WO2022114186A1 - Moisture-curable resin composition and adhesive for electronic appliance - Google Patents

Moisture-curable resin composition and adhesive for electronic appliance Download PDF

Info

Publication number
WO2022114186A1
WO2022114186A1 PCT/JP2021/043650 JP2021043650W WO2022114186A1 WO 2022114186 A1 WO2022114186 A1 WO 2022114186A1 JP 2021043650 W JP2021043650 W JP 2021043650W WO 2022114186 A1 WO2022114186 A1 WO 2022114186A1
Authority
WO
WIPO (PCT)
Prior art keywords
moisture
curable resin
meth
resin composition
acrylate
Prior art date
Application number
PCT/JP2021/043650
Other languages
French (fr)
Japanese (ja)
Inventor
康平 萩原
智一 玉川
暁舸 王
彰 結城
拓身 木田
坤 徐
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN202180078619.2A priority Critical patent/CN116568760A/en
Priority to JP2021575274A priority patent/JPWO2022114186A1/ja
Priority to KR1020237017678A priority patent/KR20230113551A/en
Publication of WO2022114186A1 publication Critical patent/WO2022114186A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1818C13or longer chain (meth)acrylate, e.g. stearyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/106Esters of polycondensation macromers
    • C08F222/1065Esters of polycondensation macromers of alcohol terminated (poly)urethanes, e.g. urethane(meth)acrylates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J151/00Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J151/08Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16

