WO2022166152A1 - PREPARATION METHOD FOR CORE-SHELL STRUCTURED TUNGSTEN/GADOLINIUM OXIDE POWDER FOR X AND γ RAY PROTECTION - Google Patents

PREPARATION METHOD FOR CORE-SHELL STRUCTURED TUNGSTEN/GADOLINIUM OXIDE POWDER FOR X AND γ RAY PROTECTION Download PDF

Info

Publication number
WO2022166152A1
WO2022166152A1 PCT/CN2021/112700 CN2021112700W WO2022166152A1 WO 2022166152 A1 WO2022166152 A1 WO 2022166152A1 CN 2021112700 W CN2021112700 W CN 2021112700W WO 2022166152 A1 WO2022166152 A1 WO 2022166152A1
Authority
WO
WIPO (PCT)
Prior art keywords
tungsten
core
powder
gadolinium oxide
oxide powder
Prior art date
Application number
PCT/CN2021/112700
Other languages
French (fr)
Chinese (zh)
Inventor
姚理荣
夏勇
杨涛
孙通
潘刚伟
徐思峻
季涛
高强
Original Assignee
南通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南通大学 filed Critical 南通大学
Publication of WO2022166152A1 publication Critical patent/WO2022166152A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal

Definitions

  • the invention relates to the field of preparation of radiation protection materials, in particular to a preparation method of core-shell structure tungsten/gadolinium oxide powder for X, gamma ray protection.
  • Radiation protection materials are mainly divided into two types: lead-containing materials and lead-free materials.
  • Lead is mainly based on lead.
  • the protective effect is excellent, it is toxic, has poor strength and has a large scattering of low-energy X-rays.
  • Lead-free materials mainly include composite materials made of rare earth elements and heavy metal compounds such as tin, tungsten, and bismuth, which have excellent protective effects and are lightweight and safe.
  • Micro-nano core-shell materials with special structures have attracted extensive attention in recent years.
  • Composite particles with different core-shell microstructures have unique physical and chemical properties, which also lead to their broad application prospects in many fields such as optics, electronics, catalysis, biology, and radiation.
  • the core-shell structure radiation protection material can cooperate in protection, eliminating the weak protection area and effectively absorbing the secondary radiation generated by the radiation.
  • the preparation methods of core-shell structures mainly include template method, precipitation method, hydrothermal synthesis method, spray drying method, layer-by-layer self-assembly technology, etc. Li et al.
  • the purpose of the present invention is to provide a preparation method of core-shell structure tungsten/gadolinium oxide powder for X, ⁇ -ray protection in order to overcome the above-mentioned defects of the prior art.
  • the invention provides a preparation method of core-shell structure tungsten/gadolinium oxide powder for X, ⁇ -ray protection, the method comprises the following steps:
  • step (2) adding the W@PDA obtained in step (1) into the gadolinium nitrate solution, stirring, filtering, and calcining at high temperature to obtain the core-shell structure W@Gd 2 O 3 powder.
  • the concentration of the solution should be controlled at 1.5-2.5g/L.
  • the main reason is that when the DA concentration is lower than 1.5g/L, only a small amount of PDA particles are deposited on the surface of W.
  • the DA concentration is 1.5-2.5g/L, a PDA film is formed on the surface of the W powder.
  • the concentration of DA was higher than 2.5 g/L, larger PDA particles were formed by self-polymerization on the surface of W powder due to the high concentration of DA, which was not conducive to the subsequent adsorption of gadolinium ions.
  • tris buffer should be added to the system to adjust the pH of the solution to 8-9, because dopamine can self-polymerize into polydopamine under weak alkaline and aerobic conditions.
  • Polydopamine has extraordinary surface activity and adhesion on the surface of different substances, which can provide a platform for the secondary functionalization of materials.
  • step (1) needs to be stirred under an electric stirrer for 18-24h.
  • step (1) water and ethanol need to be washed 2-3 times respectively.
  • step (1) the specific conditions for drying described in step (1) are not specifically limited, as long as the purpose of drying the sample can be achieved.
  • the concentration of the solution should be controlled at 0.3-0.5M/L. Because when the Gd + concentration is 0.02 M/L, the surface of W is coated with a small amount and sparse nano-dot-like Gd 2 O 3 particles. When the Gd + concentration increases to 0.1M/L, the Gd 2 O 3 nanoparticles on the W surface become larger and larger, which is due to the increase of Gd + concentration. The Gd 2 O 3 nanoparticles combine with each other to form larger Gd 2 O 3 particles. When the Gd + concentration increased to 0.2 M/L, the Gd 2 O 3 nanoparticles on the W surface became larger and denser.
  • the Gd 2 O 3 nanoparticles on the W surface were combined with each other to form the core-shell structured W@Gd 2 O 3 .
  • the Gd2O3 nanoparticles on the W surface did not change much compared to when the Gd + concentration was 0.3M/L, which was due to the chelation of Gd + by polydopamine on the W surface .
  • the synergistic effect has reached saturation at Gd + concentration of 0.3M/L, and excessive concentration will cause waste.
  • step (2) is not specifically limited, and only needs to be magnetically stirred for a certain period of time.
  • the high-temperature calcination in step (2) needs to be calcined in a muffle furnace at 800-1000° C. for 2-3 hours, and the heating temperature is 2-4° C./min.
  • the calcination in step (2) of the present invention is carried out in a protective gas, and the protective gas includes nitrogen or an inert gas, and the inert gas can be argon, helium, etc.
  • the protective gas includes nitrogen or an inert gas
  • the inert gas can be argon, helium, etc.
  • the invention does not make any special limitation on this.
  • the preparation method of the core-shell structure tungsten/gadolinium oxide powder for X, ⁇ -ray protection of the present invention comprises the following steps:
  • step (2) adding the W@PDA obtained in step (1) into the gadolinium nitrate solution with a concentration of 0.3-0.5M/L, magnetic stirring for a certain period of time, filtration and separation, drying, and then the prepared sample was heated at 800-1000 It was calcined at high temperature under nitrogen for 2-3h (the heating rate was 2-4°C/min), and finally the core-shell structure W@Gd 2 O 3 powder was obtained.
  • the core-shell structure W@Gd 2 O 3 powder prepared by the above preferred technical solution has a core-shell structure that can play a synergistic protective role in radiation protection and eliminates weak protection. At the same time, the secondary radiation generated by the radiation is effectively absorbed.
  • the present invention at least has the following beneficial effects:
  • the present invention firstly utilizes that dopamine can self-polymerize into polydopamine under weak alkaline and aerobic conditions, and polydopamine has extraordinary adhesion on the surfaces of different substances, and can successfully coat tungsten to obtain W@PDA.
  • the surface of PDA contains a large number of polar groups such as phenolic hydroxyl groups and amine groups, which provide abundant active sites for complexing various metal ions, which can effectively chelate Gd + in gadolinium nitrate solution.
  • PDA forms a nitrogen-doped carbon layer attached to the surface of tungsten, and the W@PDA chelated with Gd + transforms into W@Gd 2 O 3 .
  • Example 1 is a scanning electron microscope image of the core-shell structure tungsten/gadolinium oxide powder prepared in Example 1.
  • the present embodiment provides a preparation method of core-shell structure tungsten/gadolinium oxide powder for X, ⁇ -ray protection, and the method includes the following steps:
  • step (2) The W@PDA obtained in step (1) was added to a solution of gadolinium nitrate with a concentration of 0.3M/L, and after magnetic stirring for 2h, filtration and separation were performed, and dried at 80°C for 5h, and then the prepared sample was heated at 800°C.
  • the core-shell structure W@Gd 2 O 3 powder was finally obtained by calcining at high temperature under nitrogen for 2 h (heating rate of 2 °C/min).
  • the W@Gd 2 O 3 powder prepared in this example was scanned by SEM, and the obtained photo is shown in Figure 1. It can be seen from the figure that a PDA film is formed on the surface of the W powder.
  • the present embodiment provides a preparation method of core-shell structure tungsten/gadolinium oxide powder for X, ⁇ -ray protection, and the method includes the following steps:
  • step (2) The W@PDA obtained in step (1) was added to a gadolinium nitrate solution with a concentration of 0.35M/L, and after magnetic stirring for 3h, filtration and separation were performed, and dried at 60°C for 8h, and then the prepared sample was heated at 900 °C.
  • the core-shell structure W@Gd 2 O 3 powder was finally obtained by calcining at high temperature under nitrogen for 2.5 h (heating rate of 3 °C/min).
  • the present embodiment provides a preparation method of core-shell structure tungsten/gadolinium oxide powder for X, ⁇ -ray protection, and the method includes the following steps:
  • step (2) The W@PDA obtained in step (1) was added to a gadolinium nitrate solution with a concentration of 0.4M/L, magnetically stirred for 2.5h, filtered and separated, dried at 70°C for 6h, and then the prepared sample was placed in The core-shell structure W@Gd 2 O 3 powder was finally obtained by calcining at 1000 °C under nitrogen for 3 h (the heating rate was 4 °C/min).

