WO2016061721A1 - 一种稀土氧化物弥散强化细晶钨材料的制备方法 - Google Patents

一种稀土氧化物弥散强化细晶钨材料的制备方法 Download PDF

Info

Publication number
WO2016061721A1
WO2016061721A1 PCT/CN2014/088882 CN2014088882W WO2016061721A1 WO 2016061721 A1 WO2016061721 A1 WO 2016061721A1 CN 2014088882 W CN2014088882 W CN 2014088882W WO 2016061721 A1 WO2016061721 A1 WO 2016061721A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
earth oxide
tungsten
rare
preparing
Prior art date
Application number
PCT/CN2014/088882
Other languages
English (en)
French (fr)
Inventor
范景莲
韩勇
李鹏飞
刘涛
成会朝
田家敏
Original Assignee
中南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中南大学 filed Critical 中南大学
Priority to CN201480034843.1A priority Critical patent/CN105518169B/zh
Priority to PCT/CN2014/088882 priority patent/WO2016061721A1/zh
Priority to US14/901,780 priority patent/US20170225234A1/en
Publication of WO2016061721A1 publication Critical patent/WO2016061721A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/30Making metallic powder or suspensions thereof using chemical processes with decomposition of metal compounds, e.g. by pyrolysis
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1026Alloys containing non-metals starting from a solution or a suspension of (a) compound(s) of at least one of the alloy constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0031Matrix based on refractory metals, W, Mo, Nb, Hf, Ta, Zr, Ti, V or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/04Nanocrystalline

