WO2022166152A1 - PROCÉDÉ DE PRÉPARATION DE POUDRE D'OXYDE DE TUNGSTÈNE/GADOLINIUM À STRUCTURE CŒUR-ÉCORCE POUR LA PROTECTION CONTRE LES RAYONS X ET γ - Google Patents

PROCÉDÉ DE PRÉPARATION DE POUDRE D'OXYDE DE TUNGSTÈNE/GADOLINIUM À STRUCTURE CŒUR-ÉCORCE POUR LA PROTECTION CONTRE LES RAYONS X ET γ Download PDF

Info

Publication number
WO2022166152A1
WO2022166152A1 PCT/CN2021/112700 CN2021112700W WO2022166152A1 WO 2022166152 A1 WO2022166152 A1 WO 2022166152A1 CN 2021112700 W CN2021112700 W CN 2021112700W WO 2022166152 A1 WO2022166152 A1 WO 2022166152A1
Authority
WO
WIPO (PCT)
Prior art keywords
tungsten
core
powder
gadolinium oxide
oxide powder
Prior art date
Application number
PCT/CN2021/112700
Other languages
English (en)
Chinese (zh)
Inventor
姚理荣
夏勇
杨涛
孙通
潘刚伟
徐思峻
季涛
高强
Original Assignee
南通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通大学 filed Critical 南通大学
Publication of WO2022166152A1 publication Critical patent/WO2022166152A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal

