WO2022166152A1 - 一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法 - Google Patents

一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法 Download PDF

Info

Publication number
WO2022166152A1
WO2022166152A1 PCT/CN2021/112700 CN2021112700W WO2022166152A1 WO 2022166152 A1 WO2022166152 A1 WO 2022166152A1 CN 2021112700 W CN2021112700 W CN 2021112700W WO 2022166152 A1 WO2022166152 A1 WO 2022166152A1
Authority
WO
WIPO (PCT)
Prior art keywords
tungsten
core
powder
gadolinium oxide
oxide powder
Prior art date
Application number
PCT/CN2021/112700
Other languages
English (en)
French (fr)
Inventor
姚理荣
夏勇
杨涛
孙通
潘刚伟
徐思峻
季涛
高强
Original Assignee
南通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通大学 filed Critical 南通大学
Publication of WO2022166152A1 publication Critical patent/WO2022166152A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal

Definitions

  • the invention relates to the field of preparation of radiation protection materials, in particular to a preparation method of core-shell structure tungsten/gadolinium oxide powder for X, gamma ray protection.
  • Radiation protection materials are mainly divided into two types: lead-containing materials and lead-free materials.
  • Lead is mainly based on lead.
  • the protective effect is excellent, it is toxic, has poor strength and has a large scattering of low-energy X-rays.
  • Lead-free materials mainly include composite materials made of rare earth elements and heavy metal compounds such as tin, tungsten, and bismuth, which have excellent protective effects and are lightweight and safe.
  • Micro-nano core-shell materials with special structures have attracted extensive attention in recent years.
  • Composite particles with different core-shell microstructures have unique physical and chemical properties, which also lead to their broad application prospects in many fields such as optics, electronics, catalysis, biology, and radiation.
  • the core-shell structure radiation protection material can cooperate in protection, eliminating the weak protection area and effectively absorbing the secondary radiation generated by the radiation.
  • the preparation methods of core-shell structures mainly include template method, precipitation method, hydrothermal synthesis method, spray drying method, layer-by-layer self-assembly technology, etc. Li et al.
  • the purpose of the present invention is to provide a preparation method of core-shell structure tungsten/gadolinium oxide powder for X, ⁇ -ray protection in order to overcome the above-mentioned defects of the prior art.
  • the invention provides a preparation method of core-shell structure tungsten/gadolinium oxide powder for X, ⁇ -ray protection, the method comprises the following steps:
  • step (2) adding the W@PDA obtained in step (1) into the gadolinium nitrate solution, stirring, filtering, and calcining at high temperature to obtain the core-shell structure W@Gd 2 O 3 powder.
  • the concentration of the solution should be controlled at 1.5-2.5g/L.
  • the main reason is that when the DA concentration is lower than 1.5g/L, only a small amount of PDA particles are deposited on the surface of W.
  • the DA concentration is 1.5-2.5g/L, a PDA film is formed on the surface of the W powder.
  • the concentration of DA was higher than 2.5 g/L, larger PDA particles were formed by self-polymerization on the surface of W powder due to the high concentration of DA, which was not conducive to the subsequent adsorption of gadolinium ions.
  • tris buffer should be added to the system to adjust the pH of the solution to 8-9, because dopamine can self-polymerize into polydopamine under weak alkaline and aerobic conditions.
  • Polydopamine has extraordinary surface activity and adhesion on the surface of different substances, which can provide a platform for the secondary functionalization of materials.
  • step (1) needs to be stirred under an electric stirrer for 18-24h.
  • step (1) water and ethanol need to be washed 2-3 times respectively.
  • step (1) the specific conditions for drying described in step (1) are not specifically limited, as long as the purpose of drying the sample can be achieved.
  • the concentration of the solution should be controlled at 0.3-0.5M/L. Because when the Gd + concentration is 0.02 M/L, the surface of W is coated with a small amount and sparse nano-dot-like Gd 2 O 3 particles. When the Gd + concentration increases to 0.1M/L, the Gd 2 O 3 nanoparticles on the W surface become larger and larger, which is due to the increase of Gd + concentration. The Gd 2 O 3 nanoparticles combine with each other to form larger Gd 2 O 3 particles. When the Gd + concentration increased to 0.2 M/L, the Gd 2 O 3 nanoparticles on the W surface became larger and denser.
