WO2021157624A1 - Photo/moisture curable resin composition, adhesive for electronic components, method for producing electronic component, and cured body - Google Patents

Photo/moisture curable resin composition, adhesive for electronic components, method for producing electronic component, and cured body Download PDF

Info

Publication number
WO2021157624A1
WO2021157624A1 PCT/JP2021/003989 JP2021003989W WO2021157624A1 WO 2021157624 A1 WO2021157624 A1 WO 2021157624A1 JP 2021003989 W JP2021003989 W JP 2021003989W WO 2021157624 A1 WO2021157624 A1 WO 2021157624A1
Authority
WO
WIPO (PCT)
Prior art keywords
moisture
resin composition
meth
curable resin
acrylate
Prior art date
Application number
PCT/JP2021/003989
Other languages
French (fr)
Japanese (ja)
Inventor
典希 冨田
彰 結城
拓身 木田
智一 玉川
坤 徐
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN202180005424.5A priority Critical patent/CN114423834A/en
Priority to JP2021514450A priority patent/JPWO2021157624A1/ja
Priority to KR1020227008921A priority patent/KR20220137865A/en
Publication of WO2021157624A1 publication Critical patent/WO2021157624A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • C09J4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09J159/00 - C09J187/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers

Definitions

  • the present invention relates to a thermosetting resin composition, an adhesive for electronic parts, a method for manufacturing an electronic component using an adhesive for electronic components, and a cured product of a thermosetting resin composition.
  • liquid crystal display elements In recent years, liquid crystal display elements, organic EL display elements, and the like have been widely used as display elements having features such as thinness, light weight, and low power consumption.
  • a photocurable resin composition is usually used for sealing a liquid crystal or a light emitting layer, adhering various members such as a substrate, an optical film, and a protective film.
  • miniaturization of display elements is the most sought after issue, and as a method of miniaturization, the image display unit is narrowed. It is being made into a frame (hereinafter, also referred to as a narrow frame design).
  • the photocurable resin composition may be applied to a portion where light does not reach sufficiently, and as a result, the photocurable resin composition applied to a portion where light does not reach is cured. There was a problem that it became insufficient. Therefore, a photothermosetting resin composition is used as a resin composition that can be sufficiently cured even when it is applied to a portion where light does not reach, and both photocuring and thermosetting are used in combination, but at a high temperature. There was a risk that heating would adversely affect the elements and the like.
  • a plurality of thin semiconductor chips may be joined via an adhesive layer to form a laminate of semiconductor chips. It is done.
  • a laminate of semiconductor chips is, for example, a method of applying an adhesive on one semiconductor chip, laminating the other semiconductor chip via the adhesive, and then curing the adhesive. It is manufactured by a method of filling an adhesive between semiconductor chips held at intervals and then curing the adhesive.
  • a method of semi-curing the applied adhesive and then fully curing it is being studied. Therefore, the use of a light-moisture-curable resin composition as an adhesive has been studied for laminating small semiconductor chips and for adhering electronic components such as display elements having a narrow frame design.
  • Patent Document 1 discloses a light-moisture-curable resin composition and an adhesive for electronic components, which are excellent in flexibility of a cured product and reliability in a high-temperature and high-humidity environment.
  • the photo-moisture-curable resin composition disclosed in Patent Document 1 is excellent in stress relaxation property and has adhesive strength durability because a cured product having appropriate flexibility can be obtained.
  • the photo-moisture-curable resin composition disclosed in Patent Document 1 has a problem that the adhesive strength at a high temperature is not sufficient.
  • an object of the present invention is to provide a photo-moisture-curable resin composition and an adhesive for electronic parts, which are excellent in both durability of adhesive strength and sufficient adhesive strength at high temperature.
  • the present inventors have studied a moisture-curable urethane resin in order to improve the high-temperature adhesive strength of the conventional photomoisture-curable resin composition. Then, the present inventors have found that the high temperature adhesive force can be greatly improved by blending the moisture-curable urethane resin having a polyester skeleton as the moisture-curable urethane resin. On the other hand, the present inventors have found that when a moisture-curable urethane resin having a polyester skeleton is used as the moisture-curable urethane resin, it is not possible to obtain sufficient durability of adhesive strength.
  • the present inventors set the rate of change in thickness of the photocured product before and after applying a load to 50% or less, thereby achieving high-temperature adhesive strength and adhesive strength. We have found that it is possible to achieve both the durability of the above and the durability at a high level, and completed the present invention.
  • the present invention provides the following [1] to [30].
  • [1] Contains a radically polymerizable compound, a moisture-curable urethane resin, and a photopolymerization initiator.
  • the moisture-curable urethane resin contains a moisture-curable urethane resin having a polyester skeleton.
  • Sex resin composition [2] The photomoisture-curable resin composition according to the above [1], which has a viscosity of 3000 Pa ⁇ s or less at 25 ° C.
  • R represents any of a hydrogen atom, a methyl group, and an ethyl group
  • l is an integer of 0 to 5
  • m is an integer of 1 to 500
  • n is an integer of 1 to 10.
  • the polyether polyol is at least one selected from the group consisting of polypropylene glycol, a ring-opening polymerization compound of a tetrahydrofuran compound, and a ring-opening polymerization compound of a tetrahydrofuran compound having a methyl group as a substituent.
  • the photomoisture-curable resin composition according to any one of [1] to [11] above, wherein the photocured cured product has a storage elastic modulus of 10 kPa or more at 25 ° C.
  • the storage elastic modulus at 25 ° C. of the cured product obtained by allowing the cured product in the photocured state to stand in an environment of 23 ° C. and 50 RH% for 3 days is 1 MPa or more.
  • the moisture-curable urethane resin having a polyester skeleton reacts a polyester polyol having two or more hydroxyl groups in one molecule with a polyisocyanate compound having two or more isocyanate groups in one molecule.
  • the photo-moisture-curable resin composition according to any one of the above [1] to [13].
  • At least one polyvalent carboxylic acid selected if the polyester polyol is in the group consisting of phthalic acid, terephthalic acid, isophthalic acid, and adipic acid, and 1,6-hexanediol and 1,4-butanediol.
  • the thermosetting resin composition according to the above [17], wherein the (meth) acrylic compound further contains a polyfunctional (meth) acrylic compound.
  • thermosetting resin composition according to the above [18], wherein the content of the polyfunctional (meth) acrylic compound is 1% by mass or more and 50% by mass or less with respect to the total amount of the radically polymerizable compound. .. [20]
  • the photomoisture-curable resin composition according to at least one of the above [17] to [19], wherein the monofunctional (meth) acrylic compound is a (meth) acrylic acid ester compound.
  • the light humidity according to any one of the above [1] to [20], wherein the content of the radically polymerizable compound is 50% by mass or less in 100% by mass of the photomoisture-curable resin composition. Curable resin composition.
  • the content of the photopolymerization initiator in the photo-moisture-curable resin composition is 0.01 parts by mass or more and 10 parts by mass with respect to 100 parts by mass of the total amount of the radical-polymerizable compound and the moisture-curable urethane resin.
  • An adhesive for electronic components comprising the photomoisture-curable resin composition according to any one of the above [1] to [25].
  • FIG. 1A is a plan view
  • FIG. 1B is a side view.
  • the photo-moisture-curable resin composition of the present invention contains a radical-polymerizable compound, a moisture-curable urethane resin, and a photopolymerization initiator, and is a cured product in a state of being photo-cured by irradiating with ultraviolet rays at 1000 mJ / cm 2.
  • a load of 0.04 MPa when a load of 0.04 MPa is applied, the thickness change rate before and after the load is 50% or less.
  • the moisture-curable urethane resin includes a moisture-curable urethane resin having a polyester skeleton.
  • the photomoisture-curable resin composition of the present invention can enhance the adhesive strength in a high temperature environment by containing a urethane prepolymer having a polyester skeleton.
  • the photo-moisture-curable resin composition of the present invention has good stress relaxation property by setting the thickness change rate before and after applying a load to 50% or less with respect to the cured product in the photo-cured state.
  • the durability of the adhesive strength can be enhanced, and a constant adhesive strength can be maintained even if the adhesive strength is repeatedly arranged in a high temperature environment and a low temperature environment, for example.
  • the rate of change in thickness before and after applying the load is preferably 45% or less, more preferably 40% or less.
  • the thickness change rate is preferably 5% or more, more preferably 10% or more.
  • the cured product in a photocured state means a cured product in a state in which the photo-moisture-curable resin composition is photo-cured without being moisture-cured.
  • the thickness change rate before and after applying a load to the cured product in the photocured state may be measured by the following procedure.
  • ⁇ Rate of change in thickness of cured product in photo-cured state> A line width of 1.0 ⁇ 0.1 mm, a length of 25 ⁇ 0.2 mm, and a thickness of a light-moisture-curable resin composition are applied to a polycarbonate substrate (length 50 mm, width 25 mm, thickness 2 mm) using a dispensing device.
  • the photo-moisture-curable resin composition is photocured by irradiating it with ultraviolet rays at 1000 mJ / cm 2 using a UV-LED lamp.
  • the wavelength of the UV-LED lamp can be appropriately selected according to the absorption wavelength of the photopolymerization initiator contained therein, and for example, one having a wavelength of 365 nm can be used.
  • a glass substrate of the same size as the polycarbonate substrate is placed on a cured product that has been photocured in an environment of 25 ° C., and a 100 g weight is allowed to stand on it for 10 seconds to be photocured.
  • Thickness change rate (%) (thickness immediately after light irradiation-thickness after load action) / (thickness immediately after light irradiation) x 100
  • the photomoisture-curable resin composition of the present invention has a storage elastic modulus of a cured product in a photocured state at 25 ° C., for example, 2 kPa or more, preferably 10 kPa or more, more preferably 15 kPa or more, still more preferably. It is 20 kPa or more.
  • the storage elastic modulus of the photocured product at 25 ° C. is preferably 200 kPa or less, more preferably 100 kPa or less, from the viewpoint of increasing the initial adhesive force.
  • the wavelength of the UV-LED lamp can be appropriately selected according to the absorption wavelength of the photopolymerization initiator contained therein, and for example, one having a wavelength of 365 nm can be used.
  • the photo-moisture-curable resin composition of the present invention has a storage elastic modulus at 25 ° C. of the photo-moisture-cured cured product, preferably 1 MPa or more, more preferably 5 MPa or more, and further preferably 10 MPa or more.
  • the storage elastic modulus of the cured product in a light-moisture-cured state at 25 ° C. is, for example, 700 MPa or less, preferably 100 MPa or less, and more preferably 70 MPa or less from the viewpoint of enhancing the durability of the adhesive force.
  • the storage elastic modulus of the cured product in a light-moisture-cured state at 25 ° C. may be measured by the following procedure.
  • the light-moisture-curable resin composition is filled in a Teflon (registered trademark) mold having a width of 3 mm, a length of 30 mm, and a thickness of 1 mm.
  • the curable resin composition is photocured by irradiating with ultraviolet rays at 1000 mJ / cm 2 using a UV-LED lamp.
  • the wavelength of the UV-LED lamp can be appropriately selected according to the absorption wavelength of the photopolymerization initiator contained therein, and for example, one having a wavelength of 365 nm can be used. Then, it is allowed to stand in an environment of 23 ° C. and 50 RH% for 3 days. Take out the cured product in a light-moisture-cured state from the mold, and use a dynamic viscoelasticity measuring device (manufactured by IT Measurement Control Co., Ltd., trade name "DVA-200”) to perform dynamic viscoelasticity in the range of -100 ° C to 150 ° C. Measure and determine the storage elastic modulus at room temperature (25 ° C). The measurement conditions are that the deformation mode is pulled, the set strain is 1%, the measurement frequency is 1 Hz, and the temperature rise rate is 5 ° C./min.
  • the photomoisture-curable resin composition of the present invention has a viscosity measured at 25 ° C. and 1 rpm using a cone plate viscometer, preferably 3000 Pa ⁇ s or less, and more preferably 2500 Pa ⁇ s or less. It is more preferably 2000 Pa ⁇ s or less, further preferably 1500 Pa ⁇ s or less, and even more preferably 800 Pa ⁇ s or less.
  • the viscosity is preferably 50 Pa ⁇ s or more from the viewpoint of suppressing excessive wet spread during coating.
  • the thickness change rate, storage elastic modulus, and viscosity described above are the radical polymerizable compound, the type and amount of each component used in the moisture-curable urethane resin, and the light-moisture-curable resin composition, as described in detail below. It is adjusted by appropriately changing the type and amount of each component added to.
  • the photomoisture curable resin composition of the present invention contains a radically polymerizable compound.
  • the photo-moisture-curable resin composition of the present invention has photocurability by containing a radically polymerizable compound.
  • the photomoisture-curable resin composition of the present invention preferably contains, as a radically polymerizable compound, a compound having a (meth) acryloyl group (hereinafter, referred to as "(meth) acrylic compound").
  • (meth) acrylic compound a compound having a (meth) acryloyl group
  • (meth) acrylic compound means acrylic or methacrylic, and the same applies to other similar terms.
  • Examples of the (meth) acrylic compound include (meth) acrylic acid ester compound, epoxy (meth) acrylate, urethane (meth) acrylate, polyester (meth) acrylate and the like.
  • the (meth) acrylic compound may be monofunctional or polyfunctional.
  • the urethane (meth) acrylate does not have a residual isocyanate group.
  • monofunctional ones include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate.
  • the (meth) acrylic acid ester compound may have an aromatic ring, for example, phenylalkyl (meth) acrylate such as benzyl (meth) acrylate and 2-phenylethyl (meth) acrylate, and phenoxyethyl (meth).
  • phenylalkyl (meth) acrylate such as benzyl (meth) acrylate and 2-phenylethyl (meth) acrylate
  • phenoxyethyl (meth) acrylates such as acrylates.
  • it may be a (meth) acrylate having a plurality of benzene rings such as a fluorene skeleton and a biphenyl skeleton, and specific examples thereof include a fluorene type (meth) acrylate and an ethoxylated o-phenylphenol acrylate.
  • phenoxypolyoxyethylene-based (meth) acrylates such as phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, nonylphenoxydiethylene glycol (meth) acrylate, and nonylphenoxypolyethylene glycol (meth) acrylate can also be mentioned.
  • the monofunctional (meth) acrylic acid ester compound tetrahydrofurfuryl (meth) acrylate, alkoxylated tetrahydrofurfuryl (meth) acrylate, cyclic trimethylolpropanformal (meth) acrylate, 3-ethyl-3- (Meta) acrylates having a heterocyclic structure such as oxetanylmethyl (meth) acrylates, phthalimide acrylates such as N-acryloyloxyethyl hexahydrophthalimide, various imide (meth) acrylates, 2,2,2-trifluoroethyl ( Meta) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-octafluoropentyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth)
  • bifunctional (meth) acrylic acid ester compound examples include 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexanediol di (meth).
  • those having trifunctionality or higher include, for example, trimethylpropantri (meth) acrylate, pentaerythritol tri (meth) acrylate, glycerintri (meth) acrylate, and pentaerythritol tetra (meth).
  • Examples of the epoxy (meth) acrylate include those obtained by reacting an epoxy compound with (meth) acrylic acid.
  • the reaction between the epoxy compound and (meth) acrylic acid may be carried out in the presence of a basic catalyst or the like according to a conventional method.
  • the epoxy (meth) acrylate may be monofunctional or polyfunctional such as bifunctional, but polyfunctional is preferable.
  • Examples of the epoxy compound used as a raw material for synthesizing the epoxy (meth) acrylate include a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol S type epoxy resin, and a 2,2'-diallyl bisphenol A type epoxy resin.
  • Hydrogenated bisphenol type epoxy resin propylene oxide added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, phenol Novolac type epoxy resin, orthocresol novolac type epoxy resin, dicyclopentadiene novolac type epoxy resin, biphenyl novolac type epoxy resin, naphthalenephenol novolac type epoxy resin, glycidylamine type epoxy resin, alkyl polyol type epoxy resin, rubber modified epoxy resin , Glysidyl ester compound, bisphenol A type episulfide resin and the like.
  • epoxy (meth) acrylates commercially available ones include, for example, EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3702, EBECRYL3702, EBECRYL370 ), EA-1010, EA-1020, EA-5323, EA-5520, EACHD, EMA-1020 (all manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, epoxy ester.
  • Denacol Acrylate DA-141 examples thereof include Denacol Acrylate DA-314 and Denacol Acrylate DA-911 (both manufactured by Nagase ChemteX Corporation).
  • urethane (meth) acrylate for example, an isocyanate compound reacted with a (meth) acrylic acid derivative having a hydroxyl group can be used.
  • a tin-based compound or the like in the reaction between the isocyanate compound and the (meth) acrylic acid derivative, it is preferable to use a tin-based compound or the like in a catalytic amount as a catalyst.
  • the urethane (meth) acrylate may be monofunctional or polyfunctional such as bifunctional, but bifunctional is preferable.
  • Examples of the isocyanate compound used to obtain urethane (meth) acrylate include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and diphenylmethane-4, 4'-diisocyanate (MDI), hydrogenated MDI, polypeptide MDI, 1,5-naphthalenediocyanate, norbornan diisocyanate, trizine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris ( Examples thereof include polyisocyanate compounds such as isocyanatephenyl) thiophosphate, tetramethylxylylene diisocyanate, and 1,6,11-undecantryisocyanate.
  • MDI 4'-di
  • the isocyanate compound a chain-extended polyisocyanate compound obtained by reacting a polyol with an excess isocyanate compound can also be used.
  • the polyol include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, and polycaprolactone diol.
  • Examples of the (meth) acrylic acid derivative having a hydroxyl group include dihydric alcohols such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and polyethylene glycol.
  • dihydric alcohols such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and polyethylene glycol.
  • Mono (meth) acrylate, mono (meth) acrylate or di (meth) acrylate of trihydric alcohols such as trimethylolethane, trimethylolpropane, glycerin, and epoxy (meth) acrylate such as bisphenol A type epoxy (meth) acrylate. ) Acrylate and the like can be mentioned.
  • urethane (meth) acrylates include, for example, M-1100, M-1200, M-1210, M-1600 (all manufactured by Toa Synthetic Co., Ltd.), EBECRYL230, EBECRYL270, EBECRYL8402, EBECRYL8411, EBECRYL8412, EBECRYL8413, EBECRYL8804, EBECRYL8803, EBECRYL8807, EBECRYL9270, EBECRYL210, EBECRYL4827, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL
  • polyester (meth) acrylate examples include those obtained by reacting a polyester polyol with (meth) acrylic acid.
  • Commercially available polyester (meth) acrylates include, for example, Aronix M-6100, M-6200, M-6250, M-6500, M-7100, M-7300K, M-8030, and M-8060.
  • Doublemer 2015 Doublemer 2231-TF Doubler 2319, Doublemer 257, Doublemer 276, Doublemer 276, Doublemer , Doublemer 236, Doublemer 270, Doublemer 278, Doublemer 285, Doublemer 220, Doublemer 2315-100, Doublemer 245, Doublemer 272, Doublemer 278X25, Doublemer 286, Doublemer 2230-TF, Doublemer 2315HM35, Doublemer 246, Doublemer 275, Doublemer 281, Double bond 287 (both manufactured by Double bond Chemical) and the like can be mentioned.
  • the photo-moisture-curable resin composition may contain (meth) acrylate having a number average molecular weight of 5000 or more (hereinafter, referred to as “polymer (meth) acrylate”) as the (meth) acrylic acid ester compound.
  • polymer (meth) acrylate having a number average molecular weight of 5000 or more
  • the above-mentioned thickness change rate can be easily adjusted within a predetermined range.
  • the polymer (meth) acrylate is, for example, a compound in which the polymer chain portion is a polymer of a (meth) acrylic acid ester compound and has a (meth) acryloyl group at the end.
  • alkyl (meth) acrylate is preferably used.
  • examples of such polymer (meth) acrylate include AA-6 (number average molecular weight 6000, manufactured by Toagosei Co., Ltd.), AB-6 (number average molecular weight 6000, manufactured by Toagosei Co., Ltd.) and the like.
  • the upper limit of the number average molecular weight of the polymer (meth) acrylate is not particularly limited, but is, for example, 100,000 or less.
  • radically polymerizable compounds As the radically polymerizable compound, other radically polymerizable compounds other than those described above can be appropriately used. Examples of other radically polymerizable compounds include N, N-dimethyl (meth) acrylamide, N- (meth) acryloylmorpholine, N-hydroxyethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, and N-.
  • (Meta) acrylamide compounds such as isopropyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, vinyl such as styrene, ⁇ -methylstyrene, N-vinyl-2-pyrrolidone, N-vinyl- ⁇ -caprolactam Examples include compounds.
  • the thickness change rate of the cured product in the photocured state may be within a predetermined range by appropriately combining the types and contents of the radically polymerizable compounds described above.
  • a compound having an acryloyl group as the (meth) acrylic compound
  • the thickness change rate of the cured product in the photocured state is adjusted within a predetermined range. It will be easier.
  • a polyfunctional (meth) acrylic compound as the (meth) acrylic compound, it becomes easy to increase the reactivity at the time of light irradiation, and as a result, the thickness change rate of the cured product in the photocured state can be increased. It becomes easy to adjust within a predetermined range.
  • polyfunctional (meth) acrylic compound examples include a polyfunctional (meth) acrylic acid ester having about 6 to 30 carbon atoms, preferably 8 to 20 carbon atoms.
  • the polyfunctional (meth) acrylic acid ester compound X is preferably 2 to 4 functional, and more preferably 2 to 3 functional.
  • the cohesive force (crosslink density) of the radically polymerizable compound becomes high after photocuring, and the above-mentioned thickness change rate can be further lowered.
  • the viscosity of the light-moisture-curable resin composition before light irradiation is lowered, and the coatability is also improved.