Definitions

  • the invention relates to the field of preparation of radiation protection materials, in particular to a preparation method of core-shell structure tungsten/gadolinium oxide powder for X, gamma ray protection.
  • Radiation protection materials are mainly divided into two types: lead-containing materials and lead-free materials.
  • Lead is mainly based on lead.
  • the protective effect is excellent, it is toxic, has poor strength and has a large scattering of low-energy X-rays.
  • Lead-free materials mainly include composite materials made of rare earth elements and heavy metal compounds such as tin, tungsten, and bismuth, which have excellent protective effects and are lightweight and safe.
  • Micro-nano core-shell materials with special structures have attracted extensive attention in recent years.
  • Composite particles with different core-shell microstructures have unique physical and chemical properties, which also lead to their broad application prospects in many fields such as optics, electronics, catalysis, biology, and radiation.
  • the core-shell structure radiation protection material can cooperate in protection, eliminating the weak protection area and effectively absorbing the secondary radiation generated by the radiation.
  • the preparation methods of core-shell structures mainly include template method, precipitation method, hydrothermal synthesis method, spray drying method, layer-by-layer self-assembly technology, etc. Li et al.
  • the purpose of the present invention is to provide a preparation method of core-shell structure tungsten/gadolinium oxide powder for X, ⁇ -ray protection in order to overcome the above-mentioned defects of the prior art.
  • the invention provides a preparation method of core-shell structure tungsten/gadolinium oxide powder for X, ⁇ -ray protection, the method comprises the following steps:
  • step (2) adding the W@PDA obtained in step (1) into the gadolinium nitrate solution, stirring, filtering, and calcining at high temperature to obtain the core-shell structure W@Gd 2 O 3 powder.
  • the concentration of the solution should be controlled at 1.5-2.5g/L.
  • the main reason is that when the DA concentration is lower than 1.5g/L, only a small amount of PDA particles are deposited on the surface of W.
  • the DA concentration is 1.5-2.5g/L, a PDA film is formed on the surface of the W powder.
  • the concentration of DA was higher than 2.5 g/L, larger PDA particles were formed by self-polymerization on the surface of W powder due to the high concentration of DA, which was not conducive to the subsequent adsorption of gadolinium ions.
  • tris buffer should be added to the system to adjust the pH of the solution to 8-9, because dopamine can self-polymerize into polydopamine under weak alkaline and aerobic conditions.
  • Polydopamine has extraordinary surface activity and adhesion on the surface of different substances, which can provide a platform for the secondary functionalization of materials.
  • step (1) needs to be stirred under an electric stirrer for 18-24h.
  • step (1) water and ethanol need to be washed 2-3 times respectively.
  • step (1) the specific conditions for drying described in step (1) are not specifically limited, as long as the purpose of drying the sample can be achieved.
  • the concentration of the solution should be controlled at 0.3-0.5M/L. Because when the Gd + concentration is 0.02 M/L, the surface of W is coated with a small amount and sparse nano-dot-like Gd 2 O 3 particles. When the Gd + concentration increases to 0.1M/L, the Gd 2 O 3 nanoparticles on the W surface become larger and larger, which is due to the increase of Gd + concentration. The Gd 2 O 3 nanoparticles combine with each other to form larger Gd 2 O 3 particles. When the Gd + concentration increased to 0.2 M/L, the Gd 2 O 3 nanoparticles on the W surface became larger and denser.
  • the Gd 2 O 3 nanoparticles on the W surface were combined with each other to form the core-shell structured W@Gd 2 O 3 .
  • the Gd2O3 nanoparticles on the W surface did not change much compared to when the Gd + concentration was 0.3M/L, which was due to the chelation of Gd + by polydopamine on the W surface .
  • the synergistic effect has reached saturation at Gd + concentration of 0.3M/L, and excessive concentration will cause waste.
  • step (2) is not specifically limited, and only needs to be magnetically stirred for a certain period of time.
  • the high-temperature calcination in step (2) needs to be calcined in a muffle furnace at 800-1000° C. for 2-3 hours, and the heating temperature is 2-4° C./min.
  • the calcination in step (2) of the present invention is carried out in a protective gas, and the protective gas includes nitrogen or an inert gas, and the inert gas can be argon, helium, etc.
  • the protective gas includes nitrogen or an inert gas
  • the inert gas can be argon, helium, etc.
  • the invention does not make any special limitation on this.
  • the preparation method of the core-shell structure tungsten/gadolinium oxide powder for X, ⁇ -ray protection of the present invention comprises the following steps:
  • step (2) adding the W@PDA obtained in step (1) into the gadolinium nitrate solution with a concentration of 0.3-0.5M/L, magnetic stirring for a certain period of time, filtration and separation, drying, and then the prepared sample was heated at 800-1000 It was calcined at high temperature under nitrogen for 2-3h (the heating rate was 2-4°C/min), and finally the core-shell structure W@Gd 2 O 3 powder was obtained.
  • the core-shell structure W@Gd 2 O 3 powder prepared by the above preferred technical solution has a core-shell structure that can play a synergistic protective role in radiation protection and eliminates weak protection. At the same time, the secondary radiation generated by the radiation is effectively absorbed.
  • the present invention at least has the following beneficial effects:
  • the present invention firstly utilizes that dopamine can self-polymerize into polydopamine under weak alkaline and aerobic conditions, and polydopamine has extraordinary adhesion on the surfaces of different substances, and can successfully coat tungsten to obtain W@PDA.
  • the surface of PDA contains a large number of polar groups such as phenolic hydroxyl groups and amine groups, which provide abundant active sites for complexing various metal ions, which can effectively chelate Gd + in gadolinium nitrate solution.
  • PDA forms a nitrogen-doped carbon layer attached to the surface of tungsten, and the W@PDA chelated with Gd + transforms into W@Gd 2 O 3 .
  • Example 1 is a scanning electron microscope image of the core-shell structure tungsten/gadolinium oxide powder prepared in Example 1.
  • the present embodiment provides a preparation method of core-shell structure tungsten/gadolinium oxide powder for X, ⁇ -ray protection, and the method includes the following steps:
  • step (2) The W@PDA obtained in step (1) was added to a solution of gadolinium nitrate with a concentration of 0.3M/L, and after magnetic stirring for 2h, filtration and separation were performed, and dried at 80°C for 5h, and then the prepared sample was heated at 800°C.
  • the core-shell structure W@Gd 2 O 3 powder was finally obtained by calcining at high temperature under nitrogen for 2 h (heating rate of 2 °C/min).
  • the W@Gd 2 O 3 powder prepared in this example was scanned by SEM, and the obtained photo is shown in Figure 1. It can be seen from the figure that a PDA film is formed on the surface of the W powder.
  • the present embodiment provides a preparation method of core-shell structure tungsten/gadolinium oxide powder for X, ⁇ -ray protection, and the method includes the following steps:
  • step (2) The W@PDA obtained in step (1) was added to a gadolinium nitrate solution with a concentration of 0.35M/L, and after magnetic stirring for 3h, filtration and separation were performed, and dried at 60°C for 8h, and then the prepared sample was heated at 900 °C.
  • the core-shell structure W@Gd 2 O 3 powder was finally obtained by calcining at high temperature under nitrogen for 2.5 h (heating rate of 3 °C/min).
  • the present embodiment provides a preparation method of core-shell structure tungsten/gadolinium oxide powder for X, ⁇ -ray protection, and the method includes the following steps:
  • step (2) The W@PDA obtained in step (1) was added to a gadolinium nitrate solution with a concentration of 0.4M/L, magnetically stirred for 2.5h, filtered and separated, dried at 70°C for 6h, and then the prepared sample was placed in The core-shell structure W@Gd 2 O 3 powder was finally obtained by calcining at 1000 °C under nitrogen for 3 h (the heating rate was 4 °C/min).