Definitions

  • the present invention relates to a moisture-curable resin composition and an adhesive for electronic devices comprising a moisture-curable resin composition.
  • Moisture-curable resin compositions have been studied to impart various performances.
  • Patent Document 1 in order to provide a cured product having excellent flexibility and reliability in a high temperature and high humidity environment, a cured product of a photomoisture curable resin composition containing a radically polymerizable compound and a moisture curable resin is provided. It is shown that the storage elastic modulus at 0 ° C. is 1.0 ⁇ 10 7 Pa or more, and the storage elastic modulus at 50 ° C. is 5.0 ⁇ 10 6 Pa or less.
  • the adhesive used for the portable electronic device has a small adhesive area. Further, in recent years, with the miniaturization of electronic devices, the bonded portion has become thinner and the bonded area has become even smaller.
  • the conventional moisture-curable resin composition does not have sufficient impact resistance, and if the adhesive area is small, there are problems such as the components fixed by the moisture-curable resin composition falling off when dropped. May occur.
  • the cured product of the moisture-curable resin composition has a shear adhesive strength of 4 MPa or more, a breaking elongation of 600% or more, and has no glass transition point in a temperature range of 10 ° C. or more, and is moisture-curable. Resin composition.
  • the moisture-curable resin (A) is a moisture-curable urethane resin, and the moisture-curable urethane resin has at least one of a polyester skeleton, a polyether skeleton, a polyalkylene skeleton, and a polycarbonate skeleton.
  • the moisture-curable resin (A) is a moisture-curable urethane resin
  • the moisture-curable urethane resin is a reaction product of a polyol compound and a polyisocyanate compound.
  • the moisture-curable resin composition according to item 1. [14] The moisture-curable resin composition according to the above [13], wherein the polyol compound contains a polyvalent carboxylic acid and a polyester polyol obtained from the polyol.
  • the content of the radically polymerizable compound (B) is 20 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the total amount of the moisture-curable resin (A) and the radically polymerizable compound (B).
  • the photopolymerization initiator (Y) is contained, and the content of the photopolymerization initiator (Y) is 0.01 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the radically polymerizable compound.
  • the moisture-curable resin composition according to any one of [17] to [20].
  • the moisture-curable resin composition of the present invention is a composition containing a moisture-curable resin (A).
  • the cured product of the moisture-curable resin composition of the present invention has a shear adhesive strength of 4 MPa or more, a breaking elongation of 600% or more, and does not have a glass transition point in a temperature range of 10 ° C. or more. be.
  • the moisture-curable resin composition of the present invention has high storage elastic modulus and breaking elongation of the cured product as described above, and does not have a glass transition point in the temperature range of 10 ° C. or higher of the cured product.
  • the moisture-curable resin composition of the present invention has at least the moisture-curable resin (A) and has moisture-curable properties.
  • the moisture-curable resin composition has a moisture-curable property, which makes it easy to sufficiently increase the adhesive strength.
  • the moisture-curable resin composition of the present invention preferably contains a radically polymerizable compound (B) and a photopolymerization initiator (Y) in addition to the moisture-curable resin (A).
  • the moisture-curable resin composition is a photomoisture-curable resin composition that is cured by light irradiation and moisture.
  • the light-moisture-curable resin composition has excellent adhesive performance even when cured without heating, the adhesive performance is prevented from damaging the adhesive portion or electronic parts around the adhesive portion due to heating during curing. Can be excellent.
  • the photo-moisture-curable resin composition is first photo-cured to give a relatively low adhesive force (tack property) to a B-stage state, and then further cured by moisture by being left in the air or the like. It is possible to obtain a cured product having a sufficiently high adhesive strength.
  • the shear adhesive strength of the cured product of the moisture-curable resin composition is 4 MPa or more as described above. If the shear adhesive strength is less than 4 MPa, the shock absorption cannot be sufficiently increased, and when an electronic device or the like is dropped, the constituent members fixed by the moisture-curable resin composition of the present invention may fall off. Problems are likely to occur. In addition, problems such as the inability to firmly bond the constituent members of electronic devices are likely to occur.
  • the shear adhesive strength of the cured product of the moisture-curable resin composition is preferably 4.2 MPa or more, more preferably 5 MPa or more, from the viewpoint of shock absorption and adhesiveness.
  • the shear adhesive strength of the cured product of the moisture-curable resin composition is not particularly limited, but is preferably 15 MPa or less from the viewpoint of easily increasing the elongation at break and easily lowering the glass transition point (Tg) to a low temperature. , 12 MPa or less is more preferable, and 10 MPa or less is further preferable.
  • the shear adhesive strength can be appropriately adjusted depending on the type of the moisture-curable resin (A), the type of the radically polymerizable compound (B), the content thereof, and the like.
  • the shear adhesive strength is measured by the following adhesiveness test.
  • the moisture-curable resin composition has a width of 1.0 ⁇ 0.1 mm, a length of 25 ⁇ 2 mm, and a thickness of 0.4 ⁇ 0.1 mm.
  • 10 is applied to an aluminum substrate 11 and glass plates 12 are superposed on the moisture-curable resin composition 10 to prepare a sample 13 for an adhesiveness test.
  • the adhesiveness test sample 13 is obtained by bonding the aluminum substrate 11 and the glass plate 12 by curing the moisture-curable resin composition 10.
  • the prepared adhesiveness test sample 13 was left to stand in a moisture-curable resin composition in a 25 ° C.
  • the curing conditions of the moisture-curable resin composition when preparing the adhesiveness test sample may be such that the moisture-curable resin composition of the present invention is completely cured, and is described below according to the curing mechanism. It is advisable to prepare a sample under the conditions of.
  • a dispenser is used to attach a width of 1.0 ⁇ 0.1 mm, a length of 25 ⁇ 2 mm, and a thickness to an aluminum substrate. The coating was applied so as to have a diameter of 0.4 ⁇ 0.1 mm, a glass plate was attached to an aluminum substrate, and a weight of 100 g was placed for 10 seconds and crimped.
  • the sample After removing the weight, the sample is left at 25 ° C. and 50% RH for 7 days to be moisture-cured to obtain a sample for adhesiveness evaluation.
  • a dispenser is used to obtain a width of 1.0 ⁇ 0.1 mm, a length of 25 ⁇ 2 mm, and a thickness of 0.4 ⁇ 0.1 mm on the aluminum substrate. And it is photo-cured by irradiating with UV-LED (wavelength 365 nm) at 1000 mJ / cm 2 in an environment of 25 ° C. and 50% RH.
  • a glass plate is attached to an aluminum substrate, a 100 g weight is placed for 10 seconds and crimped, and after the weight is removed, the sample is moisture-cured by leaving it at 25 ° C. and 50% RH for 7 days to evaluate the adhesiveness. To get.
  • the cured product of the moisture-curable resin composition has a breaking elongation of 600% or more.
  • the elongation at break is less than 600%, the impact resistance becomes insufficient, and when a large impact is applied to an electronic device or the like due to dropping or the like, the constituent members fixed by the moisture-curable resin composition of the present invention are peeled off. A problem occurs.
  • the elongation at break is preferably 700% or more, more preferably 800% or more, still more preferably 900% or more.
  • the elongation at break is not particularly limited, but is preferably 1500% or less, more preferably 1300% or less, still more preferably 1150% or less, from the viewpoint of facilitating the increase in shear adhesive strength.
  • the elongation at break can be appropriately adjusted depending on the type of the moisture-curable resin (A), the type of the radically polymerizable compound (B), the content thereof, and the like.
  • the breaking elongation of the cured product is measured by the following method.
  • the moisture-curable resin composition is poured into a silicone rubber mold having a dumbbell-shaped (No. 6 type specified in "JIS K6251”) hole and cured to form a No. 6 type dumbbell-shaped test piece (cured product). Sample) is obtained.
  • a moisture-curable resin composition in the case of a moisture-curable resin composition (however, it does not have thermosetting and photocuring properties), it is moisture-cured by leaving it at 25 ° C. and 50 RH% for 7 days.
  • a light-moisture-curable resin composition it is photo-cured by irradiating 1000 mJ / cm 2 with a UV-LED (wavelength 365 nm) under an environment of 25 ° C. and 50 RH%, and then photo-curing at 25 ° C. and 50 RH% for 7 days. Moisture cures by leaving in.
  • the obtained test piece is pulled at a tensile speed of 50 mm / min using a tensile tester in an environment of 25 ° C., and the elongation at break is measured.
  • the cured product of the moisture-curable resin composition does not have a glass transition point in the temperature range of 10 ° C. or higher. If the glass transition point is provided in the temperature range of 10 ° C. or higher, the impact resistance cannot be sufficiently increased even if the breaking elongation and the shear adhesive strength are set to the constant values or higher as described above. Therefore, when an impact is applied due to dropping or the like, problems such as peeling of the constituent members fixed by the moisture-curable resin composition of the present invention occur. It is not clear that the impact resistance cannot be sufficiently increased if the glass transition point is provided in the temperature range of 10 ° C. or higher, but it is considered that the impact resistance is deteriorated due to the decrease in the followability to high-speed deformation.
  • the cured product of the moisture-curable resin composition of the present invention preferably has a glass transition point (hereinafter, also referred to as "Tg1") in a temperature range of ⁇ 20 ° C. or higher and lower than 10 ° C.
  • Tg1 glass transition point
  • the glass transition point (Tg1) is more preferably ⁇ 10 ° C. or higher, further preferably ⁇ 5 ° C. or higher, and further preferably 9 ° C. or lower.
  • the cured product of the moisture-curable resin composition may have a glass transition point (hereinafter, also referred to as “Tg2”) in a temperature range of, for example, ⁇ 30 ° C. or lower from the viewpoint of impact resistance.
  • Tg2 glass transition point
  • Tg2 glass transition point
  • the cured product of the moisture-curable resin composition of the present invention has a glass transition point (Tg2) in a temperature range of ⁇ 50 ° C. or lower.
  • the glass transition point (Tg2) is not particularly limited, but may be, for example, ⁇ 80 ° C. or higher, ⁇ 75 ° C. or higher, or ⁇ 70 ° C. or higher.
  • the cured product of the moisture-curable resin composition of the present invention has both of the above glass transition points (Tg1, Tg2).
  • Tg1, Tg2 glass transition points
  • the radically polymerizable compound (B) in addition to the moisture-curable resin (A) and making them incompatible, it becomes easy to have the above-mentioned two glass transition points.
  • the method for incompatible with each other is not particularly limited, and the types of the moisture-curable resin (A) and the radically polymerizable compound (B) may be appropriately selected, but the polyether is used as the moisture-curable resin (A).
  • a compound having a skeleton it tends to be incompatible with the radically polymerizable compound (B), and the cured product tends to have two glass transition points.
  • the glass transition point (Tg1) on the high temperature side can be adjusted within the above-mentioned desired range by appropriately selecting the component of the radically polymerizable compound (B). Further, the glass transition point (Tg2) on the low temperature side can be adjusted within the above-mentioned desired range by appropriately selecting the type of the moisture-curable resin (A) and the like. Therefore, by appropriately adjusting the components of the radically polymerizable compound (B), it is possible to prevent the glass transition point from having a glass transition point in the temperature range of 10 ° C. or higher as described above. Further, the cured product of the moisture-curable resin composition may have three or more glass transition points as long as the temperature is lower than 10 ° C.
  • the glass transition point means the temperature at which the maximum of the loss tangent (tan ⁇ ) obtained by the dynamic viscoelasticity measurement appears due to the micro-brown motion, and is cured from the moisture-curable resin composition. It is advisable to measure the object sample using a dynamic viscoelasticity measuring device. Details of the procedure for preparing the cured product sample are as described later.
  • the cured product of the moisture-curable resin composition preferably has a storage elastic modulus of 7 MPa or more and 50 MPa or less.
  • the storage elastic modulus is preferably 8 MPa or more, more preferably 9 MPa or more, and preferably 40 MPa or less, more preferably 20 MPa or less.
  • the storage elastic modulus can be appropriately adjusted depending on the type of the moisture-curable resin (A), the type of the radically polymerizable compound (B), the content thereof, and the like.
  • the storage elastic modulus of the cured product is measured by the following method.
  • a cured product sample is obtained by pouring the moisture-curable resin composition into a Teflon (registered trademark) mold having a width of 3 mm, a length of 30 mm, and a thickness of 1 mm and curing the mixture.
  • the dynamic viscoelasticity is measured in the range of ⁇ 100 to 150 ° C. by a dynamic viscoelasticity measuring device, and the storage elastic modulus at 25 ° C. is determined.
  • the curing of the moisture-curable resin composition for preparing the glass transition point and the cured product sample for measuring the storage elastic modulus is sufficient as long as the moisture-curable resin composition can be completely cured, but it depends on the curing mechanism. It is recommended to use the following method. For example, in the case of a photo-moisture-curable resin composition, it is photo-cured by irradiating it with ultraviolet rays at 1000 mJ / cm 2 in an environment of 25 ° C. and 50 RH% using a UV-LED (wavelength 365 nm), and then photo-curing. It is carried out by moisture curing by leaving it in an environment of 25 ° C. and 50% RH for 7 days. Further, in the case of a moisture-curable resin composition (however, it does not have thermosetting property and photocuring property), the same procedure as described above is performed except that the photocuring step is omitted.
  • the viscosity of the moisture-curable resin composition of the present invention measured at 80 ° C. and 20 rpm is preferably 50 Pa ⁇ s or less.
  • the viscosity By setting the viscosity to 50 Pa ⁇ s or less, the coatability becomes good, and the moisture-curable resin composition can be coated on the adherend in a fine line shape by various coating devices, especially a jet dispenser. Become. Therefore, it can be suitably used for portable electronic devices and the like.
  • the viscosity is not particularly limited, but is preferably 0.5 Pa ⁇ s or more, preferably 1.0 Pa ⁇ s, for example, from the viewpoint of the performance (shape retention) of maintaining the moisture-curable resin composition after coating in a constant shape. More than s is more preferable, and 2.0 Pa ⁇ s or more is further preferable.
  • the moisture-curable resin composition contains the moisture-curable resin (A).
  • the moisture-curable resin (A) used in the present invention include a moisture-curable urethane resin, a hydrolyzable silyl group-containing resin, and a moisture-curable cyanoacrylate resin.
  • a moisture-curable urethane resin and a hydrolyzable silyl group-containing resin are preferable, and a moisture-curable urethane resin is more preferable.
  • the moisture-curable urethane resin has an isocyanate group in addition to the urethane bond.
  • the isocyanate group in the molecule reacts with the moisture in the air or the adherend to cure.
  • the moisture-curable urethane resin may have only one isocyanate group in one molecule, or may have two or more isocyanate groups. Above all, it is preferable to have isocyanate groups at both ends of the main chain of the molecule.
  • the moisture-curable urethane resin can be obtained by reacting a polyol compound having two or more hydroxyl groups in one molecule with a polyisocyanate compound having two or more isocyanate groups in one molecule.
  • the moisture-curable urethane resin may have a polyester skeleton, a polyether skeleton, a polyalkylene skeleton, a polycarbonate skeleton, etc.
  • the polyester skeleton and the polyester skeleton from the viewpoint of increasing the elongation at break and improving the impact resistance. It preferably has at least one of the polyether skeletons and may have both.
  • the moisture-curable urethane resin When the moisture-curable urethane resin has both a polyester skeleton and a polyether skeleton, it may have both a polyester skeleton and a polyether skeleton in one molecule, but a moisture-curable urethane resin having a polyester skeleton and It is preferable to use a moisture-curable urethane resin having a polyether skeleton in combination.
  • the moisture-curable urethane resin is a moisture-curable urethane resin having a polyether skeleton from the viewpoint of improving impact resistance, making the composition easy to reduce the viscosity, and making it easy to have two or more glass transition points. Is more preferable.
  • the polyol compound which is a raw material of the moisture-curable urethane resin examples include polyester polyols, polyether polyols, polyalkylene polyols, polycarbonate polyols and the like. By using each of these, the moisture-curable urethane resin can have a polyester skeleton, a polyether skeleton, a polyalkylene skeleton, and a polycarbonate skeleton, respectively. Therefore, as the polyol compound, at least one selected from polyester polyols and polyether polyols is preferable, and among them, polyether polyols are more preferable. These polyol compounds may be used alone or in combination of two or more.
  • polyester polyol examples include a polyester polyol obtained by reacting a polyvalent carboxylic acid with a polyol, a poly- ⁇ -caprolactone polyol obtained by ring-opening polymerization of ⁇ -caprolactone, and the like.
  • polyvalent carboxylic acid used as a raw material for the polyester polyol include terephthalic acid, isophthalic acid, 1,5-naphthalic acid, 2,6-naphthalic acid, succinic acid, glutaric acid, adipic acid, pimelic acid and sveric acid. , Azelaic acid, sebacic acid, decamethylenedicarboxylic acid, dodecamethylenedicarboxylic acid and the like.
  • polyol that is a raw material of the polyester polyol examples include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, and 1,6-hexanediol.
  • examples thereof include diethylene glycol and cyclohexanediol.
  • polyether polyol examples include a ring-opening polymer of ethylene glycol, propylene glycol and tetrahydrofuran, a ring-opening polymer of 3-methyltetrachloride, and a random copolymer or block copolymer of these or derivatives thereof, or a bisphenol type.
  • the bisphenol-type polyoxyalkylene modified product is a polyether polyol obtained by adding an alkylene oxide (for example, ethylene oxide, propylene oxide, butylene oxide, isobutylene oxide, etc.) to the active hydrogen moiety of the bisphenol-type molecular skeleton. be.
  • the polyether polyol may be a random copolymer or a block copolymer.
  • the bisphenol-type polyoxyalkylene modified product preferably has one or more alkylene oxides added to both ends of the bisphenol-type molecular skeleton.
  • the bisphenol type is not particularly limited, and examples thereof include A type, F type, and S type, and bisphenol A type is preferable.
  • polyalkylene polyol examples include a polybutadiene polyol, a hydrogenated polybutadiene polyol, a hydrogenated polyisoprene polyol and the like.
  • polycarbonate polyol examples include polyhexamethylene carbonate polyol and polycyclohexanedimethylene carbonate polyol.
  • the polyol used as a raw material for the moisture-curable urethane resin preferably has an average molecular weight of 500 or more, more preferably 1500 or more, further preferably 2500 or more, and preferably 15000 or less. , 8000 or less, more preferably 4000 or less.
  • the moisture-curable urethane resin is preferably obtained by using a polyol compound having a structure represented by the following formula (1).
  • a polyol compound having a structure represented by the following formula (1) it becomes easy to increase the elongation at break while maintaining good shear adhesive strength.
  • the storage elastic modulus can be easily adjusted within the above-mentioned desired range.
  • those using a polyether polyol composed of a ring-opening polymerization compound of propylene glycol, a tetrahydrofuran (THF) compound, or a ring-opening polymerization compound of a tetrahydrofuran compound having a substituent such as a methyl group are preferable.
  • the moisture-curable urethane resin may contain a moisture-curable urethane resin obtained from polytetramethylene ether glycol and a moisture-curable urethane resin obtained from propylene glycol.
  • R represents a hydrogen atom, a methyl group, or an ethyl group
  • l is an integer of 0 to 5
  • m is an integer of 1 to 500
  • n is an integer of 1 to 10.
  • .. l is preferably 0 to 4.
  • the case where l is 0 means the case where the carbon bonded to R is directly bonded to oxygen.
  • m is preferably 20 to 300, and more preferably 30 to 100.
  • the total of n and l is more preferably 1 or more, preferably 2 or more, further preferably 3 to 6, and most preferably 3.
  • R is more preferably a hydrogen atom or a methyl group, and a hydrogen atom is particularly preferable. Therefore, the structural unit represented by the formula (1) is preferably linear. Since the structural unit represented by the formula (1) is linear, the shear adhesive strength can be increased.
  • the moisture-curable urethane resin obtained from the above-mentioned linear polyether polyol, such as the moisture-curable urethane resin obtained from polytetramethylene ether glycol, is 50% by mass based on the total amount of the moisture-curable resin (A). It is preferably 100% by mass or less, and more preferably 70% by mass or more and 100% by mass or less.
  • an aromatic polyisocyanate compound and an aliphatic polyisocyanate compound are preferably used.
  • the aromatic polyisocyanate compound include diphenylmethane diisocyanate, liquid modified products of diphenylmethane diisocyanate, polypeptide MDI, tolylene diisocyanate, naphthalene-1,5-diisocyanate and the like.
  • Examples of the aliphatic polyisocyanate compound include hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, norbornane diisocyanate, transcyclohexane-1,4-diisocyanate, isophorone diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, and cyclohexane diisocyanate. , Bis (isocyanate methyl) cyclohexane, dicyclohexylmethane diisocyanate and the like.
  • polyisocyanate compound diphenylmethane diisocyanate and its modified product are particularly preferable from the viewpoint of being able to increase the adhesive strength after total curing.
  • the polyisocyanate compound may be used alone or in combination of two or more.
  • the moisture-curable urethane resin further preferably contains a compound having a urethane bond, an isocyanate group, and a reactive double bond at the terminal (hereinafter, also referred to as "reactive double bond-containing urethane resin"). ..
  • a reactive double bond-containing urethane resin By containing the above-mentioned reactive double bond-containing urethane resin as the moisture-curable urethane resin, the cured product tends to have a glass transition point in the temperature range of -20 ° C or higher and lower than 10 ° C, and the impact resistance of the cured product Is improved.
  • the said "end” means the end of the main chain.
  • the reactive double bond is a radically polymerizable group
  • the reactive double bond-containing urethane resin is treated as a moisture-curable urethane resin instead of a radically polymerizable compound.
  • the reactive double bond-containing urethane resin preferably has an isocyanate group ratio of 0.8% by mass or less in the structure.
  • the reactive double bond-containing urethane resin preferably has an isocyanate group ratio of 0.5% by mass or less in the structure.
  • the reactive double bond-containing urethane resin preferably has an isocyanate group ratio of 0.1% by mass or more in the structure.
  • the content of the reactive double bond-containing urethane resin is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and more preferably 1 part by mass with respect to 100 parts by mass of the moisture-curable urethane resin. It is 20 parts by mass or less.
  • the content of the urethane resin containing a reactive double bond is within the above range, both impact resistance and moisture curability are excellent.
  • the hydrolyzable silyl group in the molecule reacts with moisture in the air or the adherend to be cured.
  • the hydrolyzable silyl group-containing resin may have only one hydrolyzable silyl group in one molecule, or may have two or more hydrolyzable silyl groups. Above all, it is preferable to have hydrolyzable silyl groups at both ends of the main chain of the molecule.
  • the hydrolyzable silyl group-containing resin does not include those having an isocyanate group.
  • the hydrolyzable silyl group is represented by the following formula (2).
  • R 1 is an alkyl group having 1 or more and 20 or less carbon atoms, an aryl group having 6 or more and 20 or less carbon atoms, an aralkyl group having 7 or more and 20 or less carbon atoms, which may be substituted independently, respectively.
  • -OSiR 2 3 R 2 is a hydrocarbon group having 1 or more and 20 or less carbon atoms independently).
  • X is independently a hydroxy group or a hydrolyzable group.
  • a is an integer of 1 to 3.
  • the hydrolyzable group is not particularly limited, and for example, a halogen atom, an alkoxy group, an alkenyloxy group, an aryloxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group, a mercapto group and the like. Can be mentioned. Of these, halogen atoms, alkoxy groups, alkenyloxy groups, and acyloxy groups are preferable because of their high activity. Further, an alkoxy group such as a methoxy group or an ethoxy group is more preferable, and a methoxy group or an ethoxy group is further preferable, because the hydrolysis property is mild and easy to handle. From the viewpoint of safety, the compounds desorbed by the reaction are ethanol and acetone, respectively, preferably an ethoxy group and an isopropenoxy group.
  • the hydroxy group or the hydrolyzable group can be bonded to one silicon atom in the range of 1 to 3.
  • the groups may be the same or different.
  • a in the above formula (2) is preferably 2 or 3, and particularly preferably 3. Further, from the viewpoint of storage stability, a is preferably 2.
  • the R1 in the above formula (2) is, for example, an alkyl group such as a methyl group or an ethyl group, a cycloalkyl group such as a cyclohexyl group, an aryl group such as a phenyl group, an aralkyl group such as a benzyl group, or a trimethylsiloxy group. , Chloromethyl group, methoxymethyl group and the like. Of these, a methyl group is preferable.
  • hydrolyzable silyl group examples include a methyldimethoxysilyl group, a trimethoxysilyl group, a triethoxysilyl group, a tris (2-propenyloxy) silyl group, a triacetoxysilyl group, and a (chloromethyl) dimethoxysilyl group.
  • Chloromethyl) diethoxysilyl group (dichloromethyl) dimethoxysilyl group, (1-chloroethyl) dimethoxysilyl group, (1-chloropropyl) dimethoxysilyl group, (methoxymethyl) dimethoxysilyl group, (methoxymethyl) diethoxysilyl group Group, (ethoxymethyl) dimethoxysilyl group, (1-methoxyethyl) dimethoxysilyl group, (aminomethyl) dimethoxysilyl group, (N, N-dimethylaminomethyl) dimethoxysilyl group, (N, N-diethylaminomethyl) dimethoxy Cyril group, (N, N-diethylaminomethyl) diethoxysilyl group, (N- (2-aminoethyl) aminomethyl) dimethoxysilyl group, (acetoxymethyl) dimethoxysilyl group, (acetoxymethyl
  • hydrolyzable silyl group-containing resin examples include a hydrolyzable silyl group-containing (meth) acrylic resin, an organic polymer having a hydrolyzable silyl group at the end of the molecular chain or the end of the molecular chain, and a hydrolyzable silyl group.
  • examples include polyurethane resin.
  • the hydrolyzable silyl group-containing (meth) acrylic resin preferably has a repeating constituent unit derived from the hydrolyzable silyl group-containing (meth) acrylic acid ester and / or (meth) acrylic acid alkyl ester in the main chain.
  • hydrolyzable silyl group-containing (meth) acrylic acid ester examples include (meth) acrylic acid 3- (trimethoxysilyl) propyl, (meth) acrylic acid 3- (triethoxysilyl) propyl, and (meth) acrylic acid.
  • Examples of the (meth) acrylic acid alkyl ester include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, isopropyl (meth) acrylic acid, and n- (meth) acrylic acid.
  • examples thereof include stearyl acrylate.
  • As a method for producing a hydrolyzable silyl group-containing (meth) acrylic resin specifically, for example, the hydrolyzable silicon group-containing (meth) acrylic acid ester-based weight described in International Publication No. 2016/035718. Examples thereof include a method for synthesizing coalescence.
  • the organic polymer having a hydrolyzable silyl group at the end of the molecular chain or the terminal portion of the molecular chain has a hydrolyzable silyl group at at least one of the end of the main chain and the end of the side chain.
  • the skeleton structure of the main chain is not particularly limited, and examples thereof include saturated hydrocarbon-based polymers, polyoxyalkylene-based polymers, and (meth) acrylic acid ester-based polymers.
  • polyoxyalkylene-based polymer examples include polyoxyethylene structure, polyoxypropylene structure, polyoxybutylene structure, polyoxytetramethylene structure, polyoxyethylene-polyoxypropylene copolymer structure, and polyoxypropylene-poly.
  • examples thereof include a polymer having an oxybutylene copolymer structure.
  • Specific examples of the method for producing an organic polymer having a hydrolyzable silyl group at the end of the molecular chain or the end of the molecular chain are described in, for example, International Publication No. 2016/035718. Examples thereof include a method for synthesizing an organic polymer having a crosslinkable silyl group only at the terminal site of the molecular chain.
  • an organic polymer having a hydrolyzable silyl group at the end of the molecular chain or the end of the molecular chain for example, the reactive silicon group contained in International Publication No. 2012/11792 is described. Examples thereof include a method for synthesizing a polyoxyalkylene polymer.
  • a silyl group-containing compound such as a silane coupling agent
  • examples thereof include a method of reacting. Specific examples thereof include the method for synthesizing a urethane oligomer having a hydrolyzable silyl group described in JP-A-2017-48345.
  • silane coupling agent examples include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris ( ⁇ -methoxy-ethoxy) silane, ⁇ - (3,4-epoxycyclohexyl) -ethyltrimethoxysilane, and ⁇ -glycidoxy.
  • silane coupling agents may be used alone or in combination of two or more.
  • the moisture-curable urethane resin may have both an isocyanate group and a hydrolyzable silyl group.
  • a moisture-curable urethane resin having an isocyanate group is obtained by the above-mentioned method, and further, silane coupling is performed on the moisture-curable urethane resin. It is preferably produced by reacting the agent.
  • the details of the moisture-curable urethane resin having an isocyanate group are as described above.
  • the silane coupling agent that reacts with moisture curability may be appropriately selected from those listed above and used, but from the viewpoint of reactivity with the isocyanate group, a silane coupling agent having an amino group or a mercapto group. It is preferable to use. Preferred specifics are N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethyldimethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxy. Examples thereof include silane, 3-mercaptopropyltrimethoxysilane, ⁇ -aminopropyltrimethoxysilane, and 3-isocyanuppropyltrimethoxysilane.
  • the moisture-curable resin (A) may have a radically polymerizable functional group other than the moisture-curable urethane resin.
  • a radically polymerizable functional group a group having a reactive double bond is preferable, and a (meth) acryloyl group is more preferable from the viewpoint of reactivity.
  • a moisture-curable resin having a radical-polymerizable functional group other than the moisture-curable urethane resin is not included in the radical-polymerizable compound (B) described later, and is treated as a moisture-curable resin.
  • the moisture-curable resin (A) may be appropriately selected from the above-mentioned various resins and used alone or in combination of two or more.
  • the weight average molecular weight of the moisture-curable resin (A) is not particularly limited, but is preferably 1000 or more and 100,000 or less, more preferably 2000 or more and 70,000 or less, and further preferably 3000 or more and 50,000 or less.
  • the weight average molecular weight is a value obtained by measuring by gel permeation chromatography (GPC) and converting into polystyrene.
  • GPC gel permeation chromatography
  • Shodex LF-804 manufactured by Showa Denko KK
  • examples of the solvent used in GPC include tetrahydrofuran.
  • the moisture-curable resin composition preferably further contains the radically polymerizable compound (B).
  • the radically polymerizable compound (B) is not particularly limited as long as it is a radically polymerizable compound having a radically polymerizable functional group in the molecule.
  • the radically polymerizable compound (B) is preferably a compound having an unsaturated double bond as a radically polymerizable functional group, and in particular, a compound having a (meth) acryloyl group (hereinafter, also referred to as “(meth) acrylic compound”). Is preferable.
  • the (meth) acrylic compound it becomes easy to adjust the above-mentioned storage elastic modulus and breaking elongation within a predetermined range.
  • Examples of the (meth) acrylic compound include (meth) acrylic acid ester compounds, epoxy (meth) acrylates, urethane (meth) acrylates, and the like.
  • a (meth) acrylic acid ester compound is preferable, and it is also preferable to use a (meth) acrylic acid ester compound and a urethane (meth) acrylate in combination.
  • the urethane (meth) acrylate does not have a residual isocyanate group.
  • (meth) acryloyl group means an acryloyl group or a methacryloyl group
  • (meth) acrylate means an acrylate or a methacrylate
  • the (meth) acrylic acid ester compound may be monofunctional, bifunctional, or trifunctional or higher, but is preferably monofunctional.
  • monofunctional ones include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n-butyl (meth).
  • -Alicyclic (meth) acrylates such as trimethylcyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, 1-adamantyl (meth) acrylate, 2- Hydroxyalkyl (meth) acrylates such as hydroxyethyl (meth) acrylates, 2-hydroxypropyl (meth) acrylates, 2-hydroxybutyl (meth) acrylates, 4-hydroxybutyl (meth) acrylates, 2-methoxyethyl (meth) acrylates.
  • 2-ethoxyethyl (meth) acrylate alkoxyalkyl (meth) acrylate such as 2-butoxyethyl (meth) acrylate, alkoxyethylene glycol (meth) such as methoxyethylene glycol (meth) acrylate, ethoxyethylene glycol (meth) acrylate.
  • Acrylate methoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, ethylcarbitol (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, ethoxytriethylene glycol (meth) acrylate, Acrylate polyethylene Examples thereof include polyoxyethylene-based (meth) acrylates such as recall (meth) acrylates.
  • the (meth) acrylic acid ester compound may have an aromatic ring, for example, phenylalkyl (meth) acrylate such as benzyl (meth) acrylate and 2-phenylethyl (meth) acrylate, and phenoxyethyl (meth).
  • phenylalkyl (meth) acrylate such as benzyl (meth) acrylate and 2-phenylethyl (meth) acrylate
  • phenoxyethyl (meth) acrylates such as acrylates.
  • it may be a (meth) acrylate having a plurality of benzene rings such as a fluorene skeleton and a biphenyl skeleton, and specific examples thereof include fluorene type (meth) acrylate and ethoxylated o-phenylphenol acrylate.
  • phenoxypolyoxyethylene-based (meth) acrylates such as phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, nonylphenoxydiethylene glycol (meth) acrylate, and nonylphenoxypolyethylene glycol (meth) acrylate can also be mentioned.
  • examples of the monofunctional (meth) acrylic acid ester compound include tetrahydrofurfuryl (meth) acrylate, alkoxylated tetrahydrofurfuryl (meth) acrylate, cyclic trimethylolpropaneformal (meth) acrylate, and 3-ethyl-3-.
  • (Meta) acrylates having a heterocyclic structure such as oxetanylmethyl (meth) acrylates, phthalimide acrylates such as N-acryloyloxyethyl hexahydrophthalimide, various imide (meth) acrylates, 2,2,2-trifluoroethyl ( Meta) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-octafluoropentyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, 2 -(Meta) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl-2-hydroxypropylphthalate, glycidyl (me
  • bifunctional ones include, for example, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexanediol di ().
  • those having trifunctionality or higher include, for example, trimethylol propanetri (meth) acrylate, ethylene oxide-added trimethylol propanetri (meth) acrylate, and propylene oxide-added trimethylol propanetri (meth) acrylate.
  • Examples of the epoxy (meth) acrylate include those obtained by reacting an epoxy compound with (meth) acrylic acid.
  • the reaction between the epoxy compound and (meth) acrylic acid may be carried out according to a conventional method in the presence of a basic catalyst or the like.
  • the epoxy (meth) acrylate may be monofunctional or polyfunctional such as bifunctional.
  • Examples of the epoxy compound used as a raw material for synthesizing the above epoxy (meth) acrylate include a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol S type epoxy resin, and a 2,2'-diallyl bisphenol A type epoxy resin.
  • Hydrophobic bisphenol type epoxy resin propylene oxide added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, phenol Novolak type epoxy resin, orthocresol novolak type epoxy resin, dicyclopentadiene novolak type epoxy resin, biphenyl novolak type epoxy resin, naphthalenephenol novolak type epoxy resin, glycidylamine type epoxy resin, alkyl polyol type epoxy resin, rubber modified epoxy resin , Glycidyl ester compound, bisphenol A type episulfide resin and the like.
  • epoxy (meth) acrylates commercially available ones include, for example, EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3702, EBECRYL3702, EBECRYL370 ), EA-1010, EA-1020, EA-5323, EA-5520, EACHD, EMA-1020 (all manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, epoxy ester.
  • Denacol Acrylate DA-141 examples thereof include denacole acrylate DA-314 and denacole acrylate DA-911 (both manufactured by Nagase ChemteX Corporation).
  • urethane (meth) acrylate for example, an isocyanate compound reacted with a (meth) acrylic acid derivative having a hydroxyl group can be used.
  • a tin-based compound having a catalytic amount it is preferable to use a tin-based compound having a catalytic amount as a catalyst.
  • the urethane (meth) acrylate may be monofunctional or polyfunctional such as bifunctional.
  • Examples of the isocyanate compound used to obtain urethane (meth) acrylate include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and diphenylmethane-4, 4'-diisocyanate (MDI), hydrogenated MDI, polypeptide MDI, 1,5-naphthalenediocyanate, norbornan diisocyanate, trizine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris ( Examples thereof include polyisocyanate compounds such as isocyanatephenyl) thiophosphate, tetramethylxylylene diisocyanate, and 1,6,11-undecantryisocyanate.
  • MDI 4'-di
  • the isocyanate compound a chain-extended polyisocyanate compound obtained by reacting a polyol with an excess isocyanate compound can also be used.
  • the polyol include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, and polycaprolactone diol.
  • monoisocyanate for example, in order to obtain a monofunctional urethane (meth) acrylate, monoisocyanate may be used.
  • the monoisocyanate include alkane monoisocyanates such as butane isocyanate, hexane isocyanate and decane isocyanate, and aliphatic monoisocyanates such as cyclic aliphatic monoisocyanates such as cyclopentane isocyanate, cyclohexane isocyanate and isophorone monoisocyanate.
  • the isocyanate compound for obtaining urethane (meth) acrylate may be used alone or in combination of two or more.
  • Examples of the (meth) acrylic acid derivative having a hydroxyl group include dihydric alcohols such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and polyethylene glycol.
  • the (meth) acrylic acid derivative for obtaining urethane (meth) acrylate may be used alone or in combination of two or more.
  • polyfunctional urethane (meth) acrylate a polyisocyanate compound reacted with a (meth) acrylic acid derivative having a hydroxyl group may be used.
  • monofunctional urethane (meth) acrylate one obtained by reacting a (meth) acrylic acid derivative having a hydroxyl group with a monoisocyanate compound may be used, but the monoisocyanate compound and a dihydric alcohol mono (mono) Urethane (meth) acrylate obtained by reacting with a meta) acrylate is preferable, and preferred specific examples thereof include 1,2-ethanediol 1-acrylate 2- (N-butylcarbamate).
  • urethane (meth) acrylates include, for example, M-1100, M-1200, M-1210, M-1600 (all manufactured by Toa Synthetic Co., Ltd.), EBECRYL230, EBECRYL270, EBECRYL8402, EBECRYL8411.
  • a (meth) acrylic compound or a vinyl compound other than the above-mentioned (meth) acrylic acid ester compound may be used in combination.
  • examples of such compounds include (meth) acrylic compounds having a cyclic structure such as (meth) acryloylmorpholine, and vinyl compounds having a cyclic structure such as N-vinyl-2-pyrrolidone and N-vinyl- ⁇ -caprolactam. Can be used.
  • the radically polymerizable compound (B) at least one selected from urethane (meth) acrylate and alkyl (meth) acrylate is used from the viewpoint of facilitating the increase in shear adhesive strength. These are preferable, and these may be used in combination, but it is more preferable to use at least an alkyl (meth) acrylate.
  • the urethane (meth) acrylate is not particularly limited, but is, for example, 1 part by mass or more and 30 parts by mass or less, preferably 5 parts by mass, based on 100 parts by mass of the total amount of the moisture-curable resin (A) and the radically polymerizable compound (B). It is contained in an amount of 25 parts by mass or less.
  • the alkyl (meth) acrylate is not particularly limited, but is preferably 5 parts by mass or more and 40 parts by mass or less, for example, with respect to 100 parts by mass of the total amount of the moisture-curable resin (A) and the radically polymerizable compound (B). Is contained in an amount of 10 parts by mass or more and 30 parts by mass or less.
  • the radically polymerizable compound (B) may be appropriately selected and adjusted so that the cured product does not have a glass transition point within the temperature range of 10 ° C. or higher.
  • the radically polymerizable compound (B) is a compound having a low glass transition point (Tg) when it is homopolymer (a low Tg compound, for example, the above Tg is less than 0 ° C., preferably ⁇ 10 ° C. or lower, more preferably. It is preferable to contain a compound having a temperature of ⁇ 20 ° C. or lower, more preferably ⁇ 30 ° C. or lower).
  • a compound having a high glass transition point (Tg) when made into a homopolymer so that the cured product does not have a glass transition point in the temperature range of 10 ° C. or higher. It is also preferable to use, for example, a Tg of 0 ° C. or higher, preferably 10 ° C. or higher, more preferably 20 ° C. or higher).
  • Tg glass transition point
  • the shear adhesive strength is likely to be improved.
  • the Tg in parentheses of each of the above compounds is the glass transition temperature when the homopolymer of each compound is used.
  • the radically polymerizable compound (B) contains urethane (meth) acrylate as described above.
  • the urethane (meth) acrylate may be monofunctional or polyfunctional, but preferably contains at least monofunctional. By using a monofunctional urethane (meth) acrylate, it becomes easy to increase the shear adhesive strength. Further, the urethane (meth) acrylate may be the above-mentioned low Tg compound or a high Tg compound.
  • the content of the moisture-curable resin (A) in the moisture-curable resin composition is, for example, 50 parts by mass or more with respect to 100 parts by mass of the total amount of the moisture-curable resin (A) and the radically polymerizable compound (B). However, it is preferably 60 parts by mass or more. When it is 60 parts by mass or more, the elongation at break tends to be high, and the impact resistance is easily improved.
  • the content of the moisture-curable resin (A) may be 100 parts by mass or less, preferably 80 parts by mass or less, more preferably 75 parts by mass or less, and further preferably 70 parts by mass or less.
  • the content of the moisture-curable resin (A) By setting the content of the moisture-curable resin (A) to 80 parts by mass or less, the content of the radically polymerizable compound (B) becomes a certain amount or more, the viscosity is lowered, and the coatability is improved. In addition, the shape retention after application tends to be good.
  • the content of the radically polymerizable compound (B) may be, for example, 50 parts by mass or less with respect to 100 parts by mass of the total amount of the moisture-curable resin (A) and the radically polymerizable compound (B). , 40 parts by mass or less is preferable.
  • the radically polymerizable compound (B) does not have to be contained in the moisture-curable resin composition. Therefore, the content of the radically polymerizable compound (B) may be 0 parts by mass or more, which is preferable. Is 20 parts by mass or more, more preferably 25 parts by mass or more, still more preferably 30 parts by mass or more.
  • the total amount of the moisture-curable resin (A) and the radically polymerizable compound (B) is, for example, 60% by mass or more, preferably 70% by mass or more, more preferably 75% by mass, based on the total amount of the moisture-curable resin composition. % Or more and 100% by mass or less, but preferably 99% by mass or less, more preferably 97% by mass or less in order to contain other components such as a photopolymerization initiator.
  • the moisture-curable resin composition total amount standard means that the total amount of solid content contained in the moisture-curable resin composition is used as a standard. For example, when the moisture-curable resin composition contains a solvent for diluting the composition, the amount of the component excluding the solvent is the total amount of the moisture-curable resin composition.
  • the moisture-curable resin composition of the present invention may contain a cross-linking agent (X).
  • a cross-linking agent (X) By containing the cross-linking agent (X), the elongation at break and the storage elastic modulus are enhanced, and the adhesive performance and the impact resistance are easily improved.
  • the cross-linking agent (X) is preferably a compound having a functional group capable of reacting with at least one of the above-mentioned moisture-curable resin (A) and radically polymerizable compound (B) when the moisture-curable resin composition is cured. Specific examples thereof include compounds having an isocyanate group. Examples of such a compound include polyisocyanate compounds having two or more isocyanate groups in one molecule.
  • the cross-linking agent (X) is preferably contained in the moisture-curable resin composition when the moisture-curable resin composition contains the radically polymerizable compound (B).
  • polyisocyanate compound used as the cross-linking agent (X) examples include aromatic polyisocyanate compounds and aliphatic polyisocyanate compounds.
  • aromatic polyisocyanate compound include diphenylmethane diisocyanate, liquid modified products of diphenylmethane diisocyanate, polypeptide MDI, tolylene diisocyanate, naphthalene-1,5-diisocyanate and the like.
  • Examples of the aliphatic polyisocyanate compound include hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, norbornane diisocyanate, transcyclohexane-1,4-diisocyanate, isophorone diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, and cyclohexane diisocyanate. , Bis (isocyanate methyl) cyclohexane, dicyclohexylmethane diisocyanate and the like.
  • an aromatic polyisocyanate compound is preferable, a diphenylmethane diisocyanate and a modified product thereof, and a polypeptide MDI are more preferable, and a diphenylmethane diisocyanate is further preferable, from the viewpoint of increasing the storage elastic modulus and improving the adhesive performance.
  • the polyisocyanate compound may be used alone or in combination of two or more.
  • the content of the cross-linking agent (X) in the moisture-curable resin composition is 0.4 parts by mass or more and 10 parts by mass with respect to 100 parts by mass of the total amount of the moisture-curable resin (A) and the radically polymerizable compound (B). It is preferably less than or equal to a part.
  • the content of the moisture-curable resin (A) and the radically polymerizable compound (B) can be secured in a certain amount or more, so that the elongation at break can be easily increased and the impact resistance can be increased. You can improve the sex.
  • the content of the cross-linking agent is more preferably 0.8 parts by mass or more, further preferably 1.0 part by mass or more, still more preferably 6 parts by mass or less, still more preferably 5 parts by mass or less.
  • the moisture-curable resin composition of the present invention preferably contains a photopolymerization initiator (Y) in order to ensure photocurability.
  • a photopolymerization initiator (Y) include a photoradical polymerization initiator. Specifically, benzophenone compounds, acetphenone compounds such as ⁇ -aminoalkylphenone and ⁇ -hydroxyalkylphenone, acylphosphine oxide compounds, titanosen compounds, oxime ester compounds, benzoin ether compounds, thioxanthone and the like are used. Can be mentioned.
  • photopolymerization initiators include, for example, IRGACURE184, IRGACURE369, IRGACURE379, IRGACURE379EG, IRGACURE651, IRGACURE784, IRGACURE819, IRGACURE907, IRGACURE2959, and IRGACURE OX01.
  • examples thereof include ether, benzoin ethyl ether, benzoin isopropyl ether (all manufactured by Tokyo Chemical Industry Co., Ltd.) and the like.
  • the content of the photopolymerization initiator (Y) in the moisture-curable resin composition is preferably 0.01 parts by mass or more and 10 parts by mass or less, more preferably 0.5 parts by mass with respect to 100 parts by mass of the radically polymerizable compound. More than 5 parts by mass or less.
  • the content of the photopolymerization initiator (Y) is within this range, the obtained moisture-curable resin composition has excellent photocurability and storage stability.
  • the radically polymerizable compound (B) is appropriately cured, and the above-mentioned shear adhesive strength, breaking elongation and the like can be easily adjusted within the predetermined range.
  • the moisture-curable resin composition of the present invention may contain a filler.
  • the moisture-curable resin composition of the present invention has suitable thixo property and can sufficiently retain the shape after coating.
  • a particulate material may be used.
  • the filler is preferably an inorganic filler, and examples thereof include silica, talc, titanium oxide, zinc oxide, and calcium carbonate. Among them, silica is preferable because the obtained moisture-curable resin composition has excellent ultraviolet transparency.
  • the filler may be subjected to a hydrophobic surface treatment such as a silylation treatment, an alkylation treatment and an epoxidation treatment. The filler may be used alone or in combination of two or more.
  • the content of the filler is, for example, 1 part by mass or more and 30 parts by mass or less, preferably 2 parts by mass or more and 25 parts by mass with respect to 100 parts by mass of the total amount of the moisture-curable resin (A) and the radically polymerizable compound (B). It is 5 parts by mass or less, more preferably 5 parts by mass or more and 15 parts by mass or less.
  • the moisture-curable resin composition may contain a coupling agent.
  • a coupling agent By containing a coupling agent, it becomes easy to improve the adhesive strength.
  • the coupling agent include a silane coupling agent, a titanate-based coupling agent, a zirconate-based coupling agent, and the like. Of these, a silane coupling agent is preferable because it is excellent in the effect of improving the adhesiveness.
  • the coupling agent may be used alone or in combination of two or more.
  • the content of the coupling agent is preferably 0.05 parts by mass or more and 5 parts by mass or less, preferably 0.2 parts by mass, based on 100 parts by mass of the total amount of the moisture-curable resin (A) and the radically polymerizable compound (B). More than parts and 2 parts by mass are more preferable, and 0.5 parts by mass or more and 1.5 parts by mass or less are further preferable. By setting the content of the coupling agent within these ranges, the adhesive strength can be improved without significantly affecting other physical properties.
  • the moisture-curable resin composition of the present invention may be diluted with a solvent, if necessary.
  • the parts by mass of the moisture-curable resin composition are based on the solid content, that is, the parts by mass excluding the solvent.
  • the moisture-curable resin composition contains wax particles, metal-containing particles, light-shielding agents, colorants, reactive diluents, additives such as moisture-curing accelerators, and the like. May be good.
  • the components constituting the moisture-curable resin composition may be mixed using a mixer.
  • a moisture-curable resin (A), a radically polymerizable compound (B), and a cross-linking agent (X), a photopolymerization initiator (Y), a filler, a coupling agent, and a coupling agent which are blended as needed.
  • the mixer include a homodisper, a homomixer, a universal mixer, a planetary mixer (planetary stirrer), a kneader, a three-roll, and the like.
  • the moisture-curable resin composition of the present invention is cured and used as a cured product.
  • the moisture-curable resin composition of the present invention has photocurability, thermosetting, or both, first, it is cured by photocuring, thermosetting, or both by light irradiation or heating. For example, it is good to put it in a B stage state (semi-cured state), and then further cure it with moisture to completely cure it.
  • the moisture-curable resin composition of the present invention is preferably light-moisture-curable. Therefore, it is preferable to photo-cure by light irradiation to obtain a B stage state (semi-cured state), and then further cure by moisture to fully cure.
  • the moisture-curable resin composition is arranged between the adherends, and when the adherends are bonded to each other, the moisture-curable resin composition is applied to one of the adherends, and then photocured by light irradiation or the like.
  • the other adherend is superposed on the moisture-curable resin composition cured to the B stage state, and the adherends are temporarily bonded with an appropriate adhesive force (initial adhesive force). It is good.
  • the moisture-curable resin composition in the B stage state is completely cured by being cured by moisture, and the adherends laminated via the moisture-curable resin composition are joined with sufficient adhesive force. ..
  • the light irradiated at the time of photocuring is not particularly limited as long as it is the light at which the radically polymerizable compound (B) is cured, but ultraviolet rays are preferable.
  • the thermosetting is not particularly limited as long as it is the temperature at which the thermosetting resin is cured, but for example, it may be heated to a temperature of 60 ° C. or higher and lower than 120 ° C., more preferably a temperature of lower than 100 ° C. Further, when the moisture-curable resin composition is cured by moisture, it may be left in the air for a predetermined time.
  • the moisture-curable resin composition is applied to the adherend by using a dispenser.
  • the dispenser include an air dispenser, a jet dispenser, a mono pump dispenser, a screw dispenser, a hand gun dispenser, and the like, and among these, a jet dispenser is preferable.
  • the moisture-curable resin composition is formed into a fine line of, for example, 1 mm or less, preferably about 0.1 to 0.7 mm, with good coatability. It can be applied with a jet dispenser. Further, in the jet dispenser, for example, the moisture-curable resin composition may be heated to about 70 to 100 ° C. and applied.
  • the moisture-curable resin composition of the present invention is preferably used as an adhesive for electronic devices.
  • the moisture-curable resin composition of the present invention is more preferably used as an adhesive for portable electronic devices. More specific examples of the portable electronic device include a mobile phone such as a smartphone, a tablet terminal, and the like.
  • the constituent members that are adherends may be detached if they are accidentally dropped during use, but the moisture-curable resin composition of the present invention is used as an adhesive for portable electronic devices. If so, the cured product of the moisture-curable resin composition of the present invention has excellent impact resistance, so that the adherend is less likely to come off.
  • the adherend is not particularly limited, but is, for example, various parts constituting the electronic device.
  • the various components constituting the electronic device include electronic components or a substrate on which the electronic components are mounted, and more specifically, various electronic components provided on the display element, a substrate on which the electronic components are mounted, a semiconductor chip, and the like. Can be mentioned. That is, the present invention also provides an electronic component provided with a cured product of a moisture-curable resin composition.
  • the material of the adherend may be any of metal, glass, plastic and the like.
  • the shape of the adherend is not particularly limited, and examples thereof include a film shape, a sheet shape, a plate shape, a panel shape, a tray shape, a rod shape, a box shape, and a housing shape. ..
  • the moisture-curable resin composition of the present invention does not have a glass transition point in the temperature range of 10 ° C. or higher while the cured product of the moisture-curable resin composition has a shear adhesive strength and breaking elongation of a predetermined value or more. As a result, the impact resistance becomes excellent. Therefore, in the moisture-curable resin composition of the present invention, even when the coating width and the adhesive area of the moisture-curable resin composition are small, the adherend may be peeled off, for example, when a large impact is applied to the adherend. Is prevented.
  • an adhesive used to bond semiconductor chips having a small adhesive area or an adhesive used in a display device, for example, a display device for a portable electronic device in which the coating width tends to be small, particularly a display device for a mobile phone such as a smartphone. It is suitably used as an agent.
  • a cured product sample is prepared from the moisture-curable resin composition according to the method described in the specification, and the cured product sample is prepared at 25 ° C. by a dynamic viscoelasticity measuring device (manufactured by IT Measurement Control Co., Ltd., trade name “DVA-200”).
  • the storage elastic modulus in. The measurement conditions were that the deformation mode was pulled, the set strain was 1%, the measurement frequency was 1 Hz, and the temperature rising rate was 5 ° C./min.
  • a test piece is prepared from the moisture-curable resin composition according to the method described in the specification, and is broken at a speed of 50 mm / min using a tensile tester (manufactured by A & D Co., Ltd., trade name "TENSILON"). The elongation at break was measured at 25 ° C.
  • FIG. 2A The outline of the impact resistance adhesion test is shown in FIG.
  • a 2 mm-thick polycarbonate plate 3 having a 38 mm ⁇ 50 mm rectangular hole 2 in the central portion was prepared.
  • the moisture-curable resin composition 1 was applied to the polycarbonate plate 3 in a square frame shape so that the outer diameter was 46 mm ⁇ 61 mm and the inner diameter was 44 mm ⁇ 59 mm, and the coating width was 1 mm and the rectangular hole 2 was surrounded.
  • the moisture-curable resin composition 1 was photocured by irradiating 1000 mJ / cm 2 of ultraviolet rays in an environment of 25 ° C. and 50% RH using a UV-LED (wavelength 365 nm).
  • a polycarbonate plate 4 having a thickness of 50 mm ⁇ 75 mm and a thickness of 4 mm was attached to the polycarbonate plate 3 via the semi-cured moisture-curable resin composition 1 to assemble a test piece.
  • the center positions of the polycarbonate plate 4 and the moisture-curable resin composition 1 having a square frame shape are aligned with each other. Then, it was inverted from the state of FIG. 2A and arranged so that the polycarbonate plate 3 was placed on the polycarbonate plate 4.
  • the moisture-curable resin composition 1 was moisture-cured by leaving it at room temperature (23 ° C.) for 24 hours at room temperature (23 ° C.) and 50% RH under a pressure of 5 kgf applied from the polycarbonate plate 3 side to moisture-cure the polycarbonate plate 4 and the polycarbonate plate 3. , The completely cured moisture-curable resin composition 1 was used for adhesion.
  • the prepared test piece is fixed to the support base 5, and an iron ball 6 having a weight of 300 g and passing through the rectangular hole 2 is passed through the rectangular hole 2. Dropped from a height of 20 mm. The iron ball was repeatedly dropped under the same conditions, and the impact resistance was judged according to the following evaluation criteria.
  • AA The polycarbonate plate did not peel off even when the iron ball was dropped 80 times.
  • A The polycarbonate plate was peeled off when the iron ball was dropped 40 times or more and less than 80 times.
  • B The polycarbonate plate was peeled off when the number of times the iron ball was dropped was 20 times or more and less than 40 times.
  • B The polycarbonate plate was peeled off when the iron ball was dropped less than 20 times.
  • the moisture-curable resin composition coated on the substrate was exposed to ultraviolet rays of 365 nm with an LED lamp at 25 ° C. and 50% RH at 1000 mJ / cm 5 seconds after the coating was completed. 2 Irradiated. Then, after leaving it in an environment of 25 ° C. and 50% RH for 16 hours, the width (maximum width) and height (maximum height) of the cured product were measured with a laser microscope (trade name "VK-X200", manufactured by KEYENCE CORPORATION). The measurement was performed, and the ratio of the height to the width of the cured product was calculated as the aspect ratio. Based on the calculated aspect ratio, the shape retention was evaluated according to the following evaluation criteria. A: Aspect ratio is 0.4 or more B: Aspect ratio is less than 0.4
  • the components used in the examples and comparative examples were as follows.
  • (Moisture curable resin (A) The moisture-curable urethane resin 1 (PTMG) was produced according to the following Synthesis Example 1.
  • Synthesis Example 1 As a polyol compound, 100 parts by mass of polytetramethylene ether glycol (manufactured by Mitsubishi Chemical Corporation, trade name "PTMG-2000", average molecular weight 2000) and 0.01 parts by mass of dibutyltin dilaurate are placed in a separable flask having a capacity of 500 mL. It was put in, stirred under vacuum (20 mmHg or less) at 100 ° C. for 30 minutes, and mixed.
  • the moisture-curable urethane resin 2 was produced according to the following Synthesis Example 2.
  • Synthesis Example 2 100 parts by mass of polytetramethylene ether glycol (manufactured by Mitsubishi Chemical Corporation, "PTMG-3000", average molecular weight 3000) and 0.01 parts by mass of dibutyltin dilaurate as a polyol compound were placed in a separable flask containing 500 mL. Under vacuum (20 mmHg or less), the mixture was stirred at 100 ° C. for 30 minutes and mixed.
  • the moisture-curable urethane resin 3 was produced according to the following Synthesis Example 3.
  • Synthesis Example 3 As a polyol compound, 100 parts by mass of polypropylene glycol (manufactured by Asahi Glass Co., Ltd., "EXCENOL 2020", average molecular weight 2000) and 0.01 parts by mass of dibutyltin dilaurate are placed in a 500 mL separable flask and placed under vacuum (20 mmHg or less). ), Stirred at 100 ° C. for 30 minutes and mixed.
  • the moisture-curable urethane resin 4 (polyester) was produced according to the following Synthesis Example 4.
  • Synthesis Example 4 As a polyol compound, 100 parts by mass of polyester polyol (Kuraray Polyol P-5010 (manufactured by Kuraray), a condensate of adipic acid and 3-methyl-1,5-pentadiol) and 0.01 parts by mass of dibutyltin dilaurate. was placed in a separable flask containing 500 mL, stirred under vacuum (20 mmHg or less) at 100 ° C. for 30 minutes, and mixed.
  • the moisture-curable urethane resin 5 (polycarbonate) was produced according to the following Synthesis Example 5.
  • Synthesis Example 5 As a polyol compound, 100 parts by mass of polycarbonate diol (manufactured by Kuraray, trade name "Kuraraypolyol C-1090") and 0.01 parts by mass of dibutyltin dilaurate were placed in a separable flask having a capacity of 500 mL. The inside of the flask was stirred under vacuum (20 mmHg or less) at 100 ° C. for 30 minutes and mixed.
  • PC polycarbonate
  • PC polycarbonate
  • a PC skeleton aliphatic terminal urethane having both ends being an aliphatic isocyanate group was obtained.
  • the weight average molecular weight of the obtained PC skeletal aliphatic terminal urethane was 7000. 35 parts by mass of the obtained PC skeleton aromatic terminal urethane and 30 parts by mass of the PC skeleton aliphatic terminal urethane were mixed to obtain a moisture-curable urethane resin 5.
  • Isobornyl acrylate Kyoeisha Chemical Co., Ltd., trade name "IB-XA”, monofunctional, Tg: 94 ° C.
  • Tridecyl acrylate manufactured by Sartmer, trade name "SR489D”, monofunctional, Tg: -55 ° C.
  • Stearyl Acrylate Made by Sartmer, trade name "SR257”, monofunctional, Tg: 35 ° C.
  • Aronix M-140 Toagosei Co., Ltd., trade name "Aronix M-140", N-acryloyloxyethyl hexahydrophthalimide
  • Crosslinking agent (X) Diphenylmethane diisocyanate (photopolymerization initiator (Y)) 2-Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 (BASF, "IRGACURE 369") (Coupling agent) 3-Acryloxypropyltrimethoxysilane: manufactured by Shin-Etsu Chemical Co., Ltd., trade name "KBM-5103" (filler) Siliconized silica: Made by Aerosil Japan, trade name "RY300"
  • Examples 1 to 9, Comparative Examples 1 to 4 According to the formulation shown in Table 1, each material is stirred at a temperature of 50 ° C. with a planetary stirrer (Sinky Co., Ltd., “Awatori Rentaro”), and then uniformly at a temperature of 50 ° C. with three ceramic rolls. The moisture-curable resin compositions of Examples 1 to 9 and Comparative Examples 1 to 4 were obtained.
  • the impact resistance is excellent by increasing both the shear adhesive strength and the elongation at break of the cured product and having no glass transition point in the temperature range of 10 ° C. or higher. It became a thing.
  • the impact resistance was not sufficiently high because either the shear adhesive strength of the cured product or the elongation at break was not high.
  • Comparative Example 3 although both the shear adhesive strength of the cured product and the elongation at break were high, the impact resistance was not sufficiently high due to having the glass transition point in the temperature range of 10 ° C. or higher.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

A moisture-curable resin composition including a moisture-curable resin, and giving cured objects which have a shear bonding strength of 4 MPa or higher and an elongation at rupture of 600% or higher and have no glass transition point at temperatures of 10°C and higher.

