WO2022224543A1 - 転舵角検出装置及び電動パワーステアリング装置 - Google Patents

転舵角検出装置及び電動パワーステアリング装置 Download PDF

Info

Publication number
WO2022224543A1
WO2022224543A1 PCT/JP2022/004505 JP2022004505W WO2022224543A1 WO 2022224543 A1 WO2022224543 A1 WO 2022224543A1 JP 2022004505 W JP2022004505 W JP 2022004505W WO 2022224543 A1 WO2022224543 A1 WO 2022224543A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
steering angle
angle
actuator
difference
Prior art date
Application number
PCT/JP2022/004505
Other languages
English (en)
French (fr)
Inventor
翔也 丸山
徹也 北爪
Original Assignee
日本精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精工株式会社 filed Critical 日本精工株式会社
Priority to CN202280003217.0A priority Critical patent/CN115500078A/zh
Priority to JP2022530154A priority patent/JP7131734B1/ja
Priority to EP22754274.3A priority patent/EP4101744B1/en
Priority to US17/909,154 priority patent/US11780489B2/en
Publication of WO2022224543A1 publication Critical patent/WO2022224543A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Definitions

  • the present invention relates to a steering angle detection device and an electric power steering device.
  • the turning angle of each limit is detected when the steering wheel is steered to the right and left respectively, and the median value is set as the neutral point of the turning angle, and the neutral point is used as a reference.
  • a technique for obtaining a steering angle is described.
  • the limit steering angle when steering to the right and steering to the left may be referred to as "rack end steering angle".
  • the rack end steering angle for right steering is the maximum when the steering wheel is steered to the right as far as it will go.
  • the left steering rack end steering angle is the minimum steering angle when the steering wheel is steered leftward to the limit.
  • a steering angle detection device includes a position detection unit that detects a steering angle of a steering mechanism, an actuator that drives the steering mechanism, right steering and left steering.
  • a first storage unit for storing a steering angle neutral point correction value that is the difference between the median value of the respective limit steering angles and the steering angle when the vehicle is in a straight-ahead state;
  • a second storage unit for storing an actuator initial position, which is the position of the movable part of the actuator when , an actuator position detection unit for detecting the position of the movable part of the actuator as a first actuator position, and a first actuator position based on a first steering angle calculator that calculates a steering angle of the steering mechanism based on a median value of respective limit steering angles in right steering and left steering as a first steering angle; and a first actuator.
  • a second steering angle which is the steering angle of the steering mechanism when the vehicle is traveling straight ahead, is calculated based on the position, the steering angle neutral point correction value, the actuator initial
  • an electric power steering apparatus includes the steering angle detection device described above, and the steering mechanism is driven by driving an actuator based on a second steering angle. Provides a steering assist force.
  • the present invention it is possible to accurately calculate the steering angle based on the steering angle when the vehicle is traveling straight.
  • FIG. 1 is a configuration diagram showing an outline of an example of an electric power steering device according to an embodiment
  • FIG. 2 is a block diagram of an example of a functional configuration of a turning angle detection unit shown in FIG. 1;
  • FIG. (a) to (c) are explanatory diagrams of an example of a steering angle detection method according to the embodiment.
  • (a) is a flowchart of an example of initial setting processing
  • (b) is a flowchart of an example of steering angle information restoration processing.
  • (a) and (b) is explanatory drawing of an example of the steering angle detection method of a modification.
  • FIG. 1 is a configuration diagram showing an outline of an example of an electric power steering system according to an embodiment.
  • Column shafts (steering shafts) 2i and 2o of a steering wheel (steering handle) 1 pass through a speed reduction gear (worm gear) 3, an intermediate shaft 4, a pinion rack mechanism 5, and tie rods 6a and 6b. It is connected to steered wheels 8L and 8R via hub units 7a and 7b.
  • the column input shaft 2i and the column output shaft 2o are connected by a torsion bar (not shown) that twists due to a rotational angle difference between the column input shaft 2i and the column output shaft 2o.
  • the intermediate shaft 4 has a shaft member 4c and universal joints 4a and 4b attached to both ends of the shaft member.
  • the universal joint 4 a is connected to the column output shaft 2 o and the universal joint 4 b is connected to the pinion rack mechanism 5 .
  • the pinion rack mechanism 5 has a pinion 5a connected to a pinion shaft to which steering force is transmitted from the universal joint 4b, and a rack 5b that meshes with the pinion 5a. to convert to straight motion in the vehicle width direction.
  • the steering shaft 2 (column shafts 2i and 2o) is provided with a torque sensor 10 for detecting steering torque Th.
  • a motor 20 that assists the steering force of the steering wheel 1 is connected to the column output shaft 2o via the reduction gear 3.
  • a rotating shaft of the motor 20 is provided with a rotating angle sensor 21 for detecting a mechanical angle ⁇ m of the rotating shaft.
  • the mechanical angle ⁇ m is an example of the "first actuator position" described in the claims.
  • the amount of rotation of the column output shaft 2 o is obtained by dividing the amount of rotation of the rotating shaft of the motor 20 by the reduction ratio R of the reduction gear 3 .
  • the controller 30 calculates the rotation angle of the column output shaft 2o obtained by dividing the mechanical angle .theta.m by the reduction ratio R of the reduction gear 3 as the steering angle .theta.t.
  • the motor 20 is an example of the "actuator” described in the claims.
  • the reduction ratio R of the reduction gear 3 is an example of a "conversion factor” described in claims. It should be noted that the actuator in the present invention is not limited to a motor, and various types of actuators can be used.
  • a controller 30 that controls an electric power steering (EPS) device is supplied with electric power from a battery 13 and receives an ignition key signal via an ignition (IGN) key 11 .
  • the controller 30 adjusts the current of the assist control command based on the steering torque Th detected by the torque sensor 10, the vehicle speed Vh detected by the vehicle speed sensor 12, and the steering angle ⁇ t calculated from the mechanical angle ⁇ m of the motor 20.
  • the command value is calculated, and the current supplied to the motor 20 is controlled by the voltage control command value Vref obtained by compensating the current command value.
  • Controller 30 may comprise, for example, a computer including a processor and peripheral components such as storage devices.
  • the processor may be, for example, a CPU (Central Processing Unit) or an MPU (Micro-Processing Unit).
  • the storage device may comprise any one of a semiconductor storage device, a magnetic storage device and an optical storage device.
  • the storage device may include memories such as registers, cache memories, ROMs (Read Only Memories) used as main storages, and RAMs (Random Access Memories).
  • the functions of the controller 30 described below are realized, for example, by the processor of the controller 30 executing a computer program stored in a storage device.
  • controller 30 may be formed of dedicated hardware for executing each information processing described below.
  • controller 30 may comprise functional logic circuitry implemented in a general-purpose semiconductor integrated circuit.
  • controller 30 may include a programmable logic device (PLD), such as a field-programmable gate array (FPGA), or the like.
  • PLD programmable logic device
  • FPGA field-programmable gate array
  • the controller 30 calculates the rotation angle of the column output shaft 2o obtained by dividing the mechanical angle ⁇ m of the rotating shaft of the motor 20 by the reduction ratio R of the reduction gear 3 as the turning angle ⁇ t.
  • the rotating shaft of the motor 20 is connected to the column output shaft 2o via the reduction gear 3.
  • the mechanical angle ⁇ m of the motor 20 changes more than the angle of 360 degrees for one rotation while the steering mechanism is steered from the neutral position to the right or left to the limit. Therefore, the steering angle ⁇ t of the steering mechanism cannot be uniquely determined from the mechanical angle ⁇ m of the motor 20 .
  • the controller 30 holds steering angle information about the steering angle ⁇ t, and calculates the steering angle ⁇ t by updating the information according to the change in the mechanical angle ⁇ m.
