脱落,应用受限。
申请内容
本申请提供一种增强型导电浆料及电子器件,可以提高电子器件中导电结构与基材的附着力。
第一方面,本申请提供一种增强型导电浆料,采用如下技术方案:
按重量百分比计,所述增强型导电浆料由以下物料组成:4%~20%树脂、4%~10%固化剂、50%~80%导电填料、5%~35%增强填料、5%~25%溶剂和0.05%~4%助剂;所述增强填料包括抗拉强度在1GPa以上的晶须、线状或纤维状的增强结构,以及包覆于所述增强结构外的金属层,所述金属层的导电性能优于所述增强结构的导电性能;所述增强填料的长度为0.1μm~25μm。
可选地,所述增强结构的长径比大于3。
可选地,所述增强结构为碳化硅晶须,或者,碳化硅晶须与碳纤维的混合物。
可选地,所述导电填料为银粉,所述金属层为银层。
可选地,所述金属层的厚度为0.1μm-2μm。
可选地,所述树脂为聚酯树脂、聚氨酯树脂、环氧树脂、丙烯酸树脂、酚醛树脂、 醇酸树脂、有机硅树脂、氯醋树脂、聚酰亚胺树脂中的一种或几种。
可选地,所述固化剂为异氰酸酯类固化剂、酚醛树脂类固化剂、胺类固化剂中的一种或几种。
可选地,所述助剂为润湿分散剂、基材润湿剂、促进剂、偶联剂、流平剂、触变剂、抗氧剂中的一种或几种。
第二方面,本申请提供一种电子器件,采用如下技术方案:
所述电子器件包括基材和位于所述基材上的导电结构,所述导电结构由以上任一项所述的增强型导电浆料制成。
可选地,所述导电结构与所述基材之间的附着力大于30N/cm 2
本申请提供了一种增强型导电浆料及电子器件,一方面,由于该增强型导电浆料中含有增强填料,增强填料包括抗拉强度在1GPa以上的晶须、线状或纤维状的增强结构,从而可以避免由其制成的导电结构因自身的断裂而造成的脱落,可以提高导电结构与基材的附着力;另一方面,由于增强结构外包覆有金属层,金属层的导电性能优于增强结构的导电性能,增强填料的加入对增强型导电浆料整体的电学性能带来的不良影响很小,不会影响其正常应用;再一方面,由于增强填料的长度为0.1μm~25μm,其可以通过丝网、钢网等的孔洞,增强型导电浆料可以适用于丝网印刷、钢网印刷等快速成型工艺。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的增强型导电浆料的示意图;
图2为本申请实施例提供的增强填料的截面图;
图3为本申请实施例提供的电子器件的示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域 普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,在不冲突的情况下本申请实施例中的各技术特征均可以相互结合。
在申请人对现有技术中的导电浆料进行研究的过程中,申请人发现,由导电浆料制成的导电线路从基材上的脱落的情况有两种:①导电线路整体从基材上脱落;②导电线路断裂后从基材上脱落。其中,第②种情况发生的概率更高,特别是对导电要求较高的浆料,为了提高导电性而加入的银粉比例越高,材料本体强度越低,越容易在测试时本体撕裂。
基于此,本申请实施例提出一种增强型导电浆料,具体地,如图1所示,图1为本申请实施例提供的增强型导电浆料的示意图,按重量百分比计,该增强型导电浆料由以下物料组成:4%~20%树脂1、50%~80%导电填料2、5%~35%增强填料3、5%~25%溶剂(未示出)、4%~10%固化剂(未示出)和0.05%~4%助剂(未示出);如图2所示,图2为本申请实施例提供的增强填料的截面图,增强填料3包括抗拉强度在1GPa以上的晶须、线状或纤维状的增强结构31,以及包覆于增强结构31外的金属层32,金属层32的导电性能优于增强结构31的导电性能;增强填料3的长度为0.1μm~25μm。
示例性地,增强型导电浆料中树脂的重量百分比可以为:4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%或者20%;
增强型导电浆料中固化剂的重量百分比可以为:4%、5%、6%、7%、8%、9%或者10%;
增强型导电浆料中导电填料的重量百分比可以为:50%、51%、52%、53%、54%、55%、56%、57%、58%、59%、60%、61%、62%、63%、64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%或者80%;
增强型导电浆料中增强填料的重量百分比可以为:5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%、32%、33%、34%或者35%;
增强型导电浆料中溶剂的重量百分比可以为:5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%或者25%;
增强型导电浆料中助剂的重量百分比可以为:0.05%、0.06%、0.07%、0.08%、0.09%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、2%、3%或者4%。