Description

湿気硬化性樹脂組成物、及び電子機器用接着剤Moisture curable resin compositions and adhesives for electronic devices
 本発明は、湿気硬化性樹脂組成物、及び、湿気硬化性樹脂組成物よりなる電子機器用接着剤に関する。 The present invention relates to a moisture-curable resin composition and an adhesive for electronic devices comprising a moisture-curable resin composition.
 従来、スマートフォン等の携帯電子機器の構成部材の接着には粘着テープが用いられることが多いが、近年は生産の自動化が可能である湿気硬化性樹脂組成物が接着剤として用いられるようになってきている。
 湿気硬化性樹脂組成物は、様々な性能を付与することが検討されている。例えば特許文献1では、柔軟性、及び高温高湿環境下における信頼性に優れる硬化体を提供するために、ラジカル重合性化合物と湿気硬化型樹脂を含有する光湿気硬化型樹脂組成物の硬化体において、0℃における貯蔵弾性率を1.0×10Pa以上とし、かつ50℃における貯蔵弾性率を5.0×10Pa以下とすることが示されている。
Conventionally, adhesive tapes are often used to bond components of portable electronic devices such as smartphones, but in recent years, moisture-curable resin compositions that can automate production have come to be used as adhesives. ing.
Moisture-curable resin compositions have been studied to impart various performances. For example, in Patent Document 1, in order to provide a cured product having excellent flexibility and reliability in a high temperature and high humidity environment, a cured product of a photomoisture curable resin composition containing a radically polymerizable compound and a moisture curable resin is provided. It is shown that the storage elastic modulus at 0 ° C. is 1.0 × 10 7 Pa or more, and the storage elastic modulus at 50 ° C. is 5.0 × 10 6 Pa or less.
国際公開第2016/076407号International Publication No. 2016/07647
 ところで、スマートフォンなどの携帯電子機器では、落下時に大きな衝撃が作用される一方で、携帯電子機器に使用される接着剤は、接着面積が小さい。さらに近年、電子機器の小型化に伴い、接着部分が細線化などされて接着面積がより一層小さくなってきている。
 しかし、従来の湿気硬化性樹脂組成物は、耐衝撃性能が十分ではなく、接着面積が小さいと、落下時などに、湿気硬化性樹脂組成物により固定された構成部材が脱落するなどの不具合が生じることがある。
By the way, while a large impact is applied to a portable electronic device such as a smartphone when it is dropped, the adhesive used for the portable electronic device has a small adhesive area. Further, in recent years, with the miniaturization of electronic devices, the bonded portion has become thinner and the bonded area has become even smaller.
However, the conventional moisture-curable resin composition does not have sufficient impact resistance, and if the adhesive area is small, there are problems such as the components fixed by the moisture-curable resin composition falling off when dropped. May occur.
 そこで、本発明は、耐衝撃性を十分に高くすることが可能な湿気硬化性樹脂組成物を提供することを課題とする。 Therefore, it is an object of the present invention to provide a moisture-curable resin composition capable of sufficiently increasing impact resistance.
 本発明者らは、鋭意検討の結果、硬化物のせん断接着強度及び破断伸度を所定値以上としつつ、10℃以上の温度範囲にガラス転移点を有さないようにすることで上記課題を解決できることを見出し、以下の本発明を完成させた。すなわち、本発明は、以下の[1]~[26]を提供する。
[1]湿気硬化性樹脂(A)を含有する湿気硬化性樹脂組成物であって、
 前記湿気硬化性樹脂組成物の硬化物が、せん断接着強度が4MPa以上であり、破断伸度が600%以上であり、かつ10℃以上の温度範囲にガラス転移点を有さない、湿気硬化性樹脂組成物。
[2]前記湿気硬化性樹脂組成物の硬化物が、-20℃以上10℃未満の温度範囲にガラス転移点を有する、上記[1]に記載の湿気硬化性樹脂組成物。
[3]前記湿気硬化性樹脂組成物の硬化物が、-45℃以下の温度範囲にガラス転移点を有する、上記[1]又は[2]に記載の湿気硬化性樹脂組成物。
[4]80℃、20rpmで測定した粘度が50Pa・s以下である、上記[1]~[3]のいずれか1項に記載の湿気硬化性樹脂組成物。
[5]ラジカル重合性化合物(B)と、光重合開始剤(Y)をさらに含む、上記[1]~[4]のいずれか1項に記載の湿気硬化性樹脂組成物。
[6]ラジカル重合性化合物(B)と湿気硬化性樹脂(A)との合計100質量部に対して、湿気硬化性樹脂を60質量部以上含む、上記[1]~[5]のいずれか1項に記載の湿気硬化性樹脂組成物。
[7]前記湿気硬化性樹脂(A)が湿気硬化性ウレタン樹脂である、上記[1]~[6]のいずれか1項に記載の湿気硬化性樹脂組成物。
[8]ジェットディスペンサーによる塗布に用いられる、上記[1]~[7]のいずれか1項の湿気硬化性樹脂組成物。
[9]80℃、20rpmで測定した粘度が30Pa・s以下である、上記[1]~[8]のいずれか1項に記載の湿気硬化性樹脂組成物。
[10]前記湿気硬化性樹脂組成物の硬化物は、貯蔵弾性率が7MPa以上50MPa以下である上記[1]~[9]のいずれか1項に記載の湿気硬化性樹脂組成物。
[11]前記湿気硬化性樹脂(A)が湿気硬化性ウレタン樹脂であり、前記湿気硬化性ウレタン樹脂が、ポリエステル骨格、ポリエーテル骨格、ポリアルキレン骨格、及びポリカーボネート骨格の少なくともいずれかを有する上記[1]~[10]のいずれか1項に記載の湿気硬化性樹脂組成物。
[12]前記湿気硬化性ウレタン樹脂が、ポリエステル骨格及びポリエーテル骨格の少なくともいずれかを有する上記[11]に記載の湿気硬化性樹脂組成物。
[13]前記湿気硬化性樹脂(A)が湿気硬化性ウレタン樹脂であり、湿気硬化性ウレタン樹脂が、ポリオール化合物と、ポリイソシアネート化合物との反応物である上記[1]~[12]のいずれか1項に記載の湿気硬化性樹脂組成物。
[14]前記ポリオール化合物が、多価カルボン酸とポリオールから得られるポリエステルポリオールを含む上記[13]に記載の湿気硬化性樹脂組成物。
[15]前記ポリオール化合物が、プロピレングリコール、テトラヒドロフラン化合物の開環重合化合物、及び置換基を有するテトラヒドロフラン化合物の開環重合化合物からなる群から選択される少なくとも1種を含む上記[13]又は[14]に記載の湿気硬化性樹脂組成物。
[16]前記湿気硬化性樹脂(A)の重量平均分子量が1000以上100000以下である上記[1]~[15]のいずれか1項に記載の湿気硬化性樹脂組成物。
[17]少なくともラジカル重合性化合物(B)をさらに含有する、上記[1]~[16]のいずれか1項に記載の湿気硬化性樹脂組成物。
[18]前記ラジカル重合性化合物(B)が(メタ)アクリル酸エステル化合物、エポキシ(メタ)アクリレート、及びウレタン(メタ)アクリレートからなる群から選択される少なくとも1種を含む上記[17]に記載の湿気硬化性樹脂組成物。
[19]前記ラジカル重合性化合物(B)がウレタン(メタ)アクリレート、及びアルキル(メタ)アクリレートからなる群から選択される少なくとも1種を含む上記[17]又は[18]に記載の湿気硬化性樹脂組成物。
[20]前記ラジカル重合性化合物(B)の含有量が、湿気硬化性樹脂(A)とラジカル重合性化合物(B)の合計量100質量部に対して、20質量部以上50質量部以下である上記[17]~[19]のいずれか1項に記載の湿気硬化性樹脂組成物。
[21]さらに光重合開始剤(Y)を含み、光重合開始剤(Y)の含有量が、ラジカル重合性化合物100質量部に対して、0.01質量部以上10質量部以下である上記[17]~[20]のいずれか1項に記載の湿気硬化性樹脂組成物。
[22]さらに架橋剤(X)を含有する上記[1]~[21]のいずれか1項に記載の湿気硬化性樹脂組成物。
[23]上記[1]~[22]のいずれか1項に記載の湿気硬化性樹脂組成物からなる電子機器用接着剤。
[24]上記[1]~[22]のいずれか1項に記載の湿気硬化性樹脂組成物の硬化体。
[25]上記[1]~[22]のいずれか1項に記載の湿気硬化性樹脂組成物を被着体間に配置させ、その被着体間を接合させる方法。
[26]上記[1]~[22]のいずれか1項に記載の湿気硬化性樹脂組成物をディスペンサーにより塗布する方法。
As a result of diligent studies, the present inventors have solved the above-mentioned problems by setting the shear adhesive strength and breaking elongation of the cured product to predetermined values or more and not having a glass transition point in the temperature range of 10 ° C. or higher. We found that it could be solved and completed the following invention. That is, the present invention provides the following [1] to [26].
[1] A moisture-curable resin composition containing a moisture-curable resin (A).
The cured product of the moisture-curable resin composition has a shear adhesive strength of 4 MPa or more, a breaking elongation of 600% or more, and has no glass transition point in a temperature range of 10 ° C. or more, and is moisture-curable. Resin composition.
[2] The moisture-curable resin composition according to the above [1], wherein the cured product of the moisture-curable resin composition has a glass transition point in a temperature range of −20 ° C. or higher and lower than 10 ° C.
[3] The moisture-curable resin composition according to the above [1] or [2], wherein the cured product of the moisture-curable resin composition has a glass transition point in a temperature range of −45 ° C. or lower.
[4] The moisture-curable resin composition according to any one of [1] to [3] above, wherein the viscosity measured at 80 ° C. and 20 rpm is 50 Pa · s or less.
[5] The moisture-curable resin composition according to any one of [1] to [4] above, further comprising a radically polymerizable compound (B) and a photopolymerization initiator (Y).
[6] Any of the above [1] to [5], which contains 60 parts by mass or more of the moisture-curable resin with respect to 100 parts by mass of the total of the radically polymerizable compound (B) and the moisture-curable resin (A). The moisture-curable resin composition according to item 1.
[7] The moisture-curable resin composition according to any one of [1] to [6] above, wherein the moisture-curable resin (A) is a moisture-curable urethane resin.
[8] The moisture-curable resin composition according to any one of the above [1] to [7], which is used for coating with a jet dispenser.
[9] The moisture-curable resin composition according to any one of [1] to [8] above, wherein the viscosity measured at 80 ° C. and 20 rpm is 30 Pa · s or less.
[10] The moisture-curable resin composition according to any one of the above [1] to [9], wherein the cured product of the moisture-curable resin composition has a storage elastic modulus of 7 MPa or more and 50 MPa or less.
[11] The moisture-curable resin (A) is a moisture-curable urethane resin, and the moisture-curable urethane resin has at least one of a polyester skeleton, a polyether skeleton, a polyalkylene skeleton, and a polycarbonate skeleton. 1] The moisture-curable resin composition according to any one of [10].
[12] The moisture-curable resin composition according to the above [11], wherein the moisture-curable urethane resin has at least one of a polyester skeleton and a polyether skeleton.
[13] Any of the above [1] to [12], wherein the moisture-curable resin (A) is a moisture-curable urethane resin, and the moisture-curable urethane resin is a reaction product of a polyol compound and a polyisocyanate compound. The moisture-curable resin composition according to item 1.
[14] The moisture-curable resin composition according to the above [13], wherein the polyol compound contains a polyvalent carboxylic acid and a polyester polyol obtained from the polyol.
[15] The above-mentioned [13] or [14], wherein the polyol compound contains at least one selected from the group consisting of propylene glycol, a ring-opening polymerization compound of a tetrahydrofuran compound, and a ring-opening polymerization compound of a tetrahydrofuran compound having a substituent. ] The moisture-curable resin composition according to.
[16] The moisture-curable resin composition according to any one of the above [1] to [15], wherein the moisture-curable resin (A) has a weight average molecular weight of 1000 or more and 100,000 or less.
[17] The moisture-curable resin composition according to any one of [1] to [16] above, further containing at least the radically polymerizable compound (B).
[18] The above [17], wherein the radically polymerizable compound (B) contains at least one selected from the group consisting of a (meth) acrylic acid ester compound, an epoxy (meth) acrylate, and a urethane (meth) acrylate. Moisture curable resin composition.
[19] The moisture curability according to the above [17] or [18], wherein the radically polymerizable compound (B) contains at least one selected from the group consisting of urethane (meth) acrylate and alkyl (meth) acrylate. Resin composition.
[20] The content of the radically polymerizable compound (B) is 20 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the total amount of the moisture-curable resin (A) and the radically polymerizable compound (B). The moisture-curable resin composition according to any one of the above [17] to [19].
[21] Further, the photopolymerization initiator (Y) is contained, and the content of the photopolymerization initiator (Y) is 0.01 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the radically polymerizable compound. The moisture-curable resin composition according to any one of [17] to [20].
[22] The moisture-curable resin composition according to any one of the above [1] to [21], which further contains a cross-linking agent (X).
[23] An adhesive for electronic devices comprising the moisture-curable resin composition according to any one of the above [1] to [22].
[24] The cured product of the moisture-curable resin composition according to any one of the above [1] to [22].
[25] A method of arranging the moisture-curable resin composition according to any one of the above [1] to [22] between adherends and joining the adherends.
[26] A method for applying the moisture-curable resin composition according to any one of the above [1] to [22] by a dispenser.
 本発明によれば、耐衝撃性が十分に高くすることが可能な湿気硬化性樹脂組成物を提供できる。 According to the present invention, it is possible to provide a moisture-curable resin composition capable of sufficiently increasing impact resistance.
せん断接着強度の測定方法を説明するための模式図である。It is a schematic diagram for demonstrating the measuring method of the shear adhesive strength. 耐衝撃性の評価方法を説明するための模式図である。It is a schematic diagram for demonstrating the evaluation method of impact resistance.
 以下、本発明について詳細に説明する。
[湿気硬化性樹脂組成物]
 本発明の湿気硬化性樹脂組成物は、湿気硬化性樹脂(A)を含む組成物である。本発明の湿気硬化性樹脂組成物の硬化物は、せん断接着強度が4MPa以上であり、破断伸度が600%以上であり、かつ10℃以上の温度範囲にガラス転移点を有さないものである。
 本発明の湿気硬化性樹脂組成物は、硬化物の貯蔵弾性率及び破断伸度の両方を上記のように高くしつつ、硬化物の10℃以上の温度範囲にガラス転移点を有さないように調整することで、十分に高い衝撃吸収性を確保できる。そのため、例えば携帯電子機器などを構成する部材を固定する接着剤として使用しても、携帯電子機器などが落下した際に、本発明の湿気硬化性樹脂組成物により固定された構成部材が脱落するなどの不具合が生じにくくなる。
Hereinafter, the present invention will be described in detail.
[Moisture-curable resin composition]
The moisture-curable resin composition of the present invention is a composition containing a moisture-curable resin (A). The cured product of the moisture-curable resin composition of the present invention has a shear adhesive strength of 4 MPa or more, a breaking elongation of 600% or more, and does not have a glass transition point in a temperature range of 10 ° C. or more. be.
The moisture-curable resin composition of the present invention has high storage elastic modulus and breaking elongation of the cured product as described above, and does not have a glass transition point in the temperature range of 10 ° C. or higher of the cured product. By adjusting to, a sufficiently high shock absorption can be ensured. Therefore, for example, even if it is used as an adhesive for fixing a member constituting a portable electronic device or the like, when the portable electronic device or the like is dropped, the component member fixed by the moisture-curable resin composition of the present invention falls off. Problems such as are less likely to occur.
 本発明の湿気硬化性樹脂組成物は、上記のように、少なくとも湿気硬化性樹脂(A)を有し、湿気硬化性を有する。湿気硬化性樹脂組成物は、湿気硬化性を有することでで、接着力を十分に高くしやすくなる。
 また、本発明の湿気硬化性樹脂組成物は、湿気硬化性樹脂(A)に加えて、ラジカル重合性化合物(B)と光重合開始剤(Y)とを含有することが好ましい。この場合、湿気硬化性樹脂組成物は、光照射及び湿気によって硬化する光湿気硬化性樹脂組成物となる。
 光湿気硬化性樹脂組成物は、加熱せずに硬化しても優れた接着性能を有するため、硬化時に接着部または接着部周辺の電子部品などが加熱により損傷することを防止しつつ、接着性能を優れたものにできる。
 光湿気硬化性樹脂組成物は、例えばまず光硬化することで、Bステージ状態にして比較的低い接着力(タック性)を付与し、その後、さらに空気中などに放置することで、湿気により硬化させて、十分に高い接着力を有する硬化物にすることが可能になる。
As described above, the moisture-curable resin composition of the present invention has at least the moisture-curable resin (A) and has moisture-curable properties. The moisture-curable resin composition has a moisture-curable property, which makes it easy to sufficiently increase the adhesive strength.
Further, the moisture-curable resin composition of the present invention preferably contains a radically polymerizable compound (B) and a photopolymerization initiator (Y) in addition to the moisture-curable resin (A). In this case, the moisture-curable resin composition is a photomoisture-curable resin composition that is cured by light irradiation and moisture.
Since the light-moisture-curable resin composition has excellent adhesive performance even when cured without heating, the adhesive performance is prevented from damaging the adhesive portion or electronic parts around the adhesive portion due to heating during curing. Can be excellent.
For example, the photo-moisture-curable resin composition is first photo-cured to give a relatively low adhesive force (tack property) to a B-stage state, and then further cured by moisture by being left in the air or the like. It is possible to obtain a cured product having a sufficiently high adhesive strength.
(硬化物のせん断接着強度)
 本発明において、湿気硬化性樹脂組成物の硬化物のせん断接着強度は、上記の通り4MPa以上である。せん断接着強度が4MPa未満であると、衝撃吸収性が十分に高くできずに、電子機器などが落下した際に、本発明の湿気硬化性樹脂組成物により固定された構成部材が脱落するなどの不具合が生じやすくなる。また、電子機器の構成部材間を強固に接着できないなどの不具合も生じやすい。
 湿気硬化性樹脂組成物の硬化物のせん断接着強度は、衝撃吸収性及び接着性の観点から、4.2MPa以上が好ましく、5MPa以上がより好ましい。また、湿気硬化性樹脂組成物の硬化物のせん断接着強度は、特に限定されないが、破断伸度を高くしやすい観点、及びガラス転移点(Tg)を低温度にしやすい観点から、15MPa以下が好ましく、12MPa以下がより好ましく、10MPa以下がさらに好ましい。
 なお、せん断接着強度は、湿気硬化性樹脂(A)の種類、ラジカル重合性化合物(B)の種類、これらの含有量などにより適宜調整できる。
(Shear adhesion strength of cured product)
In the present invention, the shear adhesive strength of the cured product of the moisture-curable resin composition is 4 MPa or more as described above. If the shear adhesive strength is less than 4 MPa, the shock absorption cannot be sufficiently increased, and when an electronic device or the like is dropped, the constituent members fixed by the moisture-curable resin composition of the present invention may fall off. Problems are likely to occur. In addition, problems such as the inability to firmly bond the constituent members of electronic devices are likely to occur.
The shear adhesive strength of the cured product of the moisture-curable resin composition is preferably 4.2 MPa or more, more preferably 5 MPa or more, from the viewpoint of shock absorption and adhesiveness. The shear adhesive strength of the cured product of the moisture-curable resin composition is not particularly limited, but is preferably 15 MPa or less from the viewpoint of easily increasing the elongation at break and easily lowering the glass transition point (Tg) to a low temperature. , 12 MPa or less is more preferable, and 10 MPa or less is further preferable.
The shear adhesive strength can be appropriately adjusted depending on the type of the moisture-curable resin (A), the type of the radically polymerizable compound (B), the content thereof, and the like.
 本発明において、上記せん断接着強度は、以下の接着性試験により測定される。
 図1(a)、(b)に示すように、幅1.0±0.1mm、長さ25±2mm、及び厚さが0.4±0.1mmとなるように湿気硬化性樹脂組成物10をアルミニウム基板11に塗布し、その湿気硬化性樹脂組成物10を介してガラス板12を重ね合わせて、接着性試験用サンプル13を作製する。接着性試験用サンプル13は、湿気硬化性樹脂組成物10を硬化させることで、アルミニウム基板11とガラス板12を貼り合わせたものである。作製した接着性試験用サンプル13を、湿気硬化性樹脂組成物硬化後に25℃、50%RH雰囲気下に25分間放置した後、25℃、50%RH雰囲気下で引張り試験機を用いて剪断方向Sに10mm/min速度で引張り、アルミニウム基板11とガラス板12とが剥がれる際の強度を測定してせん断接着強度とする。
In the present invention, the shear adhesive strength is measured by the following adhesiveness test.
As shown in FIGS. 1A and 1B, the moisture-curable resin composition has a width of 1.0 ± 0.1 mm, a length of 25 ± 2 mm, and a thickness of 0.4 ± 0.1 mm. 10 is applied to an aluminum substrate 11 and glass plates 12 are superposed on the moisture-curable resin composition 10 to prepare a sample 13 for an adhesiveness test. The adhesiveness test sample 13 is obtained by bonding the aluminum substrate 11 and the glass plate 12 by curing the moisture-curable resin composition 10. The prepared adhesiveness test sample 13 was left to stand in a moisture-curable resin composition in a 25 ° C. and 50% RH atmosphere for 25 minutes, and then in a shearing direction using a tensile tester in a 25 ° C. and 50% RH atmosphere. It is pulled to S at a speed of 10 mm / min, and the strength when the aluminum substrate 11 and the glass plate 12 are peeled off is measured and used as the shear bond strength.
 ここで、接着性試験用サンプルを作製するときの湿気硬化性樹脂組成物の硬化条件は、本発明の湿気硬化性樹脂組成物が全硬化されるように行えばよく、硬化メカニズムに応じて下記の条件でサンプル作製を行うとよい。
 湿気硬化性樹脂組成物(ただし、熱硬化性及び光硬化性を有しない)の場合は、ディスペンスサーを用いて、アルミニウム基板に幅1.0±0.1mm、長さ25±2mm、及び厚さが0.4±0.1mmとなるように塗布し、アルミニウム基板にガラス板を貼り合わせ、100gの重りを10秒置き圧着させた。重りを外した後に7日間、25℃、50%RHで放置することにより湿気硬化させて、接着性評価用サンプルを得る。
 光湿気硬化性樹脂組成物の場合は、まず、ディスペンスサーを用いて、アルミニウム基板に幅1.0±0.1mm、長さ25±2mm、及び厚さが0.4±0.1mmとなるように塗布し、25℃、50%RHの環境下、UV-LED(波長365nm)で1000mJ/cm照射することによって光硬化させる。その後、アルミニウム基板にガラス板を貼り合わせ、100gの重りを10秒置き圧着させ、重りを外した後に7日間、25℃、50%RHで放置することにより湿気硬化させて、接着性評価用サンプルを得る。
Here, the curing conditions of the moisture-curable resin composition when preparing the adhesiveness test sample may be such that the moisture-curable resin composition of the present invention is completely cured, and is described below according to the curing mechanism. It is advisable to prepare a sample under the conditions of.
In the case of a moisture-curable resin composition (however, it does not have thermosetting and photocuring properties), a dispenser is used to attach a width of 1.0 ± 0.1 mm, a length of 25 ± 2 mm, and a thickness to an aluminum substrate. The coating was applied so as to have a diameter of 0.4 ± 0.1 mm, a glass plate was attached to an aluminum substrate, and a weight of 100 g was placed for 10 seconds and crimped. After removing the weight, the sample is left at 25 ° C. and 50% RH for 7 days to be moisture-cured to obtain a sample for adhesiveness evaluation.
In the case of the photo-moisture-curable resin composition, first, a dispenser is used to obtain a width of 1.0 ± 0.1 mm, a length of 25 ± 2 mm, and a thickness of 0.4 ± 0.1 mm on the aluminum substrate. And it is photo-cured by irradiating with UV-LED (wavelength 365 nm) at 1000 mJ / cm 2 in an environment of 25 ° C. and 50% RH. After that, a glass plate is attached to an aluminum substrate, a 100 g weight is placed for 10 seconds and crimped, and after the weight is removed, the sample is moisture-cured by leaving it at 25 ° C. and 50% RH for 7 days to evaluate the adhesiveness. To get.
(硬化物の破断伸度)
 本発明において湿気硬化性樹脂組成物の硬化物は、破断伸度が600%以上である。破断伸度が600%未満となると、耐衝撃性が不十分となり、電子機器などに落下などにより大きな衝撃が加わると、本発明の湿気硬化性樹脂組成物により固定された構成部材が剥がれるなどの不具合が生じる。耐衝撃性を十分に高くする観点から、上記破断伸度は、700%以上が好ましく、800%以上がより好ましく、900%以上がさらに好ましい。
 また、上記破断伸度は、特に限定されないが、せん断接着強度を高くしやすくする観点から、好ましくは1500%以下、より好ましくは1300%以下、さらに好ましくは1150%以下である。
 なお、破断伸度は、湿気硬化性樹脂(A)の種類、ラジカル重合性化合物(B)の種類、これらの含有量などにより適宜調整できる。
 硬化物の破断伸度は、以下の方法で測定する。湿気硬化性樹脂組成物を、ダンベル状(「JIS K6251」で規定される6号型)の穴が開いたシリコーンゴム型に流し込み、硬化させることで6号型のダンベル状の試験片(硬化物サンプル)を得る。硬化条件は、湿気硬化型樹脂組成物(ただし、熱硬化性及び光硬化性を有しない)の場合は、7日間、25℃、50RH%で放置することにより湿気硬化させる。光湿気硬化性樹脂組成物の場合は、25℃、50RH%の環境下、UV-LED(波長365nm)で1000mJ/cm照射することによって光硬化させ、その後、7日間、25℃、50RH%で放置することにより湿気硬化させる。得られた試験片を、25℃環境下で引張り試験機を用いて引張速度50mm/minで引張り、破断伸度を測定する。
(Breaking elongation of cured product)
In the present invention, the cured product of the moisture-curable resin composition has a breaking elongation of 600% or more. When the elongation at break is less than 600%, the impact resistance becomes insufficient, and when a large impact is applied to an electronic device or the like due to dropping or the like, the constituent members fixed by the moisture-curable resin composition of the present invention are peeled off. A problem occurs. From the viewpoint of sufficiently increasing the impact resistance, the elongation at break is preferably 700% or more, more preferably 800% or more, still more preferably 900% or more.
The elongation at break is not particularly limited, but is preferably 1500% or less, more preferably 1300% or less, still more preferably 1150% or less, from the viewpoint of facilitating the increase in shear adhesive strength.
The elongation at break can be appropriately adjusted depending on the type of the moisture-curable resin (A), the type of the radically polymerizable compound (B), the content thereof, and the like.
The breaking elongation of the cured product is measured by the following method. The moisture-curable resin composition is poured into a silicone rubber mold having a dumbbell-shaped (No. 6 type specified in "JIS K6251") hole and cured to form a No. 6 type dumbbell-shaped test piece (cured product). Sample) is obtained. As for the curing conditions, in the case of a moisture-curable resin composition (however, it does not have thermosetting and photocuring properties), it is moisture-cured by leaving it at 25 ° C. and 50 RH% for 7 days. In the case of a light-moisture-curable resin composition, it is photo-cured by irradiating 1000 mJ / cm 2 with a UV-LED (wavelength 365 nm) under an environment of 25 ° C. and 50 RH%, and then photo-curing at 25 ° C. and 50 RH% for 7 days. Moisture cures by leaving in. The obtained test piece is pulled at a tensile speed of 50 mm / min using a tensile tester in an environment of 25 ° C., and the elongation at break is measured.
(硬化物のガラス転移点)
 本発明において湿気硬化性樹脂組成物の硬化物は、10℃以上の温度範囲にガラス転移点を有さない。10℃以上の温度範囲にガラス転移点を有すると、破断伸度及びせん断接着強度を上記のように一定値以上としても、耐衝撃性を十分に高くできない。そのため、落下などにより衝撃が加わると、本発明の湿気硬化性樹脂組成物により固定された構成部材が剥がれるなどの不具合が生じる。10℃以上の温度範囲にガラス転移点を有すると耐衝撃性が十分に高くできない原理は定かではないが、高速変形に対する追従性が低下して、耐衝撃性が低下するためと考えられる。
(Glass transition point of cured product)
In the present invention, the cured product of the moisture-curable resin composition does not have a glass transition point in the temperature range of 10 ° C. or higher. If the glass transition point is provided in the temperature range of 10 ° C. or higher, the impact resistance cannot be sufficiently increased even if the breaking elongation and the shear adhesive strength are set to the constant values or higher as described above. Therefore, when an impact is applied due to dropping or the like, problems such as peeling of the constituent members fixed by the moisture-curable resin composition of the present invention occur. It is not clear that the impact resistance cannot be sufficiently increased if the glass transition point is provided in the temperature range of 10 ° C. or higher, but it is considered that the impact resistance is deteriorated due to the decrease in the followability to high-speed deformation.
 本発明の湿気硬化性樹脂組成物の硬化物は、-20℃以上10℃未満の温度範囲にガラス転移点(以下、「Tg1」ともいう)を有することが好ましい。上記温度範囲にガラス転移点を有すると、粘度を低くして塗布性を良好としたり、塗布後の形状保持性を良好に維持したりしやすくなる。これら観点から、ガラス転移点(Tg1)は、-10℃以上がより好ましく、-5℃以上がさらに好ましく、また、9℃以下がより好ましい。 The cured product of the moisture-curable resin composition of the present invention preferably has a glass transition point (hereinafter, also referred to as "Tg1") in a temperature range of −20 ° C. or higher and lower than 10 ° C. When the glass transition point is provided in the above temperature range, it becomes easy to lower the viscosity to improve the coatability and to maintain the shape retention after coating. From these viewpoints, the glass transition point (Tg1) is more preferably −10 ° C. or higher, further preferably −5 ° C. or higher, and further preferably 9 ° C. or lower.
 また、本発明において、湿気硬化性樹脂組成物の硬化物は、耐衝撃性の観点から、例えば-30℃以下の温度範囲にガラス転移点(以下、「Tg2」ともいう)を有するとよいが、-45℃以下の温度範囲にガラス転移点(Tg2)を有することが好ましい。-45℃以下の温度範囲にガラス転移点を有すると、粘度を低くして塗布性などを優れたものとしても、耐衝撃性を優れたものにできる。塗布性及び耐衝撃性の観点から、本発明の湿気硬化性樹脂組成物の硬化物は、-50℃以下の温度範囲にガラス転移点(Tg2)を有することがより好ましい。ガラス転移点(Tg2)は、特に限定されないが、例えば-80℃以上であればよく、-75℃以上であってもよいし、-70℃以上であってもよい。 Further, in the present invention, the cured product of the moisture-curable resin composition may have a glass transition point (hereinafter, also referred to as “Tg2”) in a temperature range of, for example, −30 ° C. or lower from the viewpoint of impact resistance. , It is preferable to have a glass transition point (Tg2) in a temperature range of −45 ° C. or lower. When the glass transition point is provided in the temperature range of −45 ° C. or lower, the impact resistance can be improved even if the viscosity is lowered and the coating property is excellent. From the viewpoint of coatability and impact resistance, it is more preferable that the cured product of the moisture-curable resin composition of the present invention has a glass transition point (Tg2) in a temperature range of −50 ° C. or lower. The glass transition point (Tg2) is not particularly limited, but may be, for example, −80 ° C. or higher, −75 ° C. or higher, or −70 ° C. or higher.
 また、本発明の湿気硬化性樹脂組成物の硬化物は、上記ガラス転移点(Tg1、Tg2)の両方を有することが好ましい。上記2つのガラス転移点(Tg1、Tg2)を有することで、耐衝撃性、塗布性、及び形状保持性をバランスよく良好にできる。
 本発明では、湿気硬化性樹脂(A)に加えて、ラジカル重合性化合物(B)を含有させ、これらを非相溶とすることで、上記した2つのガラス転移点を有するものとしやすくなる。なお、非相溶とする手法は、特に限定されず、湿気硬化性樹脂(A)及びラジカル重合性化合物(B)の種類を適宜選択すればよいが、湿気硬化性樹脂(A)としてポリエーテル骨格を有するものを使用すると、ラジカル重合性化合物(B)と非相溶となりやすく、硬化物が2つのガラス転移点を有しやすくなる。
Further, it is preferable that the cured product of the moisture-curable resin composition of the present invention has both of the above glass transition points (Tg1, Tg2). By having the above two glass transition points (Tg1 and Tg2), impact resistance, coatability, and shape retention can be improved in a well-balanced manner.
In the present invention, by containing the radically polymerizable compound (B) in addition to the moisture-curable resin (A) and making them incompatible, it becomes easy to have the above-mentioned two glass transition points. The method for incompatible with each other is not particularly limited, and the types of the moisture-curable resin (A) and the radically polymerizable compound (B) may be appropriately selected, but the polyether is used as the moisture-curable resin (A). When a compound having a skeleton is used, it tends to be incompatible with the radically polymerizable compound (B), and the cured product tends to have two glass transition points.
 そして、高温度側のガラス転移点(Tg1)は、ラジカル重合性化合物(B)の成分を適宜選択することで上記した所望の範囲内に調整できる。また、低温度側のガラス転移点(Tg2)は、湿気硬化性樹脂(A)の種類などを適宜選択することで上記した所望の範囲内に調整できる。したがって、主にラジカル重合性化合物(B)の成分を適宜調整することで、上記のとおり10℃以上の温度範囲にガラス転移点を有さないようにすることができる。
 また、湿気硬化性樹脂組成物の硬化物は、10℃未満となる限り、3つ以上のガラス転移点を有してもよい。
 なお、ガラス転移点は、動的粘弾性測定により得られる損失正接(tanδ)の極大のうち、ミクロブラウン運動に起因する極大が現れる温度を意味し、湿気硬化性樹脂組成物から作製された硬化物サンプルに対して動的粘弾性測定装置を用いた測定するとよい。硬化物サンプルの作製手順の詳細は、後述する通りである。
The glass transition point (Tg1) on the high temperature side can be adjusted within the above-mentioned desired range by appropriately selecting the component of the radically polymerizable compound (B). Further, the glass transition point (Tg2) on the low temperature side can be adjusted within the above-mentioned desired range by appropriately selecting the type of the moisture-curable resin (A) and the like. Therefore, by appropriately adjusting the components of the radically polymerizable compound (B), it is possible to prevent the glass transition point from having a glass transition point in the temperature range of 10 ° C. or higher as described above.
Further, the cured product of the moisture-curable resin composition may have three or more glass transition points as long as the temperature is lower than 10 ° C.
The glass transition point means the temperature at which the maximum of the loss tangent (tan δ) obtained by the dynamic viscoelasticity measurement appears due to the micro-brown motion, and is cured from the moisture-curable resin composition. It is advisable to measure the object sample using a dynamic viscoelasticity measuring device. Details of the procedure for preparing the cured product sample are as described later.
(貯蔵弾性率)
 本発明において、湿気硬化性樹脂組成物の硬化物は、貯蔵弾性率が7MPa以上50MPa以下であることが好ましい。貯蔵弾性率が上記範囲内であると、耐衝撃性が優れたものとなりやすい。また、接着強度も高くしやすくなる。これら観点から上記貯蔵弾性率は、好ましくは8MPa以上、より好ましくは9MPa以上であり、また、好ましは40MPa以下、より好ましくは20MPa以下である。
 なお、貯蔵弾性率は、湿気硬化性樹脂(A)の種類、ラジカル重合性化合物(B)の種類、これらの含有量などにより適宜調整できる。
(Storage modulus)
In the present invention, the cured product of the moisture-curable resin composition preferably has a storage elastic modulus of 7 MPa or more and 50 MPa or less. When the storage elastic modulus is within the above range, the impact resistance tends to be excellent. In addition, it becomes easy to increase the adhesive strength. From these viewpoints, the storage elastic modulus is preferably 8 MPa or more, more preferably 9 MPa or more, and preferably 40 MPa or less, more preferably 20 MPa or less.
The storage elastic modulus can be appropriately adjusted depending on the type of the moisture-curable resin (A), the type of the radically polymerizable compound (B), the content thereof, and the like.
 本発明において硬化物の貯蔵弾性率は、以下の方法で測定する。
 湿気硬化性樹脂組成物を、幅3mm、長さ30mm、厚み1mmのテフロン(登録商標)型に流し込み、硬化させることで硬化物サンプルを得る。得られた硬化物サンプルを用いて動的粘弾性測定装置により、-100~150℃の範囲で動的粘弾性を測定し、25℃における貯蔵弾性率を求める。
In the present invention, the storage elastic modulus of the cured product is measured by the following method.
A cured product sample is obtained by pouring the moisture-curable resin composition into a Teflon (registered trademark) mold having a width of 3 mm, a length of 30 mm, and a thickness of 1 mm and curing the mixture. Using the obtained cured product sample, the dynamic viscoelasticity is measured in the range of −100 to 150 ° C. by a dynamic viscoelasticity measuring device, and the storage elastic modulus at 25 ° C. is determined.
 なお、ガラス転移点、及び貯蔵弾性率測定用の硬化物サンプルを作製するための湿気硬化性樹脂組成物の硬化は、湿気硬化性樹脂組成物が全硬化できればよいが、その硬化メカニズムに応じて以下の方法で行うとよい。例えば、光湿気硬化性樹脂組成物の場合には、UV-LED(波長365nm)を用いて、25℃、50RH%の環境下、紫外線を1000mJ/cm照射することによって光硬化させ、その後、25℃、50%RHの環境下に7日間放置することにより湿気硬化させることで行う。また、湿気硬化性樹脂組成物(ただし、熱硬化性及び光硬化性を有しない)の場合には、光硬化の工程を省略する以外は、上記と同様に行う。 The curing of the moisture-curable resin composition for preparing the glass transition point and the cured product sample for measuring the storage elastic modulus is sufficient as long as the moisture-curable resin composition can be completely cured, but it depends on the curing mechanism. It is recommended to use the following method. For example, in the case of a photo-moisture-curable resin composition, it is photo-cured by irradiating it with ultraviolet rays at 1000 mJ / cm 2 in an environment of 25 ° C. and 50 RH% using a UV-LED (wavelength 365 nm), and then photo-curing. It is carried out by moisture curing by leaving it in an environment of 25 ° C. and 50% RH for 7 days. Further, in the case of a moisture-curable resin composition (however, it does not have thermosetting property and photocuring property), the same procedure as described above is performed except that the photocuring step is omitted.
(湿気硬化性樹脂組成物の粘度)
 本発明の湿気硬化性樹脂組成物の80℃、20rpmで測定した粘度は、50Pa・s以下であることが好ましい。上記粘度を50Pa・s以下にすることで、塗布性が良好となり、各種の塗布装置、特にジェットディスペンサーにより湿気硬化性樹脂組成物を、被着体上に細線状に塗布することができるようになる。そのため、携帯電子機器などに対しても好適に使用できる。
 また、本発明の湿気硬化性樹脂組成物の80℃、20rpmで測定した粘度は、上記の観点から、30Pa・s以下がより好ましく、20Pa・s以下がさらに好ましく、15Pa・s以下がよりさらに好ましい。粘度を20Pa・s以下、特に15Pa・s以下に調整することで、ジェットディスペンサーなどにより高い塗布精度で細線状に塗布することができる。また、上記粘度は特に限定されないが、塗布後の湿気硬化性樹脂組成物を一定の形状に維持する性能(形状保持性)の観点から、例えば0.5Pa・s以上が好ましく、1.0Pa・s以上がより好ましく、2.0Pa・s以上がさらに好ましい。
(Viscosity of Moisture Curable Resin Composition)
The viscosity of the moisture-curable resin composition of the present invention measured at 80 ° C. and 20 rpm is preferably 50 Pa · s or less. By setting the viscosity to 50 Pa · s or less, the coatability becomes good, and the moisture-curable resin composition can be coated on the adherend in a fine line shape by various coating devices, especially a jet dispenser. Become. Therefore, it can be suitably used for portable electronic devices and the like.
Further, the viscosity of the moisture-curable resin composition of the present invention measured at 80 ° C. and 20 rpm is more preferably 30 Pa · s or less, further preferably 20 Pa · s or less, still more preferably 15 Pa · s or less from the above viewpoint. preferable. By adjusting the viscosity to 20 Pa · s or less, particularly 15 Pa · s or less, it is possible to apply in a fine line shape with high application accuracy by a jet dispenser or the like. The viscosity is not particularly limited, but is preferably 0.5 Pa · s or more, preferably 1.0 Pa · s, for example, from the viewpoint of the performance (shape retention) of maintaining the moisture-curable resin composition after coating in a constant shape. More than s is more preferable, and 2.0 Pa · s or more is further preferable.
 次に、本発明の湿気硬化性樹脂組成物に使用される各成分について説明する。 Next, each component used in the moisture-curable resin composition of the present invention will be described.
(湿気硬化性樹脂(A))
 湿気硬化性樹脂組成物は湿気硬化性樹脂(A)を含有する。本発明で使用する湿気硬化性樹脂(A)としては、例えば、湿気硬化性ウレタン樹脂、加水分解性シリル基含有樹脂、湿気硬化性シアノアクリレート樹脂等が挙げられる。これらの中では、湿気硬化性ウレタン樹脂、加水分解性シリル基含有樹脂が好ましく、湿気硬化性ウレタン樹脂がより好ましい。湿気硬化性ウレタン樹脂を使用することで、硬化物の破断伸度を向上させやすくなる。
(Moisture curable resin (A))
The moisture-curable resin composition contains the moisture-curable resin (A). Examples of the moisture-curable resin (A) used in the present invention include a moisture-curable urethane resin, a hydrolyzable silyl group-containing resin, and a moisture-curable cyanoacrylate resin. Among these, a moisture-curable urethane resin and a hydrolyzable silyl group-containing resin are preferable, and a moisture-curable urethane resin is more preferable. By using a moisture-curable urethane resin, it becomes easy to improve the breaking elongation of the cured product.
 湿気硬化性ウレタン樹脂は、ウレタン結合に加え、イソシアネート基を有する。湿気硬化性ウレタン樹脂は、分子内のイソシアネート基が空気中又は被着体中の水分と反応して硬化する。湿気硬化性ウレタン樹脂は、1分子中にイソシアネート基を1個のみ有していてもよいし、2個以上有していてもよい。なかでも、分子の主鎖両末端にイソシアネート基を有することが好ましい。 The moisture-curable urethane resin has an isocyanate group in addition to the urethane bond. In the moisture-curable urethane resin, the isocyanate group in the molecule reacts with the moisture in the air or the adherend to cure. The moisture-curable urethane resin may have only one isocyanate group in one molecule, or may have two or more isocyanate groups. Above all, it is preferable to have isocyanate groups at both ends of the main chain of the molecule.
 湿気硬化性ウレタン樹脂は、1分子中に2個以上の水酸基を有するポリオール化合物と、1分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物とを反応させることにより得ることができる。
 上記ポリオール化合物とポリイソシアネート化合物との反応は、通常、ポリオール化合物中の水酸基(OH)とポリイソシアネート化合物中のイソシアネート基(NCO)のモル比で[NCO]/[OH]=2.0~2.5の範囲で行われる。
The moisture-curable urethane resin can be obtained by reacting a polyol compound having two or more hydroxyl groups in one molecule with a polyisocyanate compound having two or more isocyanate groups in one molecule.
In the reaction between the polyol compound and the polyisocyanate compound, the molar ratio of the hydroxyl group (OH) in the polyol compound to the isocyanate group (NCO) in the polyisocyanate compound is usually [NCO] / [OH] = 2.0 to 2. It is done in the range of .5.
 湿気硬化性ウレタン樹脂は、ポリエステル骨格、ポリエーテル骨格、ポリアルキレン骨格、ポリカーボネート骨格等を有するとよく、これらの中では、破断伸度を大きくして耐衝撃性を向上させる観点から、ポリエステル骨格及びポリエーテル骨格の少なくともいずれかを有することが好ましく、これらの両方を有してもよい。
 湿気硬化性ウレタン樹脂が、ポリエステル骨格及びポリエーテル骨格の両方を有する場合、1分子中にポリエステル骨格及びポリエーテル骨格の両方を有してもよいが、ポリエステル骨格を有する湿気硬化性ウレタン樹脂と、ポリエーテル骨格を有する湿気硬化性ウレタン樹脂を併用することが好ましい。
 また、湿気硬化性ウレタン樹脂は、耐衝撃性を向上させる観点、組成物を低粘度にしやすい観点、ガラス転移点を2つ以上にしやすい観点から、ポリエーテル骨格を有する湿気硬化性ウレタン樹脂であることがより好ましい。
The moisture-curable urethane resin may have a polyester skeleton, a polyether skeleton, a polyalkylene skeleton, a polycarbonate skeleton, etc. Among these, the polyester skeleton and the polyester skeleton from the viewpoint of increasing the elongation at break and improving the impact resistance. It preferably has at least one of the polyether skeletons and may have both.
When the moisture-curable urethane resin has both a polyester skeleton and a polyether skeleton, it may have both a polyester skeleton and a polyether skeleton in one molecule, but a moisture-curable urethane resin having a polyester skeleton and It is preferable to use a moisture-curable urethane resin having a polyether skeleton in combination.
The moisture-curable urethane resin is a moisture-curable urethane resin having a polyether skeleton from the viewpoint of improving impact resistance, making the composition easy to reduce the viscosity, and making it easy to have two or more glass transition points. Is more preferable.
 湿気硬化性ウレタン樹脂が、いずれの骨格を有するかは、使用するポリオール化合物により決定される。湿気硬化性ウレタン樹脂の原料となるポリオール化合物としては、例えば、ポリエステルポリオール、ポリエーテルポリオール、ポリアルキレンポリオール、ポリカーボネートポリオール等が挙げられる。湿気硬化性ウレタン樹脂は、これらそれぞれを使用することで、ポリエステル骨格、ポリエーテル骨格、ポリアルキレン骨格、及びポリカーボネート骨格それぞれを有することができる。
 したがって、ポリオール化合物としては、ポリエステルポリオール及びポリエーテルポリオールから選択される少なくとも1種が好ましく、中でも、ポリエーテルポリオールがより好ましい。これらのポリオール化合物は、1種単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。
Which skeleton the moisture-curable urethane resin has is determined by the polyol compound used. Examples of the polyol compound which is a raw material of the moisture-curable urethane resin include polyester polyols, polyether polyols, polyalkylene polyols, polycarbonate polyols and the like. By using each of these, the moisture-curable urethane resin can have a polyester skeleton, a polyether skeleton, a polyalkylene skeleton, and a polycarbonate skeleton, respectively.
Therefore, as the polyol compound, at least one selected from polyester polyols and polyether polyols is preferable, and among them, polyether polyols are more preferable. These polyol compounds may be used alone or in combination of two or more.
 上記ポリエステルポリオールとしては、例えば、多価カルボン酸とポリオールとの反応により得られるポリエステルポリオール、ε-カプロラクトンを開環重合して得られるポリ-ε-カプロラクトンポリオール等が挙げられる。
 ポリエステルポリオールの原料となる上記多価カルボン酸としては、例えば、テレフタル酸、イソフタル酸、1,5-ナフタル酸、2,6-ナフタル酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカメチレンジカルボン酸、ドデカメチレンジカルボン酸等が挙げられる。
 ポリエステルポリオールの原料となるポリオールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール等が挙げられる。
Examples of the polyester polyol include a polyester polyol obtained by reacting a polyvalent carboxylic acid with a polyol, a poly-ε-caprolactone polyol obtained by ring-opening polymerization of ε-caprolactone, and the like.
Examples of the polyvalent carboxylic acid used as a raw material for the polyester polyol include terephthalic acid, isophthalic acid, 1,5-naphthalic acid, 2,6-naphthalic acid, succinic acid, glutaric acid, adipic acid, pimelic acid and sveric acid. , Azelaic acid, sebacic acid, decamethylenedicarboxylic acid, dodecamethylenedicarboxylic acid and the like.
Examples of the polyol that is a raw material of the polyester polyol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, and 1,6-hexanediol. Examples thereof include diethylene glycol and cyclohexanediol.
 ポリエーテルポリオールとしては、例えば、エチレングリコール、プロピレングリコール、テトラヒドロフランの開環重合物、3-メチルテトラヒドロフランの開環重合物、及び、これら若しくはその誘導体のランダム共重合体又はブロック共重合体、ビスフェノール型のポリオキシアルキレン変性体等が挙げられる。
 ここで、ビスフェノール型のポリオキシアルキレン変性体は、ビスフェノール型分子骨格の活性水素部分にアルキレンオキシド(例えば、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、イソブチレンオキシド等)を付加反応させて得られるポリエーテルポリオールである。該ポリエーテルポリオールは、ランダム共重合体であってもよいし、ブロック共重合体であってもよい。上記ビスフェノール型のポリオキシアルキレン変性体は、ビスフェノール型分子骨格の両末端に、1種又は2種以上のアルキレンオキシドが付加されていることが好ましい。
 ビスフェノール型としては特に限定されず、A型、F型、S型等が挙げられ、好ましくはビスフェノールA型である。
Examples of the polyether polyol include a ring-opening polymer of ethylene glycol, propylene glycol and tetrahydrofuran, a ring-opening polymer of 3-methyltetrachloride, and a random copolymer or block copolymer of these or derivatives thereof, or a bisphenol type. Examples include the polyoxyalkylene modified product of.
Here, the bisphenol-type polyoxyalkylene modified product is a polyether polyol obtained by adding an alkylene oxide (for example, ethylene oxide, propylene oxide, butylene oxide, isobutylene oxide, etc.) to the active hydrogen moiety of the bisphenol-type molecular skeleton. be. The polyether polyol may be a random copolymer or a block copolymer. The bisphenol-type polyoxyalkylene modified product preferably has one or more alkylene oxides added to both ends of the bisphenol-type molecular skeleton.
The bisphenol type is not particularly limited, and examples thereof include A type, F type, and S type, and bisphenol A type is preferable.
 ポリアルキレンポリオールとしては、例えば、ポリブタジエンポリオール、水素化ポリブタジエンポリオール、水素化ポリイソプレンポリオール等が挙げられる。
 ポリカーボネートポリオールとしては、例えば、ポリヘキサメチレンカーボネートポリオール、ポリシクロヘキサンジメチレンカーボネートポリオール等が挙げられる。
Examples of the polyalkylene polyol include a polybutadiene polyol, a hydrogenated polybutadiene polyol, a hydrogenated polyisoprene polyol and the like.
Examples of the polycarbonate polyol include polyhexamethylene carbonate polyol and polycyclohexanedimethylene carbonate polyol.
 湿気硬化性ウレタン樹脂の原料となるポリオールは、平均分子量が500以上であることが好ましく、1500以上であることがより好ましく、2500以上であることがさらに好ましく、また、15000以下であることが好ましく、8000以下であることがより好ましく、4000以下であることがさらに好ましい。ポリオールの平均分子量が上記下限値以上とすることで、ガラス転移点(特に、Tg2)を低くできる。また、上記範囲内とすることでせん断接着強度及び破断伸度をバランスよく向上させることができる。
 なお平均分子量は、水酸基価(mgKOH/g)を測定して次式により求めるとよい。
 数平均分子量=水酸基価×N×1,000/56.11
 N:ポリオールの平均官能基数
 なお、水酸基価は、JIS K 1557-1により測定するとよい。
The polyol used as a raw material for the moisture-curable urethane resin preferably has an average molecular weight of 500 or more, more preferably 1500 or more, further preferably 2500 or more, and preferably 15000 or less. , 8000 or less, more preferably 4000 or less. By setting the average molecular weight of the polyol to be equal to or higher than the above lower limit, the glass transition point (particularly, Tg2) can be lowered. Further, by setting it within the above range, the shear adhesive strength and the elongation at break can be improved in a well-balanced manner.
The average molecular weight may be obtained by measuring the hydroxyl value (mgKOH / g) by the following formula.
Number average molecular weight = hydroxyl value x N x 1,000 / 56.11
N: Average number of functional groups of polyol The hydroxyl value may be measured by JIS K 1557-1.
 湿気硬化性ウレタン樹脂は、下記式(1)で表される構造を有するポリオール化合物を用いて得られたものが好ましい。下記式(1)で表される構造を有するポリオール化合物を用いることにより、せん断接着強度を良好に維持しつつ破断伸度高くしやすくなる。また、貯蔵弾性率を上記した所望の範囲内に調整しやすくなる。
 なかでも、プロピレングリコール、テトラヒドロフラン(THF)化合物の開環重合化合物、又は、メチル基等の置換基を有するテトラヒドロフラン化合物の開環重合化合物からなるポリエーテルポリオールを用いたものが好ましい。また、テトラヒドロフラン化合物の開環重合化合物がより好ましく、ポリテトラメチレンエーテルグリコールが特に好ましい。ポリテトラメチレンエーテルグリコールは直鎖構造を有しており、接着強度を向上させやすくなる。
 また、ポリオール化合物として、ポリテトラメチレンエーテルグリコールに加えてプロピレングリコールを併用することも好ましい。したがって、湿気硬化性ウレタン樹脂は、ポリテトラメチレンエーテルグリコールから得られる湿気硬化性ウレタン樹脂と、プロピレングリコールから得られる湿気硬化性ウレタン樹脂とを含有してもよい。
The moisture-curable urethane resin is preferably obtained by using a polyol compound having a structure represented by the following formula (1). By using a polyol compound having a structure represented by the following formula (1), it becomes easy to increase the elongation at break while maintaining good shear adhesive strength. In addition, the storage elastic modulus can be easily adjusted within the above-mentioned desired range.
Among them, those using a polyether polyol composed of a ring-opening polymerization compound of propylene glycol, a tetrahydrofuran (THF) compound, or a ring-opening polymerization compound of a tetrahydrofuran compound having a substituent such as a methyl group are preferable. Further, a ring-opening polymerization compound of a tetrahydrofuran compound is more preferable, and polytetramethylene ether glycol is particularly preferable. Polytetramethylene ether glycol has a linear structure, which makes it easy to improve the adhesive strength.
Further, as the polyol compound, it is also preferable to use propylene glycol in combination with polytetramethylene ether glycol. Therefore, the moisture-curable urethane resin may contain a moisture-curable urethane resin obtained from polytetramethylene ether glycol and a moisture-curable urethane resin obtained from propylene glycol.
Figure JPOXMLDOC01-appb-C000001