Definitions

  • the invention relates to the field of nano materials and powder metallurgy, in particular to a preparation method of rare earth oxide dispersion strengthened fine grain tungsten material prepared by nano composite technology.
  • Tungsten has high melting point, high hardness, good high temperature strength, thermal conductivity, electrical conductivity, low coefficient of thermal expansion, low sputtering with plasma, no chemical reaction with H, low H + retention, etc.
  • High-temperature structural materials and functional materials are widely used as materials for plasma materials and divertor components in the field of nuclear fusion.
  • pure tungsten materials are typical high temperature materials that are widely used at present.
  • high-purity powder and material grain boundary purification methods are used at home and abroad to prepare sintered pure tungsten materials, and then tungsten materials are strengthened by large deformation processing methods.
  • the grain size is about 100 ⁇ m
  • the ductile-brittle transition temperature (DBTT) is 300-350 °C.
  • the crystallization temperature is 1300 ⁇ 1350 °C
  • the tensile strength at room temperature is above 500MPa
  • the tensile strength at 1000 °C is 400MPa.
  • pure tungsten materials have defects such as very coarse structure, fibrous orientation, high DBTT, low recrystallization temperature, and high brittleness.
  • second phase particles to refine tungsten grains and to diffusely strengthen pure tungsten has become an important direction of current development. Based on this, domestic Zhou Zhangjian et al.
  • the above preparation method has some problems: the preparation of the powder by high-energy ball milling or mechanical alloying tends to produce uneven distribution of components and introduction of heterogeneous impurities, and the sintering method of SPS and hot pressing is not suitable for large-scale preparation of engineering. While Guo Zhimeng et al.'s method improves the uniformity of dispersion distribution of oxides in tungsten matrix, Ni element must be added as a sintering activator, while Ni element is strictly prohibited in many fields, such as nuclear fusion and nuclear fission. This will impose huge limitations on the scope of its application.
  • the inventor of the present patent has applied for and obtained a national invention patent 'Preparation method of ultrafine activated tungsten powder (patent number: ZL201010049432.3)', in which sol-spray drying-heat is applied.
  • the ultrafine or nano-activated tungsten powder is prepared by a reduction technique, and any one or more of Ni, Co, and Fe trace activation elements are added to the powder.
  • the powder composition of the invention is uniformly distributed and does not introduce an impurity element as compared with high energy ball milling or mechanical alloying.
  • the sol-spray drying method is used to directly prepare tungsten materials containing trace rare earth oxides.
  • the dispersion strengthening effect of rare earth oxide particles on tungsten is very limited, resulting in poor performance of materials. It is difficult to meet the requirements for the use of nuclear fusion tungsten materials.
  • the present invention employs heterogeneous precipitation - spray drying - Calcination - Thermal reduction - Preparation by conventional sintering technology
  • High performance rare earth oxide dispersion strengthened fine grain tungsten material The rare earth oxide dispersion-enhanced fine-grained tungsten material prepared by the method of the invention has a density close to full density ( ⁇ 98.5%), the rare earth oxide particles are uniformly distributed in the tungsten grains and the tungsten grain boundaries, the structure is uniform and fine, and the average grain size is 10 ⁇ m. Below, it has good room temperature, high temperature mechanical properties and high heat load impact resistance.
  • the present invention provides a rare earth oxide super-uniform dispersion-distributed fine-grained tungsten material, characterized in that the fine-grained tungsten material contains one or more of Y 2 O 3 , La 2 O 3 and CeO 2 And the mass percentage of the rare earth oxide ranges from 0.1 to 2%, and the remaining component is W.
  • the mass percentage of the rare earth oxide is 0.1 to 2%, and the remaining component is W.
  • the soluble rare earth salt and the tungstate are weighed and prepared into a rare earth salt solution of 50 to 100 g/L and a tungstate solution of 150 to 300 g/L, respectively.
  • the colloid is spray-dried at 350 ⁇ 450 °C to obtain a composite precursor powder of tungsten and rare earth oxide; the composite precursor powder is calcined at 300 ⁇ 600 °C, and the calcination time is 1 ⁇ 4h, and the solution is agglomerated and sieved.
  • the hydrogen is reduced at 600 ⁇ 850 °C for 2 ⁇ 6h to prepare ultrafine/nano tungsten powder containing trace rare earth oxides with a particle size of 50 ⁇ 500nm; the rare earth oxide is Y 2 O 3 One or more of La 2 O 3 or CeO 2 ;
  • the ultrafine/nano tungsten powder containing trace rare earth oxide in step (1) is 150 ⁇ 300MPa Forming or cold isostatic pressing;
  • the press-formed compact is subjected to conventional high-temperature sintering in a high-temperature sintering furnace at a sintering temperature of 1800 to 2000 °C.
  • the holding time is 1 ⁇ 5h, and the dense high-performance rare earth oxide super-diffused distribution enhanced fine-grained tungsten material is obtained.
  • the tungstate is ammonium metatungstate, ammonium paratungstate or ammonium tungstate.
  • the rare earth salt is a nitrate, oxalate, carbonate, chloride or sulfate of Y, La or Ce.
  • the stirring speed is 1000 ⁇ 5000 rpm.
  • the spray drying head rotates at a speed of 20,000 to 30,000 rpm.
  • the reaction dispersant is stearic acid, polyethylene glycol, urea, N, N-dimethylformamide, OP emulsifier, Tween-20 Or sodium dodecyl sulfate, the mass of the reaction dispersant is 0.1 ⁇ 1.5% of the mass of the rare earth salt solution or the tungstate solution.
  • the pH is controlled, the added acid is HCl, HNO 3 or oxalic acid; the added base is NaOH, KOH or ammonia.
  • the ultrafine tungsten composite powder containing trace rare earth oxide prepared by hydrogen reduction method has greater sintering activity; the powder prepared by the invention can reach 98.5% by conventional sintering at 1800-2000 °C.
  • the above density, sintered body grain size is 5 ⁇ 10 ⁇ m, and the structure is more uniform, with excellent room temperature, high temperature and toughness.