  • the Gd 2 O 3 nanoparticles on the W surface were combined with each other to form the core-shell structured W@Gd 2 O 3 .
  • the Gd2O3 nanoparticles on the W surface did not change much compared to when the Gd + concentration was 0.3M/L, which was due to the chelation of Gd + by polydopamine on the W surface .
  • the synergistic effect has reached saturation at Gd + concentration of 0.3M/L, and excessive concentration will cause waste.
  • step (2) is not specifically limited, and only needs to be magnetically stirred for a certain period of time.
  • the high-temperature calcination in step (2) needs to be calcined in a muffle furnace at 800-1000° C. for 2-3 hours, and the heating temperature is 2-4° C./min.
  • the calcination in step (2) of the present invention is carried out in a protective gas, and the protective gas includes nitrogen or an inert gas, and the inert gas can be argon, helium, etc.
  • the protective gas includes nitrogen or an inert gas
  • the inert gas can be argon, helium, etc.
  • the invention does not make any special limitation on this.
  • the preparation method of the core-shell structure tungsten/gadolinium oxide powder for X, ⁇ -ray protection of the present invention comprises the following steps:
  • step (2) adding the W@PDA obtained in step (1) into the gadolinium nitrate solution with a concentration of 0.3-0.5M/L, magnetic stirring for a certain period of time, filtration and separation, drying, and then the prepared sample was heated at 800-1000 It was calcined at high temperature under nitrogen for 2-3h (the heating rate was 2-4°C/min), and finally the core-shell structure W@Gd 2 O 3 powder was obtained.
  • the core-shell structure W@Gd 2 O 3 powder prepared by the above preferred technical solution has a core-shell structure that can play a synergistic protective role in radiation protection and eliminates weak protection. At the same time, the secondary radiation generated by the radiation is effectively absorbed.
  • the present invention at least has the following beneficial effects:
  • the present invention firstly utilizes that dopamine can self-polymerize into polydopamine under weak alkaline and aerobic conditions, and polydopamine has extraordinary adhesion on the surfaces of different substances, and can successfully coat tungsten to obtain W@PDA.
  • the surface of PDA contains a large number of polar groups such as phenolic hydroxyl groups and amine groups, which provide abundant active sites for complexing various metal ions, which can effectively chelate Gd + in gadolinium nitrate solution.
  • PDA forms a nitrogen-doped carbon layer attached to the surface of tungsten, and the W@PDA chelated with Gd + transforms into W@Gd 2 O 3 .
  • Example 1 is a scanning electron microscope image of the core-shell structure tungsten/gadolinium oxide powder prepared in Example 1.
  • the present embodiment provides a preparation method of core-shell structure tungsten/gadolinium oxide powder for X, ⁇ -ray protection, and the method includes the following steps:
  • step (2) The W@PDA obtained in step (1) was added to a solution of gadolinium nitrate with a concentration of 0.3M/L, and after magnetic stirring for 2h, filtration and separation were performed, and dried at 80°C for 5h, and then the prepared sample was heated at 800°C.
  • the core-shell structure W@Gd 2 O 3 powder was finally obtained by calcining at high temperature under nitrogen for 2 h (heating rate of 2 °C/min).
  • the W@Gd 2 O 3 powder prepared in this example was scanned by SEM, and the obtained photo is shown in Figure 1. It can be seen from the figure that a PDA film is formed on the surface of the W powder.
  • the present embodiment provides a preparation method of core-shell structure tungsten/gadolinium oxide powder for X, ⁇ -ray protection, and the method includes the following steps:
  • step (2) The W@PDA obtained in step (1) was added to a gadolinium nitrate solution with a concentration of 0.35M/L, and after magnetic stirring for 3h, filtration and separation were performed, and dried at 60°C for 8h, and then the prepared sample was heated at 900 °C.
  • the core-shell structure W@Gd 2 O 3 powder was finally obtained by calcining at high temperature under nitrogen for 2.5 h (heating rate of 3 °C/min).
  • the present embodiment provides a preparation method of core-shell structure tungsten/gadolinium oxide powder for X, ⁇ -ray protection, and the method includes the following steps:
  • step (2) The W@PDA obtained in step (1) was added to a gadolinium nitrate solution with a concentration of 0.4M/L, magnetically stirred for 2.5h, filtered and separated, dried at 70°C for 6h, and then the prepared sample was placed in The core-shell structure W@Gd 2 O 3 powder was finally obtained by calcining at 1000 °C under nitrogen for 3 h (the heating rate was 4 °C/min).