 式(1)中、Rは、水素原子、メチル基、又は、エチル基を表し、lは、0~5の整数、mは、1~500の整数、nは、1~10の整数である。lは、0~4であることが好ましい。なお、lが0の場合とは、Rと結合した炭素が直接酸素と結合している場合を意味する。
 ここで、mは、20~300であることが好ましく、30~100であることがより好ましい。mを上記下限値以上とすることで、ガラス転移点(特に、Tg2)を低くできる。また、mを上記範囲内とすることでせん断接着強度及び破断伸度をバランスよく向上させることができる。
 また、上記した中では、nとlの合計が1以上であることがより好ましく、2以上であることが好ましく、3~6がさらに好ましく、3が最も好ましい。
 また、Rは水素原子、メチル基であることがより好ましく、水素原子が特に好ましい。したがって、式(1)で示される構成単位は、直鎖であることが好ましい。式(1)で示される構成単位が直鎖であることでせん断接着強度を高くできる。
 なお、ポリテトラメチレンエーテルグリコールから得られる湿気硬化性ウレタン樹脂のように、上記した直鎖のポリエーテルポリオールから得られる湿気硬化性ウレタン樹脂は、湿気硬化性樹脂(A)全量基準で50質量%以上100質量%以下であることが好ましく、70質量%以上100質量%以下であることがより好ましい。
Figure JPOXMLDOC01-appb-C000001

In the formula (1), R represents a hydrogen atom, a methyl group, or an ethyl group, l is an integer of 0 to 5, m is an integer of 1 to 500, and n is an integer of 1 to 10. .. l is preferably 0 to 4. The case where l is 0 means the case where the carbon bonded to R is directly bonded to oxygen.
Here, m is preferably 20 to 300, and more preferably 30 to 100. By setting m to the above lower limit value or more, the glass transition point (particularly, Tg2) can be lowered. Further, by setting m within the above range, the shear adhesive strength and the elongation at break can be improved in a well-balanced manner.
Further, among the above, the total of n and l is more preferably 1 or more, preferably 2 or more, further preferably 3 to 6, and most preferably 3.
Further, R is more preferably a hydrogen atom or a methyl group, and a hydrogen atom is particularly preferable. Therefore, the structural unit represented by the formula (1) is preferably linear. Since the structural unit represented by the formula (1) is linear, the shear adhesive strength can be increased.
The moisture-curable urethane resin obtained from the above-mentioned linear polyether polyol, such as the moisture-curable urethane resin obtained from polytetramethylene ether glycol, is 50% by mass based on the total amount of the moisture-curable resin (A). It is preferably 100% by mass or less, and more preferably 70% by mass or more and 100% by mass or less.
 湿気硬化性ウレタン樹脂の原料となるポリイソシアネート化合物としては、芳香族ポリイソシアネート化合物、脂肪族ポリイソシアネート化合物が好適に用いられる。
 芳香族ポリイソシアネート化合物としては、例えば、ジフェニルメタンジイソシアネート、ジフェニルメタンジイソシアネートの液状変性物、ポリメリックMDI、トリレンジイソシアネート、ナフタレン-1,5-ジイソシアネート等が挙げられる。
 脂肪族ポリイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、ノルボルナンジイソシアネート、トランスシクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート、水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネート、シクロヘキサンジイソシアネート、ビス(イソシアネートメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネート等が挙げられる。
 ポリイソシアネート化合物としては、なかでも、全硬化後の接着力を高くできる観点から、ジフェニルメタンジイソシアネート及びその変性物が好ましい。
 ポリイソシアネート化合物は、単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。
As the polyisocyanate compound which is a raw material of the moisture-curable urethane resin, an aromatic polyisocyanate compound and an aliphatic polyisocyanate compound are preferably used.
Examples of the aromatic polyisocyanate compound include diphenylmethane diisocyanate, liquid modified products of diphenylmethane diisocyanate, polypeptide MDI, tolylene diisocyanate, naphthalene-1,5-diisocyanate and the like.
Examples of the aliphatic polyisocyanate compound include hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, norbornane diisocyanate, transcyclohexane-1,4-diisocyanate, isophorone diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, and cyclohexane diisocyanate. , Bis (isocyanate methyl) cyclohexane, dicyclohexylmethane diisocyanate and the like.
As the polyisocyanate compound, diphenylmethane diisocyanate and its modified product are particularly preferable from the viewpoint of being able to increase the adhesive strength after total curing.
The polyisocyanate compound may be used alone or in combination of two or more.
 湿気硬化性ウレタン樹脂は、さらに、ウレタン結合と、イソシアネート基と、末端に反応性二重結合とを有する化合物(以下、「反応性二重結合含有ウレタン樹脂」ともいう)を含有することも好ましい。湿気硬化性ウレタン樹脂として上記反応性二重結合含有ウレタン樹脂を含有することにより、硬化物が-20℃以上10℃未満の温度範囲にガラス転移点を有しやすくなり、硬化物の耐衝撃性が向上する。なお、本明細書において、上記「末端」とは、主鎖の末端を意味する。また、上記反応性二重結合はラジカル重合性基であるが、本明細書において、上記反応性二重結合含有ウレタン樹脂は、ラジカル重合性化合物でなく湿気硬化性ウレタン樹脂として扱う。 The moisture-curable urethane resin further preferably contains a compound having a urethane bond, an isocyanate group, and a reactive double bond at the terminal (hereinafter, also referred to as "reactive double bond-containing urethane resin"). .. By containing the above-mentioned reactive double bond-containing urethane resin as the moisture-curable urethane resin, the cured product tends to have a glass transition point in the temperature range of -20 ° C or higher and lower than 10 ° C, and the impact resistance of the cured product Is improved. In addition, in this specification, the said "end" means the end of the main chain. Further, although the reactive double bond is a radically polymerizable group, in the present specification, the reactive double bond-containing urethane resin is treated as a moisture-curable urethane resin instead of a radically polymerizable compound.
 反応性二重結合含有ウレタン樹脂は、構造中のイソシアネート基の割合が0.8質量%以下であることが好ましい。構造中のイソシアネート基の割合が0.8質量%以下の場合、耐衝撃性を向上させやすくなる。反応性二重結合含有ウレタン樹脂は、構造中のイソシアネート基の割合が0.5質量%以下であることがより好ましい。また、湿気硬化性の観点から、反応性二重結合含有ウレタン樹脂は、構造中のイソシアネート基の割合が0.1質量%以上であることが好ましい。 The reactive double bond-containing urethane resin preferably has an isocyanate group ratio of 0.8% by mass or less in the structure. When the proportion of isocyanate groups in the structure is 0.8% by mass or less, the impact resistance can be easily improved. The reactive double bond-containing urethane resin preferably has an isocyanate group ratio of 0.5% by mass or less in the structure. Further, from the viewpoint of moisture curability, the reactive double bond-containing urethane resin preferably has an isocyanate group ratio of 0.1% by mass or more in the structure.
 反応性二重結合含有ウレタン樹脂の含有量は、湿気硬化性ウレタン樹脂100質量部に対して、好ましくは0.5質量部以上であり、より好ましくは1質量部以上であり、また、好ましくは20質量部以下である。反応性二重結合含有ウレタン樹脂の含有量が上記範囲内である場合、耐衝撃性と湿気硬化性の両方に優れるものとなる。 The content of the reactive double bond-containing urethane resin is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and more preferably 1 part by mass with respect to 100 parts by mass of the moisture-curable urethane resin. It is 20 parts by mass or less. When the content of the urethane resin containing a reactive double bond is within the above range, both impact resistance and moisture curability are excellent.
 本発明で使用する加水分解性シリル基含有樹脂は、分子内の加水分解性シリル基が空気中又は被着体中の水分と反応して硬化する。
 加水分解性シリル基含有樹脂は、1分子中に加水分解性シリル基を1個のみ有していてもよいし、2個以上有していてもよい。なかでも、分子の主鎖両末端に加水分解性シリル基を有することが好ましい。
 なお、上記加水分解性シリル基含有樹脂として、イソシアネート基を有するものを含まない。
In the hydrolyzable silyl group-containing resin used in the present invention, the hydrolyzable silyl group in the molecule reacts with moisture in the air or the adherend to be cured.
The hydrolyzable silyl group-containing resin may have only one hydrolyzable silyl group in one molecule, or may have two or more hydrolyzable silyl groups. Above all, it is preferable to have hydrolyzable silyl groups at both ends of the main chain of the molecule.
The hydrolyzable silyl group-containing resin does not include those having an isocyanate group.
 加水分解性シリル基は、下記式(2)で表される。
Figure JPOXMLDOC01-appb-C000002

 式(2)中、Rは、それぞれ独立に、置換されていてもよい炭素数1以上20以下のアルキル基、炭素数6以上20以下アリール基、炭素数7以上20以下のアラルキル基、又は、-OSiR (Rは、それぞれ独立に、炭素数1以上20以下の炭化水素基である)で示されるトリオルガノシロキシ基である。また、式(2)中、Xは、それぞれ独立に、ヒドロキシ基又は加水分解性基である。さらに、式(2)中、aは、1~3の整数である。
The hydrolyzable silyl group is represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000002