Abstract

A preparation method for core-shell structured tungsten/gadolinium oxide powder for X and γ ray protection, comprising: (1) preparing a dopamine salt solution, adding a buffer solution to adjust a pH value, adding tungsten powder, stirring, filtering, washing, and drying to obtain W@PDA; and (2) adding the W@PDA obtained in the step (1) to a gadolinium nitrate solution, stirring, filtering, and performing high-temperature calcination to obtain core-shell structured W@Gd2O3 powder. Compared with a single metal physical blending mode, a tungsten/gadolinium oxide core-shell structure in the prepared nanopowder can play a synergistic protective role in radiation protection, can effectively absorb secondary radiation generated by radiation while eliminating a weak protective zone, has leadless and lightweight characteristics, and is used for X and γ ray radiation protection.

Description

一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法A kind of preparation method of core-shell structure tungsten/gadolinium oxide powder for X, γ-ray protection 技术领域technical field
本发明涉及制备防辐射材料制备领域,尤其涉及一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法。The invention relates to the field of preparation of radiation protection materials, in particular to a preparation method of core-shell structure tungsten/gadolinium oxide powder for X, gamma ray protection.
背景技术Background technique
核技术的发展给人们带来便利的同时也产生了很多辐射危害,轻便灵活且防护性能优良的辐射防护用纺织品是当前研究的热点。辐射防护材料主要分为有铅材料和无铅两种。有铅主要以铅为主,虽防护效果优良,但具有毒性,强度较差且对低能X射线散射较大。无铅材料主要包括稀土元素以及锡、钨、铋等重金属化合物制成的复合材料,防护效果优良且轻质安全。The development of nuclear technology brings convenience to people, but also produces a lot of radiation hazards. The radiation protection textiles that are light, flexible and have excellent protective performance are the current research hotspots. Radiation protection materials are mainly divided into two types: lead-containing materials and lead-free materials. Lead is mainly based on lead. Although the protective effect is excellent, it is toxic, has poor strength and has a large scattering of low-energy X-rays. Lead-free materials mainly include composite materials made of rare earth elements and heavy metal compounds such as tin, tungsten, and bismuth, which have excellent protective effects and are lightweight and safe.
近年来具有特殊结构的微纳米核壳材料引起了人们的广泛关注。不同核壳微观结构的复合粒子会具有独特物理化学性质,这也导致其在光学、电子、催化、生物、辐射等众多领域都具有广阔的应用前景。在防辐射方面,相较于单一金属物理共混的方式,核壳结构辐射防护材料可以协同防护,消除防护弱区同时将辐射所产生的二次辐射进行有效吸收。核壳结构的制备方法主要有模板法、沉淀法、水热合成法、喷雾干燥法、层层自组装技术等。Li等人以二氧化硅为模板采用均相沉淀法制备了壳层厚度可控的氧化钆空心球。然而这些方法都存在工序多、耗时长等缺点,因此有必要指定一种有效的、简单的方法来克服这些缺陷。贻贝分泌的黏附蛋白具有很强的黏附能力,受此启发美国西北大学Messer Smith课题组在2007年发现了多巴胺(DA)在模拟海水的弱碱条件下可以在任何材料表面氧化自聚合成聚多巴胺。其聚合条件简单可控且具有优良的粘附性、亲水性、稳定性、生物相容性。同时,聚多巴胺上存在大量的酚羟基、胺基活性集团,为金属离子的络合提供了丰富的活性位点。Micro-nano core-shell materials with special structures have attracted extensive attention in recent years. Composite particles with different core-shell microstructures have unique physical and chemical properties, which also lead to their broad application prospects in many fields such as optics, electronics, catalysis, biology, and radiation. In terms of radiation protection, compared with the physical blending of a single metal, the core-shell structure radiation protection material can cooperate in protection, eliminating the weak protection area and effectively absorbing the secondary radiation generated by the radiation. The preparation methods of core-shell structures mainly include template method, precipitation method, hydrothermal synthesis method, spray drying method, layer-by-layer self-assembly technology, etc. Li et al. prepared gadolinium oxide hollow spheres with controllable shell thickness by homogeneous precipitation method using silica as template. However, these methods all have the disadvantages of many processes and time-consuming, so it is necessary to specify an effective and simple method to overcome these defects. The adhesion proteins secreted by mussels have strong adhesion ability, inspired by this, Messer Smith's research group of Northwestern University discovered in 2007 that dopamine (DA) can self-polymerize into polymers on the surface of any material under weak alkaline conditions simulating seawater. dopamine. Its polymerization conditions are simple and controllable, and it has excellent adhesion, hydrophilicity, stability and biocompatibility. At the same time, there are a large number of phenolic hydroxyl and amine active groups on polydopamine, which provide abundant active sites for the complexation of metal ions.