Abstract

一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法,通过(1)配置多巴胺盐溶液,加入缓冲液调节pH值,然后加入钨粉,搅拌,过滤,洗涤烘干后得到W@PDA,(2)将步骤(1)得到的W@PDA加入到硝酸钆溶液中,搅拌,过滤,经过高温煅烧得到核壳结构W@Gd 2O 3粉末,制备出的纳米粉体中坞/氧化钆核壳结构相较于单一金属物理共混的方式,在辐射防护方面可以起到协同防护作用,消除防护弱区同时能够将辐射所产生的二次辐射进行有效吸收,具有无铅和轻量化的特点,用于X、γ射线辐射防护。

Description

一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法 技术领域
本发明涉及制备防辐射材料制备领域,尤其涉及一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法。
背景技术
核技术的发展给人们带来便利的同时也产生了很多辐射危害,轻便灵活且防护性能优良的辐射防护用纺织品是当前研究的热点。辐射防护材料主要分为有铅材料和无铅两种。有铅主要以铅为主,虽防护效果优良,但具有毒性,强度较差且对低能X射线散射较大。无铅材料主要包括稀土元素以及锡、钨、铋等重金属化合物制成的复合材料,防护效果优良且轻质安全。
近年来具有特殊结构的微纳米核壳材料引起了人们的广泛关注。不同核壳微观结构的复合粒子会具有独特物理化学性质,这也导致其在光学、电子、催化、生物、辐射等众多领域都具有广阔的应用前景。在防辐射方面,相较于单一金属物理共混的方式,核壳结构辐射防护材料可以协同防护,消除防护弱区同时将辐射所产生的二次辐射进行有效吸收。核壳结构的制备方法主要有模板法、沉淀法、水热合成法、喷雾干燥法、层层自组装技术等。Li等人以二氧化硅为模板采用均相沉淀法制备了壳层厚度可控的氧化钆空心球。然而这些方法都存在工序多、耗时长等缺点,因此有必要指定一种有效的、简单的方法来克服这些缺陷。贻贝分泌的黏附蛋白具有很强的黏附能力,受此启发美国西北大学Messer Smith课题组在2007年发现了多巴胺(DA)在模拟海水的弱碱条件下可以在任何材料表面氧化自聚合成聚多巴胺。其聚合条件简单可控且具有优良的粘附性、亲水性、稳定性、生物相容性。同时,聚多巴胺上存在大量的酚羟基、胺基活性集团,为金属离子的络合提供了丰富的活性位点。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法。
本发明的目的可以通过以下技术方案来实现:
本发明提供了一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法,所述方法包括以下步骤:
(1)配置多巴胺盐溶液,加入缓冲液调节PH值,然后加入钨粉,搅拌,过滤,洗涤烘干后得到W@PDA;
(2)将步骤(1)得到的W@PDA加入到硝酸钆溶液中,搅拌,过滤,经过高温煅烧得到核壳结构W@Gd 2O 3粉末。
根据本发明,步骤(1)所述的配置多巴胺盐溶液,溶液浓度应控制在1.5-2.5g/L。主要是因为当DA浓度为低于1.5g/L时,W的表面只沉积有少量的PDA颗粒,当DA浓度为1.5- 2.5g/L时,在W粉的表面才形成了PDA薄膜。当DA的浓度高于2.5g/L时,由于DA浓度过高在W粉表面自聚合形成较大的PDA颗粒,又不利于后续对钆离子的吸附。
值得注意的是,步骤(1)在配置好多巴胺盐溶液后,要向体系中加入tris缓冲液调节溶液PH值为8-9,因为多巴胺在弱碱有氧的条件下可自聚合为聚多巴胺,在不同物质表面聚多巴胺均具有非凡的表面活性和黏附性,可以为材料的二次功能化提供平台。
进一步地,步骤(1)所述的搅拌,需在电动搅拌器下搅拌18-24h。
此外,对于步骤(1)所述的洗涤,需用水和乙醇分别洗涤2-3次。
还有,对于步骤(1)所述的烘干具体的条件不进行具体限定,只要能实现对试样的烘干目的即可。
根据本发明,步骤(2)所述的硝酸钆溶液,该溶液浓度应控制在0.3-0.5M/L。因为当Gd +浓度为0.02M/L时,W的表面包覆有少量且稀疏的纳米点状Gd 2O 3颗粒。当Gd +浓度增加到0.1M/L时,W表面的Gd 2O 3纳米颗粒变大增多,这是由于Gd +浓度的升高Gd 2O 3纳米颗粒互相结合形成更大的Gd 2O 3颗粒。当Gd +浓度增加到0.2M/L时,W表面的Gd 2O 3纳米颗粒变的更大且更为密集。随着Gd +浓度增加到0.3M/L,W表面的Gd 2O 3纳米颗粒相互结合形成核壳结构的W@Gd 2O 3。继续增加Gd +浓度到0.4M/L后,W表面的Gd 2O 3纳米颗粒相比于Gd +浓度为0.3M/L时没有太大变化,这是由于W表面的聚多巴胺对Gd +螯合作用在Gd +浓度为0.3M/L已经达到了饱和,浓度过高会造成浪费。