In formula (2), R 1 is an alkyl group having 1 or more and 20 or less carbon atoms, an aryl group having 6 or more and 20 or less carbon atoms, an aralkyl group having 7 or more and 20 or less carbon atoms, which may be substituted independently, respectively. , -OSiR 2 3 (R 2 is a hydrocarbon group having 1 or more and 20 or less carbon atoms independently). Further, in the formula (2), X is independently a hydroxy group or a hydrolyzable group. Further, in the equation (2), a is an integer of 1 to 3.
 上記加水分解性基は特に限定されず、例えば、ハロゲン原子、アルコキシ基、アルケニルオキシ基、アリールオキシ基、アシルオキシ基、ケトキシメート基、アミノ基、アミド基、酸アミド基、アミノオキシ基、メルカプト基等が挙げられる。なかでも、活性が高いことから、ハロゲン原子、アルコキシ基、アルケニルオキシ基、アシルオキシ基が好ましい。また、加水分解性が穏やかで取扱いやすいことから、メトキシ基、エトキシ基等のアルコキシ基がより好ましく、メトキシ基、エトキシ基がさらに好ましい。また、安全性の観点からは、反応により脱離する化合物がそれぞれエタノール、アセトンである、エトキシ基、イソプロペノキシ基が好ましい。 The hydrolyzable group is not particularly limited, and for example, a halogen atom, an alkoxy group, an alkenyloxy group, an aryloxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group, a mercapto group and the like. Can be mentioned. Of these, halogen atoms, alkoxy groups, alkenyloxy groups, and acyloxy groups are preferable because of their high activity. Further, an alkoxy group such as a methoxy group or an ethoxy group is more preferable, and a methoxy group or an ethoxy group is further preferable, because the hydrolysis property is mild and easy to handle. From the viewpoint of safety, the compounds desorbed by the reaction are ethanol and acetone, respectively, preferably an ethoxy group and an isopropenoxy group.
 上記ヒドロキシ基又は上記加水分解性基は、1個のケイ素原子に対して、1~3個の範囲で結合することができる。上記ヒドロキシ基又は上記加水分解性基が1個のケイ素原子に対して2個以上結合する場合には、それらの基は同一であってもよいし、異なっていてもよい。 The hydroxy group or the hydrolyzable group can be bonded to one silicon atom in the range of 1 to 3. When two or more of the hydroxy groups or the hydrolyzable groups are bonded to one silicon atom, the groups may be the same or different.
 上記式(2)におけるaは、硬化性の観点から、2又は3であることが好ましく、3であることが特に好ましい。また、保存安定性の観点からは、aは、2であることが好ましい。
 また、上記式(2)におけるRとしては、例えば、メチル基、エチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、フェニル基等のアリール基、ベンジル基等のアラルキル基、トリメチルシロキシ基、クロロメチル基、メトキシメチル基等があげられる。なかでも、メチル基が好ましい。
From the viewpoint of curability, a in the above formula (2) is preferably 2 or 3, and particularly preferably 3. Further, from the viewpoint of storage stability, a is preferably 2.
The R1 in the above formula (2) is, for example, an alkyl group such as a methyl group or an ethyl group, a cycloalkyl group such as a cyclohexyl group, an aryl group such as a phenyl group, an aralkyl group such as a benzyl group, or a trimethylsiloxy group. , Chloromethyl group, methoxymethyl group and the like. Of these, a methyl group is preferable.
 上記加水分解性シリル基としては、例えば、メチルジメトキシシリル基、トリメトキシシリル基、トリエトキシシリル基、トリス(2-プロペニルオキシ)シリル基、トリアセトキシシリル基、(クロロメチル)ジメトキシシリル基、(クロロメチル)ジエトキシシリル基、(ジクロロメチル)ジメトキシシリル基、(1-クロロエチル)ジメトキシシリル基、(1-クロロプロピル)ジメトキシシリル基、(メトキシメチル)ジメトキシシリル基、(メトキシメチル)ジエトキシシリル基、(エトキシメチル)ジメトキシシリル基、(1-メトキシエチル)ジメトキシシリル基、(アミノメチル)ジメトキシシリル基、(N,N-ジメチルアミノメチル)ジメトキシシリル基、(N,N-ジエチルアミノメチル)ジメトキシシリル基、(N,N-ジエチルアミノメチル)ジエトキシシリル基、(N-(2-アミノエチル)アミノメチル)ジメトキシシリル基、(アセトキシメチル)ジメトキシシリル基、(アセトキシメチル)ジエトキシシリル基等が挙げられる。 Examples of the hydrolyzable silyl group include a methyldimethoxysilyl group, a trimethoxysilyl group, a triethoxysilyl group, a tris (2-propenyloxy) silyl group, a triacetoxysilyl group, and a (chloromethyl) dimethoxysilyl group. Chloromethyl) diethoxysilyl group, (dichloromethyl) dimethoxysilyl group, (1-chloroethyl) dimethoxysilyl group, (1-chloropropyl) dimethoxysilyl group, (methoxymethyl) dimethoxysilyl group, (methoxymethyl) diethoxysilyl group Group, (ethoxymethyl) dimethoxysilyl group, (1-methoxyethyl) dimethoxysilyl group, (aminomethyl) dimethoxysilyl group, (N, N-dimethylaminomethyl) dimethoxysilyl group, (N, N-diethylaminomethyl) dimethoxy Cyril group, (N, N-diethylaminomethyl) diethoxysilyl group, (N- (2-aminoethyl) aminomethyl) dimethoxysilyl group, (acetoxymethyl) dimethoxysilyl group, (acetoxymethyl) diethoxysilyl group, etc. Can be mentioned.
 加水分解性シリル基含有樹脂としては、例えば、加水分解性シリル基含有(メタ)アクリル樹脂、分子鎖末端又は分子鎖末端部位に加水分解性シリル基を有する有機重合体、加水分解性シリル基含有ポリウレタン樹脂等が挙げられる。
 加水分解性シリル基含有(メタ)アクリル樹脂は、主鎖に加水分解性シリル基含有(メタ)アクリル酸エステルおよび/または(メタ)アクリル酸アルキルエステルに由来する繰り返し構成単位を有することが好ましい。
Examples of the hydrolyzable silyl group-containing resin include a hydrolyzable silyl group-containing (meth) acrylic resin, an organic polymer having a hydrolyzable silyl group at the end of the molecular chain or the end of the molecular chain, and a hydrolyzable silyl group. Examples include polyurethane resin.
The hydrolyzable silyl group-containing (meth) acrylic resin preferably has a repeating constituent unit derived from the hydrolyzable silyl group-containing (meth) acrylic acid ester and / or (meth) acrylic acid alkyl ester in the main chain.
 加水分解性シリル基含有(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸3-(トリメトキシシリル)プロピル、(メタ)アクリル酸3-(トリエトキシシリル)プロピル、(メタ)アクリル酸3-(メチルジメトキシシリル)プロピル、(メタ)アクリル酸2-(トリメトキシシリル)エチル、(メタ)アクリル酸2-(トリエトキシシリル)エチル、(メタ)アクリル酸2-(メチルジメトキシシリル)エチル、(メタ)アクリル酸トリメトキシシリルメチル、(メタ)アクリル酸トリエトキシシリルメチル、(メタ)アクリル酸(メチルジメトキシシリル)メチル等が挙げられる。
 上記(メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸n-ペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n-ヘプチル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸n-デシル、(メタ)アクリル酸n-ドデシル、(メタ)アクリル酸ステアリル等が挙げられる。
 加水分解性シリル基含有(メタ)アクリル樹脂を製造する方法としては、具体的には例えば、国際公開第2016/035718号に記載されている加水分解性ケイ素基含有(メタ)アクリル酸エステル系重合体の合成方法等が挙げられる。
Examples of the hydrolyzable silyl group-containing (meth) acrylic acid ester include (meth) acrylic acid 3- (trimethoxysilyl) propyl, (meth) acrylic acid 3- (triethoxysilyl) propyl, and (meth) acrylic acid. 3- (Methyldimethoxysilyl) propyl, 2- (trimethoxysilyl) ethyl (meth) acrylate, 2- (triethoxysilyl) ethyl (meth) acrylate, 2- (methyldimethoxysilyl) ethyl (meth) acrylate , (Meta) Acrylic Acid Trimethoxysilyl Methyl, (Meta) Acrylic Acid Triethoxysilyl Methyl, (Meta) Acrylic Acid (Methyl Dimethoxysilyl) Methyl and the like.
Examples of the (meth) acrylic acid alkyl ester include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, isopropyl (meth) acrylic acid, and n- (meth) acrylic acid. Butyl, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, n- (meth) acrylate. Heptyl, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-nonyl (meth) acrylate, n-decyl (meth) acrylate, n-dodecyl (meth) acrylate, (meth) Examples thereof include stearyl acrylate.
As a method for producing a hydrolyzable silyl group-containing (meth) acrylic resin, specifically, for example, the hydrolyzable silicon group-containing (meth) acrylic acid ester-based weight described in International Publication No. 2016/035718. Examples thereof include a method for synthesizing coalescence.
 上記分子鎖末端又は分子鎖末端部位に加水分解性シリル基を有する有機重合体は、主鎖の末端及び側鎖の末端の少なくともいずれかに加水分解性シリル基を有する。
 上記主鎖の骨格構造は特に限定されず、例えば、飽和炭化水素系重合体、ポリオキシアルキレン系重合体、(メタ)アクリル酸エステル系重合体等が挙げられる。
The organic polymer having a hydrolyzable silyl group at the end of the molecular chain or the terminal portion of the molecular chain has a hydrolyzable silyl group at at least one of the end of the main chain and the end of the side chain.
The skeleton structure of the main chain is not particularly limited, and examples thereof include saturated hydrocarbon-based polymers, polyoxyalkylene-based polymers, and (meth) acrylic acid ester-based polymers.
 上記ポリオキシアルキレン系重合体としては、例えば、ポリオキシエチレン構造、ポリオキシプロピレン構造、ポリオキシブチレン構造、ポリオキシテトラメチレン構造、ポリオキシエチレン-ポリオキシプロピレン共重合体構造、ポリオキシプロピレン-ポリオキシブチレン共重合体構造を有する重合体等が挙げられる。
 上記分子鎖末端又は分子鎖末端部位に加水分解性シリル基を有する有機重合体を製造する方法としては、具体的には例えば、国際公開第2016/035718号に記載されている、分子鎖末端又は分子鎖末端部位のみに架橋性シリル基を有する有機重合体の合成方法が挙げられる。また、上記分子鎖末端又は分子鎖末端部位に加水分解性シリル基を有する有機重合体を製造する他の方法としては、例えば、国際公開第2012/117902号に記載されている反応性ケイ素基含有ポリオキシアルキレン系重合体の合成方法等が挙げられる。
Examples of the polyoxyalkylene-based polymer include polyoxyethylene structure, polyoxypropylene structure, polyoxybutylene structure, polyoxytetramethylene structure, polyoxyethylene-polyoxypropylene copolymer structure, and polyoxypropylene-poly. Examples thereof include a polymer having an oxybutylene copolymer structure.
Specific examples of the method for producing an organic polymer having a hydrolyzable silyl group at the end of the molecular chain or the end of the molecular chain are described in, for example, International Publication No. 2016/035718. Examples thereof include a method for synthesizing an organic polymer having a crosslinkable silyl group only at the terminal site of the molecular chain. Further, as another method for producing an organic polymer having a hydrolyzable silyl group at the end of the molecular chain or the end of the molecular chain, for example, the reactive silicon group contained in International Publication No. 2012/11792 is described. Examples thereof include a method for synthesizing a polyoxyalkylene polymer.
 上記加水分解性シリル基含有ポリウレタン樹脂を製造する方法としては、例えば、ポリオール化合物とポリイソシアネート化合物とを反応させてポリウレタン樹脂を製造する際に、さらに、シランカップリング剤等のシリル基含有化合物を反応させる方法等が挙げられる。具体的には例えば、特開2017-48345号公報に記載されている加水分解性シリル基を有するウレタンオリゴマーの合成方法等が挙げられる。 As a method for producing the hydrolyzable silyl group-containing polyurethane resin, for example, when a polyol compound and a polyisocyanate compound are reacted to produce a polyurethane resin, a silyl group-containing compound such as a silane coupling agent is further added. Examples thereof include a method of reacting. Specific examples thereof include the method for synthesizing a urethane oligomer having a hydrolyzable silyl group described in JP-A-2017-48345.
 上記シランカップリング剤としては、例えば、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β-メトキシ-エトキシ)シラン、β-(3,4-エポキシシクロヘキシル)-エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン等が挙げられる。なかでも、γ-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシランが好ましい。これらのシランカップリング剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。 Examples of the silane coupling agent include vinyltrichlorosilane, vinyltriethoxysilane, vinyltris (β-methoxy-ethoxy) silane, β- (3,4-epoxycyclohexyl) -ethyltrimethoxysilane, and γ-glycidoxy. Propyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-methacryloxypropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) -Γ-Aminopropyltrimethyldimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, 3-Isoxypropyltri Examples thereof include methoxysilane and 3-isopropylpropyltriethoxysilane. Of these, γ-mercaptopropyltrimethoxysilane, 3-isocyanatepropyltrimethoxysilane, and 3-isocyanatepropyltriethoxysilane are preferable. These silane coupling agents may be used alone or in combination of two or more.
 なお、湿気硬化性ウレタン樹脂は、イソシアネート基と加水分解性シリル基の両方を有していてもよい。イソシアネート基と加水分解性シリル基の両方を有する湿気硬化性ウレタン樹脂は、まず、上記した方法にてイソシアネート基を有する湿気硬化性ウレタン樹脂を得て、さらに該湿気硬化性ウレタン樹脂にシランカップリング剤を反応させることで製造することが好ましい。
 なお、イソシアネート基を有する湿気硬化性ウレタン樹脂の詳細は上記したとおりである。なお、湿気硬化性に反応させるシランカップリング剤としては、上記で列挙したものから適宜選択して使用すれば良いが、イソシアネート基との反応性の観点からアミノ基又はメルカプト基を有するシランカップ剤を使用することが好ましい。好ましい具体的としては、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、3-イソシアネートプロピルトリメトキシシラン等が挙げられる。
The moisture-curable urethane resin may have both an isocyanate group and a hydrolyzable silyl group. For the moisture-curable urethane resin having both an isocyanate group and a hydrolyzable silyl group, first, a moisture-curable urethane resin having an isocyanate group is obtained by the above-mentioned method, and further, silane coupling is performed on the moisture-curable urethane resin. It is preferably produced by reacting the agent.
The details of the moisture-curable urethane resin having an isocyanate group are as described above. The silane coupling agent that reacts with moisture curability may be appropriately selected from those listed above and used, but from the viewpoint of reactivity with the isocyanate group, a silane coupling agent having an amino group or a mercapto group. It is preferable to use. Preferred specifics are N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltrimethyldimethoxysilane, N-phenyl-γ-aminopropyltrimethoxy. Examples thereof include silane, 3-mercaptopropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, and 3-isocyanuppropyltrimethoxysilane.
 さらに、湿気硬化性樹脂(A)は、湿気硬化性ウレタン樹脂以外がラジカル重合性官能基を有していてもよい。ラジカル重合性官能基としては、反応性二重結合を有する基が好ましく、特に反応性の面から(メタ)アクリロイル基がより好ましい。なお、湿気硬化性ウレタン樹脂以外のラジカル重合性官能基を有する湿気硬化性樹脂も、後述するラジカル重合性化合物(B)には含まず、湿気硬化性樹脂として扱う。
 湿気硬化性樹脂(A)は、上記した各種の樹脂から適宜選択して1種単独で使用してもよいし、2種以上併用してもよい。
Further, the moisture-curable resin (A) may have a radically polymerizable functional group other than the moisture-curable urethane resin. As the radically polymerizable functional group, a group having a reactive double bond is preferable, and a (meth) acryloyl group is more preferable from the viewpoint of reactivity. A moisture-curable resin having a radical-polymerizable functional group other than the moisture-curable urethane resin is not included in the radical-polymerizable compound (B) described later, and is treated as a moisture-curable resin.
The moisture-curable resin (A) may be appropriately selected from the above-mentioned various resins and used alone or in combination of two or more.
 湿気硬化性樹脂(A)の重量平均分子量は特に限定されないが、好ましくは1000以上100000以下であり、より好ましくは2000以上70000以下、さらに好ましい3000以上50000以下である。なお、本明細書において上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による重量平均分子量を測定する際のカラムとしては、Shodex LF-804(昭和電工社製)が挙げられる。また、GPCで用いる溶媒としては、テトラヒドロフランが挙げられる。 The weight average molecular weight of the moisture-curable resin (A) is not particularly limited, but is preferably 1000 or more and 100,000 or less, more preferably 2000 or more and 70,000 or less, and further preferably 3000 or more and 50,000 or less. In the present specification, the weight average molecular weight is a value obtained by measuring by gel permeation chromatography (GPC) and converting into polystyrene. As a column for measuring the weight average molecular weight in terms of polystyrene by GPC, Shodex LF-804 (manufactured by Showa Denko KK) can be mentioned. Further, examples of the solvent used in GPC include tetrahydrofuran.
(ラジカル重合性化合物(B))
 湿気硬化性樹脂組成物は、さらにラジカル重合性化合物(B)を含有することが好ましい。ラジカル重合性化合物(B)は、分子中にラジカル重合性官能基を有するラジカル重合性化合物であれば特に限定されない。ラジカル重合性化合物(B)は、ラジカル重合性官能基として不飽和二重結合を有する化合物が好適であり、特に(メタ)アクリロイル基を有する化合物(以下、「(メタ)アクリル化合物」ともいう)が好適である。本発明では、(メタ)アクリル化合物を使用することで、上記した貯蔵弾性率及び破断伸度を所定の範囲内に調整しやすくなる。
(Radical Polymerizable Compound (B))
The moisture-curable resin composition preferably further contains the radically polymerizable compound (B). The radically polymerizable compound (B) is not particularly limited as long as it is a radically polymerizable compound having a radically polymerizable functional group in the molecule. The radically polymerizable compound (B) is preferably a compound having an unsaturated double bond as a radically polymerizable functional group, and in particular, a compound having a (meth) acryloyl group (hereinafter, also referred to as “(meth) acrylic compound”). Is preferable. In the present invention, by using the (meth) acrylic compound, it becomes easy to adjust the above-mentioned storage elastic modulus and breaking elongation within a predetermined range.
 (メタ)アクリル化合物としては、例えば、(メタ)アクリル酸エステル化合物、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート等が挙げられる。これらのなかでは、(メタ)アクリル酸エステル化合物が好ましく、(メタ)アクリル酸エステル化合物とウレタン(メタ)アクリレートとを併用することも好ましい。
 なお、ウレタン(メタ)アクリレートは、残存イソシアネート基を有さないものである。
 また、本明細書において、「(メタ)アクリロイル基」は、アクリロイル基又はメタクリロイル基を意味し、「(メタ)アクリレート」はアクリレート又はメタクリレートを意味し、他の類似する用語も同様である。
Examples of the (meth) acrylic compound include (meth) acrylic acid ester compounds, epoxy (meth) acrylates, urethane (meth) acrylates, and the like. Among these, a (meth) acrylic acid ester compound is preferable, and it is also preferable to use a (meth) acrylic acid ester compound and a urethane (meth) acrylate in combination.
The urethane (meth) acrylate does not have a residual isocyanate group.
Further, in the present specification, "(meth) acryloyl group" means an acryloyl group or a methacryloyl group, "(meth) acrylate" means an acrylate or a methacrylate, and other similar terms are used as well.
 上記(メタ)アクリル酸エステル化合物は、単官能でもよいし、2官能でもよいし、3官能以上であってもよいが、単官能であることが好ましい。
(メタ)アクリル酸エステル化合物のうち単官能のものとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ミリスチル(メタ)アクリレート、トリデシル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレートなどのアルキル基の炭素数が1~18程度のアルキル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、4-tert-ブチルシクロヘキシル(メタ)アクリレート、3,3,5-トリメチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、1-アダマンチル(メタ)アクリレート等の脂環式(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレートなどのアルコキシアルキル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、エトキシエチレングリコール(メタ)アクリレートなどのアルコキシエチレングリコール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、エトキシトリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレートなどのポリオキシエチレン系(メタ)アクリレートなどが挙げられる。
The (meth) acrylic acid ester compound may be monofunctional, bifunctional, or trifunctional or higher, but is preferably monofunctional.
Among the (meth) acrylic acid ester compounds, monofunctional ones include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, and n-butyl (meth). Acrylate, Isobutyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, n-hexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl ( Meta) acrylate, isononyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, myristyl (meth) acrylate, tridecyl (meth) acrylate, isomyristyl (meth) acrylate, cetyl (meth) acrylate, stearyl (meth). ) Alkyl (meth) acrylates, cyclohexyl (meth) acrylates, 4-tert-butylcyclohexyl (meth) acrylates, 3, 3, 5 of alkyl groups such as acrylates and isostearyl (meth) acrylates having about 1 to 18 carbon atoms. -Alicyclic (meth) acrylates such as trimethylcyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, 1-adamantyl (meth) acrylate, 2- Hydroxyalkyl (meth) acrylates such as hydroxyethyl (meth) acrylates, 2-hydroxypropyl (meth) acrylates, 2-hydroxybutyl (meth) acrylates, 4-hydroxybutyl (meth) acrylates, 2-methoxyethyl (meth) acrylates. , 2-ethoxyethyl (meth) acrylate, alkoxyalkyl (meth) acrylate such as 2-butoxyethyl (meth) acrylate, alkoxyethylene glycol (meth) such as methoxyethylene glycol (meth) acrylate, ethoxyethylene glycol (meth) acrylate. Acrylate, methoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, ethylcarbitol (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, ethoxytriethylene glycol (meth) acrylate, Acrylate polyethylene Examples thereof include polyoxyethylene-based (meth) acrylates such as recall (meth) acrylates.
 また、(メタ)アクリル酸エステル化合物は、芳香環を有してもよく、例えば、ベンジル(メタ)アクリレート、2-フェニルエチル(メタ)アクリレート等のフェニルアルキル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等のフェノキシアルキル(メタ)アクリレートなどが挙げられる。さらには、フルオレン骨格、ビフェニル骨格などの複数のベンゼン環を有する(メタ)アクリレートであってもよく、具体的には、フルオレン型(メタ)アクリレート、エトキシ化o-フェニルフェノールアクリレートなどが挙げられる。
 さらには、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシジエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレートなどのフェノキシポリオキシエチレン系(メタ)アクリレートなども挙げられる。
Further, the (meth) acrylic acid ester compound may have an aromatic ring, for example, phenylalkyl (meth) acrylate such as benzyl (meth) acrylate and 2-phenylethyl (meth) acrylate, and phenoxyethyl (meth). Examples thereof include phenyloxyalkyl (meth) acrylates such as acrylates. Further, it may be a (meth) acrylate having a plurality of benzene rings such as a fluorene skeleton and a biphenyl skeleton, and specific examples thereof include fluorene type (meth) acrylate and ethoxylated o-phenylphenol acrylate.
Further, phenoxypolyoxyethylene-based (meth) acrylates such as phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, nonylphenoxydiethylene glycol (meth) acrylate, and nonylphenoxypolyethylene glycol (meth) acrylate can also be mentioned.
 さらに、単官能の(メタ)アクリル酸エステル化合物としては、テトラヒドロフルフリル(メタ)アクリレート、アルコキシ化テトラヒドロフルフリル(メタ)アクリレート、環状トリメチロールプロパンフォルマル(メタ)アクリレート、3-エチル-3-オキセタニルメチル(メタ)アクリレート等の複素環式構造を有する(メタ)アクリレート、N-アクリロイルオキシエチルヘキサヒドロフタルイミド等のフタルイミドアクリレート類、各種イミド(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル-2-ヒドロキシプロピルフタレート、グリシジル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルホスフェート等も挙げられる。 Further, examples of the monofunctional (meth) acrylic acid ester compound include tetrahydrofurfuryl (meth) acrylate, alkoxylated tetrahydrofurfuryl (meth) acrylate, cyclic trimethylolpropaneformal (meth) acrylate, and 3-ethyl-3-. (Meta) acrylates having a heterocyclic structure such as oxetanylmethyl (meth) acrylates, phthalimide acrylates such as N-acryloyloxyethyl hexahydrophthalimide, various imide (meth) acrylates, 2,2,2-trifluoroethyl ( Meta) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-octafluoropentyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, 2 -(Meta) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl-2-hydroxypropylphthalate, glycidyl (meth) acrylate, 2-( Meta) Acryloyloxyethyl phosphate and the like can also be mentioned.
 (メタ)アクリル酸エステル化合物のうち2官能のものとしては、例えば、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。 Among the (meth) acrylic acid ester compounds, bifunctional ones include, for example, 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexanediol di (). Meta) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, Ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, Polypropylene glycol di (meth) acrylate, ethylene oxide-added bisphenol A di (meth) acrylate, propylene oxide-added bisphenol A di (meth) acrylate, ethylene oxide-added bisphenol F di (meth) acrylate, dimethylol dicyclopentadienyldi (meth) Acrylate, neopentyl glycol di (meth) acrylate, ethylene oxide-modified isocyanuric acid di (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, carbonate diol di (meth) acrylate, polyether diol Examples thereof include di (meth) acrylate, polyester diol di (meth) acrylate, polycaprolactone diol di (meth) acrylate, and polybutadiene diol di (meth) acrylate.
 また、(メタ)アクリル酸エステル化合物のうち3官能以上のものとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。 Among the (meth) acrylic acid ester compounds, those having trifunctionality or higher include, for example, trimethylol propanetri (meth) acrylate, ethylene oxide-added trimethylol propanetri (meth) acrylate, and propylene oxide-added trimethylol propanetri (meth) acrylate. ) Acrylate, caprolactone-modified trimethylol propantri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethylene oxide-added isocyanuric acid tri (meth) acrylate, glycerintri (meth) acrylate, propylene oxide-added glycerintri (meth) acrylate, Tris Examples thereof include (meth) acryloyloxyethyl phosphate, ditrimethylolpropanetetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol hexa (meth) acrylate.
 上記エポキシ(メタ)アクリレートとしては、例えば、エポキシ化合物と(メタ)アクリル酸と反応したものなどが挙げられる。ここで、エポキシ化合物と(メタ)アクリル酸の反応は、常法に従って塩基性触媒の存在下などで行うとよい。エポキシ(メタ)アクリレートは、単官能でも、2官能などの多官能でもよい。
 上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2’-ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物、ビスフェノールA型エピスルフィド樹脂等が挙げられる。
Examples of the epoxy (meth) acrylate include those obtained by reacting an epoxy compound with (meth) acrylic acid. Here, the reaction between the epoxy compound and (meth) acrylic acid may be carried out according to a conventional method in the presence of a basic catalyst or the like. The epoxy (meth) acrylate may be monofunctional or polyfunctional such as bifunctional.
Examples of the epoxy compound used as a raw material for synthesizing the above epoxy (meth) acrylate include a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol S type epoxy resin, and a 2,2'-diallyl bisphenol A type epoxy resin. , Hydrophobic bisphenol type epoxy resin, propylene oxide added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, phenol Novolak type epoxy resin, orthocresol novolak type epoxy resin, dicyclopentadiene novolak type epoxy resin, biphenyl novolak type epoxy resin, naphthalenephenol novolak type epoxy resin, glycidylamine type epoxy resin, alkyl polyol type epoxy resin, rubber modified epoxy resin , Glycidyl ester compound, bisphenol A type episulfide resin and the like.
 上記エポキシ(メタ)アクリレートのうち市販されているものとしては、例えば、EBECRYL860、EBECRYL3200、EBECRYL3201、EBECRYL3412、EBECRYL3600、EBECRYL3700、EBECRYL3701、EBECRYL3702、EBECRYL3703、EBECRYL3800、EBECRYL6040、EBECRYL RDX63182(いずれもダイセル・オルネクス社製)、EA-1010、EA-1020、EA-5323、EA-5520、EACHD、EMA-1020(いずれも新中村化学工業社製)、エポキシエステルM-600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA、エポキシエステル400EA(いずれも共栄社化学株式会社製)、デナコールアクリレートDA-141、デナコールアクリレートDA-314、デナコールアクリレートDA-911(いずれもナガセケムテックス社製)等が挙げられる。 Among the above epoxy (meth) acrylates, commercially available ones include, for example, EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3702, EBECRYL3702, EBECRYL370 ), EA-1010, EA-1020, EA-5323, EA-5520, EACHD, EMA-1020 (all manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, epoxy ester. 200PA, epoxy ester 80MFA, epoxy ester 3002M, epoxy ester 3002A, epoxy ester 1600A, epoxy ester 3000M, epoxy ester 3000A, epoxy ester 200EA, epoxy ester 400EA (all manufactured by Kyoeisha Chemical Co., Ltd.), Denacol Acrylate DA-141, Examples thereof include denacole acrylate DA-314 and denacole acrylate DA-911 (both manufactured by Nagase ChemteX Corporation).
 ウレタン(メタ)アクリレートは、例えば、イソシアネート化合物に、水酸基を有する(メタ)アクリル酸誘導体を、反応させたものを使用することができる。ここで、イソシアネート化合物と(メタ)アクリル酸誘導体の反応には、触媒として触媒量のスズ系化合物などを使用するとよい。ウレタン(メタ)アクリレートは、単官能でも、2官能などの多官能でもよい。 As the urethane (meth) acrylate, for example, an isocyanate compound reacted with a (meth) acrylic acid derivative having a hydroxyl group can be used. Here, in the reaction between the isocyanate compound and the (meth) acrylic acid derivative, it is preferable to use a tin-based compound having a catalytic amount as a catalyst. The urethane (meth) acrylate may be monofunctional or polyfunctional such as bifunctional.
 ウレタン(メタ)アクリレートを得るために使用するイソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシリレンジイソシアネート、1,6,11-ウンデカントリイソシアネート等のポリイソシアネート化合物が挙げられる。 Examples of the isocyanate compound used to obtain urethane (meth) acrylate include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and diphenylmethane-4, 4'-diisocyanate (MDI), hydrogenated MDI, polypeptide MDI, 1,5-naphthalenediocyanate, norbornan diisocyanate, trizine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris ( Examples thereof include polyisocyanate compounds such as isocyanatephenyl) thiophosphate, tetramethylxylylene diisocyanate, and 1,6,11-undecantryisocyanate.
 また、イソシアネート化合物としては、ポリオールと過剰のイソシアネート化合物との反応により得られる鎖延長されたポリイソシアネート化合物も使用することもできる。ここで、ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等が挙げられる。 Further, as the isocyanate compound, a chain-extended polyisocyanate compound obtained by reacting a polyol with an excess isocyanate compound can also be used. Here, examples of the polyol include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, and polycaprolactone diol.