发明内容SUMMARY OF THE INVENTION
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法。The purpose of the present invention is to provide a preparation method of core-shell structure tungsten/gadolinium oxide powder for X, γ-ray protection in order to overcome the above-mentioned defects of the prior art.
本发明的目的可以通过以下技术方案来实现:The object of the present invention can be realized through the following technical solutions:
本发明提供了一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法,所述方法包括以下步骤:The invention provides a preparation method of core-shell structure tungsten/gadolinium oxide powder for X, γ-ray protection, the method comprises the following steps:
(1)配置多巴胺盐溶液,加入缓冲液调节PH值,然后加入钨粉,搅拌,过滤,洗涤烘干后得到W@PDA;(1) configure dopamine salt solution, add buffer to adjust pH value, then add tungsten powder, stir, filter, wash and dry to obtain W@PDA;
(2)将步骤(1)得到的W@PDA加入到硝酸钆溶液中,搅拌,过滤,经过高温煅烧得到核壳结构W@Gd 2O 3粉末。 (2) adding the W@PDA obtained in step (1) into the gadolinium nitrate solution, stirring, filtering, and calcining at high temperature to obtain the core-shell structure W@Gd 2 O 3 powder.
根据本发明,步骤(1)所述的配置多巴胺盐溶液,溶液浓度应控制在1.5-2.5g/L。主要是因为当DA浓度为低于1.5g/L时,W的表面只沉积有少量的PDA颗粒,当DA浓度为1.5- 2.5g/L时,在W粉的表面才形成了PDA薄膜。当DA的浓度高于2.5g/L时,由于DA浓度过高在W粉表面自聚合形成较大的PDA颗粒,又不利于后续对钆离子的吸附。According to the present invention, in the configuration of the dopamine salt solution in step (1), the concentration of the solution should be controlled at 1.5-2.5g/L. The main reason is that when the DA concentration is lower than 1.5g/L, only a small amount of PDA particles are deposited on the surface of W. When the DA concentration is 1.5-2.5g/L, a PDA film is formed on the surface of the W powder. When the concentration of DA was higher than 2.5 g/L, larger PDA particles were formed by self-polymerization on the surface of W powder due to the high concentration of DA, which was not conducive to the subsequent adsorption of gadolinium ions.
值得注意的是,步骤(1)在配置好多巴胺盐溶液后,要向体系中加入tris缓冲液调节溶液PH值为8-9,因为多巴胺在弱碱有氧的条件下可自聚合为聚多巴胺,在不同物质表面聚多巴胺均具有非凡的表面活性和黏附性,可以为材料的二次功能化提供平台。It is worth noting that, after the dopamine salt solution is prepared in step (1), tris buffer should be added to the system to adjust the pH of the solution to 8-9, because dopamine can self-polymerize into polydopamine under weak alkaline and aerobic conditions. , Polydopamine has extraordinary surface activity and adhesion on the surface of different substances, which can provide a platform for the secondary functionalization of materials.
进一步地,步骤(1)所述的搅拌,需在电动搅拌器下搅拌18-24h。Further, the stirring described in step (1) needs to be stirred under an electric stirrer for 18-24h.
此外,对于步骤(1)所述的洗涤,需用水和乙醇分别洗涤2-3次。In addition, for the washing described in step (1), water and ethanol need to be washed 2-3 times respectively.
还有,对于步骤(1)所述的烘干具体的条件不进行具体限定,只要能实现对试样的烘干目的即可。Also, the specific conditions for drying described in step (1) are not specifically limited, as long as the purpose of drying the sample can be achieved.
根据本发明,步骤(2)所述的硝酸钆溶液,该溶液浓度应控制在0.3-0.5M/L。因为当Gd +浓度为0.02M/L时,W的表面包覆有少量且稀疏的纳米点状Gd 2O 3颗粒。当Gd +浓度增加到0.1M/L时,W表面的Gd 2O 3纳米颗粒变大增多,这是由于Gd +浓度的升高Gd 2O 3纳米颗粒互相结合形成更大的Gd 2O 3颗粒。当Gd +浓度增加到0.2M/L时,W表面的Gd 2O 3纳米颗粒变的更大且更为密集。随着Gd +浓度增加到0.3M/L,W表面的Gd 2O 3纳米颗粒相互结合形成核壳结构的W@Gd 2O 3。继续增加Gd +浓度到0.4M/L后,W表面的Gd 2O 3纳米颗粒相比于Gd +浓度为0.3M/L时没有太大变化,这是由于W表面的聚多巴胺对Gd +螯合作用在Gd +浓度为0.3M/L已经达到了饱和,浓度过高会造成浪费。 According to the present invention, for the gadolinium nitrate solution described in step (2), the concentration of the solution should be controlled at 0.3-0.5M/L. Because when the Gd + concentration is 0.02 M/L, the surface of W is coated with a small amount and sparse nano-dot-like Gd 2 O 3 particles. When the Gd + concentration increases to 0.1M/L, the Gd 2 O 3 nanoparticles on the W surface become larger and larger, which is due to the increase of Gd + concentration. The Gd 2 O 3 nanoparticles combine with each other to form larger Gd 2 O 3 particles. When the Gd + concentration increased to 0.2 M/L, the Gd 2 O 3 nanoparticles on the W surface became larger and denser. As the Gd + concentration increased to 0.3 M/L, the Gd 2 O 3 nanoparticles on the W surface were combined with each other to form the core-shell structured W@Gd 2 O 3 . After continuing to increase the Gd + concentration to 0.4M/L, the Gd2O3 nanoparticles on the W surface did not change much compared to when the Gd + concentration was 0.3M/L, which was due to the chelation of Gd + by polydopamine on the W surface . The synergistic effect has reached saturation at Gd + concentration of 0.3M/L, and excessive concentration will cause waste.