  • polyfunctional (meth) acrylic compound X examples include 1,6-hexanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, triethylene glycol di (meth) acrylate, and neopentyl glycol. Examples thereof include di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, dimethyloltricyclodecanedi (meth) acrylate, pentaerythritol tetra (meth) acrylate, and dipentaerythritol hexa (meth) acrylate.
  • the polyfunctional (meth) acrylic compound X may be used alone or in combination of two or more.
  • the polyfunctional (meth) acrylic compound X may be used in combination with a monofunctional radically polymerizable compound.
  • the content of the polyfunctional (meth) acrylic compound X is, for example, 1% by mass or more and 50% by mass or less, preferably 5% by mass or more and 35% by mass or less, more preferably 10% by mass, based on the total amount of the radically polymerizable compound. It is 30% by mass or less.
  • the total content of the polyfunctional (meth) acrylic compound is, for example, 1% by mass or more and 50% by mass or less, preferably 3% by mass or more and 40% by mass or less, based on the total amount of the radically polymerizable compound.
  • the content of the radically polymerizable compound in 100% by mass of the thermosetting resin composition is preferably 3% by mass or more, more preferably 5% by mass or more, and further preferably 10% by mass or more. Further, it is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 30% by mass or less.
  • the content of the radically polymerizable compound is at least the above lower limit, it becomes easy to adjust the thickness change rate of the cured product in the photocured state within a predetermined range. Further, when the content of the radically polymerizable compound is not more than the above upper limit, it becomes easy to increase the adhesive force at high temperature.
  • the photomoisture curable resin composition of the present invention contains a photopolymerization initiator.
  • the photopolymerization initiator By including the photopolymerization initiator, the photocurable resin composition of the present invention can be imparted with photocurability.
  • the photopolymerization initiator include benzophenone compounds, acetphenone compounds such as ⁇ -aminoalkylphenone and ⁇ -hydroxyalkylphenone, acylphosphine oxide compounds, titanosen compounds, oxime ester compounds, and benzoin ether compounds. , Thioxanthone and the like.
  • a compound having an acylphosphine oxide-based skeleton or an ⁇ -aminoalkylphenone-based skeleton Compounds having the above are preferred.
  • photopolymerization initiators include, for example, IRGACURE184, IRGACURE369, IRGACURE379, IRGACURE379EG, IRGACURE651, IRGACURE784, IRGACURE819, IRGACURE907, IRGACURE2959, IRGACURE Benzoin Examples thereof include ether, benzoin ethyl ether, and benzoin isopropyl ether (all manufactured by Tokyo Chemical Industry Co., Ltd.).
  • the content of the photopolymerization initiator in the photo-moisture-curable resin composition is preferably 0.01 parts by mass or more, more preferably 0.01 parts by mass or more, based on 100 parts by mass of the total amount of the radical-polymerizable compound and the moisture-curable urethane resin. Is 0.5 parts by mass or more, preferably 10 parts by mass or less, and more preferably 5 parts by mass or less.
  • the content of the photopolymerization initiator is within this range, the obtained photomoisture-curable resin composition has excellent photocurability and storage stability. Further, when the content is within the above range, the radical polymerization compound is appropriately cured, and the thickness change rate of the cured product in the photocured state described above can be easily adjusted within a predetermined range.
  • the photomoisture curable resin composition of the present invention contains a moisture curable urethane resin.
  • the photo-moisture-curable resin composition of the present invention has moisture-curable property.
  • the moisture-curable urethane resin can be obtained by reacting a polyol compound having two or more hydroxyl groups in one molecule with a polyisocyanate compound having two or more isocyanate groups in one molecule.
  • a known polyol compound usually used in the production of polyurethane can be used, and for example, polyester polyol, polyether polyol, polyalkylene polyol, polycarbonate polyol and the like. Can be mentioned. These polyol compounds may be used alone or in combination of two or more.
  • the photo-moisture-curable resin composition of the present invention contains a moisture-curable urethane resin having a polyester skeleton as the moisture-curable urethane resin.
  • a moisture-curable urethane resin having a polyester skeleton as the moisture-curable urethane resin.
  • a moisture-curable urethane resin having a polyester skeleton can be obtained by reacting a polyester polyol having two or more hydroxyl groups in one molecule with a polyisocyanate compound having two or more isocyanate groups in one molecule.
  • the polyester polyol include a polyester polyol obtained by reacting a polyvalent carboxylic acid with a polyol, a poly- ⁇ -caprolactone polyol obtained by ring-opening polymerization of ⁇ -caprolactone, and the like.
  • polyvalent carboxylic acid used as a raw material for the polyester polyol examples include phthalic acid, terephthalic acid, isophthalic acid, 1,5-naphthalic acid, 2,6-naphthalic acid, succinic acid, glutaric acid, adipic acid, and pimelic acid. , Suberic acid, azelaic acid, sebacic acid, decamethylenedicarboxylic acid, dodecamethylenedicarboxylic acid and the like. Among these, phthalic acid, terephthalic acid, isophthalic acid, or adipic acid is preferable from the viewpoint of easily increasing the adhesive force at high temperature. These polyvalent carboxylic acids may be used alone or in combination of two or more.
  • polyol used as a raw material for the polyester polyol examples include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, and 1,6-hexanediol. , Diethylene glycol, cyclohexanediol and the like. Among these, 1,6-hexanediol or 1,4-butanediol is preferable from the viewpoint of easily increasing the adhesive force at high temperature. These polyols may be used alone or in combination of two or more.
  • an aromatic polyisocyanate compound and an aliphatic polyisocyanate compound are preferably used.
  • the aromatic polyisocyanate compound include diphenylmethane diisocyanate, liquid modified products of diphenylmethane diisocyanate, polypeptide MDI, tolylene diisocyanate, naphthalene-1,5-diisocyanate and the like.
  • Examples of the aliphatic polyisocyanate compound include hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, norbornane diisocyanate, transcyclohexane-1,4-diisocyanate, isophorone diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, and cyclohexane diisocyanate. , Bis (isocyanate methyl) cyclohexane, dicyclohexylmethane diisocyanate and the like.
  • polyisocyanate compound diphenylmethane diisocyanate and its modified product are particularly preferable from the viewpoint of being able to increase the adhesive force after total curing.
  • the polyisocyanate compound may be used alone or in combination of two or more.
  • the moisture-curable urethane resin having the polyester skeleton may have a polyether skeleton in the molecule.
  • the moisture-curable urethane resin having a polyester skeleton having a polyether skeleton in the molecule is, for example, a polyester polyol having two or more hydroxyl groups in one molecule and a polyether having two or more hydroxyl groups in one molecule. It can be obtained by reacting a polyol with a polyisocyanate compound having two or more isocyanate groups in one molecule.
  • the polyester polyol the polyester polyol described above can be used.
  • a polyether polyol described later can be used.
  • the photo-moisture-curable resin composition preferably further contains, as the moisture-curable urethane resin, a moisture-curable urethane resin having a polyether skeleton in addition to the moisture-curable urethane resin having a polyester skeleton.
  • a moisture-curable urethane resin having a polyether skeleton By further containing a moisture-curable urethane resin having a polyether skeleton, it becomes easy to improve the coatability of the photomoisture-curable resin composition.
  • the moisture-curable urethane resin having a polyether skeleton referred to here is a moisture-curable urethane resin that does not contain a polyester skeleton.
  • a urethane resin having a polyether skeleton can be obtained by reacting a polyether polyol having two or more hydroxyl groups in one molecule with a polyisocyanate compound having two or more isocyanate groups in one molecule.
  • the polyether polyol include a ring-opening polymer of ethylene glycol, propylene glycol and tetrahydrofuran, a ring-opening polymer of 3-methyl tetrahydrofuran, and a random copolymer or block copolymer of these or derivatives thereof, or a bisphenol type.
  • the bisphenol-type polyoxyalkylene modified product is a polyether polyol obtained by adding an alkylene oxide (for example, ethylene oxide, propylene oxide, butylene oxide, isobutylene oxide, etc.) to the active hydrogen portion of the bisphenol-type molecular skeleton.
  • the polyether polyol may be a random copolymer or a block copolymer.
  • the bisphenol-type polyoxyalkylene modified product preferably has one or more alkylene oxides added to both ends of the bisphenol-type molecular skeleton.
  • the bisphenol type is not particularly limited, and examples thereof include A type, F type, and S type, and bisphenol A type is preferable.
  • the polyisocyanate compound the above-mentioned polyisocyanate compound can be used.
  • the moisture-curable urethane resin having a polyether skeleton preferably further contains one obtained by using a polyol compound having a structure represented by the following formula (1).
  • a polyol compound having a structure represented by the following formula (1) By using a polyol compound having a structure represented by the following formula (1), a photomoisture-curable resin composition having excellent adhesiveness and a cured product having flexibility and good elongation can be obtained, and a radically polymerizable compound can be obtained. It has excellent compatibility with.
  • the storage elastic modulus can be easily adjusted within the above-mentioned desired range.
  • a polyether polyol composed of a ring-opening polymerization compound of propylene glycol or a tetrahydrofuran (THF) compound or a ring-opening polymerization compound of a tetrahydrofuran compound having a substituent such as a methyl group are preferable, and propylene glycol is more preferable. preferable.
  • R represents a hydrogen atom, a methyl group, or an ethyl group
  • l is an integer of 0 to 5
  • m is an integer of 1 to 500
  • n is an integer of 1 to 10.
  • .. l is preferably 0 to 4
  • m is preferably 50 to 200
  • n is preferably 1 to 5.
  • the case where l is 0 means the case where the carbon bonded to R is directly bonded to oxygen.
  • the total of n and l is more preferably 1 or more, and further preferably 1 to 3.
  • R is more preferably a hydrogen atom or a methyl group, and particularly preferably a methyl group.
  • the photo-moisture-curable resin composition of the present invention may contain a moisture-curable urethane resin having the polyester skeleton or a moisture-curable urethane resin other than the moisture-curable urethane resin having the polyether skeleton.
  • a moisture-curable urethane resin having the polyester skeleton or a moisture-curable urethane resin other than the moisture-curable urethane resin having the polyether skeleton.
  • other moisture-curable urethane resins include urethane resins having a polyalkylene skeleton and urethane resins having a polycarbonate skeleton.
  • a urethane resin having a polyalkylene skeleton can be obtained by reacting a polyalkylene polyol having two or more hydroxyl groups in one molecule with a polyisocyanate compound having two or more isocyanate groups in one molecule.
  • a polyalkylene polyol examples include a polybutadiene polyol, a hydrogenated polybutadiene polyol, and a hydrogenated polyisoprene polyol.
  • the polyisocyanate compound the above-mentioned polyisocyanate compound can be used.
  • a urethane resin having a polycarbonate skeleton can be obtained by reacting a polycarbonate polyol having two or more hydroxyl groups in one molecule with a polyisocyanate compound having two or more isocyanate groups in one molecule.
  • the polycarbonate polyol include polyhexamethylene carbonate polyol and polycyclohexanedimethylene carbonate polyol.
  • the polyisocyanate compound the above-mentioned polyisocyanate compound can be used as the polyisocyanate compound.
  • the moisture-curable urethane resin may have a radically polymerizable functional group.
  • a group having an unsaturated double bond is preferable, and a (meth) acryloyl group is more preferable from the viewpoint of reactivity.
  • the moisture-curable resin having a radical-polymerizable functional group is not included in the above-mentioned radical-polymerizable compound and is treated as a moisture-curable resin.
  • the weight average molecular weight of the moisture-curable urethane resin is not particularly limited, but is preferably 500 or more, more preferably 1000 or more, and preferably 10000 or less, more preferably 8000 or less.
  • the weight average molecular weight is at least the above lower limit, it becomes easy to increase the adhesive force at high temperature. Further, when the weight average molecular weight is not more than the above upper limit, the coatability is easily improved.
  • the weight average molecular weight and the number average molecular weight are values obtained by measuring by gel permeation chromatography (GPC) and converting into polystyrene.
  • GPC gel permeation chromatography
  • Examples of the column for measuring the weight average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK). Further, as a solvent used in GPC, tetrahydrofuran can be mentioned.
  • the content of the moisture-curable urethane resin in 100% by mass of the light-moisture-curable resin composition is preferably 45% by mass or more, more preferably 50% by mass or more, and further preferably 60% by mass or more. Further, it is preferably 95% by mass or less, and more preferably 90% by mass or less.
  • the content of the moisture-curable urethane resin is at least the above lower limit, it becomes easy to increase the adhesive force at high temperature.
  • the content of the moisture-curable urethane resin is not more than the above upper limit, it becomes easy to increase the durability of the adhesive force.
  • the content of the moisture-curable urethane resin having a polyester skeleton in 100% by mass of the photo-moisture-curable resin composition is, for example, 25% by mass or more, preferably 30% by mass or more, and more preferably 40% by mass. % Or more, more preferably 50% by mass or more, preferably 95% by mass or less, and more preferably 90% by mass or less.
  • the content of the moisture-curable urethane resin having a polyester skeleton is at least the above lower limit, it becomes easy to increase the adhesive force at high temperature.
  • the content of the moisture-curable urethane resin having a polyester skeleton is not more than the above upper limit, it becomes easy to increase the durability of the adhesive force.
  • the photo-moisture-curable resin composition contains a moisture-curable urethane resin having a polyester skeleton and another moisture-curable urethane resin, another moisture-curable urethane resin with respect to the moisture-curable urethane resin having a polyester skeleton.
  • the mass ratio of the content of (other moisture-curable urethane resin / moisture-curable urethane resin having a polyester skeleton) is preferably 5 or less, more preferably 3 or less, and preferably 0.001 or more. It is more preferably 0.01 or more.
  • the other moisture-curable urethane resin referred to here is a moisture-curable urethane resin other than the moisture-curable urethane resin having a polyester skeleton, such as a moisture-curable urethane resin having a polyether skeleton.
  • the photo-moisture-curable resin composition preferably has a mass ratio of the content of the radical-polymerizable compound to the moisture-curable urethane resin (radical-polymerizable compound / moisture-curable urethane resin) of, for example, 0.04 or more. Is 0.1 or more, more preferably 0.2 or more, preferably 1 or less, more preferably 0.8 or less, still more preferably 0.6 or less.
  • the photomoisture curable resin composition of the present invention may further contain a non-reactive polymer.
  • the non-reactive polymer include acrylic resin and polyolefin resin.
  • the acrylic resin is a polymer of a polymerizable monomer such as (meth) acrylate.
  • the method for producing the acrylic resin is not particularly limited, and can be produced, for example, by solution polymerization, suspension polymerization, bulk polymerization, or the like of a polymerizable monomer such as the radically polymerizable compound described above.
  • the weight average molecular weight of the acrylic resin is not particularly limited, but is preferably 10,000 or more, and preferably 50,000 or less.
  • the weight average molecular weight is at least the above lower limit, it becomes easy to increase the adhesive force at high temperature. Further, when the weight average molecular weight is not more than the above upper limit, the coatability is easily improved.
  • the polyolefin resin is not particularly limited, and examples thereof include polyethylene and polypropylene.
  • the weight average molecular weight of the polyolefin resin is not particularly limited, but is preferably 10,000 or more, and preferably 50,000 or less. When the weight average molecular weight is at least the above lower limit, it becomes easy to increase the adhesive force at high temperature. Further, when the weight average molecular weight is not more than the above upper limit, the coatability is easily improved.
  • the content of the non-reactive polymer in 100% by mass of the thermosetting resin composition is preferably 5% by mass or more, more preferably 10% by mass or more, and preferably 45% by mass or less. It is more preferably 40% by mass or less.
  • the content of the non-reactive polymer is at least the above lower limit, it becomes easy to increase the adhesive force at high temperature.
  • the content of the non-reactive polymer is not more than the above upper limit, it becomes easy to increase the durability of the adhesive force.
  • the photomoisture curable resin composition of the present invention may contain spacer particles.
  • spacer particles When the photo-moisture-curable resin composition of the present invention contains spacer particles, it becomes easy to adjust the thickness change rate of the cured product in the photo-cured state within the above-mentioned range.
  • the spacer particles include resin particles formed of resin, inorganic particles excluding metal particles, organic-inorganic hybrid particles, and metal particles.
  • the spacer particles are preferably resin particles or organic-inorganic hybrid particles.
  • the spacer particles may be core-shell particles having a core and a shell arranged on the surface of the core.
  • the core may be an organic core.
  • the shell may be an inorganic shell.
  • Spacer particles excluding metal particles are preferable, and resin particles, inorganic particles excluding metal particles, or organic-inorganic hybrid particles are preferable from the viewpoint of being able to relieve stress at the adhesive portion with the adherend and maintaining high adhesive strength durability. Is more preferable, and resin particles are further preferable.
  • the spacer particles are resin particles, when stress is applied to the adhesive portion, the stress can be relaxed and the adhesiveness can be maintained high.
  • the average particle size of the spacer particles is preferably 50 ⁇ m or more, more preferably 80 ⁇ m or more, from the viewpoint of being able to relieve stress at the adhesive portion with the adherend and maintaining high adhesive strength durability. Further, it is preferably 500 ⁇ m or less, and more preferably 400 ⁇ m or less.
  • the above average particle size indicates a number average particle size.
  • the average particle size of the spacer particles can be obtained, for example, by observing 50 arbitrary spacer particles with an electron microscope or an optical microscope and calculating an average value. Twice
  • the CV value of the particle size of the spacer particles is preferably 10% or less, preferably 5% or less, from the viewpoint of further enhancing the adhesiveness.
  • the lower limit of the CV value of the particle size of the spacer particles is not particularly limited, but is preferably 1% or more.
  • the content of the spacer particles in 100% by mass of the photomoisture-curable resin composition is preferably from the viewpoint of further enhancing the stress relaxation property. It is 1% by mass or more, more preferably 5% by mass or more. Further, from the viewpoint of improving the coatability, the content of the spacer particles is preferably 20% by mass or less, and more preferably 15% by mass or less.
  • the thickness change rate can be reduced even if the content of the radically polymerizable compound is reduced.
  • the content of the radically polymerizable compound in 100% by mass of the photomoisture-curable resin composition may be, for example, 20% by mass or less, or 3% by mass or more and 10% by mass or less.
  • the mass ratio (radical polymerizable compound / moisture-curable urethane resin) may be 0.2 or less, or 0.04 or more and 0.1 or less.
  • the curable resin composition of the present invention may contain a filler.
  • the filler By containing the filler, the curable resin composition of the present invention tends to have thixotropy property, and it becomes easy to improve the fine line coating property.
  • a particulate material may be used.
  • the filler means that the average particle size of the primary particles is less than 1 ⁇ m.
  • the filler is preferably an inorganic filler, and examples thereof include silica, talc, titanium oxide, zinc oxide, and calcium carbonate. Of these, silica is preferable because the obtained curable resin composition has excellent ultraviolet transmittance.
  • the filler may be subjected to a hydrophobic surface treatment such as a silylation treatment, an alkylation treatment and an epoxidation treatment.
  • silica, talc, titanium oxide and the like have a function of coloring a light-moisture-curable resin composition in the same manner as a colorant described later.
  • the filler may be used alone or in combination of two or more.
  • the total amount of the filler is, for example, 0.1 part by mass or more, preferably 1 part by mass or more, and more preferably 3 parts by mass with respect to 100 parts by mass of the thermosetting resin composition. It is more than parts, preferably 30 parts by mass or less, and more preferably 20 parts by mass or less.
  • the photomoisture curable resin composition of the present invention may contain a colorant.
  • the colorant include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black and the like. Of these, titanium black is preferred.
  • the colorant is preferably black, but may have other colors.
  • the colorant is preferably a material having an ability (light-shielding property) that makes it difficult for light in the visible light region to pass through. Titanium black is a substance having a higher transmittance in the vicinity of the ultraviolet region, particularly for light having a wavelength of 360 to 450 nm, as compared with the average transmittance for light having a wavelength of 300 to 800 nm.
  • the titanium black has a property of imparting light-shielding property to the photomoisture-curable resin composition by sufficiently blocking light having a wavelength in the visible light region, while transmitting light having a wavelength near the ultraviolet region. .. Therefore, it becomes easy to maintain good photocurability of the photo-moisture-curable resin composition while imparting light-shielding property, and to maintain the storage elastic modulus after photo-curing to a high value.
  • the total amount of the colorant is, for example, 0.01 part by mass or more, preferably 0.05 part by mass or more, more preferably 0.05 part by mass or more, based on 100 parts by mass of the photomoisture-curable resin composition. It is 0.1 part by mass or more, preferably 5 parts by mass or less, and more preferably 3 parts by mass or less.
  • the photomoisture-curable resin composition of the present invention may contain a moisture-curing accelerating catalyst that accelerates the moisture-curing reaction of the moisture-curable urethane resin.
  • a moisture-curing accelerating catalyst that accelerates the moisture-curing reaction of the moisture-curable urethane resin.
  • the moisture curing accelerating catalyst include tin compounds such as din-butyltin dilaurate, din-butyltin diacetate, and tin octylate, triethylamine, and 1,4-diazabicyclo [2.2.2] octane.
  • the content of the moisture-curing accelerating catalyst is preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, and preferably 0.1 parts by mass or more, based on 100 parts by mass of the photomoisture-curable resin composition. It is 5 parts by mass or less, more preferably 3 parts by mass or less. When the content of the moisture-curing accelerating catalyst is within this range, the effect of accelerating the moisture-curing reaction is excellent without deteriorating the storage stability of the photo-moisture-curable resin composition.
  • the photomoisture curable resin composition of the present invention may contain a coupling agent.
  • a coupling agent By containing a coupling agent, it becomes easy to improve the adhesive strength.
  • the coupling agent include a silane coupling agent, a titanate-based coupling agent, a zirconate-based coupling agent, and the like. Of these, a silane coupling agent is preferable because it has an excellent effect of improving adhesiveness.
  • the coupling agent may be used alone or in combination of two or more.