  • the number of revolutions of the rotating shaft of the motor 20 is counted. For example, the number of rotations per quarter rotation of the rotation shaft of the motor 20 (that is, in units of one quadrant) is counted.
  • the rotation angle (360 ⁇ n+ ⁇ m) of the rotary shaft in the angle range over a plurality of rotations is calculated based on the number of rotations n counted up to that point and the mechanical angle ⁇ m detected at that time. , and divided by the reduction ratio R to calculate the steering angle ⁇ t.
  • the turning angle information may be lost for various reasons. For example, when the vehicle is transported for a long period of time and the battery is removed from the vehicle in order to avoid exhaustion of the battery, the turning angle information is lost. If the steering angle information disappears, the steering angle ⁇ t becomes unknown only with the mechanical angle ⁇ m of the motor 20 . In such a case, the neutral position of the steering mechanism can be obtained by detecting the left and right rack end steering angles and calculating the median value of the rack end steering angles.
  • the steering angle is calculated with the median value of the rack end steering angles as the neutral position.
  • the neutral position is not reached when the vehicle is traveling straight. That is, the steering angle is not based on the steering angle when the vehicle is traveling straight ahead.
  • an error also occurs in the detection of the rack end turning angle, and this error also lowers the accuracy.
  • the controller 30 of the embodiment includes a turning angle detection unit 31 that calculates a turning angle based on the turning angle when the vehicle is in a straight-ahead state.
  • the steering angle detection unit 31 stores in advance a steering angle neutral point correction value ⁇ t, which is the difference between the median value of the left and right rack end steering angles and the steering angle when the vehicle is traveling straight. do.
  • the initial motor position ⁇ m0 which is the mechanical angle ⁇ m of the rotation shaft of the motor 20 detected by the rotation angle sensor 21 when the vehicle is traveling straight ahead, is also stored in advance.
  • the motor initial position ⁇ m0 is an example of the "actuator initial position" described in the claims.
  • the steering angle detection unit 31 corrects the steering angle based on the center value of the left and right rack end steering angles based on the steering angle neutral point correction value ⁇ t and the motor initial position ⁇ m0. , to accurately calculate a steering angle based on the steering angle when the vehicle is in a straight-ahead state.
  • FIG. 2 is a block diagram of an example of the functional configuration of the turning angle detection section 31.
  • the turning angle detection unit 31 includes a first turning angle calculation unit 32 , a correction information generation unit 33 , a storage unit 34 and a second turning angle calculation unit 35 .
  • the first steering angle calculator 32 calculates a steering angle ⁇ t1 of the steering mechanism based on the median value of the left and right rack end steering angles. That is, the steering angle ⁇ t1 is calculated so that the median value of the left and right rack end steering angles becomes the neutral position.
  • the turning angle ⁇ t1 is an example of the "first turning angle” described in the claims.
  • the median value of the left and right rack end turning angles may be referred to as "L2L midpoint position ⁇ Ln".
  • the first steering angle calculator 32 calculates the left and right rack end rotations using an arbitrary steering angle ⁇ a (for example, the steering angle when the power is turned on before storing the steering angle information) as a reference angle. Each steering angle is detected.
  • the mechanical angle ⁇ m of the rotating shaft of the motor 20 changes by 360 degrees or more while the vehicle is steered from one limit of right steering and left steering to the other limit.
  • the first steering angle calculator 32 counts the number of rotations n of the rotating shaft, and calculates the angle of each rotating shaft when the left and right steering reaches the limit. It may be calculated as (360 ⁇ n+ ⁇ m).
  • Each rotation angle is divided by the speed reduction ratio R to calculate left and right rack end turning angles.
  • the first steering angle calculator 32 obtains the median value of these rack end steering angles to set it as the L2L midpoint position ⁇ Ln, and the steering angle detected based on an arbitrary steering angle ⁇ a as the L2L midpoint. By correcting with the position ⁇ Ln (for example, by subtracting the L2L middle point position ⁇ Ln), the turning angle ⁇ t1 with the L2L middle point position ⁇ Ln as a reference is calculated.
  • the correction information generation unit 33 generates the difference between the L2L midpoint position ⁇ Ln and the turning angle when the vehicle is traveling straight as a turning angle neutral point correction value ⁇ t, and stores it in the storage unit 34 . do. Further, the correction information generation unit 33 stores the mechanical angle ⁇ m when the vehicle is traveling straight in the storage unit 34 as the motor initial position ⁇ m0.
  • the storage unit 34 is an example of the "first storage unit", the "second storage unit", and the "third storage unit” described in the claims.
  • the correction information generation unit 33 may generate the steering angle neutral point correction value ⁇ t and the motor initial position ⁇ m0 and store them in the storage unit 34 at the time of factory shipment, for example.
  • the correction information generation unit 33 uses the value ( ⁇ t1) obtained by inverting the sign of the output ⁇ t1 of the first turning angle calculation unit 32 when the vehicle is traveling straight as the turning angle neutral point correction value ⁇ t. Stored in the storage unit 34 .
  • the second steering angle calculator 35 corrects the steering angle ⁇ t1 based on the mechanical angle ⁇ m, the steering angle neutral point correction value ⁇ t, and the motor initial position ⁇ m0, so that the vehicle is in a straight-ahead state.
  • a post-correction steering angle ⁇ t2 is calculated based on the steering angle of the steering mechanism at that time.
  • the post-correction turning angle ⁇ t2 is an example of the "second turning angle" described in the claims.
  • the second steering angle calculator 35 calculates the steering angle ⁇ nt based on the point obtained by correcting the L2L midpoint position ⁇ Ln with the steering angle neutral point correction value ⁇ t.
  • the turning angle ⁇ nt based on the point obtained by correcting the L2L midpoint position ⁇ Ln with the turning angle neutral point correction value ⁇ t will be referred to as “L2L midpoint turning angle ⁇ nt”.
  • the L2L midpoint turning angle ⁇ nt is an example of the "third turning angle" described in the claims.
  • the second steering angle calculator 35 converts the L2L midpoint steering angle ⁇ nt into a mechanical angle ⁇ nm.
  • the mechanical angle ⁇ nm is hereinafter referred to as "L2L mechanical angle ⁇ nm”.
  • the second turning angle calculator 35 multiplies the L2L middle point turning angle ⁇ nt by the reduction ratio R to convert the L2L middle point turning angle ⁇ nt into a mechanical angle scale.
  • the L2L midpoint steering angle ( ⁇ nt ⁇ R) converted to the mechanical angle scale will be referred to as “post-conversion L2L midpoint steering angle ⁇ ntc”.
  • the second steering angle calculator 35 calculates the remainder mod ( ⁇ ntc, 360) of the post-conversion L2L midpoint steering angle ⁇ ntc with the angle change amount 360 degrees for one rotation as the divisor as the L2L mechanical angle ⁇ nm.
  • the L2L mechanical angle ⁇ nm is an example of the "third actuator position" described in the claims.
  • the mechanical angle ⁇ m2 will be referred to as "second motor mechanical angle ⁇ m2".
  • the dashed line indicates the post-conversion L2L midpoint turning angle ⁇ ntc
  • the solid line indicates the L2L mechanical angle ⁇ nm
  • the dashed line indicates the second motor mechanical angle ⁇ m2.
  • the second steering angle calculator 35 calculates the motor position difference ⁇ m as follows based on the difference ( ⁇ nm ⁇ m2) between the L2L mechanical angle ⁇ nm and the second motor mechanical angle ⁇ m2.
  • the motor position difference ⁇ m is an example of the "actuator position difference" described in the claims. (1) If the difference ( ⁇ nm ⁇ m2) ⁇ ( ⁇ 180) degrees and the difference ( ⁇ nm ⁇ m2) ⁇ 180 degrees, the difference ( ⁇ nm ⁇ m2) is calculated as indicated by arrow 40 in FIG.
  • the motor position difference ⁇ m is set as it is.
  • the two-dot chain lines in FIGS. 3(a) to 3(c) are obtained by multiplying the steering angle, which is based on the steering angle when the vehicle is traveling straight ahead, by the reduction ratio R, and converting it into a mechanical angle scale.
  • the angle ⁇ stc is shown.
  • the angle ⁇ stc will be referred to as “post-conversion straight-running center point steering angle ⁇ stc”.
  • the post-conversion L2L midpoint steering angle ⁇ ntc is It can be corrected to the point steering angle ⁇ stc.