Abstract

Procédé de préparation de poudre d'oxyde de tungstène/gadolinium à structure cœur-écorce pour la protection contre les rayons X et γ, comprenant : (1) la préparation d'une solution de sel de dopamine, l'ajout d'une solution tampon pour ajuster une valeur de pH, l'ajout de la poudre de tungstène, l'agitation, le filtrage, le lavage et le séchage pour obtenir du W@PDA ; et (2) l'ajout du W@PDA obtenu à l'étape (1) à une solution de nitrate de gadolinium, l'agitation, le filtrage et la réalisation d'une calcination à haute température pour obtenir une poudre de W@Gd2O3 à structure à cœur-écorce. Par comparaison avec un seul mode de mélange physique de métal, une structure cœur-écorce d'oxyde de tungstène/gadolinium dans la nanopoudre préparée peut jouer un rôle protecteur synergique dans la protection contre les rayonnements, peut absorber efficacement un rayonnement secondaire généré par un rayonnement tout en éliminant une zone de protection faible, présente des caractéristiques sans fil et légères, et est utilisé pour la protection contre les rayons X et γ.
PCT/CN2021/112700 2021-02-08 2021-08-16 PROCÉDÉ DE PRÉPARATION DE POUDRE D'OXYDE DE TUNGSTÈNE/GADOLINIUM À STRUCTURE CŒUR-ÉCORCE POUR LA PROTECTION CONTRE LES RAYONS X ET γ WO2022166152A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110179938.4 2021-02-08
CN202110179938.4A CN112846173A (zh) 2021-02-08 2021-02-08 一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法

Publications (1)

Publication Number Publication Date
WO2022166152A1 true WO2022166152A1 (fr) 2022-08-11

Family

ID=75989512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112700 WO2022166152A1 (fr) 2021-02-08 2021-08-16 PROCÉDÉ DE PRÉPARATION DE POUDRE D'OXYDE DE TUNGSTÈNE/GADOLINIUM À STRUCTURE CŒUR-ÉCORCE POUR LA PROTECTION CONTRE LES RAYONS X ET γ

Country Status (2)