  • the invention adopts the conventional sintering method to prepare the rare earth oxide dispersion-strengthened fine-grained tungsten material, and the process is simple and suitable for engineering preparation.
  • a dispersion-strengthened fine-grained tungsten material having a composition of W-0.1 wt% Y 2 O 3 is prepared.
  • the soluble rare earth salt and the tungstate are weighed according to the mass ratio, that is, weighed 1.02 g of cerium nitrate, 411.27 g of ammonium metatungstate, respectively, was prepared into a 50 g/L rare earth salt solution and a 150 g/L tungsten salt solution.
  • Dispersing agent under the action of ultrasonic vibration and electric mixer stirring, the tungstate forms tungsten acid microparticles, and Y(OH) 3 colloidal particles are used as the core, and the precipitate is coated around the Y(OH) 3 colloidal particles to form a total Precipitating coated particle colloid;
  • the composite precursor powder was calcined at 350 °C for 2 h; after deagglomeration and sieving, it was kept at 78 ° C for 2 h under H 2 atmosphere; and an ultra-containing Y 2 O 3 was obtained . Fine tungsten powder.
  • a dispersion-strengthened fine-grained tungsten material having a composition of W-0.3 wt% La 2 O 3 is prepared.
  • the soluble rare earth salt and the tungstate are weighed according to the mass ratio, that is, weighed 1.53 g of bismuth oxalate, 410.45 g of ammonium paratungstate, respectively, were prepared into a 60 g/L rare earth salt solution and a 200 g/L tungsten salt solution.
  • the rare earth salt reacts with the base to form a uniform suspension of La(OH) 3 colloid; then the tungsten salt solution is added to the La(OH) 3 colloid, and the concentration of 10 wt% HCl is slowly added dropwise to adjust the pH to 6.8, and adding 1.5g PEG400 as a reaction dispersant, the tungstate is formed into tungstic acid microparticles under the action of ultrasonic vibration and electric mixer stirring, and La(OH) 3 colloidal particles are used as the core, and the precipitate is coated on La(OH). 3 ) around the colloidal particles, eventually forming a coprecipitated coated particle colloid;
  • the composite precursor powder was calcined at 350 °C for 2 h; after deagglomeration and sieving, it was kept at 78 ° C for 2 h under H 2 atmosphere; and an ultra-containing 0.3 wt% La 2 O 3 was obtained . Fine tungsten powder.
  • a dispersion-strengthened fine-grained tungsten material having a composition of W-0.5 wt% CeO 2 is prepared.
  • the soluble rare earth salt and the tungstate are weighed according to the mass ratio, that is, 2.10 g Barium carbonate, 409.6 g of ammonium tungstate, was prepared into a 70 g/L rare earth salt solution and a 220 g/L tungsten salt solution, respectively.
  • the tungstate is formed into tungstic acid microparticles under the action of ultrasonic vibration and electric mixer stirring, and Ce(OH) 3 colloidal particles are used as the core, and the precipitate is coated with Ce(OH) 3 colloid. Around the particles, a coprecipitated coated particle colloid is finally formed;
  • the composite precursor powder is calcined at 400 °C for 2 hours; after deagglomeration and sieving, it is reduced in two steps under H 2 atmosphere, the first step is kept at 60 ° C for 2 h, the second step is The steel was kept at 800 ° C for 2 h to obtain an ultrafine tungsten powder containing 0.5 wt% of CeO 2 .
  • the ultrafine W composite powder containing trace rare earth CeO 2 is cold isostatically pressed, and the compact is calcined and then sintered at 1950 ° C for 4 h to obtain W-0.5 wt% CeO 2 material.
  • the density of the material is 99.3.
  • the microstructure is fine and uniform, and the grain size is below 8 ⁇ m; the material does not crack on the surface of the sample under the impact of high heat flux density of 200 MW/m 2 .
  • a dispersion-strengthened fine-grained tungsten material having a composition of W-0.3 wt% Y 2 O 3 -0.3 wt% La 2 O 3 is prepared.
  • the soluble rare earth salt and the tungstate are weighed according to the mass ratio, that is, respectively weighed 1.52g bismuth nitrate, 2.18g lanthanum chloride, 409.2g ammonium metatungstate, lanthanum nitrate and lanthanum chloride are mixed to form 80g/L rare earth salt solution, 250g/L Tungsten salt solution.
  • the composite precursor powder was calcined at 400 °C for 3 h; after deagglomeration and sieving, it was kept at 80 ° C for 2 h under H 2 atmosphere; and 0.3 wt% La 2 O 3 -0.3 was obtained. Ultrafine tungsten powder of wt% La 2 O 3 .
  • the compact After molding the ultrafine WY 2 O 3 -La 2 O 3 composite tungsten powder, the compact is pre-fired at 1000 °C for 2 h and then sintered at 1920 °C for 3 h to obtain W-0.3 wt% Y 2 O 3 - 0.3wt% La 2 O 3 material, the density of the material is above 99.4%, the microstructure is fine and uniform, and the grain size is below 6 ⁇ m; the material does not crack on the surface of the sample under the impact of high heat flux density of 300MW/m 2 .
  • a dispersion-strengthened fine-grained tungsten material having a composition of W-0.3 wt% Y 2 O 3 - 0.3 wt% La 2 O 3 - 0.3 wt% CeO 2 is prepared.
  • the soluble rare earth salt and the tungstate are weighed according to the mass ratio, that is, respectively weighed 1.85g barium sulfate, 0.8g barium nitrate, 1.52g barium nitrate, 409g ammonium metatungstate, mixed with barium sulfate, barium nitrate and barium nitrate to prepare a 100g/L rare earth salt solution. 300 g / L of tungsten salt solution.
  • the tungstate is formed into a tungstic acid microparticle, and the Y(OH) 3 + La(OH) 3 + Ce(OH) 3 colloidal particle is used as a core, and the precipitate is coated on Y(OH) 3 + La(OH) 3 + Around the colloidal particles of Ce(OH) 3 , a coprecipitated coated particle colloid is finally formed;
  • the composite precursor powder is calcined at 500 °C for 3 hours; after deagglomeration and sieving, in the H 2 atmosphere, the first step is kept at 60 ° C for 2 h, and the second step is kept at 800 ° C. 4h, an ultrafine tungsten powder containing 0.3% by weight of La 2 O 3 -0.3% by weight of La 2 O 3 -0.3% by weight of CeO 2 was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Catalysts (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种稀土氧化物弥散强化细晶钨材料的制备方法,按稀土氧化物的质量百分数为0.1~2%,其余成分为W称取可溶性稀土盐和钨酸盐,分别配制成50~100g/L的稀土盐溶液和150~300g/L的钨酸盐溶液。首先在稀土盐中加入微量碱控制pH在7~8,加入有机分散剂,搅拌使稀土盐形成均匀悬浮R(OH) 3颗粒胶体(R代表稀土元素);然后将钨酸盐溶液加入到R(OH) 3胶体中,加入微量酸控制pH在6~7,并加入有机分散剂,搅拌使钨酸盐形成钨酸微粒子,以R(OH) 3胶体粒子为核心,沉淀包覆在R(OH) 3胶体粒子周围,最终形成共沉淀包覆粒子胶体。将共沉淀包覆粒子胶体喷雾干燥,得到钨与稀土氧化物的复合前驱体粉末;煅烧,经氢气热还原,制备出粒度在50~500nm的超细纳米钨粉。再经普通压制成形后,进行常规高温烧结。该方法制备的微量稀土氧化物弥散强化的高性能细晶钨材料,其致密度接近全致密(≥98.5%),钨晶粒均匀细小,平均在5~10μm,稀土氧化物颗粒均匀分布在钨晶内或晶界,颗粒尺寸在100nm~500nm。