  • the reduction ratio R it is possible to calculate the steering angle based on the steering angle when the vehicle is running straight.
  • the second steering angle calculator 35 divides the motor position difference ⁇ m by the reduction ratio R.
  • the difference ( ⁇ nt ⁇ m/R) obtained by subtracting the division result ( ⁇ m/R) from the L2L midpoint turning angle ⁇ nt is calculated as the post-correction turning angle ⁇ t2.
  • the second steering angle calculation unit 35 calculates the corrected steering angle ⁇ t2 based on the steering angle when the vehicle is traveling straight. It can be calculated as the turning angle.
  • (Condition 1) A mechanical unit equipped with the motor 20 due to parts replacement or the like from when the steering angle neutral point correction value ⁇ t and the motor initial position ⁇ m0 are stored (for example, at the time of shipment from the factory) to when the post-correction steering angle ⁇ t2 is calculated.
  • FIG. 4A is a flow chart of an example of initial setting processing for generating and storing the steering angle neutral point correction value ⁇ t and the motor initial position ⁇ m0 in the storage unit 34.
  • the first steering angle calculator 32 detects the left and right rack end steering angles, and detects the median value thereof as the L2L midpoint position ⁇ Ln.
  • step S2 the correction information generation unit 33 generates the difference between the L2L midpoint position ⁇ Ln and the turning angle when the vehicle is traveling straight as a turning angle neutral point correction value ⁇ t, and stores the difference. 34.
  • step S3 the correction information generation unit 33 stores the mechanical angle ⁇ m when the vehicle is traveling straight in the storage unit 34 as the motor initial position ⁇ m0. After that, the initialization process ends.
  • FIG. 4(b) is a flowchart of an example of the turning angle information restoring process for calculating the corrected turning angle ⁇ t2. This process is performed when the battery is reconnected.
  • the second steering angle calculator 35 reads the steering angle neutral point correction value ⁇ t and the motor initial position ⁇ m0 from the storage unit 34 .
  • the first steering angle calculator 32 detects the left and right rack end steering angles, and detects the median value thereof as the L2L midpoint position ⁇ Ln.
  • step S12 the first steering angle calculator 32 calculates a steering angle ⁇ t1 based on the L2L midpoint position ⁇ Ln.
  • step S13 the second steering angle calculator 35 calculates the L2L midpoint steering angle ⁇ nt by subtracting the steering angle neutral point correction value ⁇ t from the steering angle ⁇ t1.
  • step S14 the second turning angle calculator 35 calculates a second motor mechanical angle ⁇ m2 based on the motor initial position ⁇ m0 by correcting the mechanical angle ⁇ m detected by the rotation angle sensor 21 with the motor initial position ⁇ m0. do.
  • step S15 the second steering angle calculator 35 converts the L2L midpoint steering angle ⁇ nt into a motor mechanical angle. Then, the motor position difference ⁇ m is calculated based on the difference ( ⁇ nm ⁇ m2) between the L2L mechanical angle ⁇ nm and the second motor mechanical angle ⁇ m2. In step S16, the second steering angle calculator 35 subtracts the result of division ( ⁇ m/R) obtained by dividing the motor position difference ⁇ m by the reduction ratio R from the L2L midpoint steering angle ⁇ nt to obtain the post-correction steering angle ⁇ t2. calculate. After that, the turning angle information return processing ends.
  • the rotation angle sensor 21 and the first steering angle calculator 32 detect the steering angle of the steering mechanism.
  • the correction information generation unit 33 generates a steering angle neutral point correction value, which is the difference between the median value of the limit steering angles in the right steering and the left steering and the steering angle when the vehicle is traveling straight.
  • ⁇ t and the motor initial position ⁇ m0 which is the angle of the rotating shaft of the motor 20 when the vehicle is traveling straight ahead, are stored in the storage unit 34 .
  • a rotation angle sensor 21 detects a mechanical angle ⁇ m of the rotation shaft of the motor 20 .
  • the first steering angle calculator 32 calculates a steering angle ⁇ t1 of the steering mechanism based on the median value of the limit steering angles for each of right steering and left steering.
  • the second steering angle calculator 35 calculates the steering angle when the vehicle is traveling straight based on the mechanical angle ⁇ m, the steering angle neutral point correction value ⁇ t, the initial motor position ⁇ m0, and the steering angle ⁇ t1.
  • a post-correction turning angle ⁇ t2 is calculated based on the turning angle of the mechanism.
  • the post-correction steering angle ⁇ t2 can be calculated based on the steering angle of the steering mechanism when the vehicle is traveling straight. Further, even if an error occurs in the detection of the rack end turning angle, the post-correction turning angle ⁇ t2 can be calculated with high accuracy without such an error.
  • the second steering angle calculator 35 calculates a second motor mechanical angle, which is the mechanical angle of the rotating shaft of the motor 20 with reference to the motor initial position ⁇ m0.
  • ⁇ m2 is calculated, and the corrected steering angle ⁇ t2 is calculated based on the L2L midpoint steering angle ⁇ nt obtained by correcting the steering angle ⁇ t1 with the steering angle neutral point correction value ⁇ t and the second motor mechanical angle ⁇ m2.
  • the second steering angle calculator 35 calculates the motor position difference ⁇ m, which is the difference between the L2L mechanical angle ⁇ nm corresponding to the L2L midpoint steering angle ⁇ nt and the second motor mechanical angle ⁇ m2, and calculates the motor position difference ⁇ m.
  • the post-correction turning angle ⁇ t2 may be calculated.
  • the post-correction steering angle ⁇ t2 can be calculated based on the L2L midpoint steering angle ⁇ nt and the second motor mechanical angle ⁇ m2.
  • the second turning angle calculation unit calculates the remainder mod ( ⁇ nt ⁇ R, 360) of the product ( ⁇ nt ⁇ R) of the L2L middle point turning angle ⁇ nt and the reduction ratio R, with 360 degrees as the divisor, as L2L It may be calculated as a mechanical angle ⁇ nm.
  • the L2L mechanical angle ⁇ nm used for calculating the motor position difference ⁇ m can be calculated.
  • the embodiment described above is an example of a method for calculating the post-correction turning angle ⁇ t2.
  • the corrected steering angle ⁇ t2 can be calculated by various methods based on the mechanical angle ⁇ m, the steering angle neutral point correction value ⁇ t, the motor initial position ⁇ m0, and the first steering angle ⁇ t1. Modifications will be described below.
  • the second steering angle calculator 35 calculates the difference ( ⁇ ntc ⁇ ⁇ m2), and the motor position difference ⁇ m may be calculated based on the remainder mod ( ⁇ ntc ⁇ m2, 360) of the difference ( ⁇ ntc ⁇ m2) with 360 degrees as the divisor.
  • mod ( ⁇ ntc- ⁇ m2, 360) ⁇ 180 degrees as shown in FIG. 5A mod ( ⁇ ntc- ⁇ m2, 360) is set as the motor position difference ⁇ m.
  • mod ( ⁇ ntc- ⁇ m2, 360)>180 degrees as shown in FIG. 5B mod ( ⁇ ntc- ⁇ m2, 360)-360 degrees is set as the motor position difference ⁇ m. Even if the motor position difference ⁇ m is set in this way, the post-correction steering angle ⁇ t2 can be calculated.
  • the correction information generation unit 33 calculates the difference ( ⁇ t ⁇ R ⁇ m0) obtained by subtracting the motor initial position ⁇ m0 from the product ( ⁇ t ⁇ R) of the steering angle neutral point correction value ⁇ t and the reduction ratio R, and obtains the correction amount difference. It may be stored as ( ⁇ t ⁇ R ⁇ m0).
  • the second turning angle calculator 35 subtracts the correction amount difference ( ⁇ t ⁇ R ⁇ m0) and the mechanical angle ⁇ m from the product of the first turning angle ⁇ t1 and the reduction ratio R ( ⁇ t1 ⁇ R ⁇ ( ⁇ t ⁇ R- ⁇ m0)- ⁇ m) may be calculated.
  • the post-correction turning angle ⁇ t2 can also be calculated by calculating the difference ( ⁇ ntc ⁇ m2) in this way.
  • the post-correction turning angle ⁇ t2 may be calculated by correcting the L2L midpoint turning angle ⁇ nt with the correction amount set in this manner.
  • the post-correction turning angle ⁇ t2 can also be calculated by such a method.
  • the steering angle ⁇ t may be calculated based on the rotation angle detected by a steering angle sensor mounted on the column input shaft 2i side or the column output shaft 2o side.
  • Reference Signs List 1 Steering wheel 2i Column input shaft 2o Column output shaft 3 Reduction gear 4 Intermediate shaft 4a, 4b Universal joint 4c Shaft member 5 Pinion rack mechanism 5a Pinion 5b... Rack 6a, 6b... Tie rod 7a, 7b... Hub unit 8L, 8R... Steering wheel 10... Torque sensor 11... Ignition key 12... Vehicle speed sensor 13... Battery 20... Motor 21... Rotation angle sensor 30 Controller 31 Turning angle detector 32 First turning angle calculator 33 Correction information generator 34 Storage 35 Second turning angle calculator