Country Link
CN (1) CN112846173A (fr)
WO (1) WO2022166152A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112831078B (zh) * 2021-02-08 2022-08-16 南通大学 一种X,γ射线防护用核壳结构钨/氧化钆PVC压延材料的制备方法
CN112831855B (zh) * 2021-02-08 2022-05-31 南通大学 一种X,γ射线防护用核壳结构钨/氧化钆功能纤维的制备方法
CN112846173A (zh) * 2021-02-08 2021-05-28 南通大学 一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060255299A1 (en) * 2005-05-10 2006-11-16 Edwards Carls S Optimized nuclear radiation shielding within composite structures for combined man made and natural radiation environments
US20070194256A1 (en) * 2005-05-10 2007-08-23 Space Micro, Inc. Multifunctional radiation shield for space and aerospace applications
US20080128658A1 (en) * 2002-12-17 2008-06-05 Hardy Jungermann Lead-free mixture as a radiation protection additive
KR20140121018A (ko) * 2013-04-04 2014-10-15 한국기계연구원 폴리도파민을 이용한 탄소 코팅된 금속입자의 제조방법 및 이를 통해 제조된 탄소 코팅된 금속입자
CN108940269A (zh) * 2017-11-03 2018-12-07 深圳大学 一种纳米合金及其制备方法
CN111250697A (zh) * 2020-02-18 2020-06-09 太原理工大学 一种氧化钆/钨/铝中子和伽马射线核壳共屏蔽材料的制备方法
CN112831855A (zh) * 2021-02-08 2021-05-25 南通大学 一种X,γ射线防护用核壳结构钨/氧化钆功能纤维的制备方法
CN112831078A (zh) * 2021-02-08 2021-05-25 南通大学 一种X,γ射线防护用核壳结构钨/氧化钆PVC压延材料的制备方法
CN112846173A (zh) * 2021-02-08 2021-05-28 南通大学 一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法
CN112900155A (zh) * 2021-02-08 2021-06-04 南通大学 一种X、γ射线防护用无纺布的制备方法
CN112900110A (zh) * 2021-02-08 2021-06-04 南通大学 一种X,γ射线防护用核壳结构钨/氧化钆PU涂层面料的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102206490B (zh) * 2010-03-30 2013-06-26 海洋王照明科技股份有限公司 核壳结构红色荧光粉的制备方法及其制备的核壳结构红色荧光粉
CN102441667B (zh) * 2011-09-26 2014-10-01 昆明理工大学 一种核壳结构的La掺杂TiO2粉体及其制备方法
US20170225234A1 (en) * 2014-10-20 2017-08-10 Central South University A preparation method of rare earth oxide dispersion strengthened fine grain tungsten materials
CN105521772A (zh) * 2016-01-07 2016-04-27 上海工程技术大学 一种磁性核壳结构纳米材料及其制备方法和应用
CN106925772B (zh) * 2017-04-17 2018-08-14 中国工程物理研究院化工材料研究所 微/纳米核壳结构复合材料的制备方法
CN108654607B (zh) * 2018-04-10 2021-02-05 苏州大学 核壳结构的银纳米颗粒/碳/二氧化钛纳米复合物的制备方法
CN108689422B (zh) * 2018-06-05 2020-05-12 常州市卓群纳米新材料有限公司 一种大比表面积纳米氧化钆粉体的制备方法
CN109395762B (zh) * 2018-11-29 2021-07-13 武汉工程大学 一种具有核壳结构的二氧化锡/氮掺杂石墨/硫化锌复合材料及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080128658A1 (en) * 2002-12-17 2008-06-05 Hardy Jungermann Lead-free mixture as a radiation protection additive
US20060255299A1 (en) * 2005-05-10 2006-11-16 Edwards Carls S Optimized nuclear radiation shielding within composite structures for combined man made and natural radiation environments
US20070194256A1 (en) * 2005-05-10 2007-08-23 Space Micro, Inc. Multifunctional radiation shield for space and aerospace applications
KR20140121018A (ko) * 2013-04-04 2014-10-15 한국기계연구원 폴리도파민을 이용한 탄소 코팅된 금속입자의 제조방법 및 이를 통해 제조된 탄소 코팅된 금속입자
CN108940269A (zh) * 2017-11-03 2018-12-07 深圳大学 一种纳米合金及其制备方法
CN111250697A (zh) * 2020-02-18 2020-06-09 太原理工大学 一种氧化钆/钨/铝中子和伽马射线核壳共屏蔽材料的制备方法
CN112831855A (zh) * 2021-02-08 2021-05-25 南通大学 一种X,γ射线防护用核壳结构钨/氧化钆功能纤维的制备方法
CN112831078A (zh) * 2021-02-08 2021-05-25 南通大学 一种X,γ射线防护用核壳结构钨/氧化钆PVC压延材料的制备方法
CN112846173A (zh) * 2021-02-08 2021-05-28 南通大学 一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法
CN112900155A (zh) * 2021-02-08 2021-06-04 南通大学 一种X、γ射线防护用无纺布的制备方法
CN112900110A (zh) * 2021-02-08 2021-06-04 南通大学 一种X,γ射线防护用核壳结构钨/氧化钆PU涂层面料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAO YANG, QIANG GAO, LIRONG YAO, DONG LIANG: "Preparation and Radiation Protection Property Study of Lead-free Protective Fabric", COTTON TEXTILE TECHNOLOGY, vol. 49, no. 7, 31 July 2021 (2021-07-31), pages 6 - 10, XP055956088, ISSN: 1000-7415 *
ZHANG PENG; JIA CHENGPENG; LI JING; WANG WENXIAN: "Shielding composites for neutron and gamma-radiation with Gd2O3@W core-shell structured particles", MATERIALS LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 276, 1 June 2020 (2020-06-01), AMSTERDAM, NL , XP086234177, ISSN: 0167-577X, DOI: 10.1016/j.matlet.2020.128082 *