进一步地,步骤(2)所述的搅拌,无具体限定,只需磁力搅拌一定时间即可。Further, the stirring described in step (2) is not specifically limited, and only needs to be magnetically stirred for a certain period of time.
此外,步骤(2)所述的高温煅烧,需在马弗炉里800-1000℃条件下煅烧2-3h,升温温度为2-4℃/min。为避免在反应过程中生成杂质,本发明步骤(2)所述煅烧在保护性气体中进行,所述保护性气体包括氮气或惰性气体,所述惰性气体可以为氩气、氦气等,本发明对此不作特殊限定。In addition, the high-temperature calcination in step (2) needs to be calcined in a muffle furnace at 800-1000° C. for 2-3 hours, and the heating temperature is 2-4° C./min. In order to avoid the generation of impurities during the reaction, the calcination in step (2) of the present invention is carried out in a protective gas, and the protective gas includes nitrogen or an inert gas, and the inert gas can be argon, helium, etc. The invention does not make any special limitation on this.
作为优选的技术方案,本发明所述的一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法包括以下步骤:As a preferred technical solution, the preparation method of the core-shell structure tungsten/gadolinium oxide powder for X, γ-ray protection of the present invention comprises the following steps:
(1)配置1.5g/L-2.5g/L浓度的多巴胺盐溶液,加入tris缓冲液调节PH至8-9,然后加入用乙醇清洗干净的钨粉,利用电动搅拌器搅拌18-24h后过滤分离,再分别用去离子水和乙醇洗涤2-3次后烘干,得到W@PDA:(1) Prepare a dopamine salt solution with a concentration of 1.5g/L-2.5g/L, add tris buffer to adjust the pH to 8-9, then add tungsten powder cleaned with ethanol, stir with an electric stirrer for 18-24h, and then filter Separated, washed with deionized water and ethanol for 2-3 times and dried to obtain W@PDA:
(2)将步骤(1)得到的W@PDA加入到0.3-0.5M/L浓度的硝酸钆溶液中,磁力搅拌一定时间后,过滤分离,烘干,再将制得的样品在800-1000℃下通氮气高温煅烧2-3h(升温速率2-4℃/min),最后得到核壳结构W@Gd 2O 3粉末。 (2) adding the W@PDA obtained in step (1) into the gadolinium nitrate solution with a concentration of 0.3-0.5M/L, magnetic stirring for a certain period of time, filtration and separation, drying, and then the prepared sample was heated at 800-1000 It was calcined at high temperature under nitrogen for 2-3h (the heating rate was 2-4°C/min), and finally the core-shell structure W@Gd 2 O 3 powder was obtained.
采用上述优选的技术方案制得的核壳结构W@Gd 2O 3粉末,相比于钨和氧化钆共混粉末而言,核壳结构在辐射防护方面可以起到协同防护作用,消除防护弱区同时将辐射所产生的二次辐射进行有效吸收。 Compared with the tungsten and gadolinium oxide blend powder, the core-shell structure W@Gd 2 O 3 powder prepared by the above preferred technical solution has a core-shell structure that can play a synergistic protective role in radiation protection and eliminates weak protection. At the same time, the secondary radiation generated by the radiation is effectively absorbed.
与现有技术方案相比,本发明至少具有以下有益效果:Compared with the prior art solutions, the present invention at least has the following beneficial effects:
本发明首先利用多巴胺在在弱碱有氧的条件下可自聚合为聚多巴胺,并且聚多巴胺在不同物质表面均具有非凡的黏附性,能够成功包覆钨,得到W@PDA。The present invention firstly utilizes that dopamine can self-polymerize into polydopamine under weak alkaline and aerobic conditions, and polydopamine has extraordinary adhesion on the surfaces of different substances, and can successfully coat tungsten to obtain W@PDA.
PDA表面含有大量的酚羟基、胺基等极性基团,为络合各种金属离子提供了丰富的活性位点,能够有效地和硝酸钆溶液中的Gd +进行螯合。经过高温煅烧后PDA形成氮掺杂碳层附着在钨表面,而与Gd +发生螯的W@PDA转变成W@Gd 2O 3The surface of PDA contains a large number of polar groups such as phenolic hydroxyl groups and amine groups, which provide abundant active sites for complexing various metal ions, which can effectively chelate Gd + in gadolinium nitrate solution. After high temperature calcination, PDA forms a nitrogen-doped carbon layer attached to the surface of tungsten, and the W@PDA chelated with Gd + transforms into W@Gd 2 O 3 .
附图说明Description of drawings
图1为实施例1制得的核壳结构钨/氧化钆粉末的扫描电镜图。1 is a scanning electron microscope image of the core-shell structure tungsten/gadolinium oxide powder prepared in Example 1.
具体实施方式Detailed ways
为更好地说明本发明,便于理解本发明的技术方案,本发明的典型但非限制性的实施例如下:In order to better illustrate the present invention and facilitate the understanding of the technical solutions of the present invention, typical but non-limiting examples of the present invention are as follows:
实施例1Example 1
本实施例提供了一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法,所述方法包括以下步骤为:The present embodiment provides a preparation method of core-shell structure tungsten/gadolinium oxide powder for X, γ-ray protection, and the method includes the following steps:
(1)配置2g/L浓度的多巴胺盐溶液,加入tris缓冲液调节溶液PH值为8.5,然后加入用乙醇清洗干净的钨粉,利用电动搅拌器搅拌24h后过滤分离,再分别用去离子水和乙醇洗涤2次后,在80℃下烘干5h,得到W@PDA;(1) Prepare dopamine salt solution with a concentration of 2g/L, add tris buffer to adjust the pH value of the solution to 8.5, then add tungsten powder cleaned with ethanol, stir with an electric stirrer for 24 hours, filter and separate, and then use deionized water respectively. After washing twice with ethanol, drying at 80 °C for 5 h to obtain W@PDA;
(2)将步骤(1)得到的W@PDA加入到0.3M/L浓度的硝酸钆溶液中,磁力搅拌2h后,过滤分离,在80℃下烘干5h,再将制得的样品在800℃下通氮气高温煅烧2h(升温速率2℃/min),最后得到核壳结构W@Gd 2O 3粉末。 (2) The W@PDA obtained in step (1) was added to a solution of gadolinium nitrate with a concentration of 0.3M/L, and after magnetic stirring for 2h, filtration and separation were performed, and dried at 80°C for 5h, and then the prepared sample was heated at 800°C. The core-shell structure W@Gd 2 O 3 powder was finally obtained by calcining at high temperature under nitrogen for 2 h (heating rate of 2 °C/min).
对本实施例制备得到的W@Gd 2O 3粉末进行了SEM扫描,所得照片如图1所示,由图中可以看出,在W粉的表面形成了PDA薄膜。 The W@Gd 2 O 3 powder prepared in this example was scanned by SEM, and the obtained photo is shown in Figure 1. It can be seen from the figure that a PDA film is formed on the surface of the W powder.
实施例2Example 2
本实施例提供了一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法,所述方法包括以下步骤为:The present embodiment provides a preparation method of core-shell structure tungsten/gadolinium oxide powder for X, γ-ray protection, and the method includes the following steps:
(1)配置1.5g/L浓度的多巴胺盐溶液,加入tris缓冲液调节溶液PH值为8,然后加入用乙醇清洗干净的钨粉,利用电动搅拌器搅拌20h后过滤分离,再分别用去离子水和乙醇洗涤3次后,在60℃下烘干8h,得到W@PDA;(1) Prepare dopamine salt solution with a concentration of 1.5g/L, add tris buffer to adjust the pH value of the solution to 8, then add tungsten powder cleaned with ethanol, stir with an electric stirrer for 20 hours, filter and separate, and then deionize the solution separately. After washing with water and ethanol 3 times, drying at 60 °C for 8 h to obtain W@PDA;
(2)将步骤(1)得到的W@PDA加入到0.35M/L浓度的硝酸钆溶液中,磁力搅拌3h后,过滤分离,在60℃下烘干8h,再将制得的样品在900℃下通氮气高温煅烧2.5h(升温速率3℃/min),最后得到核壳结构W@Gd 2O 3粉末。 (2) The W@PDA obtained in step (1) was added to a gadolinium nitrate solution with a concentration of 0.35M/L, and after magnetic stirring for 3h, filtration and separation were performed, and dried at 60°C for 8h, and then the prepared sample was heated at 900 °C. The core-shell structure W@Gd 2 O 3 powder was finally obtained by calcining at high temperature under nitrogen for 2.5 h (heating rate of 3 °C/min).
实施例3Example 3
本实施例提供了一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法,所述方法包括以下步骤为:The present embodiment provides a preparation method of core-shell structure tungsten/gadolinium oxide powder for X, γ-ray protection, and the method includes the following steps:
(1)配置2.5g/L浓度的多巴胺盐溶液,加入tris缓冲液调节溶液PH值为9,然后加入用乙醇清洗干净的钨粉,利用电动搅拌器搅拌18h后过滤分离,再分别用去离子水和乙醇洗涤2次后,在70℃下烘干6h,得到W@PDA;(1) Prepare dopamine salt solution with a concentration of 2.5g/L, add tris buffer to adjust the pH value of the solution to 9, then add tungsten powder cleaned with ethanol, stir with an electric stirrer for 18 hours, filter and separate, and then deionize the solution separately. After being washed twice with water and ethanol, dried at 70 °C for 6 h to obtain W@PDA;
(2)将步骤(1)得到的W@PDA加入到0.4M/L浓度的硝酸钆溶液中,磁力搅拌2.5h后,过滤分离,在70℃下烘干6h,再将制得的样品在1000℃下通氮气高温煅烧3h(升温速率4℃/min),最后得到核壳结构W@Gd 2O 3粉末。 (2) The W@PDA obtained in step (1) was added to a gadolinium nitrate solution with a concentration of 0.4M/L, magnetically stirred for 2.5h, filtered and separated, dried at 70°C for 6h, and then the prepared sample was placed in The core-shell structure W@Gd 2 O 3 powder was finally obtained by calcining at 1000 °C under nitrogen for 3 h (the heating rate was 4 °C/min).
上述对实施例的描述是为了便于该技术领域的普通技术人员能理解和使用发 明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。The foregoing description of the embodiments is provided to facilitate the understanding and use of the invention by those of ordinary skill in the art. It will be apparent to those skilled in the art that various modifications to these embodiments can be readily made, and the generic principles described herein can be applied to other embodiments without inventive step. Therefore, the present invention is not limited to the above-mentioned embodiments, and improvements and modifications made by those skilled in the art according to the disclosure of the present invention without departing from the scope of the present invention should all fall within the protection scope of the present invention.