  • the content of the coupling agent is preferably 0.05 parts by mass or more, more preferably 0.2 parts by mass or more, and preferably 5 parts by mass with respect to 100 parts by mass of the photomoisture-curable resin composition. It is not less than parts by mass, and more preferably 3 parts by mass or less. By setting the content of the coupling agent within these ranges, the adhesive strength can be improved without affecting the storage elastic modulus and the like.
  • the photomoisture curable resin composition of the present invention may be diluted with a solvent, if necessary.
  • the mass parts and mass% of the photomoisture curable resin composition are based on the solid content, that is, the mass parts and mass% excluding the solvent. ..
  • the light-moisture-curable resin composition may contain additives such as wax particles and metal-containing particles in addition to the components described above.
  • a radical-polymerizable compound, a moisture-curable urethane resin, a photopolymerization initiator, and, if necessary, a filling material are blended using a mixer.
  • a method of mixing with other additives such as an agent and a colorant.
  • the mixer include a homodisper, a homomixer, a universal mixer, a planetary mixer (planetary stirrer), a kneader, and three rolls.
  • the photomoisture curable resin composition of the present invention is cured and used as a cured product. Specifically, the photo-moisture-curable resin composition of the present invention is first photo-cured by light irradiation to, for example, a B-stage state (semi-cured state), and then cured by moisture to be fully cured. good.
  • the photo-moisture-curable resin composition is arranged between the adherends, and when the adherends are bonded to each other, the photo-moisture-curable resin composition is applied to one of the adherends, and then photo-cured by light irradiation.
  • the other adherend is superposed on the photo-curable resin composition in the photocured state, and the adherends are temporarily bonded with an appropriate adhesive force (initial adhesive force). good.
  • an appropriate adhesive force initial adhesive force.
  • the light irradiated during photocuring is not particularly limited as long as it is light that cures the radically polymerizable compound, but ultraviolet rays are preferable. Further, when the photo-moisture-curable resin composition is completely cured by moisture after photo-curing, it may be left in the air for a predetermined time.
  • the photomoisture curable resin composition of the present invention is preferably used as an adhesive for electronic parts. Therefore, the adherend is not particularly limited, but is preferably various electronic components constituting the electronic device. Examples of various electronic components constituting the electronic device include various electronic components provided on the display element, a substrate on which the electronic components are mounted, and a semiconductor chip.
  • the material of the adherend may be any of metal, glass, plastic and the like.
  • the shape of the adherend is not particularly limited, and examples thereof include a film shape, a sheet shape, a plate shape, a panel shape, a tray shape, a rod (rod shape) shape, a box shape, and a housing shape. ..
  • an example of a method for manufacturing an electronic device using the adhesive for electronic parts includes a step of heating the adhesive for electronic parts and a step of applying the heated adhesive for electronic parts to electronic parts. It is a manufacturing method of an electronic device including.
  • the temperature in the heating step is, for example, 130 ° C. or lower, preferably 100 ° C. or lower, more preferably 80 ° C. or lower, and preferably 30 ° C. or higher.
  • the photomoisture curable resin composition of the present invention is preferably used for joining electronic components constituting electronic devices.
  • the photomoisture curable resin composition of the present invention is also preferably used for joining an electronic component to another component. With these configurations, the electronic component will have the cured product of the present invention.
  • the photo-moisture-curable resin composition of the present invention is used inside an electronic device or the like to obtain, for example, a substrate and a substrate by adhering them to each other to obtain an assembled part.
  • the assembly component thus obtained has a first substrate, a second substrate, and a cured product of the present invention, and at least a part of the first substrate is at least a part of the second substrate. Is joined via a cured product. It should be noted that preferably, at least one electronic component is attached to each of the first substrate and the second substrate.
  • each thermosetting resin composition obtained in Examples and Comparative Examples was applied to a polycarbonate substrate (length 50 mm, width 25 mm, thickness 2 mm) using a dispensing device.
  • the coating was applied so as to have a length of 1.0 ⁇ 0.1 mm, a length of 25 ⁇ 0.2 mm, and a thickness of 0.4 ⁇ 0.1 mm.
  • the photo-moisture-curable resin compositions obtained in Examples 1, 2, 5 to 8 and Comparative Example 1 were applied after heating at 50 ° C. for 1 hour, and the photo-moisture-curable resin compositions obtained in Example 3 were applied.
  • the sex resin composition was applied after heating at 120 ° C.
  • the photo-moisture-curable resin compositions obtained in Example 4 and Comparative Example 2 were applied at room temperature.
  • the photo-moisture-curable resin composition was photocured by irradiating with UV-LED (wavelength 365 nm) at 1000 mJ / cm 2 of ultraviolet rays. The thickness immediately after irradiation with ultraviolet rays was measured and used as the thickness before the load was applied.
  • UV-LED wavelength 365 nm
  • 0.04 MPa is applied to the cured product in the photocured state. The load of was applied for 10 seconds.
  • Thickness change rate (%) (thickness immediately after light irradiation-thickness after load action) / (thickness immediately after light irradiation) x 100
  • the thickness of the cured product in the photocured state was measured by observing with a digital microscope (trade name "KH-7800", manufactured by Hirox Corporation).
  • ⁇ Storage elastic modulus of the cured product in the photo-cured state> 3 g of the light-moisture-curable resin composition was set in a UV irradiation rheometer (trade name: HAAKE MARS 40/60, manufactured by Thermo Fisher Scientific). Thirty seconds after the setting was completed, the film was photocured by irradiating with an ultraviolet ray of 1000 mJ / cm 2 using a UV-LED lamp. Sixty seconds after the irradiation with ultraviolet rays, the shear storage elastic modulus was measured under the condition of frequency F 1.6 Hz under the condition of 25 ° C. and 50 RH% environment. The UV-LED lamp used had a wavelength of 365 nm.
  • the dynamic viscoelasticity was measured in the range of -100 ° C to 150 ° C by a dynamic viscoelasticity measuring device (manufactured by IT Measurement Control Co., Ltd., trade name "DVA-200"), and the room temperature ( The storage elastic modulus at 25 ° C.) was determined.
  • the measurement conditions were that the deformation mode was pulled, the set strain was 1%, the measurement frequency was 1 Hz, and the temperature rising rate was 5 ° C./min.
  • Viscosity> The viscosities of the light-moisture-curable resin compositions obtained in Examples and Comparative Examples were measured using a coplate type viscometer (“VISCOMETER TV-22” manufactured by Toki Sangyo Co., Ltd.) at a rotation speed of 1 rpm at 25 ° C. Measured under conditions.
  • each of the photomoisture-curable resin compositions 10 obtained in Examples and Comparative Examples had a width of 0.4 ⁇ 0.05 mm, a length of 25 ⁇ 2 mm, and a length of 25 ⁇ 2 mm. It was applied to the glass plate 11 so as to have a thickness of 0.2 ⁇ 0.05 mm.
  • the curable resin composition 10 was photocured by irradiating with UV-LED (wavelength 365 nm) at 1000 mJ / cm 2 of ultraviolet rays.
  • the glass plates 12 were overlapped and a weight of 100 g was allowed to stand on the glass plates 12 for 10 seconds, so that a load of 0.04 MPa was applied to the cured product in the photocured state for 10 seconds. Then, 100 g of the weight was removed, and the mixture was left to stand in an environment of 23 ° C. and 50 RH% for 3 days to be moisture-cured (mainly cured) to prepare an evaluation sample 13.
  • the prepared evaluation sample 13 is pulled at a speed of 12 mm / sec in the shearing direction S using a tensile tester at 100 ° C. in a 50% RH atmosphere to determine the strength at which the glass plate 11 and the glass plate 12 are peeled off.
  • the adhesive strength at 100 ° C. was measured. The measured adhesive strength was evaluated according to the following evaluation criteria.
  • An evaluation sample 13 was prepared in the same manner as in the above-mentioned evaluation of high-temperature adhesiveness, except that the glass plate 11 was changed to a polycarbonate plate. The evaluation sample was subjected to 1000 cycles of a thermal cycle test in which 40 ° C. for 30 minutes and 80 ° C. for 30 minutes were repeated. For each evaluation sample before and after the cold test, the polycarbonate plate and the glass plate 12 were pulled together in the shearing direction S at a speed of 12 mm / sec using a tensile tester under a 25 ° C. and 50% RH atmosphere. The strength at the time of peeling was measured, and the adhesive strength at 25 ° C. was measured.
  • each photomoisture-curable resin composition obtained in Examples and Comparative Examples the coatability at room temperature, 50 ° C., and 120 ° C. was evaluated using an air dispenser (ML-5000XII, manufactured by Musashi Engineering Co., Ltd.). did.
  • ML-5000XII manufactured by Musashi Engineering Co., Ltd.
  • each light-moisture-curable resin composition is filled in a 10 mL syringe (manufactured by Musashi Engineering Co., Ltd.), left in an oven set at each temperature for 1 hour, and then standard discharge conditions as follows. It was evaluated whether or not fine wire application was possible.
  • the moisture-curable urethane resin used in each Example and Comparative Example was prepared according to the following Synthesis Examples 1 to 4.
  • the moisture-curable urethane resin 1 having a polyester skeleton was produced according to the following Synthesis Example 1.
  • Synthesis Example 1 As a polyol compound, a separable volume of 100 parts by mass of a polyester polyol (polycondensate of adipic acid and 1,6 hexanediol and an alcohol at the end) and 0.01 parts by mass of dibutyltin dilaurate in a volume of 500 mL. It was placed in a flask, stirred under vacuum (20 mmHg or less) at 100 ° C. for 30 minutes, and mixed.
  • the moisture-curable urethane resin 2 having a polyester skeleton was produced according to the following Synthesis Example 2.
  • Synthesis Example 2 As a polyol compound, 100 parts by mass of a polyester polyol (a polyester polyol obtained mainly containing adipic acid, 1,6-hexanediol and isophthalic acid, an aromatic ring concentration of 15% by mass, a weight average molecular weight of 1000) and 0.01 mass by mass. A portion of dibutyltin dilaurate was placed in a 500 mL separable flask. The mixture was stirred and mixed at 100 ° C. for 30 minutes under vacuum (20 mmHg or less).
  • the moisture-curable urethane resin 1 having a polyether skeleton was produced according to the following Synthesis Example 3.
  • Synthesis Example 3 As a polyol compound, 100 parts by mass of polypropylene glycol (manufactured by Asahi Glass Co., Ltd., trade name "EXCENOL 2020") and 0.01 parts by mass of dibutyltin dilaurate are placed in a 500 mL separable flask and placed under vacuum (20 mmHg or less). The mixture was stirred at 100 ° C. for 30 minutes and mixed.
  • the moisture-curable urethane resin 2 having a polyether skeleton was prepared according to the following Synthesis Example 4.
  • Synthesis Example 4 100 parts by mass of polytetramethylene ether glycol (manufactured by Mitsubishi Chemical Corporation, trade name "PTMG-2000”) and 0.01 parts by mass of dibutyltin dilaurate as a polyol compound are placed in a 500 mL separable flask and placed under vacuum. (20 mmHg or less), stirred at 100 ° C. for 30 minutes and mixed.
  • Examples 1 to 8, Comparative Examples 1 and 2 According to the compounding ratios shown in Table 1, each material is stirred at a temperature of 50 ° C. with a planetary stirrer (Sinky Co., Ltd., “Awatori Rentaro”), and then at a temperature of 50 ° C. with three ceramic rolls. The mixture was uniformly mixed to obtain a photomoisture-curable resin composition of Examples 1 to 3 and Comparative Examples 1 and 2.
  • the light-moisture-curable resin composition has good high-temperature adhesiveness by containing a moisture-curable urethane resin having a polyester skeleton. Further, it can be seen that when the thickness change rate is 50% or less, the stress relaxation property becomes good and the durability of the adhesive force becomes good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Materials For Photolithography (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

A photo/moisture curable resin composition according to the present invention contains a radically polymerizable compound, a moisture curable urethane resin and a photopolymerization initiator; the moisture curable urethane resin contains a moisture curable urethane resin that has a polyester skeleton; and if a load of 0.04 MPa is applied to a photocured product thereof obtained by means of ultraviolet light irradiation of 1,000 mJ/cm2, the thickness change ratio before and after the application of load is 50% or less.

Description

光湿気硬化性樹脂組成物、電子部品用接着剤、電子部品の製造方法及び硬化体Light and moisture curable resin composition, adhesive for electronic parts, manufacturing method of electronic parts and cured product
 本発明は、光湿気硬化性樹脂組成物、電子部品用接着剤、電子部品用接着剤を用いた電子部品の製造方法、及び光湿気硬化性樹脂組成物の硬化体に関する。 The present invention relates to a thermosetting resin composition, an adhesive for electronic parts, a method for manufacturing an electronic component using an adhesive for electronic components, and a cured product of a thermosetting resin composition.
 近年、薄型、軽量、低消費電力等の特徴を有する表示素子として、液晶表示素子、有機EL表示素子等が広く利用されている。これらの表示素子では、通常、液晶又は発光層の封止、基板、光学フィルム、保護フィルム等の各種部材の接着等に光硬化型樹脂組成物が用いられている。
 ところで、携帯電話、携帯ゲーム機等、各種表示素子付きモバイル機器が普及している現代において、表示素子の小型化は最も求められている課題であり、小型化の手法として、画像表示部を狭額縁化することが行われている(以下、狭額縁設計ともいう)。しかしながら、狭額縁設計においては、充分に光の届かない部分に光硬化型樹脂組成物が塗布されることがあり、その結果、光の届かない部分に塗布された光硬化型樹脂組成物は硬化が不充分となるという問題があった。そこで、光の届かない部分に塗布された場合でも充分に硬化できる樹脂組成物として光熱硬化型樹脂組成物を用い、光硬化と熱硬化とを併用することも行われているが、高温での加熱により素子等に悪影響を与えるおそれがあった。
In recent years, liquid crystal display elements, organic EL display elements, and the like have been widely used as display elements having features such as thinness, light weight, and low power consumption. In these display elements, a photocurable resin composition is usually used for sealing a liquid crystal or a light emitting layer, adhering various members such as a substrate, an optical film, and a protective film.
By the way, in the present age when mobile devices with various display elements such as mobile phones and portable game machines are widely used, miniaturization of display elements is the most sought after issue, and as a method of miniaturization, the image display unit is narrowed. It is being made into a frame (hereinafter, also referred to as a narrow frame design). However, in the narrow frame design, the photocurable resin composition may be applied to a portion where light does not reach sufficiently, and as a result, the photocurable resin composition applied to a portion where light does not reach is cured. There was a problem that it became insufficient. Therefore, a photothermosetting resin composition is used as a resin composition that can be sufficiently cured even when it is applied to a portion where light does not reach, and both photocuring and thermosetting are used in combination, but at a high temperature. There was a risk that heating would adversely affect the elements and the like.
 また、近年、半導体チップ等の電子部品では、高集積化、小型化が要求されており、例えば、接着剤層を介して複数の薄い半導体チップを接合して半導体チップの積層体とすることが行われている。このような半導体チップの積層体は、例えば、一方の半導体チップ上に接着剤を塗布した後、該接着剤を介して他方の半導体チップを積層し、その後、接着剤を硬化させる方法、一定の間隔を空けて保持した半導体チップ間に接着剤を充填し、その後、接着剤を硬化させる方法等により製造されている。同様に、狭額縁設計でも、塗布した接着剤を半硬化した後に全硬化させる方法が検討されている。したがって、小型半導体チップの積層や、狭額縁設計の表示素子等の電子部品の接着においては、接着剤として、光湿気硬化型樹脂組成物の使用が検討されている。 Further, in recent years, electronic components such as semiconductor chips are required to be highly integrated and miniaturized. For example, a plurality of thin semiconductor chips may be joined via an adhesive layer to form a laminate of semiconductor chips. It is done. Such a laminate of semiconductor chips is, for example, a method of applying an adhesive on one semiconductor chip, laminating the other semiconductor chip via the adhesive, and then curing the adhesive. It is manufactured by a method of filling an adhesive between semiconductor chips held at intervals and then curing the adhesive. Similarly, in the narrow frame design, a method of semi-curing the applied adhesive and then fully curing it is being studied. Therefore, the use of a light-moisture-curable resin composition as an adhesive has been studied for laminating small semiconductor chips and for adhering electronic components such as display elements having a narrow frame design.
 例えば、特許文献1には、硬化物の柔軟性及び高温高湿環境下における信頼性に優れる、光湿気硬化型樹脂組成物、及び電子部品用接着剤が開示されている。 For example, Patent Document 1 discloses a light-moisture-curable resin composition and an adhesive for electronic components, which are excellent in flexibility of a cured product and reliability in a high-temperature and high-humidity environment.
国際公開第2016/076407号公報International Publication No. 2016/076407
 ところで、小型電子部品の接着や狭額縁設計においては、接着強度のみならず、接着力の耐久性も要求されることがある。
 具体的には、半導体チップ、表示素子などの電子部品は、外部加熱や、動作時の電子部品自体の発熱により、その組み立て工程、使用時などにおいて80℃程度の高温下に曝されることがある。また、電子部品は、使用環境によっては0℃以下の低温化に曝されることもある。一方で、接着剤により異種材料同士を接着する場合、異種材料は互いに熱膨張率が異なるため、上記のように温度変化が発生すると、組み立て工程及び使用時において、接着剤に大きな歪みが発生することがある。このような歪みが繰り返し発生すると、接着剤が部分的に破断するなどして接着剤の接着力が低下する。したがって、歪みが繰り返し発生した後でも応力緩和によって接着力の低下を抑え、接着力の耐久性を高めることが要求されることがある。
By the way, in the adhesion of small electronic components and the design of a narrow frame, not only the adhesive strength but also the durability of the adhesive force may be required.
Specifically, electronic components such as semiconductor chips and display elements may be exposed to high temperatures of about 80 ° C. during the assembly process and use due to external heating and heat generation of the electronic components themselves during operation. be. In addition, electronic components may be exposed to a low temperature of 0 ° C. or lower depending on the usage environment. On the other hand, when different materials are bonded to each other with an adhesive, the different materials have different coefficients of thermal expansion. Therefore, when the temperature changes as described above, the adhesive is greatly distorted during the assembly process and use. Sometimes. When such distortion occurs repeatedly, the adhesive is partially broken and the adhesive strength of the adhesive is reduced. Therefore, it may be required to suppress the decrease in the adhesive force by stress relaxation and enhance the durability of the adhesive force even after the strain is repeatedly generated.
 さらに、近年、半導体チップ、表示素子などの電子部品が、外部加熱や、動作時の電子部品自体の発熱により高温にさらされた場合であっても、電子部品を強固に接着するための十分な接着力も求められている。 Furthermore, in recent years, even when electronic components such as semiconductor chips and display elements are exposed to high temperatures due to external heating or heat generation of the electronic components themselves during operation, it is sufficient to firmly bond the electronic components. Adhesive strength is also required.
 特許文献1に開示される光湿気硬化性樹脂組成物では、適度な柔軟性を有する硬化物を得られることから、応力緩和性に優れ、接着力の耐久性を有している。しかしながら、特許文献1に開示される光湿気硬化性樹脂組成物では、高温での接着力が十分でないという問題がある。 The photo-moisture-curable resin composition disclosed in Patent Document 1 is excellent in stress relaxation property and has adhesive strength durability because a cured product having appropriate flexibility can be obtained. However, the photo-moisture-curable resin composition disclosed in Patent Document 1 has a problem that the adhesive strength at a high temperature is not sufficient.
 そこで、本発明の課題は、接着力の耐久性と、高温での十分な接着力との両方に優れた光湿気硬化性樹脂組成物、及び電子部品用接着剤を提供することである。 Therefore, an object of the present invention is to provide a photo-moisture-curable resin composition and an adhesive for electronic parts, which are excellent in both durability of adhesive strength and sufficient adhesive strength at high temperature.
 本発明者らは、鋭意検討の結果、従来の光湿気硬化性樹脂組成物の高温接着力を向上させるため、湿気硬化性ウレタン樹脂の検討を行った。そして、本発明者らは、湿気硬化性ウレタン樹脂としてポリエステル骨格を有する湿気硬化性ウレタン樹脂を配合することにより、高温接着力を大きく向上できることを見出した。
 一方、本発明者らは、湿気硬化性ウレタン樹脂としてポリエステル骨格を有する湿気硬化性ウレタン樹脂を用いた場合、十分な接着力の耐久性を得ることができないという問題を見出した。
 そこで、本発明者らは、鋭意検討の結果、光硬化した状態の硬化物に対して、荷重を印加する前後の厚さ変化率を50%以下とすることにより、高温接着力と、接着力の耐久性とを高いレベルで両立することができることを見出し、本発明を完成させた。
As a result of diligent studies, the present inventors have studied a moisture-curable urethane resin in order to improve the high-temperature adhesive strength of the conventional photomoisture-curable resin composition. Then, the present inventors have found that the high temperature adhesive force can be greatly improved by blending the moisture-curable urethane resin having a polyester skeleton as the moisture-curable urethane resin.
On the other hand, the present inventors have found that when a moisture-curable urethane resin having a polyester skeleton is used as the moisture-curable urethane resin, it is not possible to obtain sufficient durability of adhesive strength.
Therefore, as a result of diligent studies, the present inventors set the rate of change in thickness of the photocured product before and after applying a load to 50% or less, thereby achieving high-temperature adhesive strength and adhesive strength. We have found that it is possible to achieve both the durability of the above and the durability at a high level, and completed the present invention.