Description

一种稀土氧化物弥散强化细晶钨材料的制备方法 技术领域
本发明涉及纳米材料领域和粉末冶金领域,特别是采用纳米复合技术制备的稀土氧化物弥散强化细晶钨材料制备方法。
技术背景
钨具有高熔点、高硬度,良好的高温强度、导热、导电性能,低的热膨胀系数,与等离子作用时低溅射、不与 H 发生化学反应、 H+ 滞留低等特性,是一种非常重要的高温结构材料和功能材料,在核聚变领域中被广泛用作面向等离子体材料和偏滤器部件材料。
在已获得应用的钨材料中,纯钨材料是目前应用非常广泛的典型高温材料。目前国内外采用粉末高纯化和材料晶界净化的手段制备烧结纯钨材料,然后经过大变形加工手段强化钨材料,晶粒度在 100μm 左右,韧脆转变温度( DBTT ) 300~350 ℃ ,再结晶温度 1300~1350 ℃ ,室温抗拉强度 500MPa 以上, 1000 ℃ 抗拉强度 400MPa 。然而,由于传统粉末烧结轧制方法的局限性,纯钨材料存在组织非常粗大、呈纤维状取向、 DBTT 高、再结晶温度低、脆性大等缺陷。添加第二相粒子细化钨晶粒、并起到弥散强化纯钨成为当前发展的一个重要方向。 基于此,国内周张健等人 2010 年在专利 ' 一种纳米氧化物弥散增强超细晶钨基复合材料的制备方法 ' (专利号: ZL201010250552.X )中,以钨粉、 Y2O3 或 Y 、烧结助剂 Ti 为原料,采用机械合金化的方法使钨粉与 Y2O3 或 Y 、以及 Ti 固溶形成超细合金化粉末,然后采用放电等离子体法烧结制备了稀土氧化钇弥散强化钨材料,其相对密度为 96%~99% ,钨晶粒尺寸 ≤3μm ,具有良好的力学性能和抗热冲击性能。此外, 国外 Kim 等人在 2009 年文章 ' Fabrication of high temperature oxides dispersion strengthened tungsten composites by spark plasma sintering process' 、 Mu ñoz 等人在 2011 年文章 ' La2O3-reinforced W and W-V alloys produced by hot isostatic pressing' 同样采用机械合金化制备钨与稀土氧化物复合粉末,并采用电火花等离子烧结( SPS )和热压方法制备出氧化物弥散强化钨材料,结果表明添加微量稀土氧化物可细化钨晶粒、提高强度和抗高热负荷性能。郭志猛等人在专利 ' 一种纳米氧化钇弥散强化钨合金的制备方法 ' (申请号: 201310123415.3 )中,对前面所述的制备方法做了改进:将硝酸钇溶于酒精,然后与仲钨酸铵( APT )进行混合球磨,干燥后氢还原后,然后掺入 0.1%~1%Ni 作为烧结活化剂,最后高温烧结制备出密度为 18.28~19.2g/cm3 的氧化物弥散分布的钨材料。以上的研究充分表明了在钨中添加稀土氧化物对于细化钨晶粒、提高钨的力学性能及抗热冲击性能方面的优势。但是,上述的制备方法存在一些问题:采用高能球磨或机械合金化制备粉末容易产生成分分布不均和引入异类杂质, 而 SPS 、热压的烧结方法不适合于工程的规模化制备。而郭志猛等人的方法虽然改善了氧化物在钨基体中的弥散分布均匀性,但是必须添加 Ni 元素作为烧结活化剂,而 Ni 元素在很多领域,如核聚变、核裂变领域中是严禁使用的,这将对其应用范围带来巨大限制。本专利发明人在前阶段已申请并获得了一项国家发明专利'一种超细活化钨粉的制备方法(专利号: ZL201010049432.3 )',在该发明中,采用溶胶 - 喷雾干燥 - 热还原技术制备超细或纳米活化钨粉,该粉末中添加有 Ni 、 Co 、 Fe 微量活化元素中的任意一种或多种。与高能球磨或机械合金化相比,该发明的粉末成分分布均匀,而且不引入杂质元素。但是由于钨与稀土氧化物颗粒表面的相容性差,采用溶胶 - 喷雾干燥法直接制备含微量稀土氧化物钨材料,稀土氧化物颗粒对钨的弥散强化作用非常有限,导致材料各项性能较差,难以满足核聚变钨材料使用要求。
发明内容
针对以上方法在制备高性能稀土氧化物弥散强化细晶钨材料方面存在的问题,本发明 采用非均相沉淀 - 喷雾干燥 - 煅烧 - 热还原 - 常规烧结技术制备 高性能稀土氧化物弥散强化细晶钨材料 。用本发明的方法制备的稀土氧化物弥散强化细晶钨材料,其致密度接近全致密( ≥98.5% ),稀土氧化物颗粒在钨晶粒内和钨晶界超均匀弥散分布,组织均匀且细小,平均晶粒度在 10μm 以下,具有良好的室温、高温力学性能和抗高热负荷冲击性能。
本发明所提供的一种稀土氧化物超均匀弥散分布强化细晶钨材料,其特征在于:所述细晶钨材料含有 Y2O3 、 La2O3 、 CeO2 其中的一种或多种,且稀土氧化物的质量百分数范围为 0.1 ~ 2% ,其余成分为 W 。
上述的一种稀土氧化物超均匀弥散分布强化细晶钨材料,其制备过程如下:
( 1 )按稀土氧化物的质量百分数为 0.1 ~ 2% ,其余成分为 W 。 称取可溶性稀土盐和钨酸盐,分别配制成 50 ~ 100g/L 的稀土盐溶液和 150~300g/L 的钨酸盐溶液。首先在稀土盐中加入碱控制 pH 在 7~8 ,并加入有机分散剂,搅拌使稀土盐形成均匀悬浮 R(OH)3 颗粒胶体( R 代表稀土元素);然后将钨酸盐溶液加入到 R(OH)3 胶体中,加入酸控制 pH 在 6~7 ,并加入有机分散剂,搅拌使钨酸盐形成钨酸微粒子,并以 R(OH)3 胶体粒子为核心,沉淀包覆在 R(OH)3 胶体粒子周围,最终形成共沉淀包覆粒子胶体。再将该胶体在 350~450 ℃喷雾干燥,得到钨与稀土氧化物的复合前驱体粉末; 将 复合前驱体 粉末在 300~600 ℃下煅烧,煅烧时间为 1~4h ,经解团聚、过筛后,在 600~850 ℃ 氢气热还原,还原时间为 2~6h ,制备出含微量稀土氧化物、粒度在 50~500nm 的超细 / 纳米钨粉;所述的稀土氧化物是 Y2O3 、 La2O3 或 CeO2 中的一种或多种;
( 2 )将步骤( 1 )中的含微量稀土氧化物的超细 / 纳米钨粉在 150~300MPa 下 采用模压或冷等静压普通压制成形;
( 3 )将压制 成形的压坯在高温烧结炉中进行常规高温烧结,烧结温度为 1800~2000 ℃ 、保温时间为 1 ~ 5h ,得到致密的高性能稀土氧化物超均匀弥散分布强化细晶钨材料。
所述的钨酸盐是偏钨酸铵、仲钨酸铵或钨酸铵。
所述的稀土盐是 Y 、 La 、 Ce 的硝酸盐、草酸盐、碳酸盐、氯化物或硫酸盐。
所述搅拌转速为 1000~5000 转 / 分。
所述喷雾干燥喷头转速为 20000~30000 转 / 分。
所述的反应分散剂为硬脂酸、聚乙二醇、尿素、 N,N- 二甲基甲酰胺、 OP 乳化剂、吐温 -20 或十二烷基磺酸钠,反应分散剂质量为稀土盐溶液或钨酸盐溶液质量的 0.1~1.5% 。
所述的控制 pH 值,加入的酸为 HCl 、 HNO3 或草酸;加入的碱为 NaOH 、 KOH 或氨水。
本发明相对于现有方法制备的氧化物弥散强化钨材料,其优点如下:
1. 与常规高能球磨机械合金化相比,采用'非均相沉淀 - 喷雾干燥' 将稀土氧化物加入到钨基体中,非均相沉淀改善钨与稀土氧化物颗粒表面的相容性,喷雾干燥实现粉末和合金中成分、组织的均匀性,因此稀土元素在钨基体中分布更加均匀,且不引进外来杂质;
2. 与高能球磨机械合金化相比,采用'非均相沉淀 - 喷雾干燥 - 煅烧 - 氢还原法'制备的含微量稀土氧化物的超细钨复合粉具有更大的烧结活性;采用本发明制备的粉末在 1800~2000 ℃ 下采用常规烧结即可达 98.5% 以上致密度,烧结体 晶粒尺寸为 5~ 10μm ,且组织更为均匀, 具有优异的室温、高温强韧性。
3. 本发明采用常规烧结手段制备稀土氧化物弥散强化细晶钨材料,工艺过程简单,适合工程化制备。
具体实施方式
以下结合实例进一步说明本发明,而非限制本发明
实施例 1 :
以制备成分为 W-0.1wt%Y2O3 的弥散强化细晶钨材料为例。
( 1 )首先根据最终所要制备的稀土氧化物质量分数,按质量比例称取可溶性稀土盐和钨酸盐,即称取 1.02g 硝酸钇, 411.27g 偏钨酸铵,分别配制成 50g/L 的稀土盐溶液和 150g/L 的钨盐溶液。
( 2 )首先在硝酸钇溶液中缓慢滴加入浓度为 10 wt% 的氨水,调节 pH 至 7.2 ,并加入 0.2g PEG400 作为反应分散剂,在超声波振动及电动搅拌机搅拌的作用下,使稀土盐与碱反应形成均匀悬浮 Y(OH)3 颗粒胶体;然后将钨盐溶液加入到 Y(OH)3 胶体中,缓慢滴加入浓度为 10 wt% 的草酸,调节 pH 至 6.5 ,并加入 2g PEG400 作为反应分散剂,在超声波振动及电动搅拌机搅拌的作用下使钨酸盐形成钨酸微粒子,并以 Y(OH)3 胶体粒子为核心,沉淀包覆在 Y(OH)3 胶体粒子周围,最终形成共沉淀包覆粒子胶体;