进一步地,步骤(2)所述的搅拌,无具体限定,只需磁力搅拌一定时间即可。
此外,步骤(2)所述的高温煅烧,需在马弗炉里800-1000℃条件下煅烧2-3h,升温温度为2-4℃/min。为避免在反应过程中生成杂质,本发明步骤(2)所述煅烧在保护性气体中进行,所述保护性气体包括氮气或惰性气体,所述惰性气体可以为氩气、氦气等,本发明对此不作特殊限定。
作为优选的技术方案,本发明所述的一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法包括以下步骤:
(1)配置1.5g/L-2.5g/L浓度的多巴胺盐溶液,加入tris缓冲液调节PH至8-9,然后加入用乙醇清洗干净的钨粉,利用电动搅拌器搅拌18-24h后过滤分离,再分别用去离子水和乙醇洗涤2-3次后烘干,得到W@PDA:
(2)将步骤(1)得到的W@PDA加入到0.3-0.5M/L浓度的硝酸钆溶液中,磁力搅拌一定时间后,过滤分离,烘干,再将制得的样品在800-1000℃下通氮气高温煅烧2-3h(升温速率2-4℃/min),最后得到核壳结构W@Gd 2O 3粉末。
采用上述优选的技术方案制得的核壳结构W@Gd 2O 3粉末,相比于钨和氧化钆共混粉末而言,核壳结构在辐射防护方面可以起到协同防护作用,消除防护弱区同时将辐射所产生的二次辐射进行有效吸收。
与现有技术方案相比,本发明至少具有以下有益效果:
本发明首先利用多巴胺在在弱碱有氧的条件下可自聚合为聚多巴胺,并且聚多巴胺在不同物质表面均具有非凡的黏附性,能够成功包覆钨,得到W@PDA。
PDA表面含有大量的酚羟基、胺基等极性基团,为络合各种金属离子提供了丰富的活性位点,能够有效地和硝酸钆溶液中的Gd +进行螯合。经过高温煅烧后PDA形成氮掺杂碳层附着在钨表面,而与Gd +发生螯的W@PDA转变成W@Gd 2O 3
附图说明
图1为实施例1制得的核壳结构钨/氧化钆粉末的扫描电镜图。
具体实施方式
为更好地说明本发明,便于理解本发明的技术方案,本发明的典型但非限制性的实施例如下:
实施例1
本实施例提供了一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法,所述方法包括以下步骤为:
(1)配置2g/L浓度的多巴胺盐溶液,加入tris缓冲液调节溶液PH值为8.5,然后加入用乙醇清洗干净的钨粉,利用电动搅拌器搅拌24h后过滤分离,再分别用去离子水和乙醇洗涤2次后,在80℃下烘干5h,得到W@PDA;
(2)将步骤(1)得到的W@PDA加入到0.3M/L浓度的硝酸钆溶液中,磁力搅拌2h后,过滤分离,在80℃下烘干5h,再将制得的样品在800℃下通氮气高温煅烧2h(升温速率2℃/min),最后得到核壳结构W@Gd 2O 3粉末。
对本实施例制备得到的W@Gd 2O 3粉末进行了SEM扫描,所得照片如图1所示,由图中可以看出,在W粉的表面形成了PDA薄膜。
实施例2
本实施例提供了一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法,所述方法包括以下步骤为:
(1)配置1.5g/L浓度的多巴胺盐溶液,加入tris缓冲液调节溶液PH值为8,然后加入用乙醇清洗干净的钨粉,利用电动搅拌器搅拌20h后过滤分离,再分别用去离子水和乙醇洗涤3次后,在60℃下烘干8h,得到W@PDA;
(2)将步骤(1)得到的W@PDA加入到0.35M/L浓度的硝酸钆溶液中,磁力搅拌3h后,过滤分离,在60℃下烘干8h,再将制得的样品在900℃下通氮气高温煅烧2.5h(升温速率3℃/min),最后得到核壳结构W@Gd 2O 3粉末。
实施例3
本实施例提供了一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法,所述方法包括以下步骤为:
(1)配置2.5g/L浓度的多巴胺盐溶液,加入tris缓冲液调节溶液PH值为9,然后加入用乙醇清洗干净的钨粉,利用电动搅拌器搅拌18h后过滤分离,再分别用去离子水和乙醇洗涤2次后,在70℃下烘干6h,得到W@PDA;
(2)将步骤(1)得到的W@PDA加入到0.4M/L浓度的硝酸钆溶液中,磁力搅拌2.5h后,过滤分离,在70℃下烘干6h,再将制得的样品在1000℃下通氮气高温煅烧3h(升温速率4℃/min),最后得到核壳结构W@Gd 2O 3粉末。
上述对实施例的描述是为了便于该技术领域的普通技术人员能理解和使用发 明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