Also Published As

Publication number Publication date
CN112846173A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
WO2022166171A1 (fr) Procédé de préparation de tissu de revêtement de pu d'oxide de tungstène/gadolinium avec structure cœur-écorce pour la protection contre les rayons x et γ
WO2022166152A1 (fr) PROCÉDÉ DE PRÉPARATION DE POUDRE D'OXYDE DE TUNGSTÈNE/GADOLINIUM À STRUCTURE CŒUR-ÉCORCE POUR LA PROTECTION CONTRE LES RAYONS X ET γ
WO2022166151A1 (fr) PROCÉDÉ DE PRÉPARATION D'UNE FIBRE FONCTIONNELLE D'OXYDE DE TUNGSTÈNE/GADOLINIUM AYANT UNE STRUCTURE CŒUR-ÉCORCE POUR LA PROTECTION CONTRE LES RAYONS X ET γ
WO2022166142A1 (fr) PROCÉDÉ DE PRÉPARATION D'UN MATÉRIAU CALANDRÉ EN PVC D'OXYDE DE TUNGSTÈNE/GADOLINIUM À STRUCTURE CŒUR-ÉCORCE POUR LA PROTECTION CONTRE LES RAYONS X ET γ
CN103811130B (zh) 石墨烯复合银浆制备方法及石墨烯复合银浆
CN105478120A (zh) 一种赤泥基铁系催化剂的制备方法及其在甲烷裂解制氢中的应用
CN112900155B (zh) 一种X、γ射线防护用无纺布的制备方法
CN106492847B (zh) 负载有光催化剂的纤维素纳米纤丝气凝胶及其制备方法
CN106028768A (zh) 一种镀铁石墨烯及制备方法
CN108610015B (zh) 一种基于煤矸石的微波吸收材料制备方法
CN103920875A (zh) WC-稀土-Co逐层包覆硬质合金复合粉末的制备方法
CN108611653A (zh) 一种负载磁性纳米粒子的钒酸铋复合材料及其制备和应用
CN113818043B (zh) 一种钒酸铋-金属有机配合物复合光电极及其制备方法和应用
CN113145154B (zh) 一种光催化还原含铬(vi)废水复合催化剂的制备方法
CN110344096B (zh) 一种AgSbS2敏化TiO2复合膜材料及其制备和应用
CN106128546B (zh) 钌酸锶纳米颗粒复合银浆及其制备方法
CN107081061A (zh) 复合型净醛材料及其制备方法
CN114592228A (zh) 一种可见光均匀高吸收的镁合金表面处理方法
CN112795926A (zh) 一种纳米复合膜材料及其应用
CN114250472A (zh) 一种BiVO4/CoP薄膜电极及其制备方法和应用
CN110993367A (zh) 球状碳@锰氧化物@碳@铁氧化物复合材料及制备与应用
CN114011441B (zh) 一种复合光催化剂及其制备方法
CN114606501B (zh) 一种氧缺陷钒酸铋/磷化铁复合光电极及其制备方法和应用
CN117444227B (zh) 银粉、导电银浆及其制备方法和应用
CN109529864B (zh) 一种α-Fe2O3/Bi2WO6/贝壳复合光催化剂及其制备方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924152

Country of ref document: EP

Kind code of ref document: A1