 また、イソシアネート化合物として、例えば単官能のウレタン(メタ)アクリレートを得るためには、モノイソシアネートを使用すればよい。モノイソシアネートとしては具体的には、ブタンイソシアネート、ヘキサンイソシアネート、デカンイソシアネートなどのアルカンモノイソシアネート、シクロペンタンイソシアネート、シクロヘキサンイソシアネート、イソホロンモノイソシアネートなどの環状脂肪族モノイソシアネートなどの脂肪族モノイソシアネートが挙げられる。
 ウレタン(メタ)アクリレートを得るためのイソシアネート化合物は、1種単独で使用してもよいし、2種以上を併用してもよい。
Further, as the isocyanate compound, for example, in order to obtain a monofunctional urethane (meth) acrylate, monoisocyanate may be used. Specific examples of the monoisocyanate include alkane monoisocyanates such as butane isocyanate, hexane isocyanate and decane isocyanate, and aliphatic monoisocyanates such as cyclic aliphatic monoisocyanates such as cyclopentane isocyanate, cyclohexane isocyanate and isophorone monoisocyanate.
The isocyanate compound for obtaining urethane (meth) acrylate may be used alone or in combination of two or more.
 上記水酸基を有する(メタ)アクリル酸誘導体としては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等の二価のアルコールのモノ(メタ)アクリレートや、トリメチロールエタン、トリメチロールプロパン、グリセリン等の三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレートや、ビスフェノールA型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート等が挙げられる。
 ウレタン(メタ)アクリレートを得るための(メタ)アクリル酸誘導体は、1種単独で使用してもよいし、2種以上を併用してもよい。
Examples of the (meth) acrylic acid derivative having a hydroxyl group include dihydric alcohols such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and polyethylene glycol. Mono (meth) acrylate, mono (meth) acrylate or di (meth) acrylate of trihydric alcohols such as trimethylolethane, trimethylolpropane, glycerin, and epoxy (meth) acrylate such as bisphenol A type epoxy (meth) acrylate. ) Examples include acrylate.
The (meth) acrylic acid derivative for obtaining urethane (meth) acrylate may be used alone or in combination of two or more.
 多官能のウレタン(メタ)アクリレートは、ポリイソシアネート化合物に水酸基を有する(メタ)アクリル酸誘導体を、反応させたものを使用すればよい。
 また、単官能のウレタン(メタ)アクリレートは、モノイソシアネート化合物に水酸基を有する(メタ)アクリル酸誘導体を、反応させたものを使用すればよいが、モノイソシアネート化合物と、二価のアルコールのモノ(メタ)アクリレートとを反応して得られたウレタン(メタ)アクリレートが好ましく、その好適な具体例としては、1,2-エタンジオール1-アクリラート2-(N-ブチルカルバマート)が挙げられる。
As the polyfunctional urethane (meth) acrylate, a polyisocyanate compound reacted with a (meth) acrylic acid derivative having a hydroxyl group may be used.
Further, as the monofunctional urethane (meth) acrylate, one obtained by reacting a (meth) acrylic acid derivative having a hydroxyl group with a monoisocyanate compound may be used, but the monoisocyanate compound and a dihydric alcohol mono (mono) Urethane (meth) acrylate obtained by reacting with a meta) acrylate is preferable, and preferred specific examples thereof include 1,2-ethanediol 1-acrylate 2- (N-butylcarbamate).
 上記ウレタン(メタ)アクリレートのうち市販されているものとしては、例えば、M-1100、M-1200、M-1210、M-1600(いずれも東亞合成社製)、EBECRYL230、EBECRYL270、EBECRYL8402、EBECRYL8411、EBECRYL8412、EBECRYL8413、EBECRYL8804、EBECRYL8803、EBECRYL8807、EBECRYL9270、EBECRYL210、EBECRYL4827、EBECRYL6700、EBECRYL220、EBECRYL2220(いずれもダイセル・オルネクス社製)、アートレジンUN-9000H、アートレジンUN-9000A、アートレジンUN-7100、アートレジンUN-1255、アートレジンUN-330、アートレジンUN-3320HB、アートレジンUN-1200TPK、アートレジンSH-500B(いずれも根上工業社製)、U-2HA、U-2PHA、U-3HA、U-4HA、U-6H、U-6LPA、U-6HA、U-10H、U-15HA、U-122A、U-122P、U-108、U-108A、U-324A、U-340A、U-340P、U-1084A、U-2061BA、UA-340P、UA-4100、UA-4000、UA-4200、UA-4400、UA-5201P、UA-7100、UA-7200、UA-W2A(いずれも新中村化学工業社製)、AI-600、AH-600、AT-600、UA-101I、UA-101T、UA-306H、UA-306I、UA-306T(いずれも共栄社化学株式会社製)、CN-902、CN-973、CN-9021、CN-9782、CN-9833(いずれもアルケマ社製)、ビスコート#216(大阪有機化学工業社製)、GENOMER1122(Rahn社製)等が挙げられる。
 上記した(メタ)アクリル化合物は、1種単独で使用してもよいし、2種以上を併用してもよい。
Commercially available urethane (meth) acrylates include, for example, M-1100, M-1200, M-1210, M-1600 (all manufactured by Toa Synthetic Co., Ltd.), EBECRYL230, EBECRYL270, EBECRYL8402, EBECRYL8411. EBECRYL8412, EBECRYL8413, EBECRYL8804, EBECRYL8803, EBECRYL8807, EBECRYL9270, EBECRYL210, EBECRYL4827, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700 Resin UN-1255, Art Resin UN-330, Art Resin UN-3320HB, Art Resin UN-1200TPK, Art Resin SH-500B (all manufactured by Negami Kogyo Co., Ltd.), U-2HA, U-2PHA, U-3HA, U -4HA, U-6H, U-6LPA, U-6HA, U-10H, U-15HA, U-122A, U-122P, U-108, U-108A, U-324A, U-340A, U-340P , U-1084A, U-2061BA, UA-340P, UA-4100, UA-4000, UA-4200, UA-4400, UA-5201P, UA-7100, UA-7200, UA-W2A (all new Nakamura Chemical) AI-600, AH-600, AT-600, UA-101I, UA-101T, UA-306H, UA-306I, UA-306T (all manufactured by Kyoeisha Chemical Co., Ltd.), CN-902, Examples thereof include CN-973, CN-9021, CN-9782, CN-9833 (all manufactured by Alchema), Viscort # 216 (manufactured by Osaka Organic Chemical Industry Co., Ltd.), GENOMER1122 (manufactured by Rahn), and the like.
The above-mentioned (meth) acrylic compound may be used alone or in combination of two or more.
 また、ラジカル重合性化合物(B)として、上記した(メタ)アクリル酸エステル化合物以外の(メタ)アクリル化合物やビニル化合物を併用してもよい。そのような化合物としては、(メタ)アクリロイルモルフォリンなどの環状構造を有する(メタ)アクリル化合物や、N-ビニル-2-ピロリドン、N-ビニル-ε-カプロラクタム等の環状構造を有するビニル化合物も使用できる。また、例えば、N,N-ジメチル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド等の(メタ)アクリルアミド化合物も使用できる。 Further, as the radically polymerizable compound (B), a (meth) acrylic compound or a vinyl compound other than the above-mentioned (meth) acrylic acid ester compound may be used in combination. Examples of such compounds include (meth) acrylic compounds having a cyclic structure such as (meth) acryloylmorpholine, and vinyl compounds having a cyclic structure such as N-vinyl-2-pyrrolidone and N-vinyl-ε-caprolactam. Can be used. Further, for example, N, N-dimethyl (meth) acrylamide, N-hydroxyethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-isopropyl (meth) acrylamide, N, N-dimethylaminopropyl (meth). ) (Meta) acrylamide compounds such as acrylamide can also be used.
 ラジカル重合性化合物(B)としては、せん断接着強度を高くしやすくする観点などから、上記の中では、ウレタン(メタ)アクリレート、及びアルキル(メタ)アクリレートから選択される少なくとも1種を使用することが好ましく、これらは併用してもよいが、少なくともアルキル(メタ)アクリレートを使用することがより好ましい。
 ウレタン(メタ)アクリレートは、特に限定されないが、湿気硬化性樹脂(A)とラジカル重合性化合物(B)の合計量100質量部に対して例えば1質量部以上30質量部以下、好ましくは5質量部以上25質量部以下含有される。
 また、アルキル(メタ)アクリレートは、特に限定されないが、湿気硬化性樹脂(A)とラジカル重合性化合物(B)の合計量100質量部に対して、例えば5質量部以上40質量部以下、好ましくは10質量部以上30質量部以下含有される。
As the radically polymerizable compound (B), at least one selected from urethane (meth) acrylate and alkyl (meth) acrylate is used from the viewpoint of facilitating the increase in shear adhesive strength. These are preferable, and these may be used in combination, but it is more preferable to use at least an alkyl (meth) acrylate.
The urethane (meth) acrylate is not particularly limited, but is, for example, 1 part by mass or more and 30 parts by mass or less, preferably 5 parts by mass, based on 100 parts by mass of the total amount of the moisture-curable resin (A) and the radically polymerizable compound (B). It is contained in an amount of 25 parts by mass or less.
The alkyl (meth) acrylate is not particularly limited, but is preferably 5 parts by mass or more and 40 parts by mass or less, for example, with respect to 100 parts by mass of the total amount of the moisture-curable resin (A) and the radically polymerizable compound (B). Is contained in an amount of 10 parts by mass or more and 30 parts by mass or less.
 本発明では、ラジカル重合性化合物(B)を適宜選択して、硬化物が10℃以上の温度範囲内にガラス転移点を有さないように調整するとよい。例えば、ラジカル重合性化合物(B)は、ホモポリマーとしたときのガラス転移点(Tg)が低い化合物(低Tg化合物、例えば、上記Tgが0℃未満、好ましくは-10℃以下、より好ましくは-20℃以下、さらに好ましくは-30℃以下である化合物)を含有することが好ましい。
 また、硬化物が10℃以上の温度範囲内にガラス転移点を有さない程度に、上記低Tg化合物に加えて、ホモポリマーとしたときのガラス転移点(Tg)が高い化合物(高Tg化合物、上記Tgが例えば0℃以上、好ましくは10℃以上、より好ましくは20℃以上)を使用することも好ましい。高Tg化合物を使用することでせん断接着強度が向上しやすくなる。
In the present invention, the radically polymerizable compound (B) may be appropriately selected and adjusted so that the cured product does not have a glass transition point within the temperature range of 10 ° C. or higher. For example, the radically polymerizable compound (B) is a compound having a low glass transition point (Tg) when it is homopolymer (a low Tg compound, for example, the above Tg is less than 0 ° C., preferably −10 ° C. or lower, more preferably. It is preferable to contain a compound having a temperature of −20 ° C. or lower, more preferably −30 ° C. or lower).
Further, in addition to the above-mentioned low Tg compound, a compound having a high glass transition point (Tg) when made into a homopolymer (high Tg compound) so that the cured product does not have a glass transition point in the temperature range of 10 ° C. or higher. It is also preferable to use, for example, a Tg of 0 ° C. or higher, preferably 10 ° C. or higher, more preferably 20 ° C. or higher). By using a high Tg compound, the shear adhesive strength is likely to be improved.
 低Tg化合物としては、特に限定されないが、例えば、ブチルアクリレート(Tg=-55℃)、オクチルアクリレート(Tg=-65℃)イソオクチルアクリレート(Tg=-55℃)、2-エチルヘキシルアクリレート(Tg=-70℃)、イソノニルアクリレート(Tg=-55℃)、イソデシルアクリレート(Tg=-60℃)、ラウリルアクリレート(Tg=-30℃)、トリデシルアクリレート(Tg=-55℃)などのアルキルアクリレートなどが挙げられる。これらは、1種単独で使用してもよいが、2種以上を併用使用してもよい。
 さらに、ラジカル重合性化合物(B)は、高Tg化合物としては、ステアリルアクリレート(Tg=35℃)などのアルキル(メタ)アクリレートを使用すること好ましいが、イソボルニルアクリレート(Tg=88℃)などの脂環構造含有(メタ)アクリル化合物、N-アクリロイルオキシエチルヘキサヒドロフタルイミド(Tg=56℃)などのアミド基含有ビニルモノマーなどを使用してもよい。これらは、1種単独で使用してもよいが、2種以上を併用してもよい。
 なお、上記の各化合物の括弧内のTgは、各化合物のホモポリマーとしたときのガラス転移温度である。
 また、ラジカル重合性化合物(B)は、上記の通りウレタン(メタ)アクリレートを含むことも好ましい。ウレタン(メタ)アクリレートは単官能であってもよいし、多官能であってもよいが、少なくとも単官能を含むことが好ましい。単官能ウレタン(メタ)アクリレートを使用することでせん断接着強度を高くしやすくなる。また、ウレタン(メタ)アクリレートは、上記した低Tg化合物であってもよいし、高Tg化合物であってもよい。
The low Tg compound is not particularly limited, but is, for example, butyl acrylate (Tg = -55 ° C), octyl acrylate (Tg = -65 ° C), isooctyl acrylate (Tg = -55 ° C), 2-ethylhexyl acrylate (Tg =). -70 ° C.), Isononyl acrylate (Tg = -55 ° C.), Isodecyl acrylate (Tg = -60 ° C.), Lauryl acrylate (Tg = -30 ° C.), Tridecyl acrylate (Tg = -55 ° C.), etc. Examples include acrylate. These may be used alone or in combination of two or more.
Further, as the radically polymerizable compound (B), it is preferable to use an alkyl (meth) acrylate such as stearyl acrylate (Tg = 35 ° C.) as the high Tg compound, but isobornyl acrylate (Tg = 88 ° C.) or the like. An amide group-containing vinyl monomer such as an alicyclic structure-containing (meth) acrylic compound and N-acryloyloxyethyl hexahydrophthalimide (Tg = 56 ° C.) may be used. These may be used alone or in combination of two or more.
The Tg in parentheses of each of the above compounds is the glass transition temperature when the homopolymer of each compound is used.
Further, it is also preferable that the radically polymerizable compound (B) contains urethane (meth) acrylate as described above. The urethane (meth) acrylate may be monofunctional or polyfunctional, but preferably contains at least monofunctional. By using a monofunctional urethane (meth) acrylate, it becomes easy to increase the shear adhesive strength. Further, the urethane (meth) acrylate may be the above-mentioned low Tg compound or a high Tg compound.
(樹脂成分の含有量)
 湿気硬化性樹脂組成物における湿気硬化性樹脂(A)の含有量は、湿気硬化性樹脂(A)とラジカル重合性化合物(B)の合計量100質量部に対して、例えば50質量部以上であればよいが、60質量部以上であることが好ましい。60質量部以上であることで破断伸度が高くなりやすくなり、耐衝撃性を向上させやすくなる。
 また、湿気硬化性樹脂(A)の上記含有量は、100質量部以下であればよいが、好ましくは80質量部以下、より好ましくは75質量部以下、さらに好ましくは70質量部以下である。湿気硬化性樹脂(A)の含有量を80質量部以下とすることで、ラジカル重合性化合物(B)の含有量が一定量以上となり、粘度を低くして塗布性が向上する。また、塗布後の形状保持性も良好となりやすい。
 一方で、ラジカル重合性化合物(B)の含有量は、湿気硬化性樹脂(A)とラジカル重合性化合物(B)の合計量100質量部に対して、例えば50質量部以下であればよいが、40質量部以下であることが好ましい。また、ラジカル重合性化合物(B)は、湿気硬化性樹脂組成物に含有されなくてもよく、したがって、ラジカル重合性化合物(B)の上記含有量は0質量部以上であればよいが、好ましくは20質量部以上、より好ましくは25質量部以上、さらに好ましくは30質量部以上である。
(Content of resin component)
The content of the moisture-curable resin (A) in the moisture-curable resin composition is, for example, 50 parts by mass or more with respect to 100 parts by mass of the total amount of the moisture-curable resin (A) and the radically polymerizable compound (B). However, it is preferably 60 parts by mass or more. When it is 60 parts by mass or more, the elongation at break tends to be high, and the impact resistance is easily improved.
The content of the moisture-curable resin (A) may be 100 parts by mass or less, preferably 80 parts by mass or less, more preferably 75 parts by mass or less, and further preferably 70 parts by mass or less. By setting the content of the moisture-curable resin (A) to 80 parts by mass or less, the content of the radically polymerizable compound (B) becomes a certain amount or more, the viscosity is lowered, and the coatability is improved. In addition, the shape retention after application tends to be good.
On the other hand, the content of the radically polymerizable compound (B) may be, for example, 50 parts by mass or less with respect to 100 parts by mass of the total amount of the moisture-curable resin (A) and the radically polymerizable compound (B). , 40 parts by mass or less is preferable. Further, the radically polymerizable compound (B) does not have to be contained in the moisture-curable resin composition. Therefore, the content of the radically polymerizable compound (B) may be 0 parts by mass or more, which is preferable. Is 20 parts by mass or more, more preferably 25 parts by mass or more, still more preferably 30 parts by mass or more.
 なお、湿気硬化性樹脂(A)とラジカル重合性化合物(B)の合計量は、湿気硬化性樹脂組成物全量基準で、例えば60質量%以上、好ましくは70質量%以上、より好ましくは75質量%以上であり、また、100質量%以下であればよいが、光重合開始剤などの他の成分を含有させるために、好ましくは99質量%以下、さらに好ましくは97質量%以下である。なお、湿気硬化性樹脂組成物全量基準は、湿気硬化性樹脂組成物に含まれる固形分の全量を基準とすることを意味する。例えば、湿気硬化性樹脂組成物が、組成物を希釈するために溶媒を含む場合には、その溶媒を除いた成分量が湿気硬化性樹脂組成物全量となる。 The total amount of the moisture-curable resin (A) and the radically polymerizable compound (B) is, for example, 60% by mass or more, preferably 70% by mass or more, more preferably 75% by mass, based on the total amount of the moisture-curable resin composition. % Or more and 100% by mass or less, but preferably 99% by mass or less, more preferably 97% by mass or less in order to contain other components such as a photopolymerization initiator. The moisture-curable resin composition total amount standard means that the total amount of solid content contained in the moisture-curable resin composition is used as a standard. For example, when the moisture-curable resin composition contains a solvent for diluting the composition, the amount of the component excluding the solvent is the total amount of the moisture-curable resin composition.
(架橋剤(X))
 本発明の湿気硬化性樹脂組成物は、架橋剤(X)を含有してもよい。架橋剤(X)を含有することで、破断伸度及び貯蔵弾性率を高めて、接着性能及び耐衝撃性を良好にしやすくなる。架橋剤(X)は、湿気硬化性樹脂組成物が硬化する際に、上記した湿気硬化性樹脂(A)及びラジカル重合性化合物(B)の少なくともいずれかと反応できる官能基を有する化合物が好ましい。具体的には、イソシアネート基を有する化合物が挙げられる。そのような化合物としては、1分子中に2以上のイソシアネート基を有するポリイソシアネート化合物が挙げられる。また、架橋剤(X)は、湿気硬化性樹脂組成物がラジカル重合性化合物(B)を含有する場合に、湿気硬化性樹脂組成物に含有させることが好ましい。
(Crosslinking agent (X))
The moisture-curable resin composition of the present invention may contain a cross-linking agent (X). By containing the cross-linking agent (X), the elongation at break and the storage elastic modulus are enhanced, and the adhesive performance and the impact resistance are easily improved. The cross-linking agent (X) is preferably a compound having a functional group capable of reacting with at least one of the above-mentioned moisture-curable resin (A) and radically polymerizable compound (B) when the moisture-curable resin composition is cured. Specific examples thereof include compounds having an isocyanate group. Examples of such a compound include polyisocyanate compounds having two or more isocyanate groups in one molecule. Further, the cross-linking agent (X) is preferably contained in the moisture-curable resin composition when the moisture-curable resin composition contains the radically polymerizable compound (B).
 架橋剤(X)として使用されるポリイソシアネート化合物としては、芳香族ポリイソシアネート化合物、脂肪族ポリイソシアネート化合物が挙げられる。芳香族ポリイソシアネート化合物としては、例えば、ジフェニルメタンジイソシアネート、ジフェニルメタンジイソシアネートの液状変性物、ポリメリックMDI、トリレンジイソシアネート、ナフタレン-1,5-ジイソシアネート等が挙げられる。
 脂肪族ポリイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、ノルボルナンジイソシアネート、トランスシクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート、水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネート、シクロヘキサンジイソシアネート、ビス(イソシアネートメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネート等が挙げられる。
 ポリイソシアネート化合物としては、貯蔵弾性率を高めて、接着性能を良好とする観点から、芳香族ポリイソシアネート化合物が好ましく、ジフェニルメタンジイソシアネート及びその変性物、ポリメリックMDIがより好ましく、ジフェニルメタンジイソシアネートがさらに好ましい。
 ポリイソシアネート化合物は、単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。
Examples of the polyisocyanate compound used as the cross-linking agent (X) include aromatic polyisocyanate compounds and aliphatic polyisocyanate compounds. Examples of the aromatic polyisocyanate compound include diphenylmethane diisocyanate, liquid modified products of diphenylmethane diisocyanate, polypeptide MDI, tolylene diisocyanate, naphthalene-1,5-diisocyanate and the like.
Examples of the aliphatic polyisocyanate compound include hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, norbornane diisocyanate, transcyclohexane-1,4-diisocyanate, isophorone diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, and cyclohexane diisocyanate. , Bis (isocyanate methyl) cyclohexane, dicyclohexylmethane diisocyanate and the like.
As the polyisocyanate compound, an aromatic polyisocyanate compound is preferable, a diphenylmethane diisocyanate and a modified product thereof, and a polypeptide MDI are more preferable, and a diphenylmethane diisocyanate is further preferable, from the viewpoint of increasing the storage elastic modulus and improving the adhesive performance.
The polyisocyanate compound may be used alone or in combination of two or more.
 湿気硬化性樹脂組成物における架橋剤(X)の含有量は、湿気硬化性樹脂(A)とラジカル重合性化合物(B)の合計量100質量部に対して、0.4質量部以上10質量部以下であることが好ましい。架橋剤(X)の含有量を0.4質量部以上とすることで、ラジカル重合性化合物(B)を使用する場合でも、破断伸度を所定値以上としやすくなり、接着強度なども向上させやすくなる。一方で、10質量部以下とすることで、一定量以上の湿気硬化性樹脂(A)及びラジカル重合性化合物(B)の含有量を確保できるので、破断伸度などを高めやすくなり、耐衝撃性を優れたものにできる。
 上記観点から、架橋剤の含有量は、0.8質量部以上がより好ましく、1.0質量部以上がさらに好ましく、また、6質量部以下がより好ましく、5質量部以下がさらに好ましい。
The content of the cross-linking agent (X) in the moisture-curable resin composition is 0.4 parts by mass or more and 10 parts by mass with respect to 100 parts by mass of the total amount of the moisture-curable resin (A) and the radically polymerizable compound (B). It is preferably less than or equal to a part. By setting the content of the cross-linking agent (X) to 0.4 parts by mass or more, even when the radically polymerizable compound (B) is used, the elongation at break can be easily set to a predetermined value or more, and the adhesive strength and the like can be improved. It will be easier. On the other hand, when the content is 10 parts by mass or less, the content of the moisture-curable resin (A) and the radically polymerizable compound (B) can be secured in a certain amount or more, so that the elongation at break can be easily increased and the impact resistance can be increased. You can improve the sex.
From the above viewpoint, the content of the cross-linking agent is more preferably 0.8 parts by mass or more, further preferably 1.0 part by mass or more, still more preferably 6 parts by mass or less, still more preferably 5 parts by mass or less.
(光重合開始剤(Y))
 本発明の湿気硬化性樹脂組成物は、上記したラジカル重合性化合物(B)を使用する場合、光硬化性を確保するために、光重合開始剤(Y)を含有することが好ましい。
 光重合開始剤(Y)としては、光ラジカル重合開始剤が挙げられる。具体的には、ベンゾフェノン系化合物、α-アミノアルキルフェノン、α-ヒドロキシアルキルフェノンなどのアセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、チオキサントン等が挙げられる。これらの中では、破断伸度、及び貯蔵弾性率を所定の範囲内に調整しやすくする観点から、アセトフェノン系化合物が好ましく、α-アミノアルキルフェノンがより好ましい。
 上記光重合開始剤のうち市販されているものとしては、例えば、IRGACURE184、IRGACURE369、IRGACURE379、IRGACURE379EG、IRGACURE651、IRGACURE784、IRGACURE819、IRGACURE907、IRGACURE2959、IRGACURE OXE01、ルシリンTPO(いずれもBASF社製)、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル(いずれも東京化成工業社製)等が挙げられる。
(Photopolymerization Initiator (Y))
When the above-mentioned radically polymerizable compound (B) is used, the moisture-curable resin composition of the present invention preferably contains a photopolymerization initiator (Y) in order to ensure photocurability.
Examples of the photopolymerization initiator (Y) include a photoradical polymerization initiator. Specifically, benzophenone compounds, acetphenone compounds such as α-aminoalkylphenone and α-hydroxyalkylphenone, acylphosphine oxide compounds, titanosen compounds, oxime ester compounds, benzoin ether compounds, thioxanthone and the like are used. Can be mentioned. Among these, an acetophenone-based compound is preferable, and α-aminoalkylphenone is more preferable, from the viewpoint of facilitating the adjustment of the elongation at break and the storage elastic modulus within a predetermined range.
Commercially available photopolymerization initiators include, for example, IRGACURE184, IRGACURE369, IRGACURE379, IRGACURE379EG, IRGACURE651, IRGACURE784, IRGACURE819, IRGACURE907, IRGACURE2959, and IRGACURE OX01. Examples thereof include ether, benzoin ethyl ether, benzoin isopropyl ether (all manufactured by Tokyo Chemical Industry Co., Ltd.) and the like.
 湿気硬化性樹脂組成物における光重合開始剤(Y)の含有量は、ラジカル重合性化合物100質量部に対して、好ましくは0.01質量部以上10質量部以下、より好ましくは0.5質量部以上5質量部以下である。光重合開始剤(Y)の含有量がこの範囲内であることにより、得られる湿気硬化性樹脂組成物が光硬化性及び保存安定性に優れたものとなる。また、上記範囲内とすることで、ラジカル重合性化合物(B)が適度に硬化され、上記したせん断接着強度、破断伸度などを所定の範囲内に調整しやすくなる。 The content of the photopolymerization initiator (Y) in the moisture-curable resin composition is preferably 0.01 parts by mass or more and 10 parts by mass or less, more preferably 0.5 parts by mass with respect to 100 parts by mass of the radically polymerizable compound. More than 5 parts by mass or less. When the content of the photopolymerization initiator (Y) is within this range, the obtained moisture-curable resin composition has excellent photocurability and storage stability. Further, when the content is within the above range, the radically polymerizable compound (B) is appropriately cured, and the above-mentioned shear adhesive strength, breaking elongation and the like can be easily adjusted within the predetermined range.
(充填剤)
 本発明の湿気硬化性樹脂組成物は、充填剤を含有してもよい。充填剤を含有することにより、本発明の湿気硬化性樹脂組成物は、好適なチクソ性を有するものとなり、塗布後の形状を充分に保持することができる。充填剤としては、粒子状のものを使用すればよい。
 充填剤としては、無機充填剤が好ましく、例えば、シリカ、タルク、酸化チタン、酸化亜鉛、炭酸カルシウム等が挙げられる。なかでも、得られる湿気硬化性樹脂組成物が紫外線透過性に優れるものとなることから、シリカが好ましい。また、充填剤は、シリル化処理、アルキル化処理、エポキシ化処理等の疎水性表面処理がなされていてもよい。
 充填剤は、1種単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
 充填剤の含有量は、湿気硬化性樹脂(A)とラジカル重合性化合物(B)の合計量100質量部に対して、例えば、1質量部以上30質量部以下、好ましくは2質量部以上25質量部以下、より好ましくは5質量部以上15質量部以下である。充填材の含有量を1質量部以上とすることで、塗布後に形状を良好に保持しやすくなる。また、30質量部以下とすることで、粘度が適切な範囲内に調整しやすくなり、塗布性が良好となる。
(filler)
The moisture-curable resin composition of the present invention may contain a filler. By containing the filler, the moisture-curable resin composition of the present invention has suitable thixo property and can sufficiently retain the shape after coating. As the filler, a particulate material may be used.
The filler is preferably an inorganic filler, and examples thereof include silica, talc, titanium oxide, zinc oxide, and calcium carbonate. Among them, silica is preferable because the obtained moisture-curable resin composition has excellent ultraviolet transparency. Further, the filler may be subjected to a hydrophobic surface treatment such as a silylation treatment, an alkylation treatment and an epoxidation treatment.
The filler may be used alone or in combination of two or more.
The content of the filler is, for example, 1 part by mass or more and 30 parts by mass or less, preferably 2 parts by mass or more and 25 parts by mass with respect to 100 parts by mass of the total amount of the moisture-curable resin (A) and the radically polymerizable compound (B). It is 5 parts by mass or less, more preferably 5 parts by mass or more and 15 parts by mass or less. By setting the content of the filler to 1 part by mass or more, it becomes easy to maintain the shape well after coating. Further, when the content is 30 parts by mass or less, the viscosity can be easily adjusted within an appropriate range, and the coatability is improved.
(カップリング剤)
 湿気硬化性樹脂組成物は、カップリング剤を含有してもよい。カップリング剤を含有することで、接着力を向上させやすくなる。カップリング剤としては、例えば、シランカップリング剤、チタネート系カップリング剤、ジルコネート系カップリング剤等が挙げられる。なかでも、接着性を向上させる効果に優れることから、シランカップリング剤が好ましい。上記カップリング剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
 カップリング剤の含有量は、湿気硬化性樹脂(A)とラジカル重合性化合物(B)の合計量100質量部に対して、0.05質量部以上5質量部以下が好ましく、0.2質量部以上2質量部以下がより好ましく、0.5質量部以上1.5質量部以下がさらに好ましい。カップリング剤の含有量がこれら範囲内とすることで、他の物性に大きな影響を及ぼすことなく、接着強度を向上させられる。
(Coupling agent)
The moisture-curable resin composition may contain a coupling agent. By containing a coupling agent, it becomes easy to improve the adhesive strength. Examples of the coupling agent include a silane coupling agent, a titanate-based coupling agent, a zirconate-based coupling agent, and the like. Of these, a silane coupling agent is preferable because it is excellent in the effect of improving the adhesiveness. The coupling agent may be used alone or in combination of two or more.
The content of the coupling agent is preferably 0.05 parts by mass or more and 5 parts by mass or less, preferably 0.2 parts by mass, based on 100 parts by mass of the total amount of the moisture-curable resin (A) and the radically polymerizable compound (B). More than parts and 2 parts by mass are more preferable, and 0.5 parts by mass or more and 1.5 parts by mass or less are further preferable. By setting the content of the coupling agent within these ranges, the adhesive strength can be improved without significantly affecting other physical properties.
 本発明の湿気硬化性樹脂組成物は、必要に応じて、溶剤により希釈されていてもよい。湿気硬化性樹脂組成物が溶剤により希釈される場合、湿気硬化性樹脂組成物の質量部は、固形分基準であり、すなわち、溶剤を除いた質量部を意味する。
 また、湿気硬化性樹脂組成物は、上記で述べた成分以外にも、ワックス粒子、金属含有粒子、遮光剤、着色剤、反応性希釈剤、湿気硬化促進触媒等の添加剤等を含有してもよい。
The moisture-curable resin composition of the present invention may be diluted with a solvent, if necessary. When the moisture-curable resin composition is diluted with a solvent, the parts by mass of the moisture-curable resin composition are based on the solid content, that is, the parts by mass excluding the solvent.
In addition to the components described above, the moisture-curable resin composition contains wax particles, metal-containing particles, light-shielding agents, colorants, reactive diluents, additives such as moisture-curing accelerators, and the like. May be good.
 湿気硬化性樹脂組成物を製造する方法としては、混合機を用いて、湿気硬化性樹脂組成物を構成する成分を混合すればよい。例えば、湿気硬化性樹脂(A)、ラジカル重合性化合物(B)、及び、必要に応じて配合される、架橋剤(X)、光重合開始剤(Y)、充填剤、カップリング剤、及びその他の添加剤を混合する方法等が挙げられる。混合機としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー(遊星式撹拌装置)、ニーダー、3本ロール等が挙げられる。 As a method for producing the moisture-curable resin composition, the components constituting the moisture-curable resin composition may be mixed using a mixer. For example, a moisture-curable resin (A), a radically polymerizable compound (B), and a cross-linking agent (X), a photopolymerization initiator (Y), a filler, a coupling agent, and a coupling agent, which are blended as needed. Examples thereof include a method of mixing other additives. Examples of the mixer include a homodisper, a homomixer, a universal mixer, a planetary mixer (planetary stirrer), a kneader, a three-roll, and the like.