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

車両が直進状態であるときの転舵角を基準とする転舵角を精度良く算出する。転舵角検出装置は、右操舵及び左操舵における限界の転舵角の中央値と、車両が直進状態であるときの転舵角と、の差分である転舵角中立点補正値を記憶する第1記憶部(34)と、車両が直進状態であるときの転舵機構のアクチュエータの可動部の初期位置を記憶する第2記憶部(34)と、アクチュエータの可動部の位置の検出値に基づいて、右操舵及び左操舵における限界の転舵角の中央値を基準とする第1転舵角を算出する第1転舵角算出部(32)と、アクチュエータの可動部の位置の検出値と、転舵角中立点補正値と、初期位置と、第1転舵角と、に基づいて、車両が直進状態であるときの第2転舵角を算出する第2転舵角算出部(35)と、を備える。

Description

転舵角検出装置及び電動パワーステアリング装置
 本発明は、転舵角検出装置及び電動パワーステアリング装置に関する。
 下記特許文献1には、ステアリングホイールをそれぞれ右操舵及び左操舵したときの各々の限界の転舵角を検出してその中央値を転舵角の中立点として設定し、中立点を基準とする転舵角を取得する技術が記載されている。
 以下の説明において、右操舵及び左操舵したときの限界の転舵角を「ラックエンド転舵角」と表記することがある。例えば、中立位置より右側の転舵角の値が正、左側の転舵角が負であるとすると、右操舵のラックエンド転舵角は、ステアリングホイールを右方向に限界まで操舵した時の最大転舵角であり、左操舵のラックエンド転舵角は、ステアリングホイールを左方向に限界まで操舵した時の最小転舵角である。
特許第4323402号明細書
 しかしながら、左右のラックエンド転舵角の中央値は、車両が直進状態であるときの転舵角とは必ずしも一致しないことがあり、また、ラックエンド転舵角の検出にも誤差が発生する。このため、特許文献1に記載の技術では、車両が直進状態であるときの転舵角を基準とする転舵角を正確に算出することができない。
 本発明は、上記課題に着目してなされたものであり、車両が直進状態であるときの転舵角を基準とする転舵角を精度良く算出することを目的とする。
 上記目的を達成するために、本発明の一態様による転舵角検出装置は、転舵機構の転舵角を検出する位置検出部と、転舵機構を駆動するアクチュエータと、右操舵及び左操舵における各々の限界の転舵角の中央値と、車両が直進状態であるときの転舵角と、の差分である転舵角中立点補正値を記憶する第1記憶部と、車両が直進状態であるときのアクチュエータの可動部の位置であるアクチュエータ初期位置を記憶する第2記憶部と、アクチュエータの可動部の位置を第1アクチュエータ位置として検出するアクチュエータ位置検出部と、第1アクチュエータ位置に基づいて、右操舵及び左操舵における各々の限界の転舵角の中央値を基準とする転舵機構の転舵角を第1転舵角として算出する第1転舵角算出部と、第1アクチュエータ位置と、転舵角中立点補正値と、アクチュエータ初期位置と、第1転舵角とに基づいて、車両が直進状態であるときの転舵機構の転舵角である第2転舵角を算出する第2転舵角算出部と、を備える。
 上記目的を達成するために、本発明の他の一態様による電動パワーステアリング装置は、上記の転舵角検出装置を備え、第2転舵角に基づいてアクチュエータを駆動することにより転舵機構に転舵補助力を付与する。
 本発明によれば、車両が直進状態であるときの転舵角を基準とする転舵角を精度良く算出できる。
実施形態の電動パワーステアリング装置の一例の概要を示す構成図である。 図1に示す転舵角検出部の機能構成の一例のブロック図である。 (a)~(c)は、実施形態の転舵角検出方法の一例の説明図である。 (a)は初期設定処理の一例のフローチャートであり、(b)は転舵角情報復帰処理の一例のフローチャートである。 (a)及び(b)は、変形例の転舵角検出方法の一例の説明図である。
 本発明の実施形態を、図面を参照しながら詳細に説明する。
 なお、以下に示す本発明の実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の構成、配置等を下記のものに特定するものではない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。
 (構成)
 図1は、実施形態の電動パワーステアリング装置の一例の概要を示す構成図である。ステアリングホイール(操向ハンドル)1のコラム軸(操舵軸)2i及び2oは、減速機構を構成する減速ギア(ウォームギア)3、インターミディエイトシャフト4、ピニオンラック機構5、タイロッド6a、6bを経て、更にハブユニット7a、7bを介して操向輪8L、8Rに連結されている。
 コラム入力軸2iとコラム出力軸2oとは、コラム入力軸2iとコラム出力軸2oとの間の回転角のずれによって捩れるトーションバー(図示せず)によって連結されている。
 インターミディエイトシャフト4は、軸部材4cと、軸部材の両端に取り付けられたユニバーサルジョイント4a及び4bを有する。ユニバーサルジョイント4aはコラム出力軸2oに連結され、ユニバーサルジョイント4bはピニオンラック機構5に連結される。
 ピニオンラック機構5は、ユニバーサルジョイント4bから操舵力が伝達されるピニオンシャフトに連結されたピニオン5aと、このピニオン5aに噛合するラック5bとを有し、ピニオン5aに伝達された回転運動をラック5bで車幅方向の直進運動に変換する。
 操舵軸2(コラム軸2i及び2o)には操舵トルクThを検出するトルクセンサ10が設けられている。
 また、ステアリングホイール1の操舵力を補助するモータ20が減速ギア3を介してコラム出力軸2oに連結されている。モータ20の回転軸には、回転軸の機械角θmを検出する回転角センサ21が設けられている。機械角θmは、特許請求の範囲に記載の「第1アクチュエータ位置」の一例である。
 コラム出力軸2oの回転量は、モータ20の回転軸の回転量を減速ギア3の減速比Rで除算して得られる。コントローラ30は、機械角θmを減速ギア3の減速比Rで除算して得られるコラム出力軸2oの回転角を、転舵角θtとして算出する。
 なお、モータ20は,特許請求の範囲に記載の「アクチュエータ」の一例である。減速ギア3の減速比Rは、特許請求の範囲に記載の「変換係数」の一例である。なお、本発明におけるアクチュエータとしては、モータに限られず様々な種類のアクチュエータを利用可能である。
 電動パワーステアリング(EPS:Electric Power Steering)装置を制御するコントローラ30には、バッテリ13から電力が供給されるとともに、イグニション(IGN)キー11を経てイグニションキー信号が入力される。