Claims (10)

  1. 一种X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法,其特征在于,所述方法包括以下步骤:A preparation method of core-shell structure tungsten/gadolinium oxide powder for X, γ-ray protection, characterized in that the method comprises the following steps:
    (1)配置多巴胺盐溶液,加入缓冲液调节PH值,然后加入钨粉,搅拌,过滤,洗涤烘干后得到W@PDA:(1) Configure dopamine salt solution, add buffer to adjust pH value, then add tungsten powder, stir, filter, wash and dry to obtain W@PDA:
    (2)将步骤(1)得到的W@PDA加入到硝酸钆溶液中,搅拌,过滤,经过高温煅烧得到核壳结构W@Gd 2O 3粉末。 (2) adding the W@PDA obtained in step (1) into the gadolinium nitrate solution, stirring, filtering, and calcining at high temperature to obtain the core-shell structure W@Gd 2 O 3 powder.
  2. 如权利要求1所述的X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法,其特征在于,在步骤(1)所述加入缓冲液调节PH值,所述缓冲液为tris,所述PH值为8-9。The preparation method of core-shell structure tungsten/gadolinium oxide powder for X, γ-ray protection as claimed in claim 1, characterized in that, in step (1), a buffer solution is added to adjust the pH value, and the buffer solution is tris, The pH is 8-9.
  3. 如权利要求1所述的X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法,其特征在于,在步骤(1)所述钨粉为用乙醇清洗过的钨粉。The method for preparing core-shell tungsten/gadolinium oxide powder for X, γ-ray protection according to claim 1, characterized in that, in step (1), the tungsten powder is tungsten powder cleaned with ethanol.
  4. 如权利要求1所述的X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法,其特征在于,在步骤(1)所述搅拌为电动搅拌器搅拌18-24h。The method for preparing core-shell structure tungsten/gadolinium oxide powder for X, γ-ray protection according to claim 1, wherein the stirring in step (1) is an electric stirrer stirring for 18-24 hours.
  5. 如权利要求1所述的X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法,其特征在于,在步骤(1)所述洗涤为用去离子水和乙醇分别清洗2-3次。The preparation method of core-shell structure tungsten/gadolinium oxide powder for X and γ-ray protection as claimed in claim 1, wherein the washing in step (1) is to wash 2-3 times with deionized water and ethanol respectively .
  6. 如权利要求1所述的X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法,其特征在于,在步骤(1)所述多巴胺盐溶液浓度为1.5g/L-2.5g/L。The preparation method of core-shell structure tungsten/gadolinium oxide powder for X and γ-ray protection as claimed in claim 1, wherein the concentration of the dopamine salt solution in step (1) is 1.5g/L-2.5g/L .
  7. 如权利要求1所述的X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法,其特征在于,在步骤(2)所述高温煅烧温度为800-1000℃,时间为2-3h,升温速率为2-4℃/min。The method for preparing core-shell structure tungsten/gadolinium oxide powder for X, γ-ray protection according to claim 1, characterized in that, in step (2), the high temperature calcination temperature is 800-1000°C, and the time is 2-3h , the heating rate is 2-4 °C/min.
  8. 如权利要求1所述的X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法,其特征在于,在步骤(2)所述煅烧在保护性气体中进行,所述保护性气体为氮气或惰性气体。The method for preparing core-shell tungsten/gadolinium oxide powder for X, γ-ray protection according to claim 1, wherein the calcination in step (2) is carried out in a protective gas, and the protective gas is Nitrogen or inert gas.
  9. 如权利要求1所述的X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法,其特征在于,在步骤(2)所述硝酸钆溶液浓度为0.3-0.5M/L。The method for preparing core-shell tungsten/gadolinium oxide powder for X, gamma ray protection according to claim 1, wherein the concentration of the gadolinium nitrate solution in step (2) is 0.3-0.5M/L.
  10. 如权利要求1-9任一项所述的X,γ射线防护用核壳结构钨/氧化钆粉末的制备方法,其特征在于,所述方法包括以下步骤:The preparation method of core-shell structure tungsten/gadolinium oxide powder for X, γ-ray protection as claimed in any one of claims 1-9, wherein the method comprises the following steps:
    (1)配置1.5g/L-2.5g/L浓度的多巴胺盐溶液,加入tris缓冲液调节PH至8-9,然后加入用乙醇清洗干净的钨粉,利用电动搅拌器搅拌18-24h后过滤分离,再分别用去离子水和乙醇洗涤2-3次后烘干,得到W@PDA;(1) Prepare a dopamine salt solution with a concentration of 1.5g/L-2.5g/L, add tris buffer to adjust the pH to 8-9, then add tungsten powder cleaned with ethanol, stir with an electric stirrer for 18-24h, and then filter Separate, then wash with deionized water and ethanol for 2-3 times and dry to obtain W@PDA;
    (2)将步骤(1)得到的W@PDA加入到0.3-0.5M/L浓度的硝酸钆溶液中,磁力搅拌一定时间后,过滤分离,烘干,再将制得的样品在800-1000℃下通氮气高温煅烧2-3h(升温速率2-4℃/min),最后得到核壳结构W@Gd 2O 3粉末。 (2) adding the W@PDA obtained in step (1) into the gadolinium nitrate solution with a concentration of 0.3-0.5M/L, magnetic stirring for a certain period of time, filtration and separation, drying, and then the prepared sample was heated at 800-1000 The core-shell structure W@Gd 2 O 3 powder was finally obtained by calcining at high temperature under nitrogen for 2-3 h (heating rate of 2-4 °C/min).
PCT/CN2021/112700 2021-02-08 2021-08-16 PREPARATION METHOD FOR CORE-SHELL STRUCTURED TUNGSTEN/GADOLINIUM OXIDE POWDER FOR X AND γ RAY PROTECTION WO2022166152A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110179938.4A CN112846173A (en) 2021-02-08 2021-02-08 Preparation method of core-shell structure tungsten/gadolinium oxide powder for X, gamma ray protection
CN202110179938.4 2021-02-08