  1. 一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法,其特征在于,所述方法包括以下步骤:
    (1)配置多巴胺盐溶液,加入缓冲液调节PH值,然后加入钨粉,搅拌,过滤,洗涤烘干后得到W@PDA:
    (2)将步骤(1)得到的W@PDA加入到硝酸钆溶液中,搅拌,过滤,经过高温煅烧得到核壳结构W@Gd 2O 3粉末。
  2. 如权利要求1所述的X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法,其特征在于,在步骤(1)所述加入缓冲液调节PH值,所述缓冲液为tris,所述PH值为8-9。
  3. 如权利要求1所述的X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法,其特征在于,在步骤(1)所述钨粉为用乙醇清洗过的钨粉。
  4. 如权利要求1所述的X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法,其特征在于,在步骤(1)所述搅拌为电动搅拌器搅拌18-24h。
  5. 如权利要求1所述的X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法,其特征在于,在步骤(1)所述洗涤为用去离子水和乙醇分别清洗2-3次。
  6. 如权利要求1所述的X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法,其特征在于,在步骤(1)所述多巴胺盐溶液浓度为1.5g/L-2.5g/L。
  7. 如权利要求1所述的X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法,其特征在于,在步骤(2)所述高温煅烧温度为800-1000℃,时间为2-3h,升温速率为2-4℃/min。
  8. 如权利要求1所述的X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法,其特征在于,在步骤(2)所述煅烧在保护性气体中进行,所述保护性气体为氮气或惰性气体。
  9. 如权利要求1所述的X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法,其特征在于,在步骤(2)所述硝酸钆溶液浓度为0.3-0.5M/L。
  10. 如权利要求1-9任一项所述的X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法,其特征在于,所述方法包括以下步骤:
    (1)配置1.5g/L-2.5g/L浓度的多巴胺盐溶液,加入tris缓冲液调节PH至8-9,然后加入用乙醇清洗干净的钨粉,利用电动搅拌器搅拌18-24h后过滤分离,再分别用去离子水和乙醇洗涤2-3次后烘干,得到W@PDA;
    (2)将步骤(1)得到的W@PDA加入到0.3-0.5M/L浓度的硝酸钆溶液中,磁力搅拌一定时间后,过滤分离,烘干,再将制得的样品在800-1000℃下通氮气高温煅烧2-3h(升温速率2-4℃/min),最后得到核壳结构W@Gd 2O 3粉末。
PCT/CN2021/112700 2021-02-08 2021-08-16 一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法 WO2022166152A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110179938.4A CN112846173A (zh) 2021-02-08 2021-02-08 一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法
CN202110179938.4 2021-02-08

Publications (1)