 コントローラ30は、トルクセンサ10で検出された操舵トルクThと、車速センサ12で検出された車速Vhと、モータ20の機械角θmから算出した転舵角θtと、に基づいてアシスト制御指令の電流指令値の演算を行い、電流指令値に補償等を施した電圧制御指令値Vrefによってモータ20に供給する電流を制御する。
 コントローラ30は、例えば、プロセッサと、記憶装置等の周辺部品とを含むコンピュータを備えてよい。プロセッサは、例えばCPU(Central Processing Unit)、やMPU(Micro-Processing Unit)であってよい。
 記憶装置は、半導体記憶装置、磁気記憶装置及び光学記憶装置のいずれかを備えてよい。記憶装置は、レジスタ、キャッシュメモリ、主記憶装置として使用されるROM(Read Only Memory)及びRAM(Random Access Memory)等のメモリを含んでよい。
 以下に説明するコントローラ30の機能は、例えばコントローラ30のプロセッサが、記憶装置に格納されたコンピュータプログラムを実行することにより実現される。
 なお、コントローラ30を、以下に説明する各情報処理を実行するための専用のハードウエアにより形成してもよい。
 例えば、コントローラ30は、汎用の半導体集積回路中に設定される機能的な論理回路を備えてもよい。例えばコントローラ30はフィールド・プログラマブル・ゲート・アレイ(FPGA:Field-Programmable Gate Array)等のプログラマブル・ロジック・デバイス(PLD:Programmable Logic Device)等を有していてもよい。
 コントローラ30が、転舵機構の転舵角θtを検出する機能について説明する。上記のとおり、コントローラ30は、モータ20の回転軸の機械角θmを減速ギア3の減速比Rで除算して得られるコラム出力軸2oの回転角を、転舵角θtとして算出する。
 ここで、モータ20の回転軸は、減速ギア3を介してコラム出力軸2oに連結されている。このため、転舵機構が、中立位置から右方向又は左方向に限界まで転舵される間に、モータ20の機械角θmは1回転分の角度360度よりも変化する。したがって、モータ20の機械角θmから転舵機構の転舵角θtを一意に決めることはできない。
 このため、コントローラ30は、転舵角θtに関する転舵角情報を保持し、機械角θmの変化に応じて更新することにより転舵角θtを算出している。
 イグニションキー11がオフである間は、機械角θmを検出するのに代えてモータ20の回転軸の回転数をカウントする。例えば、モータ20の回転軸の1/4回転毎の(すなわち一象限単位の)回転数をカウントする。
 イグニションキー11がオフからオンに変化すると、その時点までカウントした回転数nと、その時検出した機械角θmとに基づいて、複数回転に亘る角度範囲における回転軸の回転角度(360×n+θm)を算出し、減速比Rで除算して転舵角θtを算出する。
 しかし、様々な理由により転舵角情報を消失することがある。例えば、長期間にわたって車両を運搬する際にバッテリの消耗を回避するためバッテリを車両から外すと、転舵角情報が消失する。転舵角情報が消失するとモータ20の機械角θmだけでは転舵角θtが不明になる。
 このような場合には、左右のラックエンド転舵角を検出して、ラックエンド転舵角の中央値を算出ことにより、転舵機構の中立位置を求めることができる。
 しかしながら、左右のラックエンド転舵角の中央値は、車両が直進状態であるときの転舵角とは必ずしも一致しないため、ラックエンド転舵角の中央値を中立位置とする転舵角を算出しても、車両が直進状態であるときに中立位置とならない。すなわち、車両が直進状態であるときの転舵角を基準とする転舵角とならない。また、ラックエンド転舵角の検出にも誤差が発生するため、この誤差によっても精度が低下する。
 そこで実施形態のコントローラ30は、車両が直進状態であるときの転舵角を基準とする転舵角を算出する転舵角検出部31を備える。
 転舵角検出部31は、左右のラックエンド転舵角の中央値と、車両が直進状態であるときの転舵角と、の間の差分である転舵角中立点補正値Δθtを予め記憶する。また、車両が直進状態であるときに回転角センサ21が検出したモータ20の回転軸の機械角θmであるモータ初期位置θm0も予め記憶する。モータ初期位置θm0は特許請求の範囲に記載の「アクチュエータ初期位置」の一例である。
 転舵角検出部31は、左右のラックエンド転舵角の中央値を基準とする転舵角を、転舵角中立点補正値Δθtと、モータ初期位置θm0と、に基づいて補正することにより、車両が直進状態であるときの転舵角を基準とする転舵角を精度良く算出する。
 図2は、転舵角検出部31の機能構成の一例のブロック図である。転舵角検出部31は、第1転舵角算出部32と、補正用情報生成部33と、記憶部34と、第2転舵角算出部35を備える。
 第1転舵角算出部32は、左右のラックエンド転舵角の中央値を基準とする転舵機構の転舵角θt1を算出する。すなわち、左右のラックエンド転舵角の中央値が中立位置となるような転舵角θt1を算出する。転舵角θt1は、特許請求の範囲に記載の「第1転舵角」の一例である。
 以下、左右のラックエンド転舵角の中央値を「L2L中点位置θLn」と表記することがある。
 例えば、第1転舵角算出部32は、任意の転舵角θa(例えば、転舵角情報を記憶する前に電源が投入されたときの転舵角)を基準角度として左右のラックエンド転舵角を各々検出する。
 右操舵及び左操舵の一方の限界から他方の限界まで操舵される間、モータ20の回転軸の機械角θmは360度以上変化する。このため、第1転舵角算出部32は、回転軸の回転数nをカウントして、左右操舵の限界に至った時の回転軸の各々の角度を、複数回転に亘る角度範囲における回転角度(360×n+θm)として算出してよい。各々の回転角度を減速比Rで除算して左右のラックエンド転舵角を算出する。
 第1転舵角算出部32は、これらのラックエンド転舵角の中央値を求めてL2L中点位置θLnとし、任意の転舵角θaを基準として検出される転舵角を、L2L中点位置θLnで補正することにより(例えば、L2L中点位置θLnを減算することにより)、L2L中点位置θLnを基準とする転舵角θt1を算出する。
 補正用情報生成部33は、L2L中点位置θLnと、車両が直進状態であるときの転舵角と、の間の差分を転舵角中立点補正値Δθtとして生成して記憶部34に記憶する。また、補正用情報生成部33は、車両が直進状態であるときの機械角θmを、モータ初期位置θm0として記憶部34に記憶する。記憶部34は、特許請求の範囲に記載の「第1記憶部」、「第2記憶部」、「第3記憶部」の一例である。