Publications (1)

Publication Number Publication Date
WO2022166152A1 true WO2022166152A1 (en) 2022-08-11

Family

ID=75989512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112700 WO2022166152A1 (en) 2021-02-08 2021-08-16 PREPARATION METHOD FOR CORE-SHELL STRUCTURED TUNGSTEN/GADOLINIUM OXIDE POWDER FOR X AND γ RAY PROTECTION

Country Status (2)

Country Link
CN (1) CN112846173A (en)
WO (1) WO2022166152A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112831855B (en) * 2021-02-08 2022-05-31 南通大学 Preparation method of core-shell structure tungsten/gadolinium oxide functional fiber for X, gamma ray protection
CN112831078B (en) * 2021-02-08 2022-08-16 南通大学 Preparation method of core-shell structure tungsten/gadolinium oxide PVC (polyvinyl chloride) calendered material for X and gamma ray protection
CN112846173A (en) * 2021-02-08 2021-05-28 南通大学 Preparation method of core-shell structure tungsten/gadolinium oxide powder for X, gamma ray protection

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060255299A1 (en) * 2005-05-10 2006-11-16 Edwards Carls S Optimized nuclear radiation shielding within composite structures for combined man made and natural radiation environments
US20070194256A1 (en) * 2005-05-10 2007-08-23 Space Micro, Inc. Multifunctional radiation shield for space and aerospace applications
US20080128658A1 (en) * 2002-12-17 2008-06-05 Hardy Jungermann Lead-free mixture as a radiation protection additive
KR20140121018A (en) * 2013-04-04 2014-10-15 한국기계연구원 Manufacturing method of metal particles covered with carbon using polydopamine and the metal particles covered with carbon
CN108940269A (en) * 2017-11-03 2018-12-07 深圳大学 A kind of Nanoalloy and preparation method thereof
CN111250697A (en) * 2020-02-18 2020-06-09 太原理工大学 Preparation method of gadolinium oxide/tungsten/aluminum neutron and gamma ray core-shell co-shielding material
CN112831078A (en) * 2021-02-08 2021-05-25 南通大学 Preparation method of core-shell structure tungsten/gadolinium oxide PVC (polyvinyl chloride) calendered material for X and gamma ray protection
CN112831855A (en) * 2021-02-08 2021-05-25 南通大学 Preparation method of core-shell structure tungsten/gadolinium oxide functional fiber for X, gamma ray protection
CN112846173A (en) * 2021-02-08 2021-05-28 南通大学 Preparation method of core-shell structure tungsten/gadolinium oxide powder for X, gamma ray protection
CN112900110A (en) * 2021-02-08 2021-06-04 南通大学 Preparation method of core-shell structure tungsten/gadolinium oxide PU coating fabric for X, gamma ray protection
CN112900155A (en) * 2021-02-08 2021-06-04 南通大学 Preparation method of non-woven fabric for X and gamma ray protection