Publication Number Publication Date
WO2022166152A1 true WO2022166152A1 (zh) 2022-08-11

Family

ID=75989512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112700 WO2022166152A1 (zh) 2021-02-08 2021-08-16 一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法

Country Status (2)

Country Link
CN (1) CN112846173A (zh)
WO (1) WO2022166152A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112831855B (zh) * 2021-02-08 2022-05-31 南通大学 一种X,γ射线防护用核壳结构钨/氧化钆功能纤维的制备方法
CN112831078B (zh) * 2021-02-08 2022-08-16 南通大学 一种X,γ射线防护用核壳结构钨/氧化钆PVC压延材料的制备方法
CN112846173A (zh) * 2021-02-08 2021-05-28 南通大学 一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060255299A1 (en) * 2005-05-10 2006-11-16 Edwards Carls S Optimized nuclear radiation shielding within composite structures for combined man made and natural radiation environments
US20070194256A1 (en) * 2005-05-10 2007-08-23 Space Micro, Inc. Multifunctional radiation shield for space and aerospace applications
US20080128658A1 (en) * 2002-12-17 2008-06-05 Hardy Jungermann Lead-free mixture as a radiation protection additive
KR20140121018A (ko) * 2013-04-04 2014-10-15 한국기계연구원 폴리도파민을 이용한 탄소 코팅된 금속입자의 제조방법 및 이를 통해 제조된 탄소 코팅된 금속입자
CN108940269A (zh) * 2017-11-03 2018-12-07 深圳大学 一种纳米合金及其制备方法
CN111250697A (zh) * 2020-02-18 2020-06-09 太原理工大学 一种氧化钆/钨/铝中子和伽马射线核壳共屏蔽材料的制备方法
CN112831078A (zh) * 2021-02-08 2021-05-25 南通大学 一种X,γ射线防护用核壳结构钨/氧化钆PVC压延材料的制备方法
CN112831855A (zh) * 2021-02-08 2021-05-25 南通大学 一种X,γ射线防护用核壳结构钨/氧化钆功能纤维的制备方法
CN112846173A (zh) * 2021-02-08 2021-05-28 南通大学 一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法
CN112900155A (zh) * 2021-02-08 2021-06-04 南通大学 一种X、γ射线防护用无纺布的制备方法
CN112900110A (zh) * 2021-02-08 2021-06-04 南通大学 一种X,γ射线防护用核壳结构钨/氧化钆PU涂层面料的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102206490B (zh) * 2010-03-30 2013-06-26 海洋王照明科技股份有限公司 核壳结构红色荧光粉的制备方法及其制备的核壳结构红色荧光粉
CN102441667B (zh) * 2011-09-26 2014-10-01 昆明理工大学 一种核壳结构的La掺杂TiO2粉体及其制备方法
WO2016061721A1 (zh) * 2014-10-20 2016-04-28 中南大学 一种稀土氧化物弥散强化细晶钨材料的制备方法
CN105521772A (zh) * 2016-01-07 2016-04-27 上海工程技术大学 一种磁性核壳结构纳米材料及其制备方法和应用
CN106925772B (zh) * 2017-04-17 2018-08-14 中国工程物理研究院化工材料研究所 微/纳米核壳结构复合材料的制备方法
CN108654607B (zh) * 2018-04-10 2021-02-05 苏州大学 核壳结构的银纳米颗粒/碳/二氧化钛纳米复合物的制备方法
CN108689422B (zh) * 2018-06-05 2020-05-12 常州市卓群纳米新材料有限公司 一种大比表面积纳米氧化钆粉体的制备方法
CN109395762B (zh) * 2018-11-29 2021-07-13 武汉工程大学 一种具有核壳结构的二氧化锡/氮掺杂石墨/硫化锌复合材料及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080128658A1 (en) * 2002-12-17 2008-06-05 Hardy Jungermann Lead-free mixture as a radiation protection additive
US20060255299A1 (en) * 2005-05-10 2006-11-16 Edwards Carls S Optimized nuclear radiation shielding within composite structures for combined man made and natural radiation environments
US20070194256A1 (en) * 2005-05-10 2007-08-23 Space Micro, Inc. Multifunctional radiation shield for space and aerospace applications
KR20140121018A (ko) * 2013-04-04 2014-10-15 한국기계연구원 폴리도파민을 이용한 탄소 코팅된 금속입자의 제조방법 및 이를 통해 제조된 탄소 코팅된 금속입자
CN108940269A (zh) * 2017-11-03 2018-12-07 深圳大学 一种纳米合金及其制备方法
CN111250697A (zh) * 2020-02-18 2020-06-09 太原理工大学 一种氧化钆/钨/铝中子和伽马射线核壳共屏蔽材料的制备方法
CN112831078A (zh) * 2021-02-08 2021-05-25 南通大学 一种X,γ射线防护用核壳结构钨/氧化钆PVC压延材料的制备方法
CN112831855A (zh) * 2021-02-08 2021-05-25 南通大学 一种X,γ射线防护用核壳结构钨/氧化钆功能纤维的制备方法
CN112846173A (zh) * 2021-02-08 2021-05-28 南通大学 一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法
CN112900155A (zh) * 2021-02-08 2021-06-04 南通大学 一种X、γ射线防护用无纺布的制备方法
CN112900110A (zh) * 2021-02-08 2021-06-04 南通大学 一种X,γ射线防护用核壳结构钨/氧化钆PU涂层面料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAO YANG, QIANG GAO, LIRONG YAO, DONG LIANG: "Preparation and Radiation Protection Property Study of Lead-free Protective Fabric", COTTON TEXTILE TECHNOLOGY, vol. 49, no. 7, 31 July 2021 (2021-07-31), pages 6 - 10, XP055956088, ISSN: 1000-7415 *
ZHANG PENG; JIA CHENGPENG; LI JING; WANG WENXIAN: "Shielding composites for neutron and gamma-radiation with Gd2O3@W core-shell structured particles", MATERIALS LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 276, 1 June 2020 (2020-06-01), AMSTERDAM, NL , XP086234177, ISSN: 0167-577X, DOI: 10.1016/j.matlet.2020.128082 *