( 3 )然后,将该胶体在 360 ℃下进行喷雾干燥,喷雾转头转速为 20000 转 / 分,得到钨与稀土氧化钇的复合前驱体粉末。
( 4 ) 将 复合前驱体 粉末在 350 ℃下煅烧,煅烧时间为 2h ;经解团聚、过筛后,在 78 0 ℃、 H2 气氛下保温 4h ;得到含 0.1wt% Y2O3 的超细钨粉。
( 5 )将含 0.1wt% Y2O3 的超细 W 复合粉末模压成形,压坯预烧后再在 1950 ℃ 下烧结 2h ,得到 W-0.1wt%Y2O3 材料,该材料致密度在 99.2% 以上,显微组织细小且均匀,晶粒度在 10μm 以下;材料在 200MW/m2 高热流密度冲击下样品表面不出现开裂。
实施例 2 :
以制备成分为 W-0.3wt%La2O3 的弥散强化细晶钨材料为例。
( 1 )首先根据最终所要制备的稀土氧化物质量分数,按质量比例称取可溶性稀土盐和钨酸盐,即称取 1.53g 草酸镧, 410.45g 仲钨酸铵,分别配制成 60g/L 的稀土盐溶液和 200g/L 的钨盐溶液。
( 2 )首先在草酸镧溶液中缓慢滴加入浓度为 10 wt% 的 NaOH ,调节 pH 至 7.3 ,并加入 0.3g N,N- 二甲基甲酰胺作为反应分散剂,在超声波振动及电动搅拌机搅拌的作用下,使稀土盐与碱反应形成均匀悬浮 La(OH)3 颗粒胶体;然后将钨盐溶液加入到 La(OH)3 胶体中,缓慢滴加入浓度为 10 wt% 的 HCl ,调节 pH 至 6.8 ,并加入 1.5g PEG400 作为反应分散剂,在超声波振动及电动搅拌机搅拌的作用下使钨酸盐形成钨酸微粒子,并以 La(OH)3 胶体粒子为核心,沉淀包覆在 La(OH)3 胶体粒子周围,最终形成共沉淀包覆粒子胶体;
( 3 )然后,将该胶体在 400 ℃下进行喷雾干燥,喷雾转头转速为 20000 转 / 分,得到钨与稀土氧化镧的复合前驱体粉末。
( 4 ) 将 复合前驱体 粉末在 350 ℃下煅烧,煅烧时间为 2h ;经解团聚、过筛后,在 78 0 ℃、 H2 气氛下保温 4h ;得到含 0.3wt% La2O3 的超细钨粉。
( 5 )将含微量稀土 La2O3 的超细 W 复合粉末模压成形,压坯预烧后再在 1950 ℃ 下烧结 3h ,得到 W-0.3wt%La2O3 材料,该材料致密度在 99.1% 以上,显微组织细小且均匀,晶粒度在 8μm 以下;材料在 200MW/m2 高热流密度冲击下样品表面不出现开裂。
实施例 3 :
以制备成分为 W-0.5wt%CeO2 的弥散强化细晶钨材料为例。
( 1 )首先根据最终所要制备的稀土氧化物质量分数,按质量比例称取可溶性稀土盐和钨酸盐,即 2.10g 碳酸铈, 409.6g 钨酸铵,分别配制成 70g/L 的稀土盐溶液和 220g/L 的钨盐溶液。
( 2 )首先在碳酸铈溶液中缓慢滴加入浓度为 10 wt% 的 KOH ,调节 pH 至 7.5 ,并加入 0.3g 硬脂酸作为反应分散剂,在超声波振动及电动搅拌机搅拌的作用下,使稀土盐与碱反应形成均匀悬浮 Ce(OH)3 颗粒胶体;然后将钨盐溶液加入到 Ce(OH)3 胶体中,缓慢滴加入浓度为 10 wt% 的 HNO3 ,调节 pH 至 6.5 ,并加入 2.5g 硬脂酸作为反应分散剂,在超声波振动及电动搅拌机搅拌的作用下使钨酸盐形成钨酸微粒子,并以 Ce(OH)3 胶体粒子为核心,沉淀包覆在 Ce(OH)3 胶体粒子周围,最终形成共沉淀包覆粒子胶体;
( 3 )然后,将该胶体在 400 ℃下进行喷雾干燥,喷雾转头转速为 25000 转 / 分,得到钨与稀土氧化铈的复合前驱体粉末。
( 4 ) 将 复合前驱体 粉末在 400 ℃下煅烧,煅烧时间为 2h ;经解团聚、过筛后,在 H2 气氛下两步还原,第一步在 60 0 ℃ 保温 2h ,第二步在 800 ℃ 保温 2h ,得到含 0.5wt% CeO2 的超细钨粉。
( 5 )将含微量稀土 CeO2 的超细 W 复合粉末冷等静压成形,压坯预烧后再在 1950 ℃ 下烧结 4h ,得到 W-0.5wt%CeO2 材料,该材料致密度在 99.3% 以上,显微组织细小且均匀,晶粒度在 8μm 以下;材料在 200MW/m2 高热流密度冲击下样品表面不出现开裂。
实施例 4 :
以制备成分为 W-0.3wt%Y2O3-0.3wt%La2O 3 的弥散强化细晶钨材料为例。
( 1 )首先根据最终所要制备的稀土氧化物质量分数,按质量比例称取可溶性稀土盐和钨酸盐,即分别称取 1.52g 硝酸钇、 2.18g 氯化镧, 409.2g 偏钨酸铵,将硝酸钇和氯化镧混合配制成 80g/L 的稀土盐溶液,配置 250g/L 的钨盐溶液。
( 2 )首先在硝酸钇和氯化镧混合溶液中缓慢滴加入浓度为 10 wt% 的氨水,调节 pH 至 7.8 ,并加入 0.4g 十二烷基磺酸钠作为反应分散剂,在超声波振动及电动搅拌机搅拌的作用下,使稀土盐与碱反应形成均匀悬浮 Y(OH)3+ La(OH)3 颗粒胶体;然后将钨盐溶液加入到 Y(OH)3+ La(OH)3 胶体中,缓慢滴加入浓度为 10 wt% 的草酸,调节 pH 至 6.2 ,并加入 3.0g 十二烷基磺酸钠作为反应分散剂,在超声波振动及电动搅拌机搅拌的作用下使钨酸盐形成钨酸微粒子,并以 Y(OH)3+ La(OH)3 胶体粒子为核心,沉淀包覆在 Y(OH)3+ La(OH)3 胶体粒子周围,最终形成共沉淀包覆粒子胶体;
( 3 )然后,将该胶体在 450 ℃下进行喷雾干燥,喷雾转头转速为 25000 转 / 分,得到钨与稀土氧化钇 + 氧化镧的复合前驱体粉末。
( 4 ) 将 复合前驱体 粉末在 400 ℃下煅烧,煅烧时间为 3h ;经解团聚、过筛后,在 80 0 ℃、 H2 气氛下保温 3h ;得到含 0.3wt% La2O3-0.3wt%La2O3 的超细钨粉。
( 5 )将超细 W-Y2O3-La2O3 复合钨粉模压成形后,压坯在 1000 ℃ 预烧 2h ,再在 1920 ℃ 下烧结 3h ,得到 W-0.3wt%Y2O3-0.3wt%La2O 3 材料,该材料致密度在 99.4% 以上,显微组织细小且均匀,晶粒度在 6μm 以下;材料在 300MW/m2 高热流密度冲击下样品表面不出现开裂。
实施例 5 :
以制备成分为 W-0.3wt%Y2O3-0.3wt%La2O 3-0.3wt%CeO2 的弥散强化细晶钨材料为例。
( 1 )首先根据最终所要制备的稀土氧化物质量分数,按质量比例称取可溶性稀土盐和钨酸盐,即分别称取 1.85g 硫酸钇、 0.8g 硝酸镧、 1.52g 硝酸铈、 409g 偏钨酸铵,将硫酸钇、硝酸镧和硝酸铈混合配制成 100g/L 的稀土盐溶液,配置 300g/L 的钨盐溶液。
( 2 )首先在硫酸钇、硝酸镧和硝酸铈混合溶液中缓慢滴加入浓度为 10 wt% 的 NaOH ,调节 pH 至 8.0 ,并加入 0.5g 吐温 -20 作为反应分散剂,在超声波振动及电动搅拌机搅拌的作用下,使稀土盐与碱反应形成均匀悬浮 Y(OH)3+ La(OH)3+ Ce(OH)3 颗粒胶体;然后将钨盐溶液加入到 Y(OH)3+ La(OH)3+ Ce(OH)3 胶体中,缓慢滴加入浓度为 10 wt% 的 HCl ,调节 pH 至 6.0 ,并加入 4.0g 吐温 -20 作为反应分散剂,在超声波振动及电动搅拌机搅拌的作用下使钨酸盐形成钨酸微粒子,并以 Y(OH)3+ La(OH)3+ Ce(OH)3 胶体粒子为核心,沉淀包覆在 Y(OH)3+ La(OH)3+ Ce(OH)3 胶体粒子周围,最终形成共沉淀包覆粒子胶体;
( 3 )然后,将该胶体在 450 ℃下进行喷雾干燥,喷雾转头转速为 30000 转 / 分,得到钨与稀土氧化钇 + 氧化镧 + 氧化铈的复合前驱体粉末。
( 4 ) 将 复合前驱体 粉末在 500 ℃下煅烧,煅烧时间为 3h ;经解团聚、过筛后,在 H2 气氛下,第一步在 60 0 ℃ 保温 2h ,第二步在 800 ℃ 保温 4h ,得到含 0.3wt% La2O3-0.3wt%La2O3-0.3wt%CeO 2 的超细钨粉。 ( 5 )将含微量稀土 Y2O3 、 La2O3 、 CeO2 的超细 W 复合粉末模压成形,压坯预烧后再在 1950 ℃ 下烧结 4h ,得到 W-0.3wt%Y2O3- 0.3wt%La2O3-0.3wt%CeO2 材料,该材料致密度在 99.1% 以上,显微组织细小且均匀,晶粒度在 5μm 以下;材料在 300MW/m2 高热流密度冲击下样品表面不出现开裂。