 すなわち、本発明は、以下の[1]~[30]を提供する。
[1]ラジカル重合性化合物と、湿気硬化性ウレタン樹脂と、光重合開始剤とを含み、
 前記湿気硬化性ウレタン樹脂は、ポリエステル骨格を有する湿気硬化性ウレタン樹脂を含み、
 紫外線を1000mJ/cm照射することにより光硬化した状態の硬化物に対して、0.04MPaの荷重を作用させたときに、荷重前後の厚さ変化率が50%以下である、光湿気硬化性樹脂組成物。
[2]25℃、1rpmにおける粘度が3000Pa・s以下である、上記[1]に記載の光湿気硬化性樹脂組成物。
[3]前記湿気硬化性ウレタン樹脂は、ポリエーテル骨格を有する湿気硬化性ウレタン樹脂をさらに含む、上記[1]又は[2]に記載の光湿気硬化性樹脂組成物。
[4]前記ポリエーテル骨格を有する湿気硬化性ウレタン樹脂が、1分子中に2個以上の水酸基を有するポリエーテルポリオールと、1分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物とを反応させて得られる上記[3]に記載の光湿気硬化性樹脂組成物。
[5]前記ポリエーテルポリオールが、以下の式(1)で表される構造を有する上記[4]に記載の光湿気硬化性樹脂組成物。
Figure JPOXMLDOC01-appb-C000001

 式(1)中、Rは、水素原子、メチル基、及びエチル基のいずれかを表し、lは、0~5の整数、mは、1~500の整数、nは、1~10の整数である。
[6]前記ポリエーテルポリオールが、ポリプロピレングリコール、テトラヒドロフラン化合物の開環重合化合物、及び、メチル基を置換基として有するテトラヒドロフラン化合物の開環重合化合物からなる群から選択される少なくとも1種である上記[4]に記載の光湿気硬化性樹脂組成物。
[7]前記ポリエーテルポリオールが、ポリプロピレングリコールである上記[4]記載の光湿気硬化性樹脂組成物。
[8]前記ポリエステル骨格を有する湿気硬化性ウレタン樹脂は、分子内にポリエーテル骨格を有する、上記[1]又は[2]に記載の光湿気硬化性樹脂組成物。
[9]前記光湿気硬化性樹脂組成物は、スペーサ粒子をさらに含む、上記[1]~[8]のいずれか1項に記載の光湿気硬化性樹脂組成物。
[10]前記光湿気硬化性樹脂組成物100質量%中、ラジカル重合性化合物の含有量が3質量%以上である、上記[1]~[9]のいずれか1項に記載の光湿気硬化性樹脂組成物。
[11]前記光重合開始剤は、アシルフォスフィンオキサイド系骨格を有する化合物、又はα-アミノアルキルフェノン系骨格を有する化合物である、上記[1]~[10]のいずれか1項に記載の光湿気硬化性樹脂組成物。
[12]前記光硬化した状態の硬化物の25℃における貯蔵弾性率が10kPa以上である、上記[1]~[11]のいずれか1項に記載の光湿気硬化性樹脂組成物。
[13]前記光硬化した状態の硬化物を23℃、50RH%の環境下に3日間静置することにより得られる硬化物の25℃における貯蔵弾性率が1MPa以上である、上記[1]~[12]のいずれか1項に記載の光湿気硬化性樹脂組成物。
[14]前記ポリエステル骨格を有する湿気硬化性ウレタン樹脂が、1分子中に2個以上の水酸基を有するポリエステルポリオールと、1分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物とを反応させることにより得られる、上記[1]~[13]のいずれか1項に記載の光湿気硬化性樹脂組成物。
[15]前記ポリエステルポリオールが、フタル酸、テレフタル酸、イソフタル酸、及びアジピン酸からなる群なら選択される少なくとも1種の多価カルボン酸と、1,6-ヘキサンジオール及び1,4-ブタンジオールからなる群なら選択される少なくとも1種のポリオールのエステルである上記[14]に記載の光湿気硬化性樹脂組成物。
[16]前記ラジカル重合性化合物が、(メタ)アクリル化合物を含む上記[1]~[15]のいずれか1項に記載の光湿気硬化性樹脂組成物。
[17]前記(メタ)アクリル化合物が、単官能の(メタ)アクリル化合物を含む上記[16]に記載の光湿気硬化性樹脂組成物。
[18]前記(メタ)アクリル化合物が、さらに多官能の(メタ)アクリル化合物を含む上記[17]に記載の光湿気硬化性樹脂組成物。
[19]前記多官能の(メタ)アクリル化合物の含有量が、ラジカル重合性化合物全量に対して、1質量%以上50質量%以下である上記[18]に記載の光湿気硬化性樹脂組成物。
[20]前記単官能の(メタ)アクリル化合物が(メタ)アクリル酸エステル化合物である上記[17]~[19]の少なくともいずれか1項に記載の光湿気硬化性樹脂組成物。
[21]前記光湿気硬化性樹脂組成物100質量%中、前記ラジカル重合性化合物の含有量が50質量%以下である、上記[1]~[20]のいずれか1項に記載の光湿気硬化性樹脂組成物。
[22]前記光湿気硬化性樹脂組成物100質量%中、前記湿気硬化性ウレタン樹脂の含有量が、45質量%以上95質量%以下である、上記[1]~[21]のいずれか1項に記載の光湿気硬化性樹脂組成物。
[23]前記光湿気硬化性樹脂組成物100質量%中、前記ポリエステル骨格を有する湿気硬化性ウレタン樹脂の含有量が、25質量%以上95質量%以下である上記[1]~[22]のいずれか1項に記載の光湿気硬化性樹脂組成物。
[24]前記光湿気硬化性樹脂組成物における前記光重合開始剤の含有量が、ラジカル重合性化合物及び湿気硬化性ウレタン樹脂の合計量100質量部に対して、0.01質量部以上10質量部以下である上記[1]~[23]のいずれか1項に記載の光湿気硬化性樹脂組成物。
[25]前記厚さ変化率が、5%以上である上記[1]~[24]のいずれか1項に記載の光湿気硬化性樹脂組成物。
[26]上記[1]~[25]のいずれか1項に記載の光湿気硬化性樹脂組成物からなる、電子部品用接着剤。
[27]上記[26]に記載の電子部品用接着剤を加熱する工程と、
 前記電子部品用接着剤を電子部品に塗布する工程と、を含む、電子機器の製造方法。
[28]上記[26]に記載の電子部品用接着剤を用いて、電子部品同士、又は電子部品と他の部材を接着させる方法。
[29]上記[1]~[25]のいずれか1項に記載の光湿気硬化性樹脂組成物の硬化体。
[30]上記[29]に記載の硬化体を備える電子機器。
That is, the present invention provides the following [1] to [30].
[1] Contains a radically polymerizable compound, a moisture-curable urethane resin, and a photopolymerization initiator.
The moisture-curable urethane resin contains a moisture-curable urethane resin having a polyester skeleton.
When a load of 0.04 MPa is applied to a cured product that has been photocured by irradiating 1000 mJ / cm 2 of ultraviolet rays, the rate of change in thickness before and after the load is 50% or less. Sex resin composition.
[2] The photomoisture-curable resin composition according to the above [1], which has a viscosity of 3000 Pa · s or less at 25 ° C. and 1 rpm.
[3] The photo-moisture-curable resin composition according to the above [1] or [2], wherein the moisture-curable urethane resin further contains a moisture-curable urethane resin having a polyether skeleton.
[4] The moisture-curable urethane resin having a polyether skeleton reacts a polyether polyol having two or more hydroxyl groups in one molecule with a polyisocyanate compound having two or more isocyanate groups in one molecule. The photomoisture-curable resin composition according to the above [3].
[5] The photomoisture curable resin composition according to the above [4], wherein the polyether polyol has a structure represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001

In formula (1), R represents any of a hydrogen atom, a methyl group, and an ethyl group, l is an integer of 0 to 5, m is an integer of 1 to 500, and n is an integer of 1 to 10. Is.
[6] The above-mentioned [6], wherein the polyether polyol is at least one selected from the group consisting of polypropylene glycol, a ring-opening polymerization compound of a tetrahydrofuran compound, and a ring-opening polymerization compound of a tetrahydrofuran compound having a methyl group as a substituent. 4] The photomoisture curable resin composition according to.
[7] The photomoisture-curable resin composition according to the above [4], wherein the polyether polyol is polypropylene glycol.
[8] The photo-moisture-curable resin composition according to the above [1] or [2], wherein the moisture-curable urethane resin having a polyester skeleton has a polyether skeleton in the molecule.
[9] The photo-moisture-curable resin composition according to any one of [1] to [8] above, wherein the photo-moisture-curable resin composition further contains spacer particles.
[10] The photo-moisture curing according to any one of [1] to [9] above, wherein the content of the radically polymerizable compound in 100% by mass of the photo-moisture-curable resin composition is 3% by mass or more. Sex resin composition.
[11] The item according to any one of [1] to [10] above, wherein the photopolymerization initiator is a compound having an acylphosphine oxide-based skeleton or a compound having an α-aminoalkylphenone-based skeleton. Light moisture curable resin composition.
[12] The photomoisture-curable resin composition according to any one of [1] to [11] above, wherein the photocured cured product has a storage elastic modulus of 10 kPa or more at 25 ° C.
[13] The storage elastic modulus at 25 ° C. of the cured product obtained by allowing the cured product in the photocured state to stand in an environment of 23 ° C. and 50 RH% for 3 days is 1 MPa or more. The photomoisture curable resin composition according to any one of [12].
[14] The moisture-curable urethane resin having a polyester skeleton reacts a polyester polyol having two or more hydroxyl groups in one molecule with a polyisocyanate compound having two or more isocyanate groups in one molecule. The photo-moisture-curable resin composition according to any one of the above [1] to [13].
[15] At least one polyvalent carboxylic acid selected if the polyester polyol is in the group consisting of phthalic acid, terephthalic acid, isophthalic acid, and adipic acid, and 1,6-hexanediol and 1,4-butanediol. The photomoisture-curable resin composition according to the above [14], which is an ester of at least one polyol selected from the group consisting of.
[16] The photomoisture-curable resin composition according to any one of the above [1] to [15], wherein the radically polymerizable compound contains a (meth) acrylic compound.
[17] The thermosetting resin composition according to the above [16], wherein the (meth) acrylic compound contains a monofunctional (meth) acrylic compound.
[18] The thermosetting resin composition according to the above [17], wherein the (meth) acrylic compound further contains a polyfunctional (meth) acrylic compound.
[19] The thermosetting resin composition according to the above [18], wherein the content of the polyfunctional (meth) acrylic compound is 1% by mass or more and 50% by mass or less with respect to the total amount of the radically polymerizable compound. ..
[20] The photomoisture-curable resin composition according to at least one of the above [17] to [19], wherein the monofunctional (meth) acrylic compound is a (meth) acrylic acid ester compound.
[21] The light humidity according to any one of the above [1] to [20], wherein the content of the radically polymerizable compound is 50% by mass or less in 100% by mass of the photomoisture-curable resin composition. Curable resin composition.
[22] Any one of the above [1] to [21], wherein the content of the moisture-curable urethane resin in 100% by mass of the photo-moisture-curable resin composition is 45% by mass or more and 95% by mass or less. The photomoisture curable resin composition according to the section.
[23] The above [1] to [22], wherein the content of the moisture-curable urethane resin having a polyester skeleton is 25% by mass or more and 95% by mass or less in 100% by mass of the photo-moisture-curable resin composition. The photo-moisture-curable resin composition according to any one of the following items.
[24] The content of the photopolymerization initiator in the photo-moisture-curable resin composition is 0.01 parts by mass or more and 10 parts by mass with respect to 100 parts by mass of the total amount of the radical-polymerizable compound and the moisture-curable urethane resin. The photo-moisture-curable resin composition according to any one of the above [1] to [23].
[25] The photomoisture-curable resin composition according to any one of the above [1] to [24], wherein the thickness change rate is 5% or more.
[26] An adhesive for electronic components comprising the photomoisture-curable resin composition according to any one of the above [1] to [25].
[27] The step of heating the adhesive for electronic components according to the above [26], and
A method for manufacturing an electronic device, which comprises a step of applying the adhesive for an electronic component to an electronic component.
[28] A method of adhering electronic components to each other or between an electronic component to another member by using the adhesive for electronic components according to the above [26].
[29] The cured product of the photomoisture-curable resin composition according to any one of the above [1] to [25].
[30] An electronic device comprising the cured product according to the above [29].
 本発明では、接着力の耐久性と、高温での十分な接着力との両方に優れた光湿気硬化性樹脂組成物、及び電子部品用接着剤を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a photomoisture-curable resin composition and an adhesive for electronic parts, which are excellent in both durability of adhesive strength and sufficient adhesive strength at high temperature.
接着性試験方法を示す概略図であり、図1(a)が平面図、図1(b)が側面図である。It is the schematic which shows the adhesiveness test method, FIG. 1A is a plan view, and FIG. 1B is a side view.
 以下、本発明について詳細に説明する。
[光湿気硬化性樹脂組成物]
 本発明の光湿気硬化性樹脂組成物は、ラジカル重合性化合物と、湿気硬化性ウレタン樹脂と、光重合開始剤とを含み、紫外線を1000mJ/cm照射することにより光硬化した状態の硬化物に対して、0.04MPaの荷重を作用させたときに、荷重前後の厚さ変化率が50%以下である。
Hereinafter, the present invention will be described in detail.
[Light moisture curable resin composition]
The photo-moisture-curable resin composition of the present invention contains a radical-polymerizable compound, a moisture-curable urethane resin, and a photopolymerization initiator, and is a cured product in a state of being photo-cured by irradiating with ultraviolet rays at 1000 mJ / cm 2. On the other hand, when a load of 0.04 MPa is applied, the thickness change rate before and after the load is 50% or less.
 本発明の光湿気硬化性樹脂組成物において、湿気硬化性ウレタン樹脂は、ポリエステル骨格を有する湿気硬化性ウレタン樹脂を含む。本発明の光湿気硬化性樹脂組成物は、ポリエステル骨格を有するウレタンプレポリマーを含むことで、高温環境下での接着力を高めることができる。
 また、本発明の光湿気硬化性樹脂組成物は、光硬化した状態の硬化物に対して、荷重を印加する前後の厚さ変化率を50%以下とすることにより、応力緩和性が良好で接着力の耐久性を高めることができ、例えば高温環境下と低温環境下に繰り返し配置されても、一定の接着力を維持できる。荷重を印加する前後の厚さ変化率は、好ましくは45%以下であり、より好ましくは40%以下である。また、高温での接着力を高めやすくなる観点から、厚さ変化率は、好ましくは5%以上であり、より好ましくは10%以上である。
In the photo-moisture-curable resin composition of the present invention, the moisture-curable urethane resin includes a moisture-curable urethane resin having a polyester skeleton. The photomoisture-curable resin composition of the present invention can enhance the adhesive strength in a high temperature environment by containing a urethane prepolymer having a polyester skeleton.
Further, the photo-moisture-curable resin composition of the present invention has good stress relaxation property by setting the thickness change rate before and after applying a load to 50% or less with respect to the cured product in the photo-cured state. The durability of the adhesive strength can be enhanced, and a constant adhesive strength can be maintained even if the adhesive strength is repeatedly arranged in a high temperature environment and a low temperature environment, for example. The rate of change in thickness before and after applying the load is preferably 45% or less, more preferably 40% or less. Further, from the viewpoint of easily increasing the adhesive force at high temperature, the thickness change rate is preferably 5% or more, more preferably 10% or more.
(光硬化した状態の硬化物の厚さ変化率)
 光硬化した状態の硬化物とは、光湿気硬化性樹脂組成物を湿気硬化させずに、光硬化させた状態の硬化物を意味する。なお、光硬化した状態の硬化物に対して、荷重を印加する前後の厚さ変化率は、以下の手順により測定するとよい。
<光硬化した状態の硬化物の厚さ変化率>
 光湿気硬化性樹脂組成物を、ディスペンス装置を用いて、ポリカーボネート基板(長さ50mm、幅25mm、厚さ2mm)に線幅1.0±0.1mm、長さ25±0.2mm、及び厚さが0.4±0.1mmとなるように塗布する。塗布完了後1分以内に、UV-LEDランプを用いて、紫外線を1000mJ/cm照射することによって、光湿気硬化性樹脂組成物を光硬化させる。なお、UV-LEDランプの波長は、含まれる光重合開始剤の吸収波長に応じて適宜選択でき、例えば波長365nmのものを用いることができる。紫外線の照射直後に、25℃の環境下で光硬化した状態の硬化物の上にポリカーボネート基板と同じサイズのガラス基板を重ね、その上に100gの錘を10秒間静置させることで、光硬化した状態の硬化物全体に対して0.04MPaの荷重を10秒間作用させる。光照射直後と荷重作用後において、デジタルマイクロスコープを用いて光硬化した状態の硬化物の中央部の厚さを測定し、以下のように厚さ変化率(%)を測定する。
厚さ変化率(%)=(光照射直後の厚さ-荷重作用後の厚さ)/(光照射直後の厚さ)×100
(Rate of change in thickness of cured product in photo-cured state)
The cured product in a photocured state means a cured product in a state in which the photo-moisture-curable resin composition is photo-cured without being moisture-cured. The thickness change rate before and after applying a load to the cured product in the photocured state may be measured by the following procedure.
<Rate of change in thickness of cured product in photo-cured state>
A line width of 1.0 ± 0.1 mm, a length of 25 ± 0.2 mm, and a thickness of a light-moisture-curable resin composition are applied to a polycarbonate substrate (length 50 mm, width 25 mm, thickness 2 mm) using a dispensing device. Apply so that the size is 0.4 ± 0.1 mm. Within 1 minute after the completion of coating, the photo-moisture-curable resin composition is photocured by irradiating it with ultraviolet rays at 1000 mJ / cm 2 using a UV-LED lamp. The wavelength of the UV-LED lamp can be appropriately selected according to the absorption wavelength of the photopolymerization initiator contained therein, and for example, one having a wavelength of 365 nm can be used. Immediately after irradiation with ultraviolet rays, a glass substrate of the same size as the polycarbonate substrate is placed on a cured product that has been photocured in an environment of 25 ° C., and a 100 g weight is allowed to stand on it for 10 seconds to be photocured. A load of 0.04 MPa is applied to the entire cured product in this state for 10 seconds. Immediately after light irradiation and after the load is applied, the thickness of the central part of the cured product in the photocured state is measured using a digital microscope, and the thickness change rate (%) is measured as follows.
Thickness change rate (%) = (thickness immediately after light irradiation-thickness after load action) / (thickness immediately after light irradiation) x 100
(光硬化した状態の硬化物の貯蔵弾性率)
 本発明の光湿気硬化性樹脂組成物は、光硬化した状態の硬化物の25℃における貯蔵弾性率が、例えば2kPa以上、好ましくは10kPa以上であり、より好ましくは15kPa以上であり、さらに好ましくは20kPa以上である。光硬化した状態の硬化物の25℃における貯蔵弾性率を上記下限以上とすることにより、上述した光硬化した状態の硬化物の厚さ変化率を所定の範囲内に調整しやすくなる。
 また、光硬化した状態の硬化物の25℃における貯蔵弾性率の上限は、初期接着力を高める観点から、好ましくは200kPa以下であり、より好ましくは100kPa以下である。
(Storage modulus of cured product in photo-cured state)
The photomoisture-curable resin composition of the present invention has a storage elastic modulus of a cured product in a photocured state at 25 ° C., for example, 2 kPa or more, preferably 10 kPa or more, more preferably 15 kPa or more, still more preferably. It is 20 kPa or more. By setting the storage elastic modulus of the photocured product at 25 ° C. to the above lower limit or more, it becomes easy to adjust the thickness change rate of the photocured product in the above-mentioned photocured state within a predetermined range.
Further, the upper limit of the storage elastic modulus of the photocured cured product at 25 ° C. is preferably 200 kPa or less, more preferably 100 kPa or less, from the viewpoint of increasing the initial adhesive force.
 なお、光硬化した状態の硬化物の25℃における貯蔵弾性率は、以下の手順により測定するとよい。
<光硬化した状態の貯蔵弾性率>
 光湿気硬化性樹脂組成物を、UV照射レオメータ(商品名HAAKE MARS 40/60、Thermo Fisher Scientific社製)に3gセットする。セット完了から30秒後に、UV-LEDランプを用いて紫外線を1000mJ/cm照射することによって光硬化させる。紫外線照射から60秒後に、25℃、50RH%環境下、周波数F=1.6Hzの条件でせん断貯蔵弾性率を測定する。なお、UV-LEDランプの波長は、含まれる光重合開始剤の吸収波長に応じて適宜選択でき、例えば波長365nmのものを用いることができる。
The storage elastic modulus of the photocured cured product at 25 ° C. may be measured by the following procedure.
<Storage elastic modulus in the photo-cured state>
3 g of the light-moisture-curable resin composition is set in a UV irradiation rheometer (trade name: HAAKE MARS 40/60, manufactured by Thermo Fisher Scientific). Thirty seconds after the setting is completed, the UV-LED lamp is used to irradiate with ultraviolet rays at 1000 mJ / cm 2 to photo-cure. After 60 seconds from the irradiation with ultraviolet rays, the shear storage elastic modulus is measured under the condition of frequency F = 1.6 Hz in an environment of 25 ° C. and 50 RH%. The wavelength of the UV-LED lamp can be appropriately selected according to the absorption wavelength of the photopolymerization initiator contained therein, and for example, one having a wavelength of 365 nm can be used.
(光湿気硬化した状態の硬化物の貯蔵弾性率)
 本発明の光湿気硬化性樹脂組成物は、光湿気硬化した硬化物の25℃における貯蔵弾性率が、好ましくは1MPa以上であり、より好ましくは5MPa以上であり、さらに好ましくは10MPa以上である。光湿気硬化した状態の硬化物の25℃における貯蔵弾性率を上記下限以上とすることにより、高温接着力をより一層高めることができる。
 また、光湿気硬化した状態の硬化物の25℃における貯蔵弾性率は、接着力の耐久性を高める観点から例えば700MPa以下であり、好ましくは100MPa以下であり、より好ましくは70MPa以下である。
(Storage modulus of cured product in a light-moisture-cured state)
The photo-moisture-curable resin composition of the present invention has a storage elastic modulus at 25 ° C. of the photo-moisture-cured cured product, preferably 1 MPa or more, more preferably 5 MPa or more, and further preferably 10 MPa or more. By setting the storage elastic modulus of the cured product in the light-moisture-cured state at 25 ° C. to the above lower limit or more, the high-temperature adhesive force can be further enhanced.