 補正用情報生成部33は、例えば工場出荷時などに、転舵角中立点補正値Δθtとモータ初期位置θm0を生成して記憶部34に記憶してよい。
 例えば、補正用情報生成部33は、車両が直進状態であるときの第1転舵角算出部32の出力θt1の符号を反転した値(-θt1)を、転舵角中立点補正値Δθtとして記憶部34に記憶する。
 第2転舵角算出部35は、機械角θmと、転舵角中立点補正値Δθtと、モータ初期位置θm0と、に基づいて転舵角θt1を補正することにより、車両が直進状態であるときの転舵機構の転舵角を基準とする補正後転舵角θt2を算出する。補正後転舵角θt2は、特許請求の範囲に記載の「第2転舵角」の一例である。
 第2転舵角算出部35は、L2L中点位置θLnを転舵角中立点補正値Δθtで補正した点を基準とする転舵角θntを算出する。以下、L2L中点位置θLnを転舵角中立点補正値Δθtで補正した点を基準とする転舵角θntを、「L2L中点転舵角θnt」と表記する。例えば第2転舵角算出部35は、転舵角θt1から転舵角中立点補正値Δθtを減算することにより、L2L中点転舵角θnt=θt1-Δθtを算出してよい。L2L中点転舵角θntは、特許請求の範囲に記載の「第3転舵角」の一例である。
 第2転舵角算出部35は、L2L中点転舵角θntを機械角θnmに変換する。以下、機械角θnmを「L2L機械角θnm」と表記する。
 具体的には、第2転舵角算出部35は、L2L中点転舵角θntに減速比Rを乗算することにより、L2L中点転舵角θntを機械角のスケールに変換する。以下、機械角のスケールに変換されたL2L中点転舵角(θnt×R)を「変換後L2L中点転舵角θntc」と表記する。
 第2転舵角算出部35は、1回転分の角度変化量360度を除数とする、変換後L2L中点転舵角θntcの剰余mod(θntc,360)をL2L機械角θnmとして算出する。L2L機械角θnmは、特許請求の範囲に記載の「第3アクチュエータ位置」の一例である。
 また、第2転舵角算出部35は、回転角センサ21が検出した機械角θmをモータ初期位置θm0で補正することにより、モータ初期位置θm0を基準とする機械角θm2=θm-θm0を算出する。以下、機械角θm2を「第2モータ機械角θm2」と表記する。
 図3(a)~図3(c)の一点鎖線は、変換後L2L中点転舵角θntcを示し、実線はL2L機械角θnmを示し、破線は、第2モータ機械角θm2を示す。
 第2転舵角算出部35は、L2L機械角θnmと第2モータ機械角θm2との差分(θnm-θm2)の値に基づいて、以下のとおりモータ位置差分Δθmを算出する。モータ位置差分Δθmは、特許請求の範囲に記載の「アクチュエータ位置差分」の一例である。
 (1)差分(θnm-θm2)≧(-180)度、且つ差分(θnm-θm2)≦180度の場合には、図3(a)の矢視40のように差分(θnm-θm2)をそのままモータ位置差分Δθmに設定する。
 (2)差分(θnm-θm2)<(-180)度の場合には、図3(b)の矢視41のように差分(θnm-θm2)に360度を加算した和をモータ位置差分Δθmに設定する。
 (3)差分(θnm-θm2)>180度の場合には、図3(c)の矢視42のように差分(θnm-θm2)から360度を減算した差をモータ位置差分Δθmに設定する。
 図3(a)~図3(c)の二点鎖線は、車両が直進状態の場合の転舵角を基準とする転舵角に減速比Rを乗算して、機械角のスケールに変換した角度θstcを示す。以下、角度θstcを「変換後直進中点転舵角θstc」と表記する。
 図3(a)~図3(c)から分かるように、変換後L2L中点転舵角θntcからモータ位置差分Δθmを減算することにより、変換後L2L中点転舵角θntcを変換後直進中点転舵角θstcに補正できる。変換後直進中点転舵角θstcを減速比Rで除算すれば、車両が直進状態の場合の転舵角を基準とする転舵角を算出できる。
 ここで、L2L中点転舵角θnt=(変換後L2L中点転舵角θntc/減速比R)であるから、第2転舵角算出部35は、減速比Rでモータ位置差分Δθmを除算した除算結果(Δθm/R)を、L2L中点転舵角θntから減じた差分(θnt-Δθm/R)を、補正後転舵角θt2として算出する。
 これにより、第2転舵角算出部35は、下記の(条件1)及び(条件2)が満たされれば、補正後転舵角θt2を、車両が直進状態の場合の転舵角を基準とする転舵角として算出できる。
 (条件1)転舵角中立点補正値Δθt及びモータ初期位置θm0の記憶時(例えば工場出荷時)から補正後転舵角θt2の算出時までに、パーツ交換などでモータ20を搭載した機構部を変更していないこと。
 (条件2)転舵角中立点補正値Δθtの記憶時に用いられたL2L中点位置θLnと、補正後転舵角θt2の算出時算出する際に用いられたL2L中点位置θLnとの誤差が機械角180度未満であること。
 (動作)
 次に、図4(a)及び図4(b)を参照して実施形態の転舵角検出方法の一例を説明する。図4(a)は、転舵角中立点補正値Δθt及びモータ初期位置θm0を生成及び記憶部34に記憶する初期設定処理の一例のフローチャートである。
 ステップS1において第1転舵角算出部32は、左右のラックエンド転舵角を各々検出して、その中央値をL2L中点位置θLnとして検出する。
 ステップS2において補正用情報生成部33は、L2L中点位置θLnと、車両が直進状態であるときの転舵角と、の間の差分を転舵角中立点補正値Δθtとして生成して記憶部34に記憶する。
 ステップS3において補正用情報生成部33は、車両が直進状態であるときの機械角θmを、モータ初期位置θm0として記憶部34に記憶する。
 その後に、初期設定処理は終了する。
 図4(b)は、補正後転舵角θt2を算出する転舵角情報復帰処理の一例のフローチャートである。この処理は、バッテリを再接続したときに実施される。
 ステップS10において第2転舵角算出部35は、転舵角中立点補正値Δθtとモータ初期位置θm0を記憶部34から読み込む。
 ステップS11において第1転舵角算出部32は、左右のラックエンド転舵角を各々検出して、その中央値をL2L中点位置θLnとして検出する。
 ステップS12において第1転舵角算出部32は、L2L中点位置θLnを基準とする転舵角θt1を算出する。
 ステップS13において第2転舵角算出部35は、転舵角θt1から転舵角中立点補正値Δθtを減算することにより、L2L中点転舵角θntを算出する。