Claims (7)

  1. 一种稀土氧化物弥散强化细晶钨材料的制备方法,其特征在于包括以下步骤:
    ( 1 )按稀土氧化物的质量百分数为 0.1 ~ 2% ,其余成分为 W ,称取可溶性稀土盐和钨酸盐,分别配制成 50 ~ 100g/L 的稀土盐溶液和 150~300g/L 的钨酸盐溶液;首先在稀土盐中加入碱控制 pH 在 7~8 ,并加入有机分散剂,搅拌使稀土盐形成均匀悬浮 R(OH)3 颗粒胶体, R 是稀土元素;然后将钨酸盐溶液加入到 R(OH)3 胶体中,加入酸控制 pH 在 6~7 ,并加入有机分散剂,搅拌使钨酸盐形成钨酸微粒子,并以 R(OH)3 胶体粒子为核心,沉淀包覆在 R(OH)3 胶体粒子周围,最终形成共沉淀包覆粒子胶体;再将该胶体在 350~450 ℃喷雾干燥,得到钨与稀土氧化物的复合前驱体粉末; 将 复合前驱体 粉末在 300~600 ℃下煅烧,煅烧时间为 1~4h ,经解团聚、过筛后,在 600~850 ℃ 氢气热还原,还原时间为 2~6h ,制备出含微量稀土氧化物、粒度在 50~500nm 的超细 / 纳米钨粉;所述的稀土氧化物是 Y2O3 、 La2O3 或 CeO2 中的一种或多种;
    ( 2 )将( 1 )中的含微量稀土氧化物的超细 / 纳米钨粉在 150~300MPa 下 采用模压或冷等静压普通压制成形;
    ( 3 )将压制 成形后的压坯在高温烧结炉中进行常规高温烧结,烧结温度为 1800~2000 ℃ ,保温时间为 1 ~ 5h ,得到致密的高性能稀土氧化物超均匀弥散分布强化细晶钨材料。
  2. 根据权利要求 1 所述的稀土氧化物弥散强化细晶钨材料的制备方法,其特征在于:所述的钨酸盐是偏钨酸铵、仲钨酸铵或钨酸铵。
  3. 根据权利要求 1 所述的稀土氧化物弥散强化细晶钨材料的制备方法,其特征在于:所述的稀土盐是 Y 、 La 、 Ce 的硝酸盐、草酸盐、碳酸盐、氯化物或硫酸盐。
  4. 根据权利要求 1 所述的稀土氧化物弥散强化细晶钨材料的制备方法,其特征在于:所述搅拌转速为 1000~5000 转 / 分。
  5. 根据权利要求 1 所述的稀土氧化物弥散强化细晶钨材料的制备方法,其特征在于:所述喷雾干燥喷头转速为 20000~30000 转 / 分。
  6. 根据权利要求 1 所述的稀土氧化物弥散强化细晶钨材料的制备方法,其特征在于:所述的反应分散剂为硬脂酸、聚乙二醇、尿素、 N,N- 二甲基甲酰胺、 OP 乳化剂、吐温 -20 或十二烷基磺酸钠,反应分散剂质量为稀土盐溶液或钨酸盐溶液质量的 0.1~1.5% 。
  7. 根据权利要求 1 所述的稀土氧化物弥散强化细晶钨材料的制备方法,其特征在于:步骤( 1 )所述的加入酸控制 pH 值,加入的酸为 HCl 、 HNO3 或草酸;在稀土盐中加入碱控制 pH 值,加入的碱为 NaOH 、 KOH 或氨水。
PCT/CN2014/088882 2014-10-20 2014-10-20 一种稀土氧化物弥散强化细晶钨材料的制备方法 WO2016061721A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480034843.1A CN105518169B (zh) 2014-10-20 2014-10-20 一种稀土氧化物弥散强化细晶钨材料的制备方法
PCT/CN2014/088882 WO2016061721A1 (zh) 2014-10-20 2014-10-20 一种稀土氧化物弥散强化细晶钨材料的制备方法
US14/901,780 US20170225234A1 (en) 2014-10-20 2014-10-20 A preparation method of rare earth oxide dispersion strengthened fine grain tungsten materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/088882 WO2016061721A1 (zh) 2014-10-20 2014-10-20 一种稀土氧化物弥散强化细晶钨材料的制备方法

Publications (1)

Publication Number Publication Date
WO2016061721A1 true WO2016061721A1 (zh) 2016-04-28

Family

ID=55724979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088882 WO2016061721A1 (zh) 2014-10-20 2014-10-20 一种稀土氧化物弥散强化细晶钨材料的制备方法

Country Status (3)

Country Link
US (1) US20170225234A1 (zh)
CN (1) CN105518169B (zh)
WO (1) WO2016061721A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113913665A (zh) * 2021-09-30 2022-01-11 中国科学院重庆绿色智能技术研究院 纳米氧化镧增强钨基复合材料及其制备方法
CN114959338A (zh) * 2022-05-16 2022-08-30 北京科技大学 一种机械合金化制备高强度高塑性钨合金的方法
CN115976388A (zh) * 2023-03-21 2023-04-18 新乡市东津机械有限公司 一种硬质合金、捣镐、磨耗板及其制造工艺
CN116103532A (zh) * 2023-02-28 2023-05-12 南昌大学 一种微量稀土氧化物强化无氧铜材及其制备方法
CN116253852A (zh) * 2022-12-22 2023-06-13 苏州羽燕新材料科技有限公司 一种改性热塑性聚氨酯弹性体的制备方法