The storage elastic modulus of the cured product in a light-moisture-cured state at 25 ° C. is, for example, 700 MPa or less, preferably 100 MPa or less, and more preferably 70 MPa or less from the viewpoint of enhancing the durability of the adhesive force.
 なお、光湿気硬化した状態の硬化物の25℃における貯蔵弾性率は、以下の手順により測定するとよい。
<光湿気硬化した状態の貯蔵弾性率>
 光湿気硬化性樹脂組成物を、幅3mm、長さ30mm、厚み1mmのテフロン(登録商標)型に充填する。充填完了後1分以内に、UV-LEDランプを用いて、紫外線を1000mJ/cm照射することによって、硬化性樹脂組成物を光硬化する。なお、UV-LEDランプの波長は、含まれる光重合開始剤の吸収波長に応じて適宜選択でき、例えば波長365nmのものを用いることができる。その後、23℃、50RH%の環境下に3日間静置する。
 光湿気硬化した状態の硬化物を型から取り出し、動的粘弾性測定装置(IT計測制御社製、商品名「DVA-200」)により、-100℃~150℃の範囲で動的粘弾性を測定し、室温(25℃)における貯蔵弾性率を求める。測定条件は、変形モードが引っ張り、設定ひずみが1%、測定周波数が1Hz、昇温速度が5℃/minとする。
The storage elastic modulus of the cured product in a light-moisture-cured state at 25 ° C. may be measured by the following procedure.
<Storage modulus in a light-moisture-cured state>
The light-moisture-curable resin composition is filled in a Teflon (registered trademark) mold having a width of 3 mm, a length of 30 mm, and a thickness of 1 mm. Within 1 minute after the completion of filling, the curable resin composition is photocured by irradiating with ultraviolet rays at 1000 mJ / cm 2 using a UV-LED lamp. The wavelength of the UV-LED lamp can be appropriately selected according to the absorption wavelength of the photopolymerization initiator contained therein, and for example, one having a wavelength of 365 nm can be used. Then, it is allowed to stand in an environment of 23 ° C. and 50 RH% for 3 days.
Take out the cured product in a light-moisture-cured state from the mold, and use a dynamic viscoelasticity measuring device (manufactured by IT Measurement Control Co., Ltd., trade name "DVA-200") to perform dynamic viscoelasticity in the range of -100 ° C to 150 ° C. Measure and determine the storage elastic modulus at room temperature (25 ° C). The measurement conditions are that the deformation mode is pulled, the set strain is 1%, the measurement frequency is 1 Hz, and the temperature rise rate is 5 ° C./min.
(粘度)
 本発明の光湿気硬化性樹脂組成物は、コーンプレート型粘度計を用いて25℃、1rpmの条件で測定した粘度が、好ましくは3000Pa・s以下であり、より好ましくは2500Pa・s以下であり、さらに好ましくは2000Pa・s以下であり、さらに好ましくは1500Pa・s以下であり、よりさらに好ましくは800Pa・s以下である。25℃における粘度を上記上限以下とすることにより、常温で塗布が可能、又は比較的低い温度での加温により塗布が可能となるため、塗布時の作業性が向上する。上記粘度の下限は、塗布時の過度な濡れ広がりを抑える観点から、50Pa・s以上とすることが好ましい。
(viscosity)
The photomoisture-curable resin composition of the present invention has a viscosity measured at 25 ° C. and 1 rpm using a cone plate viscometer, preferably 3000 Pa · s or less, and more preferably 2500 Pa · s or less. It is more preferably 2000 Pa · s or less, further preferably 1500 Pa · s or less, and even more preferably 800 Pa · s or less. By setting the viscosity at 25 ° C. to the above upper limit or less, coating can be performed at room temperature, or coating can be performed by heating at a relatively low temperature, so that workability during coating is improved. The lower limit of the viscosity is preferably 50 Pa · s or more from the viewpoint of suppressing excessive wet spread during coating.
 上記した厚さ変化率、貯蔵弾性率、及び粘度は、以下で詳述するように、ラジカル重合性化合物、湿気硬化性ウレタン樹脂に使用する各成分の種類及び量、光湿気硬化性樹脂組成物に添加される各成分の種類及び量などを適宜変更することで調整される。 The thickness change rate, storage elastic modulus, and viscosity described above are the radical polymerizable compound, the type and amount of each component used in the moisture-curable urethane resin, and the light-moisture-curable resin composition, as described in detail below. It is adjusted by appropriately changing the type and amount of each component added to.
[ラジカル重合性化合物]
 本発明の光湿気硬化性樹脂組成物は、ラジカル重合性化合物を含む。本発明の光湿気硬化性樹脂組成物は、ラジカル重合性化合物を含むことにより、光硬化性を有するものとなる。
[Radical polymerizable compound]
The photomoisture curable resin composition of the present invention contains a radically polymerizable compound. The photo-moisture-curable resin composition of the present invention has photocurability by containing a radically polymerizable compound.
((メタ)アクリル化合物)
 本発明の光湿気硬化性樹脂組成物は、ラジカル重合性化合物として、(メタ)アクリロイル基を有する化合物(以下、「(メタ)アクリル化合物」として説明する)を含むことが好ましい。
 なお、本明細書において、「(メタ)アクリロイル基」は、アクリロイル基又は(メタ)アクリロイル基を意味し、「(メタ)アクリル」はアクリル又はメタクリルを意味し、他の類似する用語も同様である。
((Meta) acrylic compound)
The photomoisture-curable resin composition of the present invention preferably contains, as a radically polymerizable compound, a compound having a (meth) acryloyl group (hereinafter, referred to as "(meth) acrylic compound").
In addition, in this specification, "(meth) acryloyl group" means acryloyl group or (meth) acryloyl group, "(meth) acrylic" means acrylic or methacrylic, and the same applies to other similar terms. be.
 (メタ)アクリル化合物としては、(メタ)アクリル酸エステル化合物、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート等が挙げられる。上記(メタ)アクリル化合物は、単官能でもよいし、多官能であってもよい。なお、ウレタン(メタ)アクリレートは、残存イソシアネート基を有さないものである。 Examples of the (meth) acrylic compound include (meth) acrylic acid ester compound, epoxy (meth) acrylate, urethane (meth) acrylate, polyester (meth) acrylate and the like. The (meth) acrylic compound may be monofunctional or polyfunctional. The urethane (meth) acrylate does not have a residual isocyanate group.
 上記(メタ)アクリル酸エステル化合物のうち単官能のものとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ステアリル(メタ)アクリレートなどのアルキル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、4-tert-ブチルシクロヘキシル(メタ)アクリレート、3,3,5-トリメチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート等の脂環式構造を有する(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレートなどのアルコキシアルキル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、エトキシエチレングリコール(メタ)アクリレートなどのアルコキシエチレングリコール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、エトキシトリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレートなどのポリオキシエチレン系(メタ)アクリレートなどが挙げられる。 Among the above (meth) acrylic acid ester compounds, monofunctional ones include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl (meth) acrylate. , T-butyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isononyl (meth) acrylate, isodecyl (meth) acrylate, lauryl (meth) acrylate, iso Alkyl (meth) acrylates such as myristyl (meth) acrylate and stearyl (meth) acrylate, cyclohexyl (meth) acrylate, 4-tert-butylcyclohexyl (meth) acrylate, 3,3,5-trimethylcyclohexyl (meth) acrylate, isobornyl (Meta) acrylate having an alicyclic structure such as (meth) acrylate and dicyclopentenyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) Acrylate, hydroxyalkyl (meth) acrylate such as 4-hydroxybutyl (meth) acrylate, alkoxyalkyl (meth) acrylate such as 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-butoxyethyl (meth) acrylate ( Acrylate ethylene glycol (meth) acrylate such as meth) acrylate, methoxyethylene glycol (meth) acrylate, ethoxyethylene glycol (meth) acrylate, methoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth). ) Acrylate, ethylcarbitol (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, ethoxytriethylene glycol (meth) acrylate, polyoxyethylene-based (meth) acrylate such as ethoxypolyethylene glycol (meth) acrylate and the like can be mentioned.
 また、(メタ)アクリル酸エステル化合物は、芳香環を有してもよく、例えば、ベンジル(メタ)アクリレート、2-フェニルエチル(メタ)アクリレート等のフェニルアルキル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等のフェノキシアルキル(メタ)アクリレートなどが挙げられる。さらには、フルオレン骨格、ビフェニル骨格などの複数のベンゼン環を有する(メタ)アクリレートであってもよく、具体的には、フルオレン型(メタ)アクリレート、エトキシ化o-フェニルフェノールアクリレートなどが挙げられる。
 さらには、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシジエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレートなどのフェノキシポリオキシエチレン系(メタ)アクリレートなども挙げられる。
Further, the (meth) acrylic acid ester compound may have an aromatic ring, for example, phenylalkyl (meth) acrylate such as benzyl (meth) acrylate and 2-phenylethyl (meth) acrylate, and phenoxyethyl (meth). Examples thereof include phenyloxyalkyl (meth) acrylates such as acrylates. Further, it may be a (meth) acrylate having a plurality of benzene rings such as a fluorene skeleton and a biphenyl skeleton, and specific examples thereof include a fluorene type (meth) acrylate and an ethoxylated o-phenylphenol acrylate.
Further, phenoxypolyoxyethylene-based (meth) acrylates such as phenoxydiethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, nonylphenoxydiethylene glycol (meth) acrylate, and nonylphenoxypolyethylene glycol (meth) acrylate can also be mentioned.
 さらに、単官能の(メタ)アクリル酸エステル化合物としては、テトラヒドロフルフリル(メタ)アクリレート、アルコキシ化テトラヒドロフルフリル(メタ)アクリレート、環状トリメチロールプロパンフォルマル(メタ)アクリレート、3-エチル-3-オキセタニルメチル(メタ)アクリレート等の複素環式構造を有する(メタ)アクリレート、N-アクリロイルオキシエチルヘキサヒドロフタルイミド等のフタルイミドアクリレート類、各種イミド(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル-2-ヒドロキシプロピルフタレート、グリシジル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルホスフェート等も挙げられる。 Further, as the monofunctional (meth) acrylic acid ester compound, tetrahydrofurfuryl (meth) acrylate, alkoxylated tetrahydrofurfuryl (meth) acrylate, cyclic trimethylolpropanformal (meth) acrylate, 3-ethyl-3- (Meta) acrylates having a heterocyclic structure such as oxetanylmethyl (meth) acrylates, phthalimide acrylates such as N-acryloyloxyethyl hexahydrophthalimide, various imide (meth) acrylates, 2,2,2-trifluoroethyl ( Meta) acrylate, 2,2,3,3-tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-octafluoropentyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, 2 -(Meta) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, 2- (meth) acryloyloxyethyl-2-hydroxypropylphthalate, glycidyl (meth) acrylate, 2-( Meta) Acryloyloxyethyl phosphate and the like can also be mentioned.
 (メタ)アクリル酸エステル化合物のうち2官能のものとしては、例えば、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。 Examples of the bifunctional (meth) acrylic acid ester compound include 1,3-butanediol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,6-hexanediol di (meth). Meta) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, Dimethylol tricyclodecanedi (meth) acrylate, ethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) Acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, ethylene oxide-added bisphenol A di (meth) acrylate, propylene oxide-added bisphenol A di (meth) acrylate, ethylene oxide Additive bisphenol F di (meth) acrylate, dimethylol dicyclopentadienyldi (meth) acrylate, ethylene oxide-modified isocyanurate di (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, Examples thereof include carbonate diol di (meth) acrylate, polyether diol di (meth) acrylate, polyester diol di (meth) acrylate, polycaprolactone diol di (meth) acrylate, and polybutadiene diol di (meth) acrylate.
 また、(メタ)アクリル酸エステル化合物のうち3官能以上のものとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。 Among the (meth) acrylic acid ester compounds, those having trifunctionality or higher include, for example, trimethylpropantri (meth) acrylate, pentaerythritol tri (meth) acrylate, glycerintri (meth) acrylate, and pentaerythritol tetra (meth). ) Acrylate, ethylene oxide-added trimethylolpropantri (meth) acrylate, propylene oxide-added trimethylolpropanthry (meth) acrylate, caprolactone-modified trimethylolpropanthry (meth) acrylate, ethylene oxide-added isocyanuric acid tri (meth) acrylate, propylene oxide addition Examples thereof include glycerin tri (meth) acrylate, tris (meth) acryloyloxyethyl phosphate, ditrimethylol propanetetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol hexa (meth) acrylate.
 上記エポキシ(メタ)アクリレートとしては、例えば、エポキシ化合物と(メタ)アクリル酸と反応したものなどが挙げられる。ここで、エポキシ化合物と(メタ)アクリル酸の反応は、常法に従って塩基性触媒の存在下などで行うとよい。エポキシ(メタ)アクリレートは、単官能でも、2官能などの多官能でもよいが、多官能が好ましい。
 上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2’-ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物、ビスフェノールA型エピスルフィド樹脂等が挙げられる。
Examples of the epoxy (meth) acrylate include those obtained by reacting an epoxy compound with (meth) acrylic acid. Here, the reaction between the epoxy compound and (meth) acrylic acid may be carried out in the presence of a basic catalyst or the like according to a conventional method. The epoxy (meth) acrylate may be monofunctional or polyfunctional such as bifunctional, but polyfunctional is preferable.
Examples of the epoxy compound used as a raw material for synthesizing the epoxy (meth) acrylate include a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol S type epoxy resin, and a 2,2'-diallyl bisphenol A type epoxy resin. , Hydrogenated bisphenol type epoxy resin, propylene oxide added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, phenol Novolac type epoxy resin, orthocresol novolac type epoxy resin, dicyclopentadiene novolac type epoxy resin, biphenyl novolac type epoxy resin, naphthalenephenol novolac type epoxy resin, glycidylamine type epoxy resin, alkyl polyol type epoxy resin, rubber modified epoxy resin , Glysidyl ester compound, bisphenol A type episulfide resin and the like.
 上記エポキシ(メタ)アクリレートのうち市販されているものとしては、例えば、EBECRYL860、EBECRYL3200、EBECRYL3201、EBECRYL3412、EBECRYL3600、EBECRYL3700、EBECRYL3701、EBECRYL3702、EBECRYL3703、EBECRYL3800、EBECRYL6040、EBECRYL RDX63182(いずれもダイセル・オルネクス社製)、EA-1010、EA-1020、EA-5323、EA-5520、EACHD、EMA-1020(いずれも新中村化学工業社製)、エポキシエステルM-600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA、エポキシエステル400EA(いずれも共栄社化学株式会社製)、デナコールアクリレートDA-141、デナコールアクリレートDA-314、デナコールアクリレートDA-911(いずれもナガセケムテックス社製)等が挙げられる。 Among the above epoxy (meth) acrylates, commercially available ones include, for example, EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRYL3702, EBECRYL3702, EBECRYL370 ), EA-1010, EA-1020, EA-5323, EA-5520, EACHD, EMA-1020 (all manufactured by Shin-Nakamura Chemical Industry Co., Ltd.), epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, epoxy ester. 200PA, Epoxy Ester 80MFA, Epoxy Ester 3002M, Epoxy Ester 3002A, Epoxy Ester 1600A, Epoxy Ester 3000M, Epoxy Ester 3000A, Epoxy Ester 200EA, Epoxy Ester 400EA (all manufactured by Kyoeisha Chemical Co., Ltd.), Denacol Acrylate DA-141, Examples thereof include Denacol Acrylate DA-314 and Denacol Acrylate DA-911 (both manufactured by Nagase ChemteX Corporation).
 ウレタン(メタ)アクリレートは、例えば、イソシアネート化合物に、水酸基を有する(メタ)アクリル酸誘導体を反応させたものを使用することができる。ここで、イソシアネート化合物と(メタ)アクリル酸誘導体の反応には、触媒として触媒量のスズ系化合物などを使用するとよい。ウレタン(メタ)アクリレートは、単官能でも、2官能などの多官能でもよいが、2官能が好ましい。
 ウレタン(メタ)アクリレートを得るために使用するイソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシリレンジイソシアネート、1,6,11-ウンデカントリイソシアネート等のポリイソシアネート化合物が挙げられる。
 また、イソシアネート化合物としては、ポリオールと過剰のイソシアネート化合物との反応により得られる鎖延長されたポリイソシアネート化合物も使用することができる。ここで、ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等が挙げられる。
As the urethane (meth) acrylate, for example, an isocyanate compound reacted with a (meth) acrylic acid derivative having a hydroxyl group can be used. Here, in the reaction between the isocyanate compound and the (meth) acrylic acid derivative, it is preferable to use a tin-based compound or the like in a catalytic amount as a catalyst. The urethane (meth) acrylate may be monofunctional or polyfunctional such as bifunctional, but bifunctional is preferable.
Examples of the isocyanate compound used to obtain urethane (meth) acrylate include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and diphenylmethane-4, 4'-diisocyanate (MDI), hydrogenated MDI, polypeptide MDI, 1,5-naphthalenediocyanate, norbornan diisocyanate, trizine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris ( Examples thereof include polyisocyanate compounds such as isocyanatephenyl) thiophosphate, tetramethylxylylene diisocyanate, and 1,6,11-undecantryisocyanate.
Further, as the isocyanate compound, a chain-extended polyisocyanate compound obtained by reacting a polyol with an excess isocyanate compound can also be used. Here, examples of the polyol include ethylene glycol, propylene glycol, glycerin, sorbitol, trimethylolpropane, carbonate diol, polyether diol, polyester diol, and polycaprolactone diol.
 上記水酸基を有する(メタ)アクリル酸誘導体としては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等の二価のアルコールのモノ(メタ)アクリレートや、トリメチロールエタン、トリメチロールプロパン、グリセリン等の三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレートや、ビスフェノールA型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート等が挙げられる。 Examples of the (meth) acrylic acid derivative having a hydroxyl group include dihydric alcohols such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, and polyethylene glycol. Mono (meth) acrylate, mono (meth) acrylate or di (meth) acrylate of trihydric alcohols such as trimethylolethane, trimethylolpropane, glycerin, and epoxy (meth) acrylate such as bisphenol A type epoxy (meth) acrylate. ) Acrylate and the like can be mentioned.
 上記ウレタン(メタ)アクリレートのうち市販されているものとしては、例えば、M-1100、M-1200、M-1210、M-1600(いずれも東亞合成社製)、EBECRYL230、EBECRYL270、EBECRYL8402、EBECRYL8411、EBECRYL8412、EBECRYL8413、EBECRYL8804、EBECRYL8803、EBECRYL8807、EBECRYL9270、EBECRYL210、EBECRYL4827、EBECRYL6700、EBECRYL220、EBECRYL2220(いずれもダイセル・オルネクス社製)、アートレジンUN-9000H、アートレジンUN-9000A、アートレジンUN-7100、アートレジンUN-1255、アートレジンUN-330、アートレジンUN-3320HB、アートレジンUN-1200TPK、アートレジンSH-500B(いずれも根上工業社製)、U-2HA、U-2PHA、U-3HA、U-4HA、U-6H、U-6LPA、U-6HA、U-10H、U-15HA、U-122A、U-122P、U-108、U-108A、U-324A、U-340A、U-340P、U-1084A、U-2061BA、UA-340P、UA-4100、UA-4000、UA-4200、UA-4400、UA-5201P、UA-7100、UA-7200、UA-W2A(いずれも新中村化学工業社製)、AI-600、AH-600、AT-600、UA-101I、UA-101T、UA-306H、UA-306I、UA-306T(いずれも共栄社化学株式会社製)、CN-902、CN-973、CN-9021、CN-9782、CN-9833(いずれもアルケマ社製)等が挙げられる。 Commercially available urethane (meth) acrylates include, for example, M-1100, M-1200, M-1210, M-1600 (all manufactured by Toa Synthetic Co., Ltd.), EBECRYL230, EBECRYL270, EBECRYL8402, EBECRYL8411, EBECRYL8412, EBECRYL8413, EBECRYL8804, EBECRYL8803, EBECRYL8807, EBECRYL9270, EBECRYL210, EBECRYL4827, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700, EBECRYL6700 Resin UN-1255, Art Resin UN-330, Art Resin UN-3320HB, Art Resin UN-1200TPK, Art Resin SH-500B (all manufactured by Negami Kogyo Co., Ltd.), U-2HA, U-2PHA, U-3HA, U -4HA, U-6H, U-6LPA, U-6HA, U-10H, U-15HA, U-122A, U-122P, U-108, U-108A, U-324A, U-340A, U-340P , U-1084A, U-2061BA, UA-340P, UA-4100, UA-4000, UA-4200, UA-4400, UA-5201P, UA-7100, UA-7200, UA-W2A (all new Nakamura Chemical) AI-600, AH-600, AT-600, UA-101I, UA-101T, UA-306H, UA-306I, UA-306T (all manufactured by Kyoeisha Chemical Co., Ltd.), CN-902, Examples thereof include CN-973, CN-9021, CN-9782, and CN-9833 (all manufactured by Alchema).