示例性地,增强填料的长度可以为0.1μm、0.2μm、0.3μm、0.4μm、0.5μm、0.6μm、0.7μm、0.8μm、0.9μm、1μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm、11μm、12μm、13μm、14μm、15μm、16μm、17μm、18μm、19μm、20μm、21μm、22μm、23μm、24μm或者25μm。
本申请实施例中,一方面,由于该增强型导电浆料中含有增强填料,增强填料包括抗拉强度在1GPa以上的晶须、线状或纤维状的增强结构,从而可以提升由其制成的导电结构自身的强度,避免因其自身的断裂而造成的脱落,可以提高导电结构与基材的附着力;另一方面,由于增强结构外包覆有金属层,金属层的导电性能优于增强结构的导电性能,增强填料的加入对增强型导电浆料整体的电学性能带来的不良影响很小,不会影响其正常应用;再一方面,由于增强填料的长度为0.1μm~25μm,其可以通过丝网、钢网等的孔洞,增强型导电浆料可以适用于丝网印刷、钢网印刷等快速成型工艺。
下面本申请实施例对导电浆料中的各组分进行举例说明。
树脂
本申请实施例中的树脂可以为聚酯树脂、聚氨酯树脂、环氧树脂、丙烯酸树脂、酚醛树脂、醇酸树脂、有机硅树脂、氯醋树脂、聚酰亚胺树脂中的一种或者至少两种组成的混合物。
导电填料
本申请实施例中,导电填料为金、银、铜、铁、镍、铝、石墨烯、炭黑、石墨、银包铜粉等中的一种或者至少两种组成的混合物。导电填料的形状为片状、球状、线形、棒状、针状、树枝状等中的一种或者至少两种组成的混合物。优选地,导电填料为银粉,具体可以为球状银粉、片状银粉或者二者的混合物。
增强填料
可选地,本申请实施例中的增强结构的长径比大于3,其中,增强结构越细,导电结构整体受力时更利于沿增强结构的轴向传递应力,从而提高应力分散的能力,进而提高导电结构的抗撕裂能力,进一步提高由增强型导电浆料制成的导电结构自身的强度,进一步提高导电结构与基材的附着力。例如,增强结构的长径比可以为4、5、6、7、8、9、10、15、20等。
可选地,本申请实施例中的增强结构可以为碳化硅晶须、碳纤维、玻璃纤维、钢纤维等。进一步可以选择为碳化硅晶须,或者,碳化硅晶须与碳纤维的混合物。在二者的混合物中,碳化硅晶须的重量百分比可以为20%~80%,如20%、30%、40%、50%、 60%、70%或者80%。其中,碳化硅晶须作为增强结构的好处在于,①碳化硅晶须的抗拉强度较高,②其具有高的弹性模量,还能适当降低导电结构的破坏性形变,③碳化硅晶须的导热性能优于碳纤维,能够使增强型导电浆料保持较高的热导率,有助于提高散热均匀性能。碳纤维作为增强结构的好处在于,①抗拉强度更高,②导电性更好。本领域技术人员可以根据实际需要进行选择。
可选地,本申请实施例中的金属层可以为银层、金层、铜层、镍层等。在导电填料为银粉时,本申请实施例中进一步选择金属层为银层,银层不仅具有较好的导电效果,且化学性质更加稳定不易氧化。
申请人发现,金属层越厚,对增强填料的电学性能的改善效果越好,金属层过后可能会降低增强填料的长径比,从而对增强效果产生不利影响,金属层越薄,越易制备,本领域技术人员可以根据实际需要对金属层的厚度进行选择。可选地,本申请实施例中,金属层的厚度为0.1μm~2μm,如0.2μm、0.3μm、0.4μm、0.5μm、0.6μm、0.7μm、0.8μm、0.9μm、1μm、1.5μm、2μm等。
溶剂
本申请实施例中,溶剂可选为乙醇、异丙醇、正丙醇、乙二醇、丙二醇、丙三醇、正丁醇、乙二醇丙醚、乙二醇丁醚、二乙二醇***、二乙二醇丙醚、二乙二醇丁醚、丙二醇丙醚、丙二醇丁醚、二丙二醇***、二丙二醇丙醚、二丙二醇丁醚、乙二醇丙醚醋酸酯、乙二醇丁醚醋酸酯、二乙二醇***醋酸酯、二乙二醇丙醚醋酸酯、二乙二醇丁醚醋酸酯、丙二醇丙醚醋酸酯、丙二醇丁醚醋酸酯、二丙二醇***醋酸酯、二丙二醇丙醚醋酸酯、二丙二醇丁醚醋酸酯、异佛尔酮和松油醇中的一种或者至少两种组成的混合物。
固化剂
本申请实施例中,固化剂为可以异氰酸酯类固化剂、酚醛树脂类固化剂、胺类固化剂中的一种或几种。
助剂
本申请实施例中,助剂可以为润湿分散剂、基材润湿剂、促进剂、偶联剂、流平剂、触变剂、抗氧剂中的一种或几种。
本申请实施例中的增强型导电浆料可以适用于丝网印刷、柔版印刷、移印、挤出式点胶、钢网印刷等成型工艺,成型后加热固化即可得到导电结构。
可选地,本申请实施例中增强型导电浆料的制备方法可包括以下步骤:
步骤S1、制备增强填料;
在一个例子中,增强填料中的增强结构为碳纤维,金属层为银层,增强填料的制备过程包括:将碳纤维长丝或短切丝通过球磨的方式磨碎后过筛,经去胶、除油、粗化、敏化、活化、化学镀银、表面包覆抗氧化层等环节。
在又一个例子中,增强填料中的增强结构为碳化硅晶须,金属层为银层,增强填料的制备过程包括:粗化、敏化、活化、化学镀银、表面包覆抗氧化层等环节。
当然,若增强填料中的增强结构既包括碳纤维,也包括碳化硅晶须,则二者分别以以上方式制备后,再混合即可得到增强填料。