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102206490B (en) * 2010-03-30 2013-06-26 海洋王照明科技股份有限公司 Preparation method for core-shell structure red phosphor, and core-shell structure red phosphor prepared by using the same
CN102441667B (en) * 2011-09-26 2014-10-01 昆明理工大学 La (Lanthanum) doped TiO2 powder body of coreshell structure and preparation method thereof
US20170225234A1 (en) * 2014-10-20 2017-08-10 Central South University A preparation method of rare earth oxide dispersion strengthened fine grain tungsten materials
CN105521772A (en) * 2016-01-07 2016-04-27 上海工程技术大学 Magnetic core-shell-structured nano-material, preparation method therefor and application of magnetic core-shell-structured nano-material
CN106925772B (en) * 2017-04-17 2018-08-14 中国工程物理研究院化工材料研究所 The preparation method of micro-/ nano composite material of core-shell structure
CN108654607B (en) * 2018-04-10 2021-02-05 苏州大学 Preparation method of silver nanoparticle/carbon/titanium dioxide nano composite with core-shell structure
CN108689422B (en) * 2018-06-05 2020-05-12 常州市卓群纳米新材料有限公司 Preparation method of large-specific-surface-area nano gadolinium oxide powder
CN109395762B (en) * 2018-11-29 2021-07-13 武汉工程大学 Tin dioxide/nitrogen-doped graphite/zinc sulfide composite material with core-shell structure and preparation method thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080128658A1 (en) * 2002-12-17 2008-06-05 Hardy Jungermann Lead-free mixture as a radiation protection additive
US20060255299A1 (en) * 2005-05-10 2006-11-16 Edwards Carls S Optimized nuclear radiation shielding within composite structures for combined man made and natural radiation environments
US20070194256A1 (en) * 2005-05-10 2007-08-23 Space Micro, Inc. Multifunctional radiation shield for space and aerospace applications
KR20140121018A (en) * 2013-04-04 2014-10-15 한국기계연구원 Manufacturing method of metal particles covered with carbon using polydopamine and the metal particles covered with carbon
CN108940269A (en) * 2017-11-03 2018-12-07 深圳大学 A kind of Nanoalloy and preparation method thereof
CN111250697A (en) * 2020-02-18 2020-06-09 太原理工大学 Preparation method of gadolinium oxide/tungsten/aluminum neutron and gamma ray core-shell co-shielding material
CN112831078A (en) * 2021-02-08 2021-05-25 南通大学 Preparation method of core-shell structure tungsten/gadolinium oxide PVC (polyvinyl chloride) calendered material for X and gamma ray protection
CN112831855A (en) * 2021-02-08 2021-05-25 南通大学 Preparation method of core-shell structure tungsten/gadolinium oxide functional fiber for X, gamma ray protection
CN112846173A (en) * 2021-02-08 2021-05-28 南通大学 Preparation method of core-shell structure tungsten/gadolinium oxide powder for X, gamma ray protection
CN112900110A (en) * 2021-02-08 2021-06-04 南通大学 Preparation method of core-shell structure tungsten/gadolinium oxide PU coating fabric for X, gamma ray protection
CN112900155A (en) * 2021-02-08 2021-06-04 南通大学 Preparation method of non-woven fabric for X and gamma ray protection

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAO YANG, QIANG GAO, LIRONG YAO, DONG LIANG: "Preparation and Radiation Protection Property Study of Lead-free Protective Fabric", COTTON TEXTILE TECHNOLOGY, vol. 49, no. 7, 31 July 2021 (2021-07-31), pages 6 - 10, XP055956088, ISSN: 1000-7415 *
ZHANG PENG; JIA CHENGPENG; LI JING; WANG WENXIAN: "Shielding composites for neutron and gamma-radiation with Gd2O3@W core-shell structured particles", MATERIALS LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 276, 1 June 2020 (2020-06-01), AMSTERDAM, NL , XP086234177, ISSN: 0167-577X, DOI: 10.1016/j.matlet.2020.128082 *

Also Published As

Publication number Publication date
CN112846173A (en) 2021-05-28

Similar Documents

Publication Publication Date Title
WO2022166171A1 (en) Preparation method for tungsten/gadolinium oxide pu coating fabric with core-shell structure for x and γ rays protection
WO2022166152A1 (en) PREPARATION METHOD FOR CORE-SHELL STRUCTURED TUNGSTEN/GADOLINIUM OXIDE POWDER FOR X AND γ RAY PROTECTION
WO2022166151A1 (en) PREPARATION METHOD FOR TUNGSTEN/GADOLINIUM OXIDE FUNCTIONAL FIBER HAVING CORE-SHELL STRUCTURE FOR X AND γ RAY PROTECTION
WO2022166142A1 (en) PREPARATION METHOD FOR CORE-SHELL STRUCTURE TUNGSTEN/GADOLINIUM OXIDE PVC CALENDERED MATERIAL FOR X-RAY AND γ-RAY PROTECTION
CN103811130B (en) Preparation method of graphene compound silver paste and graphene compound silver paste
CN104277626B (en) Air cleaning paint and preparation method thereof
CN105478120A (en) Preparation method for red mud-based iron-series catalyst and application of red mud-based iron-series catalyst in hydrogen production through cracking of methane
CN112900155B (en) Preparation method of non-woven fabric for X and gamma ray protection
CN106492847B (en) Cellulose nanometer fibril aeroge of negative photocatalyst-bearing and preparation method thereof
CN106028768A (en) Iron-plated graphene and preparation method
CN108610015B (en) Preparation method of microwave absorbing material based on coal gangue
CN103920875A (en) Preparation method of WC-rare earth-Co layer-by-layer coating hard alloy composite powder
CN108611653A (en) A kind of pucherite composite material of carried magnetic nano particle and its preparation and application
CN113818043B (en) Bismuth vanadate-metal organic complex composite photoelectrode and preparation method and application thereof
CN113145154B (en) Preparation method of composite catalyst for photocatalytic reduction of chromium (VI) -containing wastewater
CN110344096B (en) AgSbS2Sensitized TiO2Composite membrane material and preparation and application thereof
CN106128546B (en) Ruthenic acid strontium nano-particles reinforcement silver paste and preparation method thereof
CN112795926A (en) Nano composite film material and application thereof
CN110993367A (en) Spherical carbon @ manganese oxide @ carbon @ iron oxide composite material and preparation and application thereof
CN114011441B (en) Composite photocatalyst and preparation method thereof
CN114606501B (en) Oxygen defect bismuth vanadate/iron phosphide composite photoelectrode and preparation method and application thereof
CN117444227B (en) Silver powder, conductive silver paste, and preparation method and application thereof
CN109529864B (en) alpha-Fe2O3/Bi2WO6Shell composite photocatalyst and preparation method thereof
Shao et al. Effect of metal ions on photocatalytic performance of tio2 Film prepared by micro-arc oxidation
CN110013824B (en) Mulching film-shaped two-dimensional nano thin layer sodium titanate covered silver oxide/titanium oxide heterojunction photocatalytic film material and preparation method thereof

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924152

Country of ref document: EP

Kind code of ref document: A1