 上記ポリエステル(メタ)アクリレートとしては、例えば、ポリエステルポリオールと(メタ)アクリル酸と反応したものなどが挙げられる。上記ポリエステル(メタ)アクリレートのうち市販されているものとしては、例えば、アロニックスM-6100、M-6200、M-6250、M-6500、M-7100、M-7300K、M-8030、M-8060、M-8100、M-8530、M-8560、M-9050(いずれも東亜合成化学工業社製)、Doublemer 2015、Doublemer 2231-TFDoublemer 2319、Doublemer 257、Doublemer 276、Doublemer 284、Doublemer 2019、Doublemer 2232、Doublemer 236、Doublemer 270、Doublemer 278、Doublemer 285、Doublemer 220、Doublemer 2315-100、Doublemer 245、Doublemer 272、Doublemer 278X25、Doublemer 286、Doublemer 2230-TF、Doublemer 2315HM35、Doublemer 246、Doublemer 275、Doublemer 281、Doublemer 287(いずれもDouble bond Chemical社製)等を挙げることができる。 Examples of the polyester (meth) acrylate include those obtained by reacting a polyester polyol with (meth) acrylic acid. Commercially available polyester (meth) acrylates include, for example, Aronix M-6100, M-6200, M-6250, M-6500, M-7100, M-7300K, M-8030, and M-8060. , M-8100, M-8530, M-8560, M-9050 (all manufactured by Toa Synthetic Chemical Industry Co., Ltd.), Doublemer 2015, Doublemer 2231-TF Doubler 2319, Doublemer 257, Doublemer 276, Doublemer 276, Doublemer , Doublemer 236, Doublemer 270, Doublemer 278, Doublemer 285, Doublemer 220, Doublemer 2315-100, Doublemer 245, Doublemer 272, Doublemer 278X25, Doublemer 286, Doublemer 2230-TF, Doublemer 2315HM35, Doublemer 246, Doublemer 275, Doublemer 281, Double bond 287 (both manufactured by Double bond Chemical) and the like can be mentioned.
(高分子(メタ)アクリレート)
 上記光湿気硬化性樹脂組成物は、(メタ)アクリル酸エステル化合物として、数平均分子量が5000以上である(メタ)アクリレート(以下、「高分子(メタ)アクリレート」という)を含んでもよい。光湿気硬化性樹脂組成物が高分子(メタ)アクリレートを含む場合、上述した厚さ変化率を所定の範囲内に調整しやすくなる。高分子(メタ)アクリレートとしては、例えば、ポリマー鎖部分が(メタ)アクリル酸エステル化合物の重合体であり、末端に(メタ)アクリロイル基を有する化合物である。(メタ)アクリル酸エステル化合物としては、上記したものが使用され、好ましくはアルキル(メタ)アクリレートが使用される。このような高分子(メタ)アクリレートとしては、例えば、AA-6(数平均分子量6000、東亜合成社製)、AB-6(数平均分子量6000、東亜合成社製)等が挙げられる。なお、上記高分子(メタ)アクリレートの数平均分子量の上限は、特に限定されないが、例えば10万以下である。
(Polymer (meth) acrylate)
The photo-moisture-curable resin composition may contain (meth) acrylate having a number average molecular weight of 5000 or more (hereinafter, referred to as “polymer (meth) acrylate”) as the (meth) acrylic acid ester compound. When the light-moisture-curable resin composition contains a polymer (meth) acrylate, the above-mentioned thickness change rate can be easily adjusted within a predetermined range. The polymer (meth) acrylate is, for example, a compound in which the polymer chain portion is a polymer of a (meth) acrylic acid ester compound and has a (meth) acryloyl group at the end. As the (meth) acrylic acid ester compound, those described above are used, and alkyl (meth) acrylate is preferably used. Examples of such polymer (meth) acrylate include AA-6 (number average molecular weight 6000, manufactured by Toagosei Co., Ltd.), AB-6 (number average molecular weight 6000, manufactured by Toagosei Co., Ltd.) and the like. The upper limit of the number average molecular weight of the polymer (meth) acrylate is not particularly limited, but is, for example, 100,000 or less.
(その他のラジカル重合性化合物)
 ラジカル重合性化合物としては、上述した以外のその他のラジカル重合性化合物も適宜使用することができる。その他のラジカル重合性化合物としては、例えば、N,N-ジメチル(メタ)アクリルアミド、N-(メタ)アクリロイルモルホリン、N-ヒドロキシエチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド等の(メタ)アクリルアミド化合物、スチレン、α-メチルスチレン、N-ビニル-2-ピロリドン、N-ビニル-ε-カプロラクタム等のビニル化合物等が挙げられる。
(Other radically polymerizable compounds)
As the radically polymerizable compound, other radically polymerizable compounds other than those described above can be appropriately used. Examples of other radically polymerizable compounds include N, N-dimethyl (meth) acrylamide, N- (meth) acryloylmorpholine, N-hydroxyethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, and N-. (Meta) acrylamide compounds such as isopropyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, vinyl such as styrene, α-methylstyrene, N-vinyl-2-pyrrolidone, N-vinyl-ε-caprolactam Examples include compounds.
 本発明では、上述したラジカル重合性化合物の種類や含有量を適宜組み合わせることで、上記した光硬化した状態の硬化物の厚さ変化率を所定の範囲内にすればよい。
 例えば、(メタ)アクリル化合物として、アクリロイル基を有する化合物を用いることにより、光照射時の反応性を高めやすくなり、光硬化した状態の硬化物の厚さ変化率を所定の範囲内に調整しやすくなる。
 また、例えば、(メタ)アクリル化合物として、多官能の(メタ)アクリル化合物を用いることにより、光照射時の反応性を高めやすくなり、結果として光硬化した状態の硬化物の厚さ変化率を所定の範囲内に調整しやすくなる。
In the present invention, the thickness change rate of the cured product in the photocured state may be within a predetermined range by appropriately combining the types and contents of the radically polymerizable compounds described above.
For example, by using a compound having an acryloyl group as the (meth) acrylic compound, it becomes easy to increase the reactivity at the time of light irradiation, and the thickness change rate of the cured product in the photocured state is adjusted within a predetermined range. It will be easier.
Further, for example, by using a polyfunctional (meth) acrylic compound as the (meth) acrylic compound, it becomes easy to increase the reactivity at the time of light irradiation, and as a result, the thickness change rate of the cured product in the photocured state can be increased. It becomes easy to adjust within a predetermined range.
 多官能の(メタ)アクリル化合物としては、上記したものを適宜使用すればよいが、好ましくは、分子量が600以下である多官能の(メタ)アクリル化合物(以下、「多官能の(メタ)アクリル化合物X」として説明する)が挙げられる。
 多官能の(メタ)アクリル化合物Xとしては、炭素数6~30程度、好ましくは炭素数8~20の多官能の(メタ)アクリル酸エステルが挙げられる。また、多官能の(メタ)アクリル酸エステル化合物Xは、好ましくは2~4官能であり、より好ましくは2~3官能である。多官能の(メタ)アクリル化合物Xを使用すると、ラジカル重合性化合物の凝集力(架橋密度)が光硬化後に高くなり、上記した厚さ変化率をより一層低くできる。また、光照射前の光湿気硬化性樹脂組成物の粘度が下がり、塗布性も向上する。
As the polyfunctional (meth) acrylic compound, those described above may be appropriately used, but preferably, a polyfunctional (meth) acrylic compound having a molecular weight of 600 or less (hereinafter, “polyfunctional (meth) acrylic”). It will be described as "Compound X").
Examples of the polyfunctional (meth) acrylic compound X include a polyfunctional (meth) acrylic acid ester having about 6 to 30 carbon atoms, preferably 8 to 20 carbon atoms. The polyfunctional (meth) acrylic acid ester compound X is preferably 2 to 4 functional, and more preferably 2 to 3 functional. When the polyfunctional (meth) acrylic compound X is used, the cohesive force (crosslink density) of the radically polymerizable compound becomes high after photocuring, and the above-mentioned thickness change rate can be further lowered. In addition, the viscosity of the light-moisture-curable resin composition before light irradiation is lowered, and the coatability is also improved.
 具体的な多官能の(メタ)アクリル化合物Xとしては、例えば、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。多官能の(メタ)アクリル化合物Xは1種単独で使用してもよいし、2種以上を併用してもよい。 Specific examples of the polyfunctional (meth) acrylic compound X include 1,6-hexanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, triethylene glycol di (meth) acrylate, and neopentyl glycol. Examples thereof include di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, dimethyloltricyclodecanedi (meth) acrylate, pentaerythritol tetra (meth) acrylate, and dipentaerythritol hexa (meth) acrylate. The polyfunctional (meth) acrylic compound X may be used alone or in combination of two or more.
 多官能の(メタ)アクリル化合物Xは、単官能のラジカル重合性化合物と併用するとよい。多官能の(メタ)アクリル化合物Xの含有量は、ラジカル重合性化合物全量に対して、例えば1質量%以上50質量%以下、好ましくは5質量%以上35質量%以下、より好ましくは10質量%以上30質量%以下である。 The polyfunctional (meth) acrylic compound X may be used in combination with a monofunctional radically polymerizable compound. The content of the polyfunctional (meth) acrylic compound X is, for example, 1% by mass or more and 50% by mass or less, preferably 5% by mass or more and 35% by mass or less, more preferably 10% by mass, based on the total amount of the radically polymerizable compound. It is 30% by mass or less.
 また、多官能の(メタ)アクリル化合物全量の含有量は、ラジカル重合性化合物全量に対して、例えば1質量%以上50質量%以下、好ましくは3質量%以上40質量%以下である。 The total content of the polyfunctional (meth) acrylic compound is, for example, 1% by mass or more and 50% by mass or less, preferably 3% by mass or more and 40% by mass or less, based on the total amount of the radically polymerizable compound.
 光湿気硬化性樹脂組成物100質量%中における、ラジカル重合性化合物の含有量は、好ましくは3質量%以上であり、より好ましくは5質量%以上であり、さらに好ましくは10質量%以上であり、また、好ましくは50質量%以下であり、より好ましくは40質量%以下であり、さらに好ましくは30質量%以下である。ラジカル重合性化合物の含有量が上記下限以上である場合、光硬化した状態の硬化物の厚さ変化率を所定の範囲内に調整しやすくなる。また、ラジカル重合性化合物の含有量が上記上限以下である場合、高温での接着力を高めやすくなる。 The content of the radically polymerizable compound in 100% by mass of the thermosetting resin composition is preferably 3% by mass or more, more preferably 5% by mass or more, and further preferably 10% by mass or more. Further, it is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 30% by mass or less. When the content of the radically polymerizable compound is at least the above lower limit, it becomes easy to adjust the thickness change rate of the cured product in the photocured state within a predetermined range. Further, when the content of the radically polymerizable compound is not more than the above upper limit, it becomes easy to increase the adhesive force at high temperature.
[光重合開始剤]
 本発明の光湿気硬化性樹脂組成物は、光重合開始剤を含有する。光重合開始剤を含むことにより、本発明の光湿気硬化性樹脂組成物に光硬化性を付与することができる。
 光重合開始剤としては、例えば、ベンゾフェノン系化合物、α-アミノアルキルフェノン、α-ヒドロキシアルキルフェノンなどのアセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、チオキサントン等が挙げられる。これらの中では、上記した光硬化した状態の硬化物の厚さ変化率を所定の範囲内に調整しやすくする観点から、アシルフォスフィンオキサイド系骨格を有する化合物、又はα-アミノアルキルフェノン系骨格を有する化合物が好ましい。
 上記光重合開始剤のうち市販されているものとしては、例えば、IRGACURE184、IRGACURE369、IRGACURE379、IRGACURE379EG、IRGACURE651、IRGACURE784、IRGACURE819、IRGACURE907、IRGACURE2959、IRGACURE OXE01、ルシリンTPO(いずれもBASF社製)、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル(いずれも東京化成工業社製)等が挙げられる。
[Photopolymerization initiator]
The photomoisture curable resin composition of the present invention contains a photopolymerization initiator. By including the photopolymerization initiator, the photocurable resin composition of the present invention can be imparted with photocurability.
Examples of the photopolymerization initiator include benzophenone compounds, acetphenone compounds such as α-aminoalkylphenone and α-hydroxyalkylphenone, acylphosphine oxide compounds, titanosen compounds, oxime ester compounds, and benzoin ether compounds. , Thioxanthone and the like. Among these, from the viewpoint of facilitating the adjustment of the thickness change rate of the cured product in the photocured state within a predetermined range, a compound having an acylphosphine oxide-based skeleton or an α-aminoalkylphenone-based skeleton Compounds having the above are preferred.
Commercially available photopolymerization initiators include, for example, IRGACURE184, IRGACURE369, IRGACURE379, IRGACURE379EG, IRGACURE651, IRGACURE784, IRGACURE819, IRGACURE907, IRGACURE2959, IRGACURE Benzoin Examples thereof include ether, benzoin ethyl ether, and benzoin isopropyl ether (all manufactured by Tokyo Chemical Industry Co., Ltd.).
 光湿気硬化性樹脂組成物における光重合開始剤の含有量は、ラジカル重合性化合物及び湿気硬化性ウレタン樹脂の合計量100質量部に対して、好ましくは0.01質量部以上であり、より好ましくは0.5質量部以上であり、また、好ましくは10質量部以下であり、より好ましくは5質量部以下である。光重合開始剤の含有量がこの範囲内であることにより、得られる光湿気硬化性樹脂組成物が光硬化性及び保存安定性に優れたものとなる。また、上記範囲内とすることで、ラジカル重合化合物が適度に硬化され、上記した光硬化した状態の硬化物の厚さ変化率を所定の範囲内に調整しやすくなる。 The content of the photopolymerization initiator in the photo-moisture-curable resin composition is preferably 0.01 parts by mass or more, more preferably 0.01 parts by mass or more, based on 100 parts by mass of the total amount of the radical-polymerizable compound and the moisture-curable urethane resin. Is 0.5 parts by mass or more, preferably 10 parts by mass or less, and more preferably 5 parts by mass or less. When the content of the photopolymerization initiator is within this range, the obtained photomoisture-curable resin composition has excellent photocurability and storage stability. Further, when the content is within the above range, the radical polymerization compound is appropriately cured, and the thickness change rate of the cured product in the photocured state described above can be easily adjusted within a predetermined range.
[湿気硬化性ウレタン樹脂]
 本発明の光湿気硬化性樹脂組成物は、湿気硬化性ウレタン樹脂を含む。湿気硬化性ウレタン樹脂を含むことにより、本発明の光湿気硬化性樹脂組成物は湿気硬化性を有する。
 湿気硬化性ウレタン樹脂は、1分子中に2個以上の水酸基を有するポリオール化合物と、1分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物とを反応させることにより得ることができる。
 上記ポリオール化合物とポリイソシアネート化合物との反応は、通常、ポリオール化合物中の水酸基(OH)とポリイソシアネート化合物中のイソシアネート基(NCO)のモル比で[NCO]/[OH]=2.0~2.5の範囲で行われる。
 湿気硬化性ウレタン樹脂の原料となるポリオール化合物としては、ポリウレタンの製造に通常用いられている公知のポリオール化合物を使用することができ、例えば、ポリエステルポリオール、ポリエーテルポリオール、ポリアルキレンポリオール、ポリカーボネートポリオール等が挙げられる。これらのポリオール化合物は、1種単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。
[Moisture-curable urethane resin]
The photomoisture curable resin composition of the present invention contains a moisture curable urethane resin. By including the moisture-curable urethane resin, the photo-moisture-curable resin composition of the present invention has moisture-curable property.
The moisture-curable urethane resin can be obtained by reacting a polyol compound having two or more hydroxyl groups in one molecule with a polyisocyanate compound having two or more isocyanate groups in one molecule.
The reaction between the polyol compound and the polyisocyanate compound is usually performed by the molar ratio of the hydroxyl group (OH) in the polyol compound and the isocyanate group (NCO) in the polyisocyanate compound [NCO] / [OH] = 2.0 to 2. It is done in the range of .5.
As the polyol compound which is a raw material of the moisture-curable urethane resin, a known polyol compound usually used in the production of polyurethane can be used, and for example, polyester polyol, polyether polyol, polyalkylene polyol, polycarbonate polyol and the like. Can be mentioned. These polyol compounds may be used alone or in combination of two or more.
(ポリエステル骨格を有する湿気硬化性ウレタン樹脂)
 本発明の光湿気硬化性樹脂組成物は、湿気硬化性ウレタン樹脂として、ポリエステル骨格を有する湿気硬化性ウレタン樹脂を含む。ポリエステル骨格を有する湿気硬化性ウレタン樹脂を含むことにより、光湿気硬化性樹脂組成物の高温接着力を高めることができる。
(Moisture-curable urethane resin with polyester skeleton)
The photo-moisture-curable resin composition of the present invention contains a moisture-curable urethane resin having a polyester skeleton as the moisture-curable urethane resin. By containing the moisture-curable urethane resin having a polyester skeleton, the high-temperature adhesive force of the photomoisture-curable resin composition can be enhanced.
 ポリエステル骨格を有する湿気硬化性ウレタン樹脂は、1分子中に2個以上の水酸基を有するポリエステルポリオールと、1分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物とを反応させることにより得ることができる。
 上記ポリエステルポリオールとしては、例えば、多価カルボン酸とポリオールとの反応により得られるポリエステルポリオール、ε-カプロラクトンを開環重合して得られるポリ-ε-カプロラクトンポリオール等が挙げられる。
 ポリエステルポリオールの原料となる上記多価カルボン酸としては、例えば、フタル酸、テレフタル酸、イソフタル酸、1,5-ナフタル酸、2,6-ナフタル酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカメチレンジカルボン酸、ドデカメチレンジカルボン酸等が挙げられる。これらの中でも、高温での接着力をより高めやすい観点から、フタル酸、テレフタル酸、イソフタル酸、又はアジピン酸が好ましい。これら多価カルボン酸は、1種単独で使用してもよいし、2種以上を併用してもよい。
 ポリエステルポリオールの原料となる上記ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール等が挙げられる。これらの中でも、高温での接着力をより高めやすい観点から、1,6-ヘキサンジオール、又は1,4-ブタンジオールが好ましい。これらポリオールは、1種単独で使用してもよいし、2種以上を併用してもよい。
A moisture-curable urethane resin having a polyester skeleton can be obtained by reacting a polyester polyol having two or more hydroxyl groups in one molecule with a polyisocyanate compound having two or more isocyanate groups in one molecule. can.
Examples of the polyester polyol include a polyester polyol obtained by reacting a polyvalent carboxylic acid with a polyol, a poly-ε-caprolactone polyol obtained by ring-opening polymerization of ε-caprolactone, and the like.
Examples of the polyvalent carboxylic acid used as a raw material for the polyester polyol include phthalic acid, terephthalic acid, isophthalic acid, 1,5-naphthalic acid, 2,6-naphthalic acid, succinic acid, glutaric acid, adipic acid, and pimelic acid. , Suberic acid, azelaic acid, sebacic acid, decamethylenedicarboxylic acid, dodecamethylenedicarboxylic acid and the like. Among these, phthalic acid, terephthalic acid, isophthalic acid, or adipic acid is preferable from the viewpoint of easily increasing the adhesive force at high temperature. These polyvalent carboxylic acids may be used alone or in combination of two or more.
Examples of the polyol used as a raw material for the polyester polyol include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, and 1,6-hexanediol. , Diethylene glycol, cyclohexanediol and the like. Among these, 1,6-hexanediol or 1,4-butanediol is preferable from the viewpoint of easily increasing the adhesive force at high temperature. These polyols may be used alone or in combination of two or more.
 上記ポリイソシアネート化合物としては、芳香族ポリイソシアネート化合物、脂肪族ポリイソシアネート化合物が好適に用いられる。
 芳香族ポリイソシアネート化合物としては、例えば、ジフェニルメタンジイソシアネート、ジフェニルメタンジイソシアネートの液状変性物、ポリメリックMDI、トリレンジイソシアネート、ナフタレン-1,5-ジイソシアネート等が挙げられる。
 脂肪族ポリイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、ノルボルナンジイソシアネート、トランスシクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート、水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネート、シクロヘキサンジイソシアネート、ビス(イソシアネートメチル)シクロヘキサン、ジシクロヘキシルメタンジイソシアネート等が挙げられる。
 ポリイソシアネート化合物としては、なかでも、全硬化後の接着力を高くできる観点から、ジフェニルメタンジイソシアネート及びその変性物が好ましい。
 ポリイソシアネート化合物は、単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。
As the polyisocyanate compound, an aromatic polyisocyanate compound and an aliphatic polyisocyanate compound are preferably used.
Examples of the aromatic polyisocyanate compound include diphenylmethane diisocyanate, liquid modified products of diphenylmethane diisocyanate, polypeptide MDI, tolylene diisocyanate, naphthalene-1,5-diisocyanate and the like.
Examples of the aliphatic polyisocyanate compound include hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, lysine diisocyanate, norbornane diisocyanate, transcyclohexane-1,4-diisocyanate, isophorone diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, and cyclohexane diisocyanate. , Bis (isocyanate methyl) cyclohexane, dicyclohexylmethane diisocyanate and the like.
As the polyisocyanate compound, diphenylmethane diisocyanate and its modified product are particularly preferable from the viewpoint of being able to increase the adhesive force after total curing.
The polyisocyanate compound may be used alone or in combination of two or more.
 上記ポリエステル骨格を有する湿気硬化性ウレタン樹脂は、分子内にポリエーテル骨格を有していてもよい。分子内にポリエーテル骨格を有することにより、光湿気硬化性樹脂組成物の粘度を低下させやすくなり、塗布性を向上させやすくなる。
 分子内にポリエーテル骨格を有する、ポリエステル骨格を有する湿気硬化性ウレタン樹脂は、例えば、1分子中に2個以上の水酸基を有するポリエステルポリオールと、1分子中に2個以上の水酸基を有するポリエーテルポリオールと、1分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物とを反応させることで得ることができる。
 ポリエステルポリオールとしては、上述したポリエステルポリオールを用いることができる。また、ポリエーテルポリオールとしては、後述するポリエーテルポリオールを用いることができる。
The moisture-curable urethane resin having the polyester skeleton may have a polyether skeleton in the molecule. By having the polyether skeleton in the molecule, it becomes easy to reduce the viscosity of the photomoisture-curable resin composition, and it becomes easy to improve the coatability.