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106564927B (zh) * 2016-11-04 2017-12-08 天津大学 超细氧化钇掺杂钨复合前驱体粉末的制备方法
CN107052356B (zh) * 2017-01-18 2019-01-15 天津大学 一种核壳结构的钨-氧化钇超细复合前驱体粉末的制备方法
CN107190195A (zh) * 2017-05-04 2017-09-22 鹤山市沃得钨钼实业有限公司 一种稀土钨合金坩埚及其制造方法
CN107227423A (zh) * 2017-06-12 2017-10-03 合肥工业大学 一种具有优异高温力学性能的钨‑氧化钇复合材料及其制备方法
CN107322002B (zh) * 2017-06-28 2020-01-17 合肥工业大学 一种稀土氧化物掺杂钨基复合粉体及其制备方法
CN107326240A (zh) * 2017-07-07 2017-11-07 合肥工业大学 一种超细晶TiC和Y2O3掺杂W基复合材料及其制备方法
US10906105B2 (en) 2018-04-20 2021-02-02 Raytheon Technologies Corporation Uniformly controlled nanoscale oxide dispersion strengthened alloys
CN110407254B (zh) * 2018-04-26 2021-08-20 南昌大学 一种含钇的仲钨酸铵复合粉末的制备方法
CN109022883A (zh) * 2018-08-17 2018-12-18 佛山皖和新能源科技有限公司 一种风力发电机用合金材料的制备方法
CN109095471A (zh) * 2018-10-29 2018-12-28 合肥工业大学 一种具有核壳结构的wc包覆稀土氧化物无粘结相硬质合金的制备方法
CN109676124B (zh) * 2018-12-24 2020-02-28 北京科技大学 一种金属材料的烧结致密化及晶粒尺寸控制方法
US11673196B2 (en) 2018-12-24 2023-06-13 University Of Science And Technology Beijing Metal material sintering densification and grain size control method
CN109972018B (zh) * 2019-05-10 2020-07-07 赣州有色冶金研究所 一种WC-Co-RE复合粉及其制备方法与应用
CN110270692B (zh) * 2019-06-10 2020-08-25 北京科技大学 一种钨/稀土金属氧化物复合空心球形粉体的制备方法
CN111041318A (zh) * 2019-12-28 2020-04-21 泰州市华诚钨钼制品有限公司 一种钨铜合金及其制备方法
CN113102747A (zh) * 2020-01-13 2021-07-13 天津大学 一种在增材制造用金属粉末中掺杂稀土氧化物的制备方法
CN111644632A (zh) * 2020-04-20 2020-09-11 淮北师范大学 一种掺杂稀土氧化镧的tzm合金的制备方法
CN111547768A (zh) * 2020-04-26 2020-08-18 金堆城钼业股份有限公司 一种纳米掺杂制备稀土二钼酸铵的制备方法
CN111922330B (zh) * 2020-06-17 2022-04-22 广东省科学院新材料研究所 一种用于激光增材制造钨制品的金属钨粉和钨制品及其制备方法
CN111893339A (zh) * 2020-08-06 2020-11-06 合肥工业大学 一种湿化学法制备高性能WC-8Co-Y2O3硬质合金的方法
CN112030026B (zh) * 2020-08-31 2021-10-15 合肥工业大学 一种高硬度、高致密度复合稀土氧化物掺杂钨基复合材料的制备方法
CN112251622B (zh) * 2020-09-17 2022-03-18 洛阳科威钨钼有限公司 一种稀土掺杂冶炼金属用搅拌器的生产方法
CN112222420B (zh) * 2020-12-07 2021-03-16 西安稀有金属材料研究院有限公司 一种掺杂金属氧化物纳米颗粒的纳米钨粉及其制备方法
CN112570724B (zh) * 2020-12-11 2022-11-25 江西理工大学 一种稀土钨铜复合粉的制备方法
CN112872363A (zh) * 2021-01-12 2021-06-01 江西理工大学 一种稀土钴镍复合粉的制备方法
CN113186438B (zh) * 2021-01-20 2022-09-13 厦门虹鹭钨钼工业有限公司 一种合金线材及其制备方法与应用
CN112941386B (zh) * 2021-01-27 2022-10-14 北京控制工程研究所 一种用于磁等离子体动力推力器的阴极
CN112846173A (zh) * 2021-02-08 2021-05-28 南通大学 一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法
CN113106279A (zh) * 2021-03-01 2021-07-13 北京工业大学 一种多元掺杂氧化物弥散强化钨基合金及其制备方法与应用
CN113070482A (zh) * 2021-03-22 2021-07-06 中南大学 一种氧化物弥散强化铜基复合材料的制备方法
US20220411901A1 (en) * 2021-06-29 2022-12-29 General Electric Company Oxide dispersion strengthened refractory based alloy
CN113798504B (zh) * 2021-09-17 2023-08-22 郑州大学 3d打印用稀土氧化物弥散增强钨粉的制备方法
CN114480903B (zh) * 2022-01-26 2023-04-14 中南大学 一种高抗He等离子体辐照超细晶W-Y2O3复合材料及制备方法
CN114951639B (zh) * 2022-05-10 2023-11-14 厦门虹鹭钨钼工业有限公司 一种高密度细晶结构钼合金顶头及其制备方法
CN114752801B (zh) * 2022-05-12 2022-11-15 崇义章源钨业股份有限公司 一种板状晶强化网状结构硬质合金及其制备方法
CN114959339A (zh) * 2022-05-16 2022-08-30 北京科技大学 一种湿化学法制备高强度高塑性钨合金的方法
CN114951675B (zh) * 2022-05-30 2024-01-30 中国科学院合肥物质科学研究院 一种超细钨-钽纳米晶合金粉体及其制备方法
CN114990374A (zh) * 2022-06-08 2022-09-02 合肥工业大学 一种稀土氧化物颗粒增强钨钒固溶合金及其制备方法
CN115229181B (zh) * 2022-09-23 2022-12-09 西安稀有金属材料研究院有限公司 基于纳米级固液混合沉积制备超细二氧化钼和钼粉的方法
CN115415530B (zh) * 2022-10-13 2023-10-24 崇义章源钨业股份有限公司 一种含稀土的硬质合金及其制备方法
CN115533112B (zh) * 2022-10-17 2023-10-20 北京工业大学 一种复合稀土钨/钼酸盐共晶细化难熔金属的方法
CN115418616B (zh) * 2022-11-04 2023-02-10 广州市尤特新材料有限公司 一种电控变色玻璃用钨合金靶材及其制备方法
CN115992329B (zh) * 2023-03-22 2023-06-06 中钨稀有金属新材料(湖南)有限公司 一种钨棒坯及其应用
CN116119719B (zh) * 2023-04-18 2023-06-27 崇义章源钨业股份有限公司 一种超细板状氧化钨及其制备方法
CN116904821B (zh) * 2023-07-24 2023-12-08 湖南金博高新科技产业集团有限公司 一种含二元稀土复合氧化物的钨丝基材及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923673A (en) * 1988-10-17 1990-05-08 Gesellschaft Fur Wolfram-Industrie Mbh Method for producing alloyed tungsten rods
JP2002371301A (ja) * 2001-06-18 2002-12-26 Allied Material Corp タングステン焼結体およびその製造方法
JP2004083968A (ja) * 2002-08-26 2004-03-18 Mitsubishi Material Cmi Kk 高精度光学ガラスレンズの熱間プレス成形に用いるのに適したタングステン基焼結合金金型
CN1616185A (zh) * 2004-09-30 2005-05-18 北京工业大学 高含量多元复合稀土钨电极材料及其制备方法
CN101230427A (zh) * 2008-02-22 2008-07-30 中南大学 一种含稀土的细晶W-Ni-Fe合金的制备方法
CN103173641A (zh) * 2013-04-10 2013-06-26 北京科技大学 一种纳米氧化钇弥散强化钨合金的制备方法
CN103740994A (zh) * 2014-02-10 2014-04-23 中国科学院合肥物质科学研究院 纳米结构钨合金及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100375944B1 (ko) * 2000-07-08 2003-03-10 한국과학기술원 기계적 합금화에 의한 산화물 분산강화 텅스텐 중합금의 제조방법
CN101805867B (zh) * 2009-12-01 2012-11-21 中南大学 Si3N4基金属陶瓷及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923673A (en) * 1988-10-17 1990-05-08 Gesellschaft Fur Wolfram-Industrie Mbh Method for producing alloyed tungsten rods
JP2002371301A (ja) * 2001-06-18 2002-12-26 Allied Material Corp タングステン焼結体およびその製造方法
JP2004083968A (ja) * 2002-08-26 2004-03-18 Mitsubishi Material Cmi Kk 高精度光学ガラスレンズの熱間プレス成形に用いるのに適したタングステン基焼結合金金型
CN1616185A (zh) * 2004-09-30 2005-05-18 北京工业大学 高含量多元复合稀土钨电极材料及其制备方法
CN101230427A (zh) * 2008-02-22 2008-07-30 中南大学 一种含稀土的细晶W-Ni-Fe合金的制备方法
CN103173641A (zh) * 2013-04-10 2013-06-26 北京科技大学 一种纳米氧化钇弥散强化钨合金的制备方法
CN103740994A (zh) * 2014-02-10 2014-04-23 中国科学院合肥物质科学研究院 纳米结构钨合金及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113913665A (zh) * 2021-09-30 2022-01-11 中国科学院重庆绿色智能技术研究院 纳米氧化镧增强钨基复合材料及其制备方法
CN114959338A (zh) * 2022-05-16 2022-08-30 北京科技大学 一种机械合金化制备高强度高塑性钨合金的方法
CN116253852A (zh) * 2022-12-22 2023-06-13 苏州羽燕新材料科技有限公司 一种改性热塑性聚氨酯弹性体的制备方法
CN116253852B (zh) * 2022-12-22 2024-05-03 苏州羽燕特种材料科技有限公司 一种改性热塑性聚氨酯弹性体的制备方法
CN116103532A (zh) * 2023-02-28 2023-05-12 南昌大学 一种微量稀土氧化物强化无氧铜材及其制备方法
CN116103532B (zh) * 2023-02-28 2024-01-23 南昌大学 一种微量稀土氧化物强化无氧铜材及其制备方法
CN115976388A (zh) * 2023-03-21 2023-04-18 新乡市东津机械有限公司 一种硬质合金、捣镐、磨耗板及其制造工艺
CN115976388B (zh) * 2023-03-21 2023-07-04 新乡市东津机械有限公司 一种硬质合金、捣镐、磨耗板及其制造工艺