可选地,本申请实施例中,制备得到的增强填料还包括包覆于金属层外的抗氧化层,以尽可能避免或降低增强填料中金属层的氧化程度,维持金属层的良好的导电性能。示例性地,抗氧化层的材质可以为硬脂酸,增强填料填充到增强型导电浆料中后,硬脂酸能够被溶剂溶解,不会影响导电性。
步骤S2、制备有机载体;
具体为将树脂、溶剂加热溶解,得到有机载体。
步骤S3、制备增强型导电浆料;
具体为将助剂、导电填料和增强填料依次加入有机载体中,边添加边搅拌,后可通过搅拌、超声等方式继续进行分散,分散完成后脱泡等、三辊研磨,得到增强型导电浆料。
此外,本申请实施例还提供一种电子器件,具体地,如图3所示,图3为本申请实施例提供的电子器件的示意图,该电子器件包括基材10和位于基材上的导电结构20,导电结构20由以上任一项所述的增强型导电浆料制成。导电结构20可以为导电线路、导电层、导电连接件等任何需要导电的结构,此处不进行限定。使用增强型导电浆料制成的导电结构20与基材10之间的附着力可达30N/cm 2以上。
例如,将增强型导电浆料通过丝网印刷的方式印刷在基材上,然后将其置于鼓风干燥箱中加热烧结固化。增强型导电浆料的加热烧结温度为120℃~200℃,烧结时间为10min~80min。
本申请实施例中,导电结构的厚度可以为10μm~60μm,如20μm、30μm、40μm或者50μm。
本申请实施例中,基材可以为柔性基材,也可以为硬质基材,柔性基材可以为聚对苯二甲酸乙二酯(PET)、聚对苯二甲酸丁二酯(PBT)、聚萘二甲酸乙二醇酯(PEN)、 聚酰亚胺(PI)、聚酰胺(PA)等薄膜中的一种,硬质基材可以为FR-4、环氧玻璃、玻璃树脂等。
可选地,如图3所示,本申请实施例中,电子器件还包括通过连接于导电结构20上的电子元件30。根据实际需要,电子元件30可以为开关、电源、发光器件、传感器、芯片等,本申请实施例对此不进行限定。
下面本申请实施例以多个具体实施例和对比例对导电浆料的优势进行说明。
实施例和对比例
Figure PCTCN2021132447-appb-000001
Figure PCTCN2021132447-appb-000002
Figure PCTCN2021132447-appb-000003
性能测试
Figure PCTCN2021132447-appb-000004
需要说明的是,以上方阻的测试方式如下:将实施例中的增强型导电浆料和对比例中的导电浆料均通过丝网印刷到相同的PI基材上,印刷厚度为20μm,自流平1h后,200℃烘干2h,采用四探针法测试。以上附着力的测试方式如下:采用GBT 17473.4-2008微电子技术用贵金属浆料测试方法中的附着力测定方法。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种增强型导电浆料,其特征在于,按重量百分比计,所述增强型导电浆料由以下物料组成:4%~10%树脂、4%~10%固化剂、50%~80%导电填料、5%~35%增强填料、5%~25%溶剂和0.05%~4%助剂;所述增强填料包括抗拉强度在1GPa以上的晶须、线状或纤维状的增强结构,以及包覆于所述增强结构外的金属层,所述金属层的导电性能优于所述增强结构的导电性能;所述增强填料的长度为0.1μm~25μm。
  2. 根据权利要求1所述的增强型导电浆料,其特征在于,所述增强结构的长径比大于3。
  3. 根据权利要求1所述的增强型导电浆料,其特征在于,所述增强结构为碳化硅晶须,或者,碳化硅晶须与碳纤维的混合物。
  4. 根据权利要求1所述的增强型导电浆料,其特征在于,所述导电填料为银粉,所述金属层为银层。
  5. 根据权利要求1所述的增强型导电浆料,其特征在于,所述金属层的厚度为0.1μm-2μm。
  6. 根据权利要求1所述的增强型导电浆料,其特征在于,所述树脂为聚酯树脂、聚氨酯树脂、环氧树脂、丙烯酸树脂、酚醛树脂、醇酸树脂、有机硅树脂、氯醋树脂、聚酰亚胺树脂中的一种或几种。
  7. 根据权利要求1所述的增强型导电浆料,其特征在于,所述固化剂为异氰酸酯类固化剂、酚醛树脂类固化剂、胺类固化剂中的一种或几种。
  8. 根据权利要求1所述的增强型导电浆料,其特征在于,所述助剂为润湿分散剂、基材润湿剂、促进剂、偶联剂、流平剂、触变剂、抗氧剂中的一种或几种。
  9. 一种电子器件,包括基材和位于所述基材上的导电结构,其特征在于,所述导电结构由权利要求1~8任一项所述的增强型导电浆料制成。
  10. 根据权利要求9所述的电子器件,其特征在于,所述导电结构与所述基材之间的附着力大于30N/cm 2
PCT/CN2021/132447 2021-04-25 2021-11-23 一种增强型导电浆料及电子器件 WO2022227517A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110447361.0A CN113192663B (zh) 2021-04-25 2021-04-25 一种增强型导电浆料及电子器件
CN202110447361.0 2021-04-25