The moisture-curable urethane resin having a polyester skeleton having a polyether skeleton in the molecule is, for example, a polyester polyol having two or more hydroxyl groups in one molecule and a polyether having two or more hydroxyl groups in one molecule. It can be obtained by reacting a polyol with a polyisocyanate compound having two or more isocyanate groups in one molecule.
As the polyester polyol, the polyester polyol described above can be used. Further, as the polyether polyol, a polyether polyol described later can be used.
(ポリエーテル骨格を有する湿気硬化性ウレタン樹脂)
 上記光湿気硬化性樹脂組成物は、湿気硬化性ウレタン樹脂として、上記ポリエステル骨格を有する湿気硬化性ウレタン樹脂に加えて、ポリエーテル骨格を有する湿気硬化性ウレタン樹脂をさらに含むことが好ましい。ポリエーテル骨格を有する湿気硬化性ウレタン樹脂をさらに含むことにより、光湿気硬化性樹脂組成物の塗布性を高めやすくなる。なお、ここでいうポリエーテル骨格を有する湿気硬化性ウレタン樹脂とは、ポリエステル骨格を含有しない湿気硬化性ウレタン樹脂である。
 ポリエーテル骨格を有するウレタン樹脂は、1分子中に2個以上の水酸基を有するポリエーテルポリオールと、1分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物とを反応させることにより得ることができる。
 ポリエーテルポリオールとしては、例えば、エチレングリコール、プロピレングリコール、テトラヒドロフランの開環重合物、3-メチルテトラヒドロフランの開環重合物、及び、これら若しくはその誘導体のランダム共重合体又はブロック共重合体、ビスフェノール型のポリオキシアルキレン変性体等が挙げられる。これらの中でも、光湿気硬化性樹脂組成物の塗布性を高めやすくなる観点から、プロピレングリコール、又は3-メチルテトラヒドロフランの開環重合物が好ましい。
 ここで、ビスフェノール型のポリオキシアルキレン変性体は、ビスフェノール型分子骨格の活性水素部分にアルキレンオキシド(例えば、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、イソブチレンオキシド等)を付加反応させて得られるポリエーテルポリオールである。該ポリエーテルポリオールは、ランダム共重合体であってもよいし、ブロック共重合体であってもよい。上記ビスフェノール型のポリオキシアルキレン変性体は、ビスフェノール型分子骨格の両末端に、1種又は2種以上のアルキレンオキシドが付加されていることが好ましい。
 ビスフェノール型としては特に限定されず、A型、F型、S型等が挙げられ、好ましくはビスフェノールA型である。
 また、ポリイソシアネート化合物としては、上述したポリイソシアネート化合物を用いることができる。
(Moisture-curable urethane resin with a polyether skeleton)
The photo-moisture-curable resin composition preferably further contains, as the moisture-curable urethane resin, a moisture-curable urethane resin having a polyether skeleton in addition to the moisture-curable urethane resin having a polyester skeleton. By further containing a moisture-curable urethane resin having a polyether skeleton, it becomes easy to improve the coatability of the photomoisture-curable resin composition. The moisture-curable urethane resin having a polyether skeleton referred to here is a moisture-curable urethane resin that does not contain a polyester skeleton.
A urethane resin having a polyether skeleton can be obtained by reacting a polyether polyol having two or more hydroxyl groups in one molecule with a polyisocyanate compound having two or more isocyanate groups in one molecule. ..
Examples of the polyether polyol include a ring-opening polymer of ethylene glycol, propylene glycol and tetrahydrofuran, a ring-opening polymer of 3-methyl tetrahydrofuran, and a random copolymer or block copolymer of these or derivatives thereof, or a bisphenol type. Examples of the polyoxyalkylene modified product of the above. Among these, a ring-opening polymer of propylene glycol or 3-methyltetrahydrofuran is preferable from the viewpoint of easily improving the coatability of the photomoisture-curable resin composition.
Here, the bisphenol-type polyoxyalkylene modified product is a polyether polyol obtained by adding an alkylene oxide (for example, ethylene oxide, propylene oxide, butylene oxide, isobutylene oxide, etc.) to the active hydrogen portion of the bisphenol-type molecular skeleton. be. The polyether polyol may be a random copolymer or a block copolymer. The bisphenol-type polyoxyalkylene modified product preferably has one or more alkylene oxides added to both ends of the bisphenol-type molecular skeleton.
The bisphenol type is not particularly limited, and examples thereof include A type, F type, and S type, and bisphenol A type is preferable.
Further, as the polyisocyanate compound, the above-mentioned polyisocyanate compound can be used.
 ポリエーテル骨格を有する湿気硬化性ウレタン樹脂は、下記式(1)で表される構造を有するポリオール化合物を用いて得られたものをさらに含むことが好ましい。下記式(1)で表される構造を有するポリオール化合物を用いることにより、接着性に優れる光湿気硬化性樹脂組成物、及び、柔軟で伸びがよい硬化物を得ることができ、ラジカル重合性化合物との相溶性に優れるものとなる。また、貯蔵弾性率を上記した所望の範囲内に調整しやすくなる。
 なかでも、プロピレングリコール、テトラヒドロフラン(THF)化合物の開環重合化合物、又は、メチル基等の置換基を有するテトラヒドロフラン化合物の開環重合化合物からなるポリエーテルポリオールを用いたものが好ましく、プロピレングリコールがより好ましい。
The moisture-curable urethane resin having a polyether skeleton preferably further contains one obtained by using a polyol compound having a structure represented by the following formula (1). By using a polyol compound having a structure represented by the following formula (1), a photomoisture-curable resin composition having excellent adhesiveness and a cured product having flexibility and good elongation can be obtained, and a radically polymerizable compound can be obtained. It has excellent compatibility with. In addition, the storage elastic modulus can be easily adjusted within the above-mentioned desired range.
Among them, those using a polyether polyol composed of a ring-opening polymerization compound of propylene glycol or a tetrahydrofuran (THF) compound or a ring-opening polymerization compound of a tetrahydrofuran compound having a substituent such as a methyl group are preferable, and propylene glycol is more preferable. preferable.
Figure JPOXMLDOC01-appb-C000002

 式(1)中、Rは、水素原子、メチル基、又は、エチル基を表し、lは、0~5の整数、mは、1~500の整数、nは、1~10の整数である。lは、0~4であることが好ましく、mは、50~200であることが好ましく、nは、1~5であることが好ましい。なお、lが0の場合とは、Rと結合した炭素が直接酸素と結合している場合を意味する。
 上記した中では、nとlの合計が1以上であることがより好ましく、1~3がさらに好ましい。また、Rは水素原子、メチル基であることがより好ましく、メチル基が特に好ましい。
Figure JPOXMLDOC01-appb-C000002

In the formula (1), R represents a hydrogen atom, a methyl group, or an ethyl group, l is an integer of 0 to 5, m is an integer of 1 to 500, and n is an integer of 1 to 10. .. l is preferably 0 to 4, m is preferably 50 to 200, and n is preferably 1 to 5. The case where l is 0 means the case where the carbon bonded to R is directly bonded to oxygen.
Among the above, the total of n and l is more preferably 1 or more, and further preferably 1 to 3. Further, R is more preferably a hydrogen atom or a methyl group, and particularly preferably a methyl group.
(その他の湿気硬化性ウレタン樹脂)
 本発明の光湿気硬化性樹脂組成物は、上記ポリエステル骨格を有する湿気硬化性ウレタン樹脂、又は上記ポリエーテル骨格を有する湿気硬化性ウレタン樹脂以外のその他の湿気硬化性ウレタン樹脂を含んでもよい。その他の湿気硬化性ウレタン樹脂としては、例えば、ポリアルキレン骨格を有するウレタン樹脂、ポリカーボネート骨格を有するウレタン樹脂等が挙げられる。
(Other moisture-curable urethane resin)
The photo-moisture-curable resin composition of the present invention may contain a moisture-curable urethane resin having the polyester skeleton or a moisture-curable urethane resin other than the moisture-curable urethane resin having the polyether skeleton. Examples of other moisture-curable urethane resins include urethane resins having a polyalkylene skeleton and urethane resins having a polycarbonate skeleton.
 ポリアルキレン骨格を有するウレタン樹脂は、1分子中に2個以上の水酸基を有するポリアルキレンポリオールと、1分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物とを反応させることにより得ることができる。
 ポリアルキレンポリオールとしては、例えば、ポリブタジエンポリオール、水素化ポリブタジエンポリオール、水素化ポリイソプレンポリオール等が挙げられる。
 また、ポリイソシアネート化合物としては、上述したポリイソシアネート化合物を用いることができる。
A urethane resin having a polyalkylene skeleton can be obtained by reacting a polyalkylene polyol having two or more hydroxyl groups in one molecule with a polyisocyanate compound having two or more isocyanate groups in one molecule. ..
Examples of the polyalkylene polyol include a polybutadiene polyol, a hydrogenated polybutadiene polyol, and a hydrogenated polyisoprene polyol.
Further, as the polyisocyanate compound, the above-mentioned polyisocyanate compound can be used.
 ポリカーボネート骨格を有するウレタン樹脂は、1分子中に2個以上の水酸基を有するポリカーボネートポリオールと、1分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物とを反応させることにより得ることができる。
 ポリカーボネートポリオールとしては、例えば、ポリヘキサメチレンカーボネートポリオール、ポリシクロヘキサンジメチレンカーボネートポリオール等が挙げられる。
 また、ポリイソシアネート化合物としては、上述したポリイソシアネート化合物を用いることができる。
A urethane resin having a polycarbonate skeleton can be obtained by reacting a polycarbonate polyol having two or more hydroxyl groups in one molecule with a polyisocyanate compound having two or more isocyanate groups in one molecule.
Examples of the polycarbonate polyol include polyhexamethylene carbonate polyol and polycyclohexanedimethylene carbonate polyol.
Further, as the polyisocyanate compound, the above-mentioned polyisocyanate compound can be used.
 さらに、上記湿気硬化性ウレタン樹脂は、ラジカル重合性官能基を有していてもよい。上記湿気硬化性ウレタン樹脂が有していてもよいラジカル重合性官能基としては、不飽和二重結合を有する基が好ましく、特に反応性の面から(メタ)アクリロイル基がより好ましい。なお、ラジカル重合性官能基を有する湿気硬化性樹脂は、上記したラジカル重合性化合物には含まず、湿気硬化性樹脂として扱う。 Further, the moisture-curable urethane resin may have a radically polymerizable functional group. As the radically polymerizable functional group that the moisture-curable urethane resin may have, a group having an unsaturated double bond is preferable, and a (meth) acryloyl group is more preferable from the viewpoint of reactivity. The moisture-curable resin having a radical-polymerizable functional group is not included in the above-mentioned radical-polymerizable compound and is treated as a moisture-curable resin.
 湿気硬化性ウレタン樹脂の重量平均分子量は特に限定されないが、好ましくは500以上であり、より好ましくは1000以上であり、また、好ましくは10000以下であり、より好ましくは8000以下である。上記重量平均分子量が上記下限以上である場合、高温での接着力を高めやすくなる。また、上記重量平均分子量が上記上限以下である場合、塗布性を向上しやすくなる。 The weight average molecular weight of the moisture-curable urethane resin is not particularly limited, but is preferably 500 or more, more preferably 1000 or more, and preferably 10000 or less, more preferably 8000 or less. When the weight average molecular weight is at least the above lower limit, it becomes easy to increase the adhesive force at high temperature. Further, when the weight average molecular weight is not more than the above upper limit, the coatability is easily improved.
 なお、本明細書において重量平均分子量及び数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による重量平均分子量を測定する際のカラムとしては、Shodex LF-804(昭和電工社製)が挙げられる。また、GPCで用いる溶媒としては、テトラヒドロフランが挙げられる。 In the present specification, the weight average molecular weight and the number average molecular weight are values obtained by measuring by gel permeation chromatography (GPC) and converting into polystyrene. Examples of the column for measuring the weight average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK). Further, as a solvent used in GPC, tetrahydrofuran can be mentioned.
 上記光湿気硬化性樹脂組成物100質量%中における、湿気硬化性ウレタン樹脂の含有量は、好ましくは45質量%以上、より好ましくは50質量%以上であり、さらに好ましくは60質量%以上であり、また、好ましくは95質量%以下であり、より好ましくは90質量%以下である。湿気硬化性ウレタン樹脂の含有量が上記下限以上である場合、高温での接着力を高めやすくなる。湿気硬化性ウレタン樹脂の含有量が上記上限以下である場合、接着力の耐久性を高めやすくなる。 The content of the moisture-curable urethane resin in 100% by mass of the light-moisture-curable resin composition is preferably 45% by mass or more, more preferably 50% by mass or more, and further preferably 60% by mass or more. Further, it is preferably 95% by mass or less, and more preferably 90% by mass or less. When the content of the moisture-curable urethane resin is at least the above lower limit, it becomes easy to increase the adhesive force at high temperature. When the content of the moisture-curable urethane resin is not more than the above upper limit, it becomes easy to increase the durability of the adhesive force.
 上記光湿気硬化性樹脂組成物100質量%中における、ポリエステル骨格を有する湿気硬化性ウレタン樹脂の含有量は、例えば25質量%以上であり、好ましくは30質量%以上であり、より好ましくは40質量%以上であり、さらに好ましくは50質量%以上であり、また、好ましくは95質量%以下であり、より好ましくは90質量%以下である。ポリエステル骨格を有する湿気硬化性ウレタン樹脂の含有量が上記下限以上である場合、高温での接着力を高めやすくなる。ポリエステル骨格を有する湿気硬化性ウレタン樹脂の含有量が上記上限以下である場合、接着力の耐久性を高めやすくなる。 The content of the moisture-curable urethane resin having a polyester skeleton in 100% by mass of the photo-moisture-curable resin composition is, for example, 25% by mass or more, preferably 30% by mass or more, and more preferably 40% by mass. % Or more, more preferably 50% by mass or more, preferably 95% by mass or less, and more preferably 90% by mass or less. When the content of the moisture-curable urethane resin having a polyester skeleton is at least the above lower limit, it becomes easy to increase the adhesive force at high temperature. When the content of the moisture-curable urethane resin having a polyester skeleton is not more than the above upper limit, it becomes easy to increase the durability of the adhesive force.
 上記光湿気硬化性樹脂組成物が、ポリエステル骨格を有する湿気硬化性ウレタン樹脂と、その他の湿気硬化性ウレタン樹脂とを含む場合、ポリエステル骨格を有する湿気硬化性ウレタン樹脂に対するその他の湿気硬化性ウレタン樹脂の含有量の質量比(その他の湿気硬化性ウレタン樹脂/ポリエステル骨格を有する湿気硬化性ウレタン樹脂)は、好ましくは5以下であり、より好ましくは3以下であり、また、好ましくは0.001以上であり、より好ましくは0.01以上である。上記その他の湿気硬化性ウレタン樹脂の含有量の質量比が上記上限以下である場合、高温での接着力を高めやすくなる。上記その他の湿気硬化性ウレタン樹脂の含有量の質量比が上記上限以下である場合、接着力の耐久性を高めやすくなる。なお、ここでいうその他の湿気硬化性ウレタン樹脂は、ポリエーテル骨格を有する湿気硬化性ウレタン樹脂などのポリエステル骨格を有する湿気硬化性ウレタン樹脂以外の湿気硬化性ウレタン樹脂である。 When the photo-moisture-curable resin composition contains a moisture-curable urethane resin having a polyester skeleton and another moisture-curable urethane resin, another moisture-curable urethane resin with respect to the moisture-curable urethane resin having a polyester skeleton. The mass ratio of the content of (other moisture-curable urethane resin / moisture-curable urethane resin having a polyester skeleton) is preferably 5 or less, more preferably 3 or less, and preferably 0.001 or more. It is more preferably 0.01 or more. When the mass ratio of the contents of the other moisture-curable urethane resin is not more than the above upper limit, it becomes easy to increase the adhesive force at high temperature. When the mass ratio of the contents of the other moisture-curable urethane resin is not more than the above upper limit, it becomes easy to increase the durability of the adhesive force. The other moisture-curable urethane resin referred to here is a moisture-curable urethane resin other than the moisture-curable urethane resin having a polyester skeleton, such as a moisture-curable urethane resin having a polyether skeleton.
 上記光湿気硬化性樹脂組成物は、湿気硬化性ウレタン樹脂に対するラジカル重合性化合物の含有量の質量比(ラジカル重合性化合物/湿気硬化性ウレタン樹脂)が、例えば0.04以上であるが、好ましくは0.1以上であり、より好ましくは0.2以上であり、また、好ましくは1以下、より好ましくは0.8以下であり、さらに好ましくは0.6以下である。 The photo-moisture-curable resin composition preferably has a mass ratio of the content of the radical-polymerizable compound to the moisture-curable urethane resin (radical-polymerizable compound / moisture-curable urethane resin) of, for example, 0.04 or more. Is 0.1 or more, more preferably 0.2 or more, preferably 1 or less, more preferably 0.8 or less, still more preferably 0.6 or less.
[非反応性ポリマー]
 本発明の光湿気硬化性樹脂組成物は、非反応性ポリマーをさらに含んでもよい。非反応性ポリマーとしては、例えばアクリル樹脂、ポリオレフィン樹脂等が挙げられる。本発明の光湿気硬化性樹脂組成物が非反応性ポリマーを含有する場合、光硬化した状態の硬化物の厚さ変化率を上述した範囲内に調整しやすくなる。なお、アクリル樹脂は、(メタ)アクリレート等の重合性モノマーの重合体である。
[Non-reactive polymer]
The photomoisture curable resin composition of the present invention may further contain a non-reactive polymer. Examples of the non-reactive polymer include acrylic resin and polyolefin resin. When the photo-moisture-curable resin composition of the present invention contains a non-reactive polymer, it becomes easy to adjust the thickness change rate of the cured product in the photo-cured state within the above-mentioned range. The acrylic resin is a polymer of a polymerizable monomer such as (meth) acrylate.
 アクリル樹脂の製造方法は、特に制限することがなく、例えば、上述したラジカル重合性化合物等の重合性モノマーの溶液重合、懸濁重合、塊状重合等により、製造することができる。 The method for producing the acrylic resin is not particularly limited, and can be produced, for example, by solution polymerization, suspension polymerization, bulk polymerization, or the like of a polymerizable monomer such as the radically polymerizable compound described above.
 アクリル樹脂の重量平均分子量は、特に限定されないが、好ましくは10000以上であり、また、好ましくは50000以下である。上記重量平均分子量が上記下限以上である場合、高温での接着力を高めやすくなる。また、上記重量平均分子量が上記上限以下である場合、塗布性を向上しやすくなる。 The weight average molecular weight of the acrylic resin is not particularly limited, but is preferably 10,000 or more, and preferably 50,000 or less. When the weight average molecular weight is at least the above lower limit, it becomes easy to increase the adhesive force at high temperature. Further, when the weight average molecular weight is not more than the above upper limit, the coatability is easily improved.
 ポリオレフィン樹脂としては、特に限定されないが、例えば、ポリエチレン、ポリプロピレン等が挙げられる。ポリオレフィン樹脂の重量平均分子量は、特に限定されないが、好ましくは10000以上であり、また、好ましくは50000以下である。上記重量平均分子量が上記下限以上である場合、高温での接着力を高めやすくなる。また、上記重量平均分子量が上記上限以下である場合、塗布性を向上しやすくなる。 The polyolefin resin is not particularly limited, and examples thereof include polyethylene and polypropylene. The weight average molecular weight of the polyolefin resin is not particularly limited, but is preferably 10,000 or more, and preferably 50,000 or less. When the weight average molecular weight is at least the above lower limit, it becomes easy to increase the adhesive force at high temperature. Further, when the weight average molecular weight is not more than the above upper limit, the coatability is easily improved.
 上記光湿気硬化性樹脂組成物100質量%中における、非反応性ポリマーの含有量は、好ましくは5質量%以上であり、より好ましくは10質量%以上であり、また、好ましくは45質量%以下であり、より好ましくは40質量%以下である。非反応性ポリマーの含有量が上記下限以上である場合、高温での接着力を高めやすくなる。非反応性ポリマーの含有量が上記上限以下である場合、接着力の耐久性を高めやすくなる。 The content of the non-reactive polymer in 100% by mass of the thermosetting resin composition is preferably 5% by mass or more, more preferably 10% by mass or more, and preferably 45% by mass or less. It is more preferably 40% by mass or less. When the content of the non-reactive polymer is at least the above lower limit, it becomes easy to increase the adhesive force at high temperature. When the content of the non-reactive polymer is not more than the above upper limit, it becomes easy to increase the durability of the adhesive force.
[スペーサ粒子]
 本発明の光湿気硬化性樹脂組成物は、スペーサ粒子を含有してもよい。本発明の光湿気硬化性樹脂組成物がスペーサ粒子を含有する場合、光硬化した状態の硬化物の厚さ変化率を上述した範囲内に調整しやすくなる。
[Spacer particles]
The photomoisture curable resin composition of the present invention may contain spacer particles. When the photo-moisture-curable resin composition of the present invention contains spacer particles, it becomes easy to adjust the thickness change rate of the cured product in the photo-cured state within the above-mentioned range.