Also Published As

Publication number Publication date
US20170225234A1 (en) 2017-08-10
CN105518169A (zh) 2016-04-20
CN105518169B (zh) 2017-09-12

Similar Documents

Publication Publication Date Title
WO2016061721A1 (zh) 一种稀土氧化物弥散强化细晶钨材料的制备方法
CN104630532B (zh) 一种碳化物和稀土氧化物复合强化细晶钨材料的制备方法
CN110330333B (zh) 一种制备纳米级钇稳定氧化锆复合粉体的方法
CN108796265B (zh) 一种TiB纳米增强钛基复合材料的制备方法
AU2013340802B2 (en) Thermal spraying of ceramic materials
CN110560700B (zh) 一种制备高致密度超细晶稀土氧化物掺杂钨合金的方法
CN106435446A (zh) 等离子热喷涂法制备的cysz热障涂层及制备方法
US9878370B2 (en) Bimodal metal matrix nanocomposites and methods of making
CN108570569B (zh) 一种氮化铝弥散强化铜复合材料的内氮化制备方法
CN111206164B (zh) 一种高性能超细晶钼镧合金的制备方法
CN108788173B (zh) 一种超细氧化钇掺杂钨复合粉末的水热制备方法
CN113652568B (zh) 一种稀土氧化物颗粒增强钨钼固溶合金的制备方法
US4622068A (en) Sintered molybdenum alloy process
Taha et al. Mechanical alloying and sintering of a Ni/10wt.% Al 2 O 3 nanocomposite and its characterization
CN108772569A (zh) 一种超细纳米钨粉的水热制备方法
Sekino et al. Reduction and Sintering of Alumina/Tungsten Nanocomposites Powder Processing, Reduction Behavior and Microstructural Characterization
CN115229198B (zh) 一种Ti600钛合金球形粉及其制备方法和用途
Zhang et al. Effects of various rare earth oxides on morphology and size of oxide dispersion strengthening (ODS)-W and ODS-Mo alloy powders
CN111112641A (zh) 纳米钼铼合金粉末的制备方法
CN112222420B (zh) 一种掺杂金属氧化物纳米颗粒的纳米钨粉及其制备方法
CN115007871A (zh) 一种制备高强高塑钼合金的方法
Xue et al. Inducing crystallization in an amorphous lead zirconate titanate precursor by mechanical activation
CN110983087A (zh) 一种改善氧化钇弥散强化钨合金中氧化物分布的方法
JP4196179B2 (ja) 窒化ケイ素材料の製造方法
CN114540691B (zh) 一种抗高热负荷冲击高强韧细晶w基复合材料及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14904310

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14904310

Country of ref document: EP

Kind code of ref document: A1