[湿気硬化性樹脂組成物の使用方法]
 本発明の湿気硬化性樹脂組成物は、硬化され、硬化物として使用されるものである。本発明の湿気硬化性樹脂組成物は、光硬化性、熱硬化性又はこれら両方の硬化性を有する場合には、まずは、光照射又は加熱により光硬化、熱硬化又はこれら両方により硬化して、例えばBステージ状態(半硬化状態)にして、その後、さらに、湿気により硬化して全硬化させるとよい。本発明の湿気硬化性樹脂組成物は、好ましくは光湿気硬化性である。したがって、光照射により光硬化して、Bステージ状態(半硬化状態)にして、その後、さらに、湿気により硬化して全硬化させるとよい。
[How to use the moisture-curable resin composition]
The moisture-curable resin composition of the present invention is cured and used as a cured product. When the moisture-curable resin composition of the present invention has photocurability, thermosetting, or both, first, it is cured by photocuring, thermosetting, or both by light irradiation or heating. For example, it is good to put it in a B stage state (semi-cured state), and then further cure it with moisture to completely cure it. The moisture-curable resin composition of the present invention is preferably light-moisture-curable. Therefore, it is preferable to photo-cure by light irradiation to obtain a B stage state (semi-cured state), and then further cure by moisture to fully cure.
 ここで、湿気硬化性樹脂組成物は、被着体間に配置させ、その被着体間を接合させる場合には、一方の被着体に塗布し、その後、光照射により光硬化などさせて、例えばBステージ状態にし、そのBステージ状態まで硬化した湿気硬化性樹脂組成物の上に他方の被着体を重ね合わせ、被着体間を適度な接着力(初期接着力)で仮接着させるとよい。その後、Bステージ状態の湿気硬化性樹脂組成物は、湿気により硬化させることで、全硬化させ、湿気硬化性樹脂組成物を介して重ね合わせた被着体間が十分な接着力で接合される。 Here, the moisture-curable resin composition is arranged between the adherends, and when the adherends are bonded to each other, the moisture-curable resin composition is applied to one of the adherends, and then photocured by light irradiation or the like. For example, the other adherend is superposed on the moisture-curable resin composition cured to the B stage state, and the adherends are temporarily bonded with an appropriate adhesive force (initial adhesive force). It is good. After that, the moisture-curable resin composition in the B stage state is completely cured by being cured by moisture, and the adherends laminated via the moisture-curable resin composition are joined with sufficient adhesive force. ..
 ここで、光硬化時に照射する光は、ラジカル重合性化合物(B)が硬化する光であれば特に限定されないが、紫外線が好ましい。また、熱硬化するときには、熱硬化性樹脂が硬化する温度である限り特に限定されないが、例えば、60℃以上120℃未満の温度、より好ましくは100℃未満の温度に加熱するとよい。また、湿気硬化性樹脂組成物は、湿気により硬化させるときには、大気中に所定時間放置すればよい。 Here, the light irradiated at the time of photocuring is not particularly limited as long as it is the light at which the radically polymerizable compound (B) is cured, but ultraviolet rays are preferable. Further, the thermosetting is not particularly limited as long as it is the temperature at which the thermosetting resin is cured, but for example, it may be heated to a temperature of 60 ° C. or higher and lower than 120 ° C., more preferably a temperature of lower than 100 ° C. Further, when the moisture-curable resin composition is cured by moisture, it may be left in the air for a predetermined time.
 また、湿気硬化性樹脂組成物の被着体への塗布は、ディスペンサーで行うことが好ましい。ディスペンサーとしては、エアディスペンサー、ジェットディスペンサー、モノポンプディスペンサー、スクリューディスペンサー、ハンドガンディスペンサーなどが挙げられるが、これらの中ではジェットディスペンサーが好ましい。本発明では、粘度を上記の通り所定の範囲内にすることで、湿気硬化性樹脂組成物を、例えば1mm以下、好ましくは0.1~0.7mm程度の細線状に、良好な塗布性でジェットディスペンサーにより塗布することが可能である。また、ジェットディスペンサーでは、例えば湿気硬化性樹脂組成物を70~100℃程度に加熱して塗布すればよい。 Further, it is preferable to apply the moisture-curable resin composition to the adherend by using a dispenser. Examples of the dispenser include an air dispenser, a jet dispenser, a mono pump dispenser, a screw dispenser, a hand gun dispenser, and the like, and among these, a jet dispenser is preferable. In the present invention, by keeping the viscosity within a predetermined range as described above, the moisture-curable resin composition is formed into a fine line of, for example, 1 mm or less, preferably about 0.1 to 0.7 mm, with good coatability. It can be applied with a jet dispenser. Further, in the jet dispenser, for example, the moisture-curable resin composition may be heated to about 70 to 100 ° C. and applied.
 本発明の湿気硬化性樹脂組成物は、好ましくは電子機器用接着剤に使用される。本発明の湿気硬化性樹脂組成物は、より好ましくは携帯電子機器用接着剤に使用される。携帯電子機器としては、より具体的には、スマートフォンなどの携帯電話、タブレット端末等が挙げられる。これらの携帯電子機器は、使用時に誤って落下させた場合に被着体である構成部材が脱離することがあるが、本発明の湿気硬化性樹脂組成物を携帯電子機器用接着剤として用いた場合、本発明の湿気硬化性樹脂組成物の硬化物が優れた耐衝撃性を有するため、被着体が脱離しにくくなる。
 電子機器において、被着体は、特に限定されないが、例えば電子機器を構成する各種部品である。電子機器を構成する各種部品としては、電子部品、又は電子部品が取り付けられる基板などであり、より具体的には、表示素子に設けられる各種の電子部品、電子部品が取り付けられる基板、半導体チップなどが挙げられる。すなわち、本発明では、湿気硬化性樹脂組成物の硬化物を備えた電子部品も提供する。
 被着体の材質としては、金属、ガラス、プラスチック等のいずれでもよい。また、被着体の形状としては、特に限定されず、例えば、フィルム状、シート状、板状、パネル状、トレイ状、ロッド(棒状体)状、箱体状、筐体状等が挙げられる。
The moisture-curable resin composition of the present invention is preferably used as an adhesive for electronic devices. The moisture-curable resin composition of the present invention is more preferably used as an adhesive for portable electronic devices. More specific examples of the portable electronic device include a mobile phone such as a smartphone, a tablet terminal, and the like. In these portable electronic devices, the constituent members that are adherends may be detached if they are accidentally dropped during use, but the moisture-curable resin composition of the present invention is used as an adhesive for portable electronic devices. If so, the cured product of the moisture-curable resin composition of the present invention has excellent impact resistance, so that the adherend is less likely to come off.
In the electronic device, the adherend is not particularly limited, but is, for example, various parts constituting the electronic device. The various components constituting the electronic device include electronic components or a substrate on which the electronic components are mounted, and more specifically, various electronic components provided on the display element, a substrate on which the electronic components are mounted, a semiconductor chip, and the like. Can be mentioned. That is, the present invention also provides an electronic component provided with a cured product of a moisture-curable resin composition.
The material of the adherend may be any of metal, glass, plastic and the like. The shape of the adherend is not particularly limited, and examples thereof include a film shape, a sheet shape, a plate shape, a panel shape, a tray shape, a rod shape, a box shape, and a housing shape. ..
 本発明の湿気硬化性樹脂組成物は、湿気硬化性樹脂組成物の硬化物が所定値以上のせん断接着強度及び破断伸度を有しつつ、10℃以上の温度範囲にガラス転移点を有しないことで、耐衝撃性が優れたものとなる。そのため、本発明の湿気硬化性樹脂組成物は、湿気硬化性樹脂組成物の塗布幅や接着面積が小さい場合でも、例えば被着体に大きな衝撃が加わったときに、被着体が剥がれたりすることが防止される。
 そのため、接着面積が小さい半導体チップ同士を接合する接着剤や、表示装置、例えば、塗布幅が小さくなりやすい、携帯電子機器用表示装置、特に、スマートフォンなどの携帯電話用表示装置で使用される接着剤として好適に使用される。
The moisture-curable resin composition of the present invention does not have a glass transition point in the temperature range of 10 ° C. or higher while the cured product of the moisture-curable resin composition has a shear adhesive strength and breaking elongation of a predetermined value or more. As a result, the impact resistance becomes excellent. Therefore, in the moisture-curable resin composition of the present invention, even when the coating width and the adhesive area of the moisture-curable resin composition are small, the adherend may be peeled off, for example, when a large impact is applied to the adherend. Is prevented.
Therefore, an adhesive used to bond semiconductor chips having a small adhesive area, or an adhesive used in a display device, for example, a display device for a portable electronic device in which the coating width tends to be small, particularly a display device for a mobile phone such as a smartphone. It is suitably used as an agent.
 本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。 The present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
 本実施例において、各種物性の測定、及び性能評価を以下のように行った。
(せん断接着強度)
 明細書記載の方法に従って、各実施例、比較例で得られた湿気硬化性樹脂組成物から接着性試験用サンプルを作製した。作製された接着性試験用サンプルについて、明細書記載の方法で25℃における接着力を測定した。
In this example, various physical properties were measured and performance was evaluated as follows.
(Shear adhesive strength)
Adhesion test samples were prepared from the moisture-curable resin compositions obtained in each Example and Comparative Example according to the method described in the specification. For the prepared adhesiveness test sample, the adhesive strength at 25 ° C. was measured by the method described in the specification.
(貯蔵弾性率)
 明細書記載の方法に従って、湿気硬化性樹脂組成物から硬化物サンプルを作製し、動的粘弾性測定装置(IT計測制御社製、商品名「DVA-200」)により、硬化物サンプルの25℃における貯蔵弾性率を測定した。なお、測定条件は、変形モードが引っ張り、設定ひずみが1%、測定周波数が1Hz、昇温速度が5℃/minであった。
(Storage modulus)
A cured product sample is prepared from the moisture-curable resin composition according to the method described in the specification, and the cured product sample is prepared at 25 ° C. by a dynamic viscoelasticity measuring device (manufactured by IT Measurement Control Co., Ltd., trade name “DVA-200”). The storage elastic modulus in. The measurement conditions were that the deformation mode was pulled, the set strain was 1%, the measurement frequency was 1 Hz, and the temperature rising rate was 5 ° C./min.
(破断伸度)
 明細書記載の方法に従って、湿気硬化性樹脂組成物から試験片を作製し、引張り試験機(エー・アンド・デイ社製、商品名「TENSILON」)を用いて、50mm/minの速度で破断するまで引張り、25℃における破断伸度を測定した。
(Elongation at break)
A test piece is prepared from the moisture-curable resin composition according to the method described in the specification, and is broken at a speed of 50 mm / min using a tensile tester (manufactured by A & D Co., Ltd., trade name "TENSILON"). The elongation at break was measured at 25 ° C.
(粘度)
 各実施例及び比較例で得られた湿気硬化性樹脂組成物に対して、コーンプレート型粘度計(東機産業社製、「VISCOMETER TV-22」、コーンロータ「3o×R7.7」)を用い、80℃において回転速度20rpmの条件で粘度を測定した。
(viscosity)
For the moisture-curable resin composition obtained in each Example and Comparative Example, a cone plate type viscometer (manufactured by Toki Sangyo Co., Ltd., "VISCOMETER TV-22", cone rotor "3 o x R7.7"). Was used to measure the viscosity at 80 ° C. under the condition of a rotation speed of 20 rpm.
(ガラス転移温度)
 各実施例及び比較例で得られた湿気硬化性樹脂組成物を明細書記載の方法で硬化した各硬化物を、幅3mm、長さ20mm、厚さ0.8mmに切り出した。切り出した硬化物を動的粘弾性測定装置(IT計測制御社製、「DVA-200」)を用いて、変形モード:引っぱり、設定ひずみ1%、測定周波数1Hz、昇温速度5℃/minの条件で-100℃~100℃の範囲で動的粘弾性を測定し、損失正接(tanδ)の極大値の温度をガラス転移点として求めた。
(Glass-transition temperature)
The moisture-curable resin compositions obtained in each Example and Comparative Example were cured by the method described in the specification, and each cured product was cut into a width of 3 mm, a length of 20 mm, and a thickness of 0.8 mm. Using a dynamic viscoelasticity measuring device (IT Measurement Control Co., Ltd., "DVA-200"), the cut out cured product is deformed in mode: pulling, set strain 1%, measurement frequency 1 Hz, temperature rise rate 5 ° C / min. The dynamic viscoelasticity was measured in the range of −100 ° C. to 100 ° C. under the conditions, and the temperature at the maximum value of the loss tangent (tan δ) was determined as the glass transition point.
(耐衝撃性試験)
 耐衝撃性接着試験の概要を図2に示す。図2(a)に示すように、中央部分に38mm×50mmの矩形孔2が空いた厚さ2mmのポリカーボネート板3を用意した。外径が46mm×61mm、内径が44mm×59mmとなり、塗布幅1mmで矩形孔2を取り囲むように、ポリカーボネート板3に四角枠状に湿気硬化性樹脂組成物1を塗布した。UV-LED(波長365nm)を用いて、25℃、50%RHの環境下、紫外線を1000mJ/cm照射することによって、湿気硬化性樹脂組成物1を光硬化させた。その後、ポリカーボネート板3に50mm×75mm、厚さ4mmのポリカーボネート板4を、半硬化した湿気硬化性樹脂組成物1を介して貼り付けて、試験体を組み立てた。ポリカーボネート板4と、四角枠状の湿気硬化性樹脂組成物1とは、中心位置が一致するようにした。
 その後、図2(a)の状態から反転させて、ポリカーボネート板3がポリカーボネート板4の上に載るように配置した。ポリカーボネート板3側から5kgfの圧力を加えた状態で、常温(23℃)、50%RHで24時間放置して、湿気硬化性樹脂組成物1を湿気硬化させ、ポリカーボネート板4とポリカーボネート板3を、全硬化した湿気硬化性樹脂組成物1により接着させた。
次に、図2(b)に示すように、作製した試験体を支持台5に固定し、矩形孔2を通過する大きさの300gの重さの鉄球6を矩形孔2を通過するように20mmの高さから落とした。同じ条件で鉄球の落下を繰り返し、以下の評価基準により耐衝撃性を判定した。
  AA:鉄球を落とす回数が80回となってもポリカーボネート板が剥離しなかった。
   A:鉄球を落とす回数が40回以上80回未満でポリカーボネート板が剥離した。
   B:鉄球を落とす回数が20回以上40回未満でポリカーボネート板が剥離した。
   B:鉄球を落とす回数が20回未満でポリカーボネート板が剥離した。
(Impact resistance test)
The outline of the impact resistance adhesion test is shown in FIG. As shown in FIG. 2A, a 2 mm-thick polycarbonate plate 3 having a 38 mm × 50 mm rectangular hole 2 in the central portion was prepared. The moisture-curable resin composition 1 was applied to the polycarbonate plate 3 in a square frame shape so that the outer diameter was 46 mm × 61 mm and the inner diameter was 44 mm × 59 mm, and the coating width was 1 mm and the rectangular hole 2 was surrounded. The moisture-curable resin composition 1 was photocured by irradiating 1000 mJ / cm 2 of ultraviolet rays in an environment of 25 ° C. and 50% RH using a UV-LED (wavelength 365 nm). Then, a polycarbonate plate 4 having a thickness of 50 mm × 75 mm and a thickness of 4 mm was attached to the polycarbonate plate 3 via the semi-cured moisture-curable resin composition 1 to assemble a test piece. The center positions of the polycarbonate plate 4 and the moisture-curable resin composition 1 having a square frame shape are aligned with each other.
Then, it was inverted from the state of FIG. 2A and arranged so that the polycarbonate plate 3 was placed on the polycarbonate plate 4. The moisture-curable resin composition 1 was moisture-cured by leaving it at room temperature (23 ° C.) for 24 hours at room temperature (23 ° C.) and 50% RH under a pressure of 5 kgf applied from the polycarbonate plate 3 side to moisture-cure the polycarbonate plate 4 and the polycarbonate plate 3. , The completely cured moisture-curable resin composition 1 was used for adhesion.
Next, as shown in FIG. 2B, the prepared test piece is fixed to the support base 5, and an iron ball 6 having a weight of 300 g and passing through the rectangular hole 2 is passed through the rectangular hole 2. Dropped from a height of 20 mm. The iron ball was repeatedly dropped under the same conditions, and the impact resistance was judged according to the following evaluation criteria.
AA: The polycarbonate plate did not peel off even when the iron ball was dropped 80 times.
A: The polycarbonate plate was peeled off when the iron ball was dropped 40 times or more and less than 80 times.
B: The polycarbonate plate was peeled off when the number of times the iron ball was dropped was 20 times or more and less than 40 times.
B: The polycarbonate plate was peeled off when the iron ball was dropped less than 20 times.
(細線塗布性評価)
 ジェットディスペンサー(「PICO Pulse」、Nordson社製)を用いて、湿気硬化性樹脂組成物を80℃に加温して、アルミニウム基板に幅0.5mmで長さ25±2mmとなるように湿気硬化性樹脂組成物を塗布した。
 塗布時及び塗布後の状態を観察して、以下の評価基準で評価した。
 A:線幅にバラつきが無く均一形状で塗布できており、塗布性が良好であった。
 B:一部線幅にバラつきが生じたが、湿気硬化性組成物を実用上問題なく塗布できた。
 C:ジェットディスペンサーより湿気硬化性組成物を完全に吐出できず塗布性は実用上問題があった。
(Evaluation of fine wire applicability)
Using a jet dispenser (“PICO Pulse”, manufactured by Nordson), the moisture-curable resin composition was heated to 80 ° C. and moisture-cured on an aluminum substrate to a width of 0.5 mm and a length of 25 ± 2 mm. A sex resin composition was applied.
The state at the time of application and after application was observed and evaluated according to the following evaluation criteria.
A: The line width did not vary and the coating was possible in a uniform shape, and the coating property was good.
B: Although the line width was partially uneven, the moisture-curable composition could be applied without any problem in practical use.
C: The moisture-curable composition could not be completely discharged from the jet dispenser, and there was a practical problem in coatability.
(形状保持性評価)
 また、上記細線塗布性評価において、基板に塗布した湿気硬化性樹脂組成物に対して、塗布を完了した5秒後にLEDランプで365nmの紫外線を25℃、50%RHの環境下、1000mJ/cm照射した。次いで、25℃、50%RHの環境下で16時間放置後、レーザー顕微鏡(商品名「VK-X200」、キーエンス社製)により硬化物の幅(最大幅)と高さ(最大高さ)を測定し、硬化物の幅に対する高さの比をアスペクト比として算出した。算出されたアスペクト比により、以下の評価基準で形状保持性を評価した。
 A:アスペクト比が0.4以上
 B:アスペクト比が0.4未満
(Evaluation of shape retention)
Further, in the evaluation of the fine wire coatability, the moisture-curable resin composition coated on the substrate was exposed to ultraviolet rays of 365 nm with an LED lamp at 25 ° C. and 50% RH at 1000 mJ / cm 5 seconds after the coating was completed. 2 Irradiated. Then, after leaving it in an environment of 25 ° C. and 50% RH for 16 hours, the width (maximum width) and height (maximum height) of the cured product were measured with a laser microscope (trade name "VK-X200", manufactured by KEYENCE CORPORATION). The measurement was performed, and the ratio of the height to the width of the cured product was calculated as the aspect ratio. Based on the calculated aspect ratio, the shape retention was evaluated according to the following evaluation criteria.
A: Aspect ratio is 0.4 or more B: Aspect ratio is less than 0.4
 実施例、及び比較例で使用した各成分は、以下のとおりであった。
(湿気硬化性樹脂(A))
 湿気硬化性ウレタン樹脂1(PTMG)は、以下の合成例1に従って作製した。
[合成例1]
 ポリオール化合物として100質量部のポリテトラメチレンエーテルグリコール(三菱化学社製、商品名「PTMG-2000」、平均分子量2000)と、0.01質量部のジブチル錫ジラウレートとを500mL容量のセパラブルフラスコに入れ、真空下(20mmHg以下)、100℃で30分間撹拌し、混合した。その後常圧とし、ポリイソシアネート化合物としてジフェニルメタンジイソシアネート(日曹商事社製、商品名「Pure MDI」)26.5質量部を入れ、80℃で3時間撹拌して反応させ、湿気硬化性ウレタン樹脂1(重量平均分子量2700)を得た。
The components used in the examples and comparative examples were as follows.
(Moisture curable resin (A))
The moisture-curable urethane resin 1 (PTMG) was produced according to the following Synthesis Example 1.
[Synthesis Example 1]
As a polyol compound, 100 parts by mass of polytetramethylene ether glycol (manufactured by Mitsubishi Chemical Corporation, trade name "PTMG-2000", average molecular weight 2000) and 0.01 parts by mass of dibutyltin dilaurate are placed in a separable flask having a capacity of 500 mL. It was put in, stirred under vacuum (20 mmHg or less) at 100 ° C. for 30 minutes, and mixed. After that, the pressure was adjusted to normal pressure, 26.5 parts by mass of diphenylmethane diisocyanate (manufactured by Nisso Shoji Co., Ltd., trade name "Pure MDI") was added, and the mixture was stirred at 80 ° C. for 3 hours to react, and the moisture-curable urethane resin 1 (Weight average molecular weight 2700) was obtained.
 湿気硬化性ウレタン樹脂2(PTMG)は、以下の合成例2に従って作製した。
[合成例2]
 ポリオール化合物として100質量部のポリテトラメチレンエーテルグリコール(三菱化学社製、「PTMG-3000」、平均分子量3000)と、0.01質量部のジブチル錫ジラウレートとを500mL容のセパラブルフラスコに入れ、真空下(20mmHg以下)、100℃で30分間撹拌し、混合した。その後常圧とし、ポリイソシアネート化合物としてジフェニルメタンジイソシアネート(日曹商事社製、「Pure  MDI」)17.5質量部を入れ、80℃で3時間撹拌し、反応させ、湿気硬化性ウレタン樹脂2(重量平均分子量3500)を得た。
The moisture-curable urethane resin 2 (PTMG) was produced according to the following Synthesis Example 2.
[Synthesis Example 2]
100 parts by mass of polytetramethylene ether glycol (manufactured by Mitsubishi Chemical Corporation, "PTMG-3000", average molecular weight 3000) and 0.01 parts by mass of dibutyltin dilaurate as a polyol compound were placed in a separable flask containing 500 mL. Under vacuum (20 mmHg or less), the mixture was stirred at 100 ° C. for 30 minutes and mixed. After that, the pressure was adjusted to normal pressure, 17.5 parts by mass of diphenylmethane diisocyanate (“Pure MDI” manufactured by Nisso Shoji Co., Ltd.) was added as a polyisocyanate compound, and the mixture was stirred at 80 ° C. for 3 hours to react, and the moisture-curable urethane resin 2 (weight). An average molecular weight of 3500) was obtained.
 湿気硬化性ウレタン樹脂3(PPG)は、以下の合成例3に従って作製した。
[合成例3]
 ポリオール化合物として100質量部のポリプロピレングリコール(旭硝子社製、「EXCENOL 2020」、平均分子量2000)と、0.01質量部のジブチル錫ジラウレートとを500mL容のセパラブルフラスコに入れ、真空下(20mmHg以下)、100℃で30分間撹拌し、混合した。その後常圧とし、ポリイソシアネート化合物としてジフェニルメタンジイソシアネート(日曹商事社製、「Pure MDI」)26.5質量部を入れ、80℃で3時間撹拌し、反応させ、両末端にイソシアネート基を有する湿気硬化性ウレタン樹脂3(重量平均分子量2900)を得た。
The moisture-curable urethane resin 3 (PPG) was produced according to the following Synthesis Example 3.
[Synthesis Example 3]
As a polyol compound, 100 parts by mass of polypropylene glycol (manufactured by Asahi Glass Co., Ltd., "EXCENOL 2020", average molecular weight 2000) and 0.01 parts by mass of dibutyltin dilaurate are placed in a 500 mL separable flask and placed under vacuum (20 mmHg or less). ), Stirred at 100 ° C. for 30 minutes and mixed. After that, the pressure was adjusted to normal pressure, and 26.5 parts by mass of diphenylmethane diisocyanate (“Pure MDI” manufactured by Nisso Shoji Co., Ltd.) was added as a polyisocyanate compound, and the mixture was stirred at 80 ° C. for 3 hours to react. A curable urethane resin 3 (weight average molecular weight 2900) was obtained.
 湿気硬化性ウレタン樹脂4(ポリエステル)は、以下の合成例4に従って作製した。
[合成例4]
 ポリオール化合物として100質量部のポリエステルポリオール(Kuraray Polyol P-5010(クラレ社製)、アジピン酸と3-メチル-1,5-ペンタジオールの縮合物)と、0.01質量部のジブチル錫ジラウレートとを500mL容のセパラブルフラスコに入れ、真空下(20mmHg以下)、100℃で30分間撹拌し、混合した。その後常圧とし、ポリイソシアネート化合物としてジフェニルメタンジイソシアネート(日曹商事社製、商品名「Pure MDI」)10.5質量部を入れ、80℃で3時間撹拌して反応させ、両末端にイソシアネート基を有する湿気硬化性ウレタン樹脂4(重量平均分子量5700)を得た。
The moisture-curable urethane resin 4 (polyester) was produced according to the following Synthesis Example 4.
[Synthesis Example 4]
As a polyol compound, 100 parts by mass of polyester polyol (Kuraray Polyol P-5010 (manufactured by Kuraray), a condensate of adipic acid and 3-methyl-1,5-pentadiol) and 0.01 parts by mass of dibutyltin dilaurate. Was placed in a separable flask containing 500 mL, stirred under vacuum (20 mmHg or less) at 100 ° C. for 30 minutes, and mixed. After that, the pressure was adjusted to normal pressure, 10.5 parts by mass of diphenylmethane diisocyanate (manufactured by Nisso Shoji Co., Ltd., trade name "Pure MDI") was added, and the mixture was stirred at 80 ° C. for 3 hours to react, and isocyanate groups were added to both ends. A moisture-curable urethane resin 4 (weight average molecular weight 5700) having was obtained.
 湿気硬化性ウレタン樹脂5(ポリカーボネート)は、以下の合成例5に従って作製した。
[合成例5]
 ポリオール化合物として100質量部のポリカーボネートジオール(クラレ社製、商品名「Kuraraypolyol C-1090」)と、0.01質量部のジブチル錫ジラウレートとを500mL容量のセパラブルフラスコに入れた。フラスコ内を真空下(20mmHg以下)、100℃で30分間撹拌して混合した。その後常圧とし、ポリイソシアネート化合物としてジフェニルメタンジイソシアネート(日曹商事社製、商品名「Pure MDI」)50質量部を入れ、80℃で3時間撹拌して反応させ、ポリカーボネート(PC)骨格を有し、両末端が芳香族イソシアネート基であるPC骨格芳香族末端ウレタンを得た。得られたPC骨格芳香族末端ウレタンの重量平均分子量は6000であった。
The moisture-curable urethane resin 5 (polycarbonate) was produced according to the following Synthesis Example 5.
[Synthesis Example 5]
As a polyol compound, 100 parts by mass of polycarbonate diol (manufactured by Kuraray, trade name "Kuraraypolyol C-1090") and 0.01 parts by mass of dibutyltin dilaurate were placed in a separable flask having a capacity of 500 mL. The inside of the flask was stirred under vacuum (20 mmHg or less) at 100 ° C. for 30 minutes and mixed. After that, the pressure was adjusted to normal pressure, 50 parts by mass of diphenylmethane diisocyanate (manufactured by Nisso Shoji Co., Ltd., trade name "Pure MDI") was added, and the mixture was stirred at 80 ° C. for 3 hours to react to have a polycarbonate (PC) skeleton. , A PC skeleton aromatic terminal urethane having both ends being aromatic isocyanate groups was obtained. The weight average molecular weight of the obtained PC skeleton aromatic terminal urethane was 6000.
 また、ポリオール化合物として100質量部のポリカーボネートジオール(クラレ社製、製品名「Kuraraypolyol C-1090」)と、0.01質量部のジブチル錫ジラウレートとを500mL容量のセパラブルフラスコに入れた。フラスコ内を真空下(20mmHg以下)、100℃で30分間撹拌し、混合した。その後常圧とし、脂肪族ポリイソシアネート化合物として旭化成株式会社製の「Duranate A201H」(商品名)115質量部を入れ、80℃で3時間撹拌して反応させ、ポリカーボネート(PC)骨格を有し、両末端が脂肪族イソシアネート基であるPC骨格脂肪族末端ウレタンを得た。得られたPC骨格脂肪族末端ウレタンの重量平均分子量は7000であった。得られたPC骨格芳香族末端ウレタン35質量部と、PC骨格脂肪族末端ウレタン30質量部とを混合して湿気硬化性ウレタン樹脂5とした。 Further, 100 parts by mass of polycarbonate diol (manufactured by Kuraray Co., Ltd., product name "Kuraraypolyol C-1090") and 0.01 parts by mass of dibutyltin dilaurate as a polyol compound were placed in a separable flask having a capacity of 500 mL. The inside of the flask was stirred under vacuum (20 mmHg or less) at 100 ° C. for 30 minutes and mixed. After that, the pressure was adjusted to normal pressure, 115 parts by mass of "Duranate A201H" (trade name) manufactured by Asahi Kasei Co., Ltd. was added as an aliphatic polyisocyanate compound, and the mixture was stirred at 80 ° C. for 3 hours to react to have a polycarbonate (PC) skeleton. A PC skeleton aliphatic terminal urethane having both ends being an aliphatic isocyanate group was obtained. The weight average molecular weight of the obtained PC skeletal aliphatic terminal urethane was 7000. 35 parts by mass of the obtained PC skeleton aromatic terminal urethane and 30 parts by mass of the PC skeleton aliphatic terminal urethane were mixed to obtain a moisture-curable urethane resin 5.
 実施例及び比較例で使用した、湿気硬化性ウレタン樹脂以外の成分は、以下のとおりであった。
(ラジカル重合性化合物(B))
ウレタンアクリレート(1官能):Rahn社製、「GENOMER1122」、Tg:-3℃
ウレタンアクリレート(2官能):ダイセル・オルネクス社製、商品名「EBECRYL8411」、2官能、重量平均分子量12000、20質量%のイソボニルアクリレート(IBOA)で希釈、ウレタンアクリレート(Tg:-18℃)の含有量80質量%
フェノキシエチルアクリレート:共栄社化学株式会社製、商品名「ライトアクリレートPO-A」、単官能、Tg:5℃
ラウリルアクリレート:共栄社化学株式会社製、商品名「ライトアクリレートL-A」、単官能、Tg-30℃
イソボルニルアクリレート:共栄社化学製、商品名「IB-XA」、単官能、Tg:94℃
トリデシルアクリレート:サートマー社製、商品名「SR489D」、単官能、Tg:-55℃ 
ステアリルアクリレート:サートマー社製、商品名「SR257」、単官能、Tg:35℃
アロニックスM-140:東亞合成社製、商品名「アロニックスM-140」、N-アクリロイルオキシエチルヘキサヒドロフタルイミド
The components other than the moisture-curable urethane resin used in Examples and Comparative Examples were as follows.
(Radical Polymerizable Compound (B))
Urethane acrylate (monofunctional): Rahn, "GENOMER1122", Tg: -3 ° C.
Urethane acrylate (bifunctional): manufactured by Dycel Ornex, trade name "EBECRYL8411", bifunctional, weight average molecular weight 12000, diluted with 20% by mass isobonyl acrylate (IBOA), urethane acrylate (Tg: -18 ° C) Content 80% by mass
Phenoxyethyl acrylate: Kyoeisha Chemical Co., Ltd., trade name "Light Acrylate PO-A", monofunctional, Tg: 5 ° C.
Lauryl acrylate: Kyoeisha Chemical Co., Ltd., trade name "Light Acrylate LA", monofunctional, Tg-30 ° C.
Isobornyl acrylate: Kyoeisha Chemical Co., Ltd., trade name "IB-XA", monofunctional, Tg: 94 ° C.
Tridecyl acrylate: manufactured by Sartmer, trade name "SR489D", monofunctional, Tg: -55 ° C.
Stearyl Acrylate: Made by Sartmer, trade name "SR257", monofunctional, Tg: 35 ° C.
Aronix M-140: Toagosei Co., Ltd., trade name "Aronix M-140", N-acryloyloxyethyl hexahydrophthalimide
(架橋剤(X))
ジフェニルメタンジイソシアネート
(光重合開始剤(Y))
2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(BASF社製、「IRGACURE369」)
(カップリング剤)
3-アクリロキシプロピルトリメトキシシラン:信越化学工業社製、商品名「KBM-5103」
(充填剤)
シリコーン化処理シリカ:日本アエロジル社製、商品名「RY300」
(Crosslinking agent (X))
Diphenylmethane diisocyanate (photopolymerization initiator (Y))
2-Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 (BASF, "IRGACURE 369")
(Coupling agent)
3-Acryloxypropyltrimethoxysilane: manufactured by Shin-Etsu Chemical Co., Ltd., trade name "KBM-5103"
(filler)
Siliconized silica: Made by Aerosil Japan, trade name "RY300"
[実施例1~9、比較例1~4]
 表1に記載された配合に従い、各材料を、遊星式撹拌装置(シンキー社製、「あわとり練太郎」)にて温度50℃で撹拌した後、セラミック3本ロールにて温度50℃で均一に混合して実施例1~9、比較例1~4の湿気硬化性樹脂組成物を得た。
[Examples 1 to 9, Comparative Examples 1 to 4]
According to the formulation shown in Table 1, each material is stirred at a temperature of 50 ° C. with a planetary stirrer (Sinky Co., Ltd., “Awatori Rentaro”), and then uniformly at a temperature of 50 ° C. with three ceramic rolls. The moisture-curable resin compositions of Examples 1 to 9 and Comparative Examples 1 to 4 were obtained.
Figure JPOXMLDOC01-appb-T000003