Publications (1)

Publication Number Publication Date
WO2022227517A1 true WO2022227517A1 (zh) 2022-11-03

Family

ID=76978720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132447 WO2022227517A1 (zh) 2021-04-25 2021-11-23 一种增强型导电浆料及电子器件

Country Status (2)

Country Link
CN (1) CN113192663B (zh)
WO (1) WO2022227517A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116344098A (zh) * 2023-03-15 2023-06-27 北京梦之墨科技有限公司 一种低刚度导电浆料及其制备方法与应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113192663B (zh) * 2021-04-25 2022-11-29 北京梦之墨科技有限公司 一种增强型导电浆料及电子器件
CN114388274B (zh) * 2021-12-30 2024-02-02 浙江浙能中科储能科技有限公司 一种离子和电子复合导通的电极及其原位制备方法
CN115206587A (zh) * 2022-07-05 2022-10-18 北京梦之墨科技有限公司 一种耐盐雾型导电浆料及电子器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064328A (zh) * 2010-12-02 2011-05-18 北京印刷学院 质子交换膜燃料电池用的复合材料双极板及其制作方法
CN106687515A (zh) * 2014-08-12 2017-05-17 Ocv智识资本有限责任公司 导电的片状模塑料
CN106952677A (zh) * 2017-03-28 2017-07-14 北京印刷学院 一种耐高温传感用导电碳浆及其制备方法
WO2020180251A1 (en) * 2019-03-06 2020-09-10 Agency For Science, Technology And Research Conductive carbon fiber reinforced composite and method of forming thereof
CN113192663A (zh) * 2021-04-25 2021-07-30 北京梦之墨科技有限公司 一种增强型导电浆料及电子器件