 ステップS14において第2転舵角算出部35は、回転角センサ21が検出した機械角θmをモータ初期位置θm0で補正することにより、モータ初期位置θm0を基準とする第2モータ機械角θm2を算出する。
 ステップS15において第2転舵角算出部35は、L2L中点転舵角θntをモータ機械角に変換する。そして、L2L機械角θnmと第2モータ機械角θm2との差分(θnm-θm2)の値に基づいて、モータ位置差分Δθmを算出する。
 ステップS16において第2転舵角算出部35は、減速比Rでモータ位置差分Δθmを除算した除算結果(Δθm/R)を、L2L中点転舵角θntから減じて補正後転舵角θt2を算出する。
 その後に、転舵角情報復帰処理は終了する。
 (実施形態の効果)
 (1)回転角センサ21と第1転舵角算出部32は、転舵機構の転舵角を検出する。補正用情報生成部33は、右操舵及び左操舵における各々の限界の転舵角の中央値と、車両が直進状態であるときの転舵角と、の差分である転舵角中立点補正値Δθtと、車両が直進状態であるときのモータ20の回転軸の角度であるモータ初期位置θm0と、を記憶部34に記憶する。回転角センサ21は、モータ20の回転軸の機械角θmを検出する。第1転舵角算出部32は、機械角θmに基づいて、右操舵及び左操舵における各々の限界の転舵角の中央値を基準とする転舵機構の転舵角θt1を算出する。第2転舵角算出部35は、機械角θmと、転舵角中立点補正値Δθtと、モータ初期位置θm0と、転舵角θt1とに基づいて、車両が直進状態であるときの転舵機構の転舵角を基準とする補正後転舵角θt2を算出する。
 これにより、転舵角情報を消失しても、車両が直進状態であるときの転舵機構の転舵角を基準とする補正後転舵角θt2を算出できる。
 また、ラックエンド転舵角の検出にも誤差が発生しても、このような誤差を含まない精度の良い補正後転舵角θt2を算出できる。
 (2)第2転舵角算出部35は、機械角θmと、モータ初期位置θm0とに基づいて、モータ初期位置θm0を基準とするモータ20の回転軸の機械角である第2モータ機械角θm2を算出し、転舵角θt1を転舵角中立点補正値Δθtで補正して得られるL2L中点転舵角θntと、第2モータ機械角θm2に基づいて補正後転舵角θt2を算出してよい。
 第2モータ機械角θm2に基づいて補正する前に、転舵角θt1を転舵角中立点補正値Δθtで補正することにより、転舵角θt1が、車両が直進状態であるときの転舵機構の転舵角を基準とする転舵角から180度以上離れていても、第2モータ機械角θm2に基づいて補正することができる。
 (3)第2転舵角算出部35は、L2L中点転舵角θntに対応するL2L機械角θnmと第2モータ機械角θm2との差分であるモータ位置差分Δθmを算出し、モータ位置差分Δθmを減速比Rで除算して得られる値(Δθm/R)に基づいてL2L中点転舵角θntを補正することにより、補正後転舵角θt2を算出してよい。
 これにより、L2L中点転舵角θntと第2モータ機械角θm2とに基づいて補正後転舵角θt2を算出できる。
 (4)第2転舵角算出部は、360度を除数とする、L2L中点転舵角θntと減速比Rの積(θnt×R)の剰余mod(θnt×R,360)を、L2L機械角θnmとして算出してよい。
 これにより、モータ位置差分Δθmの算出に用いるL2L機械角θnmを算出できる。
 (変形例1)
 上記の実施形態は、補正後転舵角θt2の算出方法の一例である。補正後転舵角θt2は、機械角θmと、転舵角中立点補正値Δθtと、モータ初期位置θm0と、第1転舵角θt1とに基づいて様々な方法で算出できる。以下、変形例を説明する。
 第2転舵角算出部35は、L2L中点転舵角θntと減速比Rとの積である変換後L2L中点転舵角θntcから、第2モータ機械角θm2を減算した差分(θntc-θm2)を算出し、360度を除数とした差分(θntc-θm2)の剰余mod(θntc-θm2,360)に基づいて、モータ位置差分Δθmを算出してもよい。
 そして、図5(a)のようにmod(θntc-θm2,360)≦180度となる場合には、mod(θntc-θm2,360)をモータ位置差分Δθmとして設定する。
 一方で、図5(b)のようにmod(θntc-θm2,360)>180度となる場合には、mod(θntc-θm2,360)-360度をモータ位置差分Δθmとして設定する。
 このようにモータ位置差分Δθmを設定しても、補正後転舵角θt2を算出できる。
 (変形例2)
 補正用情報生成部33は、転舵角中立点補正値Δθtと減速比Rの積(Δθt×R)からモータ初期位置θm0を減じた差分(Δθt×R-θm0)を算出し、補正量差分(Δθt×R-θm0)として記憶してもよい。
 第2転舵角算出部35は、第1転舵角θt1と減速比Rの積から補正量差分(Δθt×R-θm0)と機械角θmとを減算した値(θt1×R-(Δθt×R-θm0)-θm)を算出してもよい。
 このように算出した値(θt1×R-(Δθt×R-θm0)-θm)は、(θt1-Δθt)×R-(θm-θm0)=(θntc-θm2)と整理できるから、第1変形例における差分(θntc-θm2)と等しくなる。
 このように差分(θntc-θm2)を算出しても補正後転舵角θt2を算出できる。
 (変形例3)
 第2モータ機械角θm2を減速比Rで除算して、コラム軸2oの回転角のスケールに変換した値θm2/RをL2L中点転舵角θntから減算した差分(θnt-θm2/R)に基づいて、L2L中点転舵角θntを補正する補正量を決定してもよい。
 例えば、ステアリングホイールを操舵して機械角θmを変化させることによって、差分(θnt-θm2/R)を変化させ、絶対値が最も小さくなるときの差分(θnt-θm2/R)を補正量に設定し、このように設定した補正量でL2L中点転舵角θntを補正して補正後転舵角θt2を算出してもよい。
 このような方法によっても補正後転舵角θt2を算出できる。
 (変形例4)
 コラム入力軸2i側あるいはコラム出力軸2o側に装着された転舵角センサで検出される回転角に基づいて転舵角θtを演算するようにしてもよい。
 1…ステアリングホイール、2i…コラム入力軸、2o…コラム出力軸、3…減速ギア、4…インターミディエイトシャフト、4a、4b…ユニバーサルジョイント、4c…軸部材、5…ピニオンラック機構、5a…ピニオン、5b…ラック、6a、6b…タイロッド、7a、7b…ハブユニット、8L、8R…操向輪、10…トルクセンサ、11…イグニションキー、12…車速センサ、13…バッテリ、20…モータ、21…回転角センサ、30…コントローラ、31…転舵角検出部、32…第1転舵角算出部、33…補正用情報生成部、34…記憶部、35…第2転舵角算出部