※なお、表1には、測定されたガラス転移点の全てを示す。
Figure JPOXMLDOC01-appb-T000003

* Table 1 shows all the measured glass transition points.
 以上の実施例に示すように、硬化物のせん断接着強度、及び破断伸度の両方を高くし、かつ10℃以上の温度範囲にガラス転移点を有さないことで、耐衝撃性が優れたものとなった。それに対して、比較例1、2、4では、硬化物のせん断接着強度、及び破断伸度の一方が高くないため、耐衝撃性が十分に高くならなかった。また、比較例3では、硬化物のせん断接着強度、及び破断伸度の両方が高いものの、10℃以上の温度範囲にガラス転移点を有することで、耐衝撃性が十分に高くならなかった。 As shown in the above examples, the impact resistance is excellent by increasing both the shear adhesive strength and the elongation at break of the cured product and having no glass transition point in the temperature range of 10 ° C. or higher. It became a thing. On the other hand, in Comparative Examples 1, 2 and 4, the impact resistance was not sufficiently high because either the shear adhesive strength of the cured product or the elongation at break was not high. Further, in Comparative Example 3, although both the shear adhesive strength of the cured product and the elongation at break were high, the impact resistance was not sufficiently high due to having the glass transition point in the temperature range of 10 ° C. or higher.
 1、10 湿気硬化性樹脂組成物
 2 矩形孔
 3、4 ポリカーボネート板
 5 支持台
 6 鉄球
 11 アルミニウム基板
 12 ガラス板
 13 接着性試験用サンプル
1, 10 Moisture-curable resin composition 2 Rectangular holes 3, 4 Polycarbonate plate 5 Support base 6 Iron ball 11 Aluminum substrate 12 Glass plate 13 Adhesive test sample

Claims (9)

  1.  湿気硬化性樹脂(A)を含有する湿気硬化性樹脂組成物であって、
     前記湿気硬化性樹脂組成物の硬化物が、せん断接着強度が4MPa以上であり、破断伸度が600%以上であり、かつ10℃以上の温度範囲にガラス転移点を有さない、湿気硬化性樹脂組成物。
    A moisture-curable resin composition containing the moisture-curable resin (A).
    The cured product of the moisture-curable resin composition has a shear adhesive strength of 4 MPa or more, a breaking elongation of 600% or more, and has no glass transition point in a temperature range of 10 ° C. or more, and is moisture-curable. Resin composition.
  2.  前記湿気硬化性樹脂組成物の硬化物が、-20℃以上10℃未満の温度範囲にガラス転移点を有する、請求項1に記載の湿気硬化性樹脂組成物。 The moisture-curable resin composition according to claim 1, wherein the cured product of the moisture-curable resin composition has a glass transition point in a temperature range of −20 ° C. or higher and lower than 10 ° C.
  3.  前記湿気硬化性樹脂組成物の硬化物が、-45℃以下の温度範囲にガラス転移点を有する、請求項1又は2に記載の湿気硬化性樹脂組成物。 The moisture-curable resin composition according to claim 1 or 2, wherein the cured product of the moisture-curable resin composition has a glass transition point in a temperature range of −45 ° C. or lower.
  4.  80℃、20rpmで測定した粘度が50Pa・s以下である、請求項1~3のいずれか1項に記載の湿気硬化性樹脂組成物。 The moisture-curable resin composition according to any one of claims 1 to 3, wherein the viscosity measured at 80 ° C. and 20 rpm is 50 Pa · s or less.
  5.  ラジカル重合性化合物(B)と、光重合開始剤(Y)をさらに含む、請求項1~4のいずれか1項に記載の湿気硬化性樹脂組成物。 The moisture-curable resin composition according to any one of claims 1 to 4, further comprising a radically polymerizable compound (B) and a photopolymerization initiator (Y).
  6.  ラジカル重合性化合物(B)と湿気硬化性樹脂(A)との合計100質量部に対して、湿気硬化性樹脂を60質量部以上含む、請求項1~5のいずれか1項に記載の湿気硬化性樹脂組成物。 The moisture according to any one of claims 1 to 5, which contains 60 parts by mass or more of the moisture-curable resin with respect to 100 parts by mass of the total of the radically polymerizable compound (B) and the moisture-curable resin (A). Curable resin composition.
  7.  前記湿気硬化性樹脂(A)が湿気硬化性ウレタン樹脂である、請求項1~6のいずれか1項に記載の湿気硬化性樹脂組成物。 The moisture-curable resin composition according to any one of claims 1 to 6, wherein the moisture-curable resin (A) is a moisture-curable urethane resin.
  8.  ジェットディスペンサーによる塗布に用いられる、請求項1~7のいずれか1項の湿気硬化性樹脂組成物。 The moisture-curable resin composition according to any one of claims 1 to 7, which is used for coating with a jet dispenser.
  9.  請求項1~8のいずれか1項に記載の湿気硬化性樹脂組成物からなる電子機器用接着剤。 An adhesive for electronic devices comprising the moisture-curable resin composition according to any one of claims 1 to 8.
PCT/JP2021/043650 2020-11-30 2021-11-29 Moisture-curable resin composition and adhesive for electronic appliance WO2022114186A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180078619.2A CN116568760A (en) 2020-11-30 2021-11-29 Moisture-curable resin composition and adhesive for electronic device
JP2021575274A JPWO2022114186A1 (en) 2020-11-30 2021-11-29
KR1020237017678A KR20230113551A (en) 2020-11-30 2021-11-29 Moisture Curable Resin Composition, and Adhesives for Electronic Devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-199089 2020-11-30
JP2020199089 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022114186A1 true WO2022114186A1 (en) 2022-06-02

Family

ID=81754431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043650 WO2022114186A1 (en) 2020-11-30 2021-11-29 Moisture-curable resin composition and adhesive for electronic appliance

Country Status (5)

Country Link
JP (1) JPWO2022114186A1 (en)
KR (1) KR20230113551A (en)
CN (1) CN116568760A (en)
TW (1) TW202231698A (en)
WO (1) WO2022114186A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1135699A (en) * 1997-07-17 1999-02-09 Toray Ind Inc Production of product consisting of moisture curing resin
JP2008133460A (en) * 2006-10-27 2008-06-12 Asahi Glass Co Ltd Method for producing urethane resin for vibration damping material and urethane prepolymer for vibration damping material
WO2015174371A1 (en) * 2014-05-13 2015-11-19 積水化学工業株式会社 Photo- and moisture-curing resin composition, adhesive for electronic parts, and adhesive for display element
JP2016150974A (en) * 2015-02-17 2016-08-22 積水化学工業株式会社 Photo-moisture curable resin composition cured body
WO2016167305A1 (en) * 2015-04-17 2016-10-20 積水化学工業株式会社 Cured body, electronic component, display element, and light-/moisture-curable resin composition
JP2018514599A (en) * 2015-03-10 2018-06-07 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング Polyorganosiloxane and moisture and radiation curable adhesive composition containing the same
WO2020149379A1 (en) * 2019-01-18 2020-07-23 積水化学工業株式会社 Photo/moisture curable resin composition and cured body
WO2020156802A1 (en) * 2019-02-01 2020-08-06 Basf Se Polyurethane and uv-moisture dual cure pu reactive hotmelt comprising the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102323646B1 (en) 2014-11-13 2021-11-08 세키스이가가쿠 고교가부시키가이샤 Cured body, electronic component and display element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1135699A (en) * 1997-07-17 1999-02-09 Toray Ind Inc Production of product consisting of moisture curing resin
JP2008133460A (en) * 2006-10-27 2008-06-12 Asahi Glass Co Ltd Method for producing urethane resin for vibration damping material and urethane prepolymer for vibration damping material
WO2015174371A1 (en) * 2014-05-13 2015-11-19 積水化学工業株式会社 Photo- and moisture-curing resin composition, adhesive for electronic parts, and adhesive for display element
JP2016150974A (en) * 2015-02-17 2016-08-22 積水化学工業株式会社 Photo-moisture curable resin composition cured body
JP2018514599A (en) * 2015-03-10 2018-06-07 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング Polyorganosiloxane and moisture and radiation curable adhesive composition containing the same
WO2016167305A1 (en) * 2015-04-17 2016-10-20 積水化学工業株式会社 Cured body, electronic component, display element, and light-/moisture-curable resin composition
WO2020149379A1 (en) * 2019-01-18 2020-07-23 積水化学工業株式会社 Photo/moisture curable resin composition and cured body
WO2020156802A1 (en) * 2019-02-01 2020-08-06 Basf Se Polyurethane and uv-moisture dual cure pu reactive hotmelt comprising the same

Also Published As

Publication number Publication date
JPWO2022114186A1 (en) 2022-06-02
TW202231698A (en) 2022-08-16
KR20230113551A (en) 2023-07-31
CN116568760A (en) 2023-08-08

Similar Documents

Publication Publication Date Title
JP5844504B1 (en) Light moisture curable resin composition, adhesive for electronic parts, and adhesive for display elements
WO2021230373A1 (en) Photo/moisture-curable resin composition, adhesive for electronic component, cured body and electronic component
JP2016074783A (en) Photo- and moisture-curable resin composition
JP2024026609A (en) Curable resin composition and cured product
JP7470054B2 (en) Photo-curable moisture-curable resin composition and cured product
JP2016074781A (en) Photo- and moisture-curable resin composition
WO2020241803A1 (en) Curable resin composition, cured object, and electronic component
WO2022004416A1 (en) Photo/moisture curable resin composition and cured body
WO2022114186A1 (en) Moisture-curable resin composition and adhesive for electronic appliance
WO2021157624A1 (en) Photo/moisture curable resin composition, adhesive for electronic components, method for producing electronic component, and cured body
JP2020045403A (en) Curable resin composition, cured product, electronic component, and assembly component
WO2023176795A1 (en) Light-moisture curable resin composition, adhesive agent for electronic component, and adhesive agent for display element
WO2023153514A1 (en) Photo/moisture-curable resin composition, adhesive for electronic component, and adhesive for display element
JP6622465B2 (en) Light moisture curable resin composition cured body for narrow frame design display element
WO2022260053A1 (en) Photo/moisture-curable resin composition, adhesive for electronic components, cured body, and electronic component
JP7284702B2 (en) Curable resin composition, cured body, electronic parts and assembly parts
WO2023112873A1 (en) Adhesive composition, adhesive for electronic components, and adhesive for portable electronic devices
WO2022230819A1 (en) Moisture-curable adhesive composition and cured object
WO2022230820A1 (en) Light/moisture-curable adhesive composition, and cured body
WO2019203277A1 (en) Curable resin composition, cured body, electronic part and assembly part
WO2022149537A1 (en) Adhesive composition, adhesive for electronic components, and adhesive for portable electronic devices
WO2024143421A1 (en) Adhesive composition, cured body, and adhesive for electronic devices
WO2024009957A1 (en) Light/moisture curable resin composition, cured product, use of light/moisture curable resin composition, and end face protection method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021575274

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21898158

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180078619.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21898158

Country of ref document: EP

Kind code of ref document: A1