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103426496A (zh) * 2012-05-25 2013-12-04 比亚迪股份有限公司 太阳能电池用铝背场浆料及其制备方法、太阳能电池片的制备方法以及太阳能电池片
CN105632587B (zh) * 2016-02-22 2018-01-19 昆山海斯电子有限公司 环氧树脂导电银浆及其制备方法
CN106205862B (zh) * 2016-06-29 2017-11-10 西安工程大学 一种高温导电玻璃纤维布的制备方法
CN106281159A (zh) * 2016-08-08 2017-01-04 雷春生 一种led封装用导电胶的制备方法
CN108447587A (zh) * 2017-04-13 2018-08-24 贵研铂业股份有限公司 一种新型快速固化低温导电银浆及其制备方法
CN107622814B (zh) * 2017-09-30 2019-05-28 无锡厚发自动化设备有限公司 一种纳米碳纤维负载铜粉的复合浆料
CN110634590A (zh) * 2019-09-06 2019-12-31 北京中科纳通电子技术有限公司 一种耐磨性的导电浆料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102064328A (zh) * 2010-12-02 2011-05-18 北京印刷学院 质子交换膜燃料电池用的复合材料双极板及其制作方法
CN106687515A (zh) * 2014-08-12 2017-05-17 Ocv智识资本有限责任公司 导电的片状模塑料
CN106952677A (zh) * 2017-03-28 2017-07-14 北京印刷学院 一种耐高温传感用导电碳浆及其制备方法
WO2020180251A1 (en) * 2019-03-06 2020-09-10 Agency For Science, Technology And Research Conductive carbon fiber reinforced composite and method of forming thereof
CN113192663A (zh) * 2021-04-25 2021-07-30 北京梦之墨科技有限公司 一种增强型导电浆料及电子器件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116344098A (zh) * 2023-03-15 2023-06-27 北京梦之墨科技有限公司 一种低刚度导电浆料及其制备方法与应用

Also Published As

Publication number Publication date
CN113192663B (zh) 2022-11-29
CN113192663A (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
WO2022227517A1 (zh) 一种增强型导电浆料及电子器件
TWI608788B (zh) 撓性印刷電路板用電磁波遮蔽材
TW383435B (en) Electronic device
WO2016078432A1 (zh) 改性氧化铝复合材料、覆铜基板及其制备方法
TW201421640A (zh) 電磁波屏蔽結構及其製造方法
CN110615981B (zh) 传导性聚合物和金属涂覆纤维的传导性组合物
WO2016008187A1 (zh) 导电胶的制备方法及导电胶
KR101401574B1 (ko) 하이브리드 필러를 이용한 전도성 접착제 및 이의 제조방법
CN113066600B (zh) 一种导电浆料及电子器件
CN104673111A (zh) 环氧树脂基各向异性导电胶膜的配方及制备方法
WO2011086895A1 (ja) コア材および回路基板の製造方法
WO2020052239A1 (zh) 电磁屏蔽膜的制备方法
TW201325425A (zh) 電磁波屏蔽複合膜及具有該複合膜之軟性印刷電路板
CN114103321A (zh) 一种高强度高导电层状硅橡胶复合材料及其制备方法
CN101431140A (zh) 导热性导电糊剂、用其形成的发光二极管基板及其制造方法
CN111312518B (zh) 三维柔性电容材料及其制备方法和应用
CN111100505A (zh) 三元氯醋树脂环氧基导电油墨
CN113613482B (zh) 适用于极小接地孔接地的电磁波屏蔽膜、制备方法及应用
CN115384136A (zh) 一种应用于电磁屏蔽的复合材料及其制备方法
CN211671066U (zh) 一种超柔性电子线路
JP2017115152A (ja) 導電性接着剤層、及びfpc用電磁波シールド材
CN115881340A (zh) 一种具有高导电稳定性的柔性可拉伸电极及其制备方法
WO2020118551A1 (zh) 三维柔性电容材料及其制备方法和应用
CN113498267A (zh) 一种超柔性电子线路及其制作方法
WO2023124283A1 (zh) 一种导电油墨及电子器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21938976

Country of ref document: EP

Kind code of ref document: A1