Also Published As

Publication number Publication date
CN112846173A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
WO2022166171A1 (zh) 一种X,γ射线防护用核壳结构钨/氧化钆PU涂层面料的制备方法
WO2022166152A1 (zh) 一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法
WO2022166151A1 (zh) 一种X,γ射线防护用核壳结构钨/氧化钆功能纤维的制备方法
WO2022166142A1 (zh) 一种X,γ射线防护用核壳结构钨/氧化钆PVC压延材料的制备方法
CN103811130B (zh) 石墨烯复合银浆制备方法及石墨烯复合银浆
CN104277626B (zh) 空气净化漆及其制备方法
CN105478120A (zh) 一种赤泥基铁系催化剂的制备方法及其在甲烷裂解制氢中的应用
CN112900155B (zh) 一种X、γ射线防护用无纺布的制备方法
CN106492847B (zh) 负载有光催化剂的纤维素纳米纤丝气凝胶及其制备方法
CN106028768A (zh) 一种镀铁石墨烯及制备方法
CN108610015B (zh) 一种基于煤矸石的微波吸收材料制备方法
CN108611653A (zh) 一种负载磁性纳米粒子的钒酸铋复合材料及其制备和应用
CN113818043B (zh) 一种钒酸铋-金属有机配合物复合光电极及其制备方法和应用
CN113145154B (zh) 一种光催化还原含铬(vi)废水复合催化剂的制备方法
CN110344096B (zh) 一种AgSbS2敏化TiO2复合膜材料及其制备和应用
CN106128546B (zh) 钌酸锶纳米颗粒复合银浆及其制备方法
CN107081061A (zh) 复合型净醛材料及其制备方法
CN114592228A (zh) 一种可见光均匀高吸收的镁合金表面处理方法
Qi et al. Photocatalytic performance of titanium dioxide nanoparticles doped with multi-metals
CN112795926A (zh) 一种纳米复合膜材料及其应用
CN114250472A (zh) 一种BiVO4/CoP薄膜电极及其制备方法和应用
CN110993367A (zh) 球状碳@锰氧化物@碳@铁氧化物复合材料及制备与应用
CN114011441B (zh) 一种复合光催化剂及其制备方法
CN114606501B (zh) 一种氧缺陷钒酸铋/磷化铁复合光电极及其制备方法和应用
CN117444227B (zh) 银粉、导电银浆及其制备方法和应用

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924152

Country of ref document: EP

Kind code of ref document: A1