Claims (8)

  1.  転舵機構の転舵角を検出する位置検出部と、
     前記転舵機構を駆動するアクチュエータと、
     右操舵及び左操舵における各々の限界の前記転舵角の中央値と、車両が直進状態であるときの前記転舵角と、の差分である転舵角中立点補正値を記憶する第1記憶部と、
     前記車両が直進状態であるときの前記アクチュエータの可動部の位置であるアクチュエータ初期位置を記憶する第2記憶部と、
     前記アクチュエータの可動部の位置を第1アクチュエータ位置として検出するアクチュエータ位置検出部と、
     前記第1アクチュエータ位置に基づいて、右操舵及び左操舵における各々の限界の前記転舵角の中央値を基準とする前記転舵機構の転舵角を第1転舵角として算出する第1転舵角算出部と、
     前記第1アクチュエータ位置と、前記転舵角中立点補正値と、前記アクチュエータ初期位置と、前記第1転舵角とに基づいて、前記車両が直進状態であるときの前記転舵機構の転舵角を基準とする第2転舵角を算出する第2転舵角算出部と、
     を備えることを特徴とする転舵角検出装置。
  2.  前記第2転舵角算出部は、
     前記第1アクチュエータ位置と、前記アクチュエータ初期位置とに基づいて、前記アクチュエータ初期位置を基準とする前記アクチュエータの位置である第2アクチュエータ位置を算出し、
     前記第1転舵角を前記転舵角中立点補正値で補正して得られる第3転舵角と、前記第2アクチュエータ位置と、に基づいて前記第2転舵角を算出することを特徴とする請求項1に記載の転舵角検出装置。
  3.  前記第2転舵角算出部は、前記第3転舵角に対応する第3アクチュエータ位置と前記第2アクチュエータ位置との差分であるアクチュエータ位置差分を算出し、
     前記アクチュエータの可動部の位置の変化量に対する前記転舵機構の転舵角の変化量の比とアクチュエータ位置差分との積に基づいて前記第3転舵角を補正することにより、前記第2転舵角を算出することを特徴とする請求項2に記載の転舵角検出装置。
  4.  前記第2転舵角算出部は、前記アクチュエータであるモータの回転軸の回転量に対する前記転舵機構の転舵角の変化量の比率の逆数である変換係数と前記第3転舵角との積を、360度で除算した剰余を求めることで前記第3アクチュエータ位置を算出することを特徴とする請求項3に記載の転舵角検出装置。
  5.  前記第2転舵角算出部は、
     前記アクチュエータであるモータの回転軸の回転量に対する前記転舵機構の転舵角の変化量の比率の逆数である変換係数と前記第3転舵角との積から前記第2アクチュエータ位置を減じた差分を、360度で除算したときの剰余をアクチュエータ位置差分として算出し、
     前記アクチュエータ位置差分を前記変換係数で除算した値に基づいて前記第3転舵角を補正することにより前記第2転舵角を算出することを特徴とする請求項2に記載の転舵角検出装置。
  6.  前記アクチュエータであるモータの回転軸の回転量に対する前記転舵機構の転舵角の変化量の比率の逆数である変換係数と前記転舵角中立点補正値との積と、アクチュエータ初期位置との差分である補正量差分を記憶する第3記憶部を備え、
     前記第2転舵角算出部は、
     前記第1転舵角と前記変換係数との積から、前記補正量差分と前記第1アクチュエータ位置とを減じた差分を、360度で除算した剰余をアクチュエータ位置差分として算出し、
     前記アクチュエータ位置差分を前記変換係数で除算した値に基づいて前記第3転舵角を補正することにより前記第2転舵角を算出することを特徴とする請求項2に記載の転舵角検出装置。
  7.  前記第2転舵角算出部は、
     前記第3転舵角から、前記アクチュエータの可動部の位置の変化量に対する前記転舵機構の転舵角の変化量の比と前記第2アクチュエータ位置との積を減算した差分に基づいて、前記第3転舵角を補正することにより前記第2転舵角を算出することを特徴とする請求項2に記載の転舵角検出装置。
  8.  請求項1~7のいずれか一項に記載の転舵角検出装置を備え、
     前記第2転舵角に基づいて前記アクチュエータを駆動することにより前記転舵機構に転舵補助力を付与することを特徴とする電動パワーステアリング装置。
PCT/JP2022/004505 2021-04-21 2022-02-04 転舵角検出装置及び電動パワーステアリング装置 WO2022224543A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280003217.0A CN115500078A (zh) 2021-04-21 2022-02-04 转向角检测装置以及电动助力转向装置
JP2022530154A JP7131734B1 (ja) 2021-04-21 2022-02-04 転舵角検出装置及び電動パワーステアリング装置
EP22754274.3A EP4101744B1 (en) 2021-04-21 2022-02-04 Steering angle detection device and electric power steering device
US17/909,154 US11780489B2 (en) 2021-04-21 2022-02-04 Turning angle detecting device and electric power steering device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-071912 2021-04-21
JP2021071912 2021-04-21

Publications (1)

Publication Number Publication Date
WO2022224543A1 true WO2022224543A1 (ja) 2022-10-27

Family

ID=83360931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004505 WO2022224543A1 (ja) 2021-04-21 2022-02-04 転舵角検出装置及び電動パワーステアリング装置

Country Status (1)

Country Link
WO (1) WO2022224543A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5200747A (en) * 1990-12-13 1993-04-06 Bourns, Inc. Turn counting position sensor
JP2008285043A (ja) * 2007-05-18 2008-11-27 Mitsuba Corp 車両用制御装置
JP4323402B2 (ja) 2000-01-14 2009-09-02 アイシン精機株式会社 舵角補正装置
JP2014019264A (ja) * 2012-07-17 2014-02-03 Hitachi Automotive Systems Steering Ltd パワーステアリング装置
JP2017191092A (ja) * 2016-04-06 2017-10-19 株式会社デンソー 回転検出装置、および、これを用いた電動パワーステアリング装置
JP2019131015A (ja) * 2018-01-30 2019-08-08 株式会社ジェイテクト 操舵制御装置
JP2020188607A (ja) * 2019-05-15 2020-11-19 株式会社ジェイテクト モータ制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5200747A (en) * 1990-12-13 1993-04-06 Bourns, Inc. Turn counting position sensor
JP4323402B2 (ja) 2000-01-14 2009-09-02 アイシン精機株式会社 舵角補正装置
JP2008285043A (ja) * 2007-05-18 2008-11-27 Mitsuba Corp 車両用制御装置
JP2014019264A (ja) * 2012-07-17 2014-02-03 Hitachi Automotive Systems Steering Ltd パワーステアリング装置
JP2017191092A (ja) * 2016-04-06 2017-10-19 株式会社デンソー 回転検出装置、および、これを用いた電動パワーステアリング装置
JP2019131015A (ja) * 2018-01-30 2019-08-08 株式会社ジェイテクト 操舵制御装置
JP2020188607A (ja) * 2019-05-15 2020-11-19 株式会社ジェイテクト モータ制御装置

Similar Documents

Publication Publication Date Title
JP6750341B2 (ja) 操舵制御装置
JP5616281B2 (ja) トルクセンサおよびパワーステアリング装置
JP5971433B2 (ja) 電動パワーステアリング装置
US9610973B2 (en) Motor-driven power steering apparatus
JP6086205B2 (ja) 位相差検出装置およびそれを備えた回転角検出装置
JP2010030469A (ja) 舵角検出装置
US20200108858A1 (en) Steering device
JP2004170185A (ja) 操舵角補正装置
JP6024971B2 (ja) 回転角検出装置
JP2005091204A (ja) 電気式動力舵取装置
JP6024970B2 (ja) 回転角検出装置およびそれを備えた電動パワーステアリング装置
JP2014219364A (ja) 回転角検出装置
JP7131734B1 (ja) 転舵角検出装置及び電動パワーステアリング装置
WO2022224543A1 (ja) 転舵角検出装置及び電動パワーステアリング装置
JP2009292331A (ja) 車両用操舵装置
JP4052099B2 (ja) モータ制御装置
JP6326171B1 (ja) 操舵制御装置、電動パワーステアリング装置
JP6943174B2 (ja) 操舵制御装置
JP2008285043A (ja) 車両用制御装置
JP6288157B2 (ja) 車両操舵装置
JP2017083422A (ja) 回転角検出装置
JP2019214238A (ja) 転舵制御装置
JP4023301B2 (ja) モータ制御装置
JP2014189115A (ja) 舵角検出装置
JP6202302B2 (ja) 回転角検出装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022530154

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022754274

Country of ref document: EP

Effective date: 20220824

NENP Non-entry into the national phase

Ref country code: DE