 スペーサ粒子としては、樹脂により形成された樹脂粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。本発明では、上記スペーサ粒子は、樹脂粒子又は有機無機ハイブリッド粒子であることが好ましい。上記スペーサ粒子は、コアと、該コアの表面上に配置されたシェルとを備えるコアシェル粒子であってもよい。上記コアが有機コアであってもよい。上記シェルが無機シェルであってもよい。被着体との接着部での応力を緩和でき、接着力の耐久性を高く維持する観点からは、金属粒子を除くスペーサ粒子が好ましく、樹脂粒子、金属粒子を除く無機粒子又は有機無機ハイブリッド粒子がより好ましく、樹脂粒子がさらに好ましい。スペーサ粒子が樹脂粒子であると、接着部に応力が加わったときに、応力を緩和でき、接着性を高く維持することができる。 Examples of the spacer particles include resin particles formed of resin, inorganic particles excluding metal particles, organic-inorganic hybrid particles, and metal particles. In the present invention, the spacer particles are preferably resin particles or organic-inorganic hybrid particles. The spacer particles may be core-shell particles having a core and a shell arranged on the surface of the core. The core may be an organic core. The shell may be an inorganic shell. Spacer particles excluding metal particles are preferable, and resin particles, inorganic particles excluding metal particles, or organic-inorganic hybrid particles are preferable from the viewpoint of being able to relieve stress at the adhesive portion with the adherend and maintaining high adhesive strength durability. Is more preferable, and resin particles are further preferable. When the spacer particles are resin particles, when stress is applied to the adhesive portion, the stress can be relaxed and the adhesiveness can be maintained high.
 上記スペーサ粒子の平均粒子径は、被着体との接着部での応力を緩和でき、接着力の耐久性を高く維持する観点から、好ましくは50μm以上であり、より好ましくは80μm以上であり、また、好ましくは500μm以下であり、より好ましくは400μm以下である。 The average particle size of the spacer particles is preferably 50 μm or more, more preferably 80 μm or more, from the viewpoint of being able to relieve stress at the adhesive portion with the adherend and maintaining high adhesive strength durability. Further, it is preferably 500 μm or less, and more preferably 400 μm or less.
 上記平均粒子径は、数平均粒子径を示す。上記スペーサ粒子の平均粒子径は、例えば、任意のスペーサ粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求められる。  The above average particle size indicates a number average particle size. The average particle size of the spacer particles can be obtained, for example, by observing 50 arbitrary spacer particles with an electron microscope or an optical microscope and calculating an average value. Twice
 上記スペーサ粒子の粒子径のCV値は、接着性をより一層高める観点から、好ましくは10%以下であり、好ましくは5%以下である。上記スペーサ粒子の粒子径のCV値の下限は特に限定されないが、好ましくは1%以上である。なお、上記CV値(変動係数)は下記式で表される。
 CV値(%)=(ρ/Dn)×100 
  ρ:スペーサ粒子の粒子径の標準偏差 
  Dn:スペーサ粒子の粒子径の平均値
The CV value of the particle size of the spacer particles is preferably 10% or less, preferably 5% or less, from the viewpoint of further enhancing the adhesiveness. The lower limit of the CV value of the particle size of the spacer particles is not particularly limited, but is preferably 1% or more. The CV value (coefficient of variation) is expressed by the following formula.
CV value (%) = (ρ / Dn) × 100
ρ: Standard deviation of particle size of spacer particles
Dn: Average particle size of spacer particles
 本発明の光湿気硬化性樹脂組成物がスペーサ粒子を含む場合、応力緩和性をより一層高める観点から、上記光湿気硬化性樹脂組成物100質量%中、上記スペーサ粒子の含有量は、好ましくは1質量%以上であり、より好ましくは5質量%以上である。また、塗布性を良好にする観点から、上記スペーサ粒子の含有量は好ましくは20質量%以下であり、より好ましくは15質量%以下である。
 なお、光湿気硬化性樹脂組成物は、スペーサ粒子を含有する場合には、ラジカル重合性化合物の含有量を少なくしても、厚さ変化率を小さくできる。そのような観点から、光湿気硬化性樹脂組成物100質量%中のラジカル重合性化合物の含有量は、例えば20質量%以下としてもよいし、3質量%以上10質量%以下にしてもよい。また、質量比(ラジカル重合性化合物/湿気硬化性ウレタン樹脂)は、0.2以下としてもよいし、0.04以上0.1以下としてもよい。
When the photomoisture-curable resin composition of the present invention contains spacer particles, the content of the spacer particles in 100% by mass of the photomoisture-curable resin composition is preferably from the viewpoint of further enhancing the stress relaxation property. It is 1% by mass or more, more preferably 5% by mass or more. Further, from the viewpoint of improving the coatability, the content of the spacer particles is preferably 20% by mass or less, and more preferably 15% by mass or less.
When the photomoisture-curable resin composition contains spacer particles, the thickness change rate can be reduced even if the content of the radically polymerizable compound is reduced. From such a viewpoint, the content of the radically polymerizable compound in 100% by mass of the photomoisture-curable resin composition may be, for example, 20% by mass or less, or 3% by mass or more and 10% by mass or less. The mass ratio (radical polymerizable compound / moisture-curable urethane resin) may be 0.2 or less, or 0.04 or more and 0.1 or less.
[充填剤]
 本発明の硬化性樹脂組成物は、充填剤を含有してもよい。充填剤を含有することにより、本発明の硬化性樹脂組成物は、チキソトロピー性を有しやすくなり、細線塗布性を高めやすくなる。充填剤としては、粒子状のものを使用すればよい。なお、本明細書において、充填剤とは一次粒子の平均粒子径が1μm未満のものをいうものとする。
 充填剤としては、無機充填剤が好ましく、例えば、シリカ、タルク、酸化チタン、酸化亜鉛、炭酸カルシウム等が挙げられる。なかでも、得られる硬化性樹脂組成物が紫外線透過性に優れるものとなることから、シリカが好ましい。また、充填剤は、シリル化処理、アルキル化処理、エポキシ化処理等の疎水性表面処理がなされていてもよい。また、シリカ、タルク、酸化チタン等は、後述する着色剤と同様に光湿気硬化性樹脂組成物を着色させる機能を有する。
 充填剤は、1種単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
 充填剤の含有量は、上記光湿気硬化性樹脂組成物100質量部に対して、その合計量が、例えば0.1質量以上であり、好ましくは1質量部以上であり、より好ましくは3質量部以上であり、また、好ましくは30質量部以下であり、より好ましくは20質量部以下である。
[filler]
The curable resin composition of the present invention may contain a filler. By containing the filler, the curable resin composition of the present invention tends to have thixotropy property, and it becomes easy to improve the fine line coating property. As the filler, a particulate material may be used. In the present specification, the filler means that the average particle size of the primary particles is less than 1 μm.
The filler is preferably an inorganic filler, and examples thereof include silica, talc, titanium oxide, zinc oxide, and calcium carbonate. Of these, silica is preferable because the obtained curable resin composition has excellent ultraviolet transmittance. Further, the filler may be subjected to a hydrophobic surface treatment such as a silylation treatment, an alkylation treatment and an epoxidation treatment. Further, silica, talc, titanium oxide and the like have a function of coloring a light-moisture-curable resin composition in the same manner as a colorant described later.
The filler may be used alone or in combination of two or more.
The total amount of the filler is, for example, 0.1 part by mass or more, preferably 1 part by mass or more, and more preferably 3 parts by mass with respect to 100 parts by mass of the thermosetting resin composition. It is more than parts, preferably 30 parts by mass or less, and more preferably 20 parts by mass or less.
[着色剤]
 本発明の光湿気硬化性樹脂組成物は、着色剤を含有してもよい。着色剤としては、例えば、酸化鉄、チタンブラック、アニリンブラック、シアニンブラック、フラーレン、カーボンブラック等が挙げられる。これらの中では、チタンブラック好ましい。また、上記着色剤は、黒色を呈するものがよいが、その他の色を有するものでもよい。また、着色剤は、可視光領域の光を透過させ難い能力(遮光性)を有する材料であることが好ましい。
 チタンブラックは、波長300~800nmの光に対する平均透過率と比較して、紫外線領域付近、特に波長360~450nmの光に対する透過率が高くなる物質である。即ち、上記チタンブラックは、可視光領域の波長の光を充分に遮蔽することで光湿気硬化性樹脂組成物に遮光性を付与する一方で、紫外線領域付近の波長の光は透過させる性質を有する。従って、遮光性を付与しつつ、光湿気硬化性樹脂組成物の光硬化性を良好に維持して、上記光硬化後の貯蔵弾性率を高い値に維持しやすくなる。
 着色剤の含有量は、上記光湿気硬化性樹脂組成物100質量部に対して、その合計量が、例えば0.01質量以上であり、好ましくは0.05質量部以上であり、より好ましくは0.1質量部以上であり、また、好ましくは5質量部以下であり、より好ましくは3質量部以下である。
[Colorant]
The photomoisture curable resin composition of the present invention may contain a colorant. Examples of the colorant include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black and the like. Of these, titanium black is preferred. Further, the colorant is preferably black, but may have other colors. Further, the colorant is preferably a material having an ability (light-shielding property) that makes it difficult for light in the visible light region to pass through.
Titanium black is a substance having a higher transmittance in the vicinity of the ultraviolet region, particularly for light having a wavelength of 360 to 450 nm, as compared with the average transmittance for light having a wavelength of 300 to 800 nm. That is, the titanium black has a property of imparting light-shielding property to the photomoisture-curable resin composition by sufficiently blocking light having a wavelength in the visible light region, while transmitting light having a wavelength near the ultraviolet region. .. Therefore, it becomes easy to maintain good photocurability of the photo-moisture-curable resin composition while imparting light-shielding property, and to maintain the storage elastic modulus after photo-curing to a high value.
The total amount of the colorant is, for example, 0.01 part by mass or more, preferably 0.05 part by mass or more, more preferably 0.05 part by mass or more, based on 100 parts by mass of the photomoisture-curable resin composition. It is 0.1 part by mass or more, preferably 5 parts by mass or less, and more preferably 3 parts by mass or less.
[湿気硬化促進触媒]
 本発明の光湿気硬化性樹脂組成物は、上記湿気硬化性ウレタン樹脂の湿気硬化反応を促進させる湿気硬化促進触媒を含有してもよい。湿気硬化促進触媒を使用することにより、光湿気硬化性樹脂組成物は、湿気硬化性がより優れたものとなり、高温での接着力をより高いものとすることが可能になる。
 湿気硬化促進触媒としては、具体的には例えば、ジラウリル酸ジn-ブチルスズ、ジ酢酸ジn-ブチルスズ、オクチル酸スズ等のスズ化合物、トリエチルアミン、1,4-ジアザビシクロ[2.2.2]オクタン、2,6,7-トリメチル-1,4-ジアザビシクロ[2.2.2]オクタン等のアミン化合物、オクチル酸亜鉛、ナフテン酸亜鉛等の亜鉛化合物、ジルコニウムテトラアセチルアセトナート、ナフテン酸銅、ナフテン酸コバルト等を用いることができる。
 湿気硬化促進触媒の含有量は、光湿気硬化性樹脂組成物100質量部に対して、好ましくは0.01質量部以上であり、より好ましくは0.1質量部以上であり、また、好ましくは5質量部以下であり、より好ましくは3質量部以下である。湿気硬化促進触媒の含有量がこの範囲内であることにより、光湿気硬化性樹脂組成物の保存安定性等を悪化させることなく、湿気硬化反応を促進させる効果が優れたものとなる。
[Moisture curing accelerator]
The photomoisture-curable resin composition of the present invention may contain a moisture-curing accelerating catalyst that accelerates the moisture-curing reaction of the moisture-curable urethane resin. By using the moisture-curing accelerating catalyst, the photo-moisture-curable resin composition becomes more excellent in moisture-curing property, and it becomes possible to make the adhesive strength at high temperature higher.
Specific examples of the moisture curing accelerating catalyst include tin compounds such as din-butyltin dilaurate, din-butyltin diacetate, and tin octylate, triethylamine, and 1,4-diazabicyclo [2.2.2] octane. , 2,6,7-trimethyl-1,4-diazabicyclo [2.2.2] Amine compounds such as octane, zinc compounds such as zinc octylate and zinc naphthenate, zirconium tetraacetylacetonate, copper naphthenate, naphthene Cobalt acid or the like can be used.
The content of the moisture-curing accelerating catalyst is preferably 0.01 parts by mass or more, more preferably 0.1 parts by mass or more, and preferably 0.1 parts by mass or more, based on 100 parts by mass of the photomoisture-curable resin composition. It is 5 parts by mass or less, more preferably 3 parts by mass or less. When the content of the moisture-curing accelerating catalyst is within this range, the effect of accelerating the moisture-curing reaction is excellent without deteriorating the storage stability of the photo-moisture-curable resin composition.
[カップリング剤]
 本発明の光湿気硬化性樹脂組成物は、カップリング剤を含有してもよい。カップリング剤を含有することで、接着力を向上させやすくなる。カップリング剤としては、例えば、シランカップリング剤、チタネート系カップリング剤、ジルコネート系カップリング剤等が挙げられる。なかでも、接着性を向上させる効果に優れることから、シランカップリング剤が好ましい。上記カップリング剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
 カップリング剤の含有量は、光湿気硬化性樹脂組成物100質量部に対して、好ましくは0.05質量部以上であり、より好ましくは0.2質量部以上であり、また、好ましくは5質量部以下であり、より好ましくは3質量部以下である。カップリング剤の含有量がこれら範囲内とすることで、貯蔵弾性率などに影響を及ぼすことなく、接着力を向上させられる。
[Coupling agent]
The photomoisture curable resin composition of the present invention may contain a coupling agent. By containing a coupling agent, it becomes easy to improve the adhesive strength. Examples of the coupling agent include a silane coupling agent, a titanate-based coupling agent, a zirconate-based coupling agent, and the like. Of these, a silane coupling agent is preferable because it has an excellent effect of improving adhesiveness. The coupling agent may be used alone or in combination of two or more.
The content of the coupling agent is preferably 0.05 parts by mass or more, more preferably 0.2 parts by mass or more, and preferably 5 parts by mass with respect to 100 parts by mass of the photomoisture-curable resin composition. It is not less than parts by mass, and more preferably 3 parts by mass or less. By setting the content of the coupling agent within these ranges, the adhesive strength can be improved without affecting the storage elastic modulus and the like.
 本発明の光湿気硬化性樹脂組成物は、必要に応じて、溶剤により希釈されていてもよい。光湿気硬化性樹脂組成物が溶剤により希釈される場合、光湿気硬化性樹脂組成物の質量部及び質量%は、固形分基準であり、すなわち、溶剤を除いた質量部及び質量%を意味する。
 また、光湿気硬化性樹脂組成物は、上記で述べた成分以外にも、ワックス粒子、金属含有粒子等の添加剤を含有してもよい。
The photomoisture curable resin composition of the present invention may be diluted with a solvent, if necessary. When the photomoisture curable resin composition is diluted with a solvent, the mass parts and mass% of the photomoisture curable resin composition are based on the solid content, that is, the mass parts and mass% excluding the solvent. ..
Further, the light-moisture-curable resin composition may contain additives such as wax particles and metal-containing particles in addition to the components described above.
[光湿気硬化性樹脂組成物の製造方法]
 本発明の光湿気硬化性樹脂組成物を製造する方法としては、混合機を用いて、ラジカル重合性化合物、湿気硬化性ウレタン樹脂、光重合開始剤、及び、必要に応じて配合される、充填剤、着色剤などのその他の添加剤とを混合する方法等が挙げられる。混合機としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー(遊星式撹拌装置)、ニーダー、3本ロール等が挙げられる。
[Manufacturing method of photo-moisture-curable resin composition]
As a method for producing the photo-moisture-curable resin composition of the present invention, a radical-polymerizable compound, a moisture-curable urethane resin, a photopolymerization initiator, and, if necessary, a filling material are blended using a mixer. Examples thereof include a method of mixing with other additives such as an agent and a colorant. Examples of the mixer include a homodisper, a homomixer, a universal mixer, a planetary mixer (planetary stirrer), a kneader, and three rolls.
[光湿気硬化性樹脂組成物の使用方法]
 本発明の光湿気硬化性樹脂組成物は、硬化され、硬化体として使用されるものである。本発明の光湿気硬化性樹脂組成物は、具体的には、まず、光照射により光硬化して、例えばBステージ状態(半硬化状態)にして、その後、湿気により硬化して全硬化させるとよい。
 ここで、光湿気硬化性樹脂組成物は、被着体間に配置させ、その被着体間を接合させる場合には、一方の被着体に塗布し、その後、光照射により光硬化させ、例えばBステージ状態にし、その光硬化した状態の光湿気硬化性樹脂組成物の上に他方の被着体を重ね合わせ、被着体間を適度な接着力(初期接着力)で仮接着させるとよい。その後、Bステージ状態の光湿気硬化性樹脂組成物は、湿気硬化性ウレタン樹脂を湿気により硬化させることで、全硬化させ、光湿気硬化性樹脂組成物を介して重ね合わせた被着体間が十分な接着力で接合される。
[How to use the light-moisture-curable resin composition]
The photomoisture curable resin composition of the present invention is cured and used as a cured product. Specifically, the photo-moisture-curable resin composition of the present invention is first photo-cured by light irradiation to, for example, a B-stage state (semi-cured state), and then cured by moisture to be fully cured. good.
Here, the photo-moisture-curable resin composition is arranged between the adherends, and when the adherends are bonded to each other, the photo-moisture-curable resin composition is applied to one of the adherends, and then photo-cured by light irradiation. For example, in the B stage state, the other adherend is superposed on the photo-curable resin composition in the photocured state, and the adherends are temporarily bonded with an appropriate adhesive force (initial adhesive force). good. After that, the light-moisture-curable resin composition in the B-stage state is completely cured by curing the moisture-curable urethane resin with moisture, and the adherends superposed via the light-moisture-curable resin composition are separated from each other. It is joined with sufficient adhesive strength.
 ここで、光硬化時に照射する光は、ラジカル重合性化合物が硬化する光であれば特に限定されないが、紫外線が好ましい。また、光湿気硬化性樹脂組成物は、光硬化後に湿気により全硬化させるときには、大気中に所定時間放置すればよい。 Here, the light irradiated during photocuring is not particularly limited as long as it is light that cures the radically polymerizable compound, but ultraviolet rays are preferable. Further, when the photo-moisture-curable resin composition is completely cured by moisture after photo-curing, it may be left in the air for a predetermined time.
 本発明の光湿気硬化性樹脂組成物は、好ましくは電子部品用接着剤として使用される。したがって、被着体は、特に限定されないが、好ましくは、電子機器を構成する各種電子部品である。電子機器を構成する各種電子部品としては、例えば、表示素子に設けられる各種の電子部品、電子部品が取り付けられる基板、半導体チップなどが挙げられる。被着体の材質としては、金属、ガラス、プラスチック等のいずれでもよい。また、被着体の形状としては、特に限定されず、例えば、フィルム状、シート状、板状、パネル状、トレイ状、ロッド(棒状体)状、箱体状、筐体状等が挙げられる。 The photomoisture curable resin composition of the present invention is preferably used as an adhesive for electronic parts. Therefore, the adherend is not particularly limited, but is preferably various electronic components constituting the electronic device. Examples of various electronic components constituting the electronic device include various electronic components provided on the display element, a substrate on which the electronic components are mounted, and a semiconductor chip. The material of the adherend may be any of metal, glass, plastic and the like. The shape of the adherend is not particularly limited, and examples thereof include a film shape, a sheet shape, a plate shape, a panel shape, a tray shape, a rod (rod shape) shape, a box shape, and a housing shape. ..
 上記電子部品用接着剤は、ポリエステル骨格を有する湿気硬化性ウレタン樹脂を含むことから、常温においてはディスペンス装置等を用いた塗布が困難なことがある。従って、上記電子部品用接着剤を用いた電子機器の製造方法の一例は、上記電子部品用接着剤を加熱する工程と、上記加熱した電子部品用接着剤を電子部品に塗布する工程と、を含む電子機器の製造方法である。なお、上記加熱工程における温度は、例えば130℃以下、好ましくは100℃以下であり、より好ましくは80℃以下であり、また、好ましくは30℃以上である。 Since the adhesive for electronic parts contains a moisture-curable urethane resin having a polyester skeleton, it may be difficult to apply it using a dispensing device or the like at room temperature. Therefore, an example of a method for manufacturing an electronic device using the adhesive for electronic parts includes a step of heating the adhesive for electronic parts and a step of applying the heated adhesive for electronic parts to electronic parts. It is a manufacturing method of an electronic device including. The temperature in the heating step is, for example, 130 ° C. or lower, preferably 100 ° C. or lower, more preferably 80 ° C. or lower, and preferably 30 ° C. or higher.
 上記のように、本発明の光湿気硬化性樹脂組成物は、好ましくは電子機器を構成する電子部品同士を接合するために使用される。また、本発明の光湿気硬化性樹脂組成物は、好ましくは電子部品を他の部品に接合するためにも使用される。これら構成により、電子部品は、本発明の硬化体を有することになる。
 また、本発明の光湿気硬化性樹脂組成物は、電子機器内部などにおいて、例えば基板と基板とを接着して組立部品を得るために使用される。このようにして得られた組立部品は、第1の基板と、第2の基板と、本発明の硬化体を有し、第1の基板の少なくとも一部が、第2の基板の少なくとも一部に硬化体を介して接合される。なお、第1の基板及び第2の基板は、好ましくは、それぞれ少なくとも1つの電子部品が取り付けられている。
As described above, the photomoisture curable resin composition of the present invention is preferably used for joining electronic components constituting electronic devices. The photomoisture curable resin composition of the present invention is also preferably used for joining an electronic component to another component. With these configurations, the electronic component will have the cured product of the present invention.
Further, the photo-moisture-curable resin composition of the present invention is used inside an electronic device or the like to obtain, for example, a substrate and a substrate by adhering them to each other to obtain an assembled part. The assembly component thus obtained has a first substrate, a second substrate, and a cured product of the present invention, and at least a part of the first substrate is at least a part of the second substrate. Is joined via a cured product. It should be noted that preferably, at least one electronic component is attached to each of the first substrate and the second substrate.
 本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。 The present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
 本実施例において、各種物性の測定、及び評価は以下のように行った。 In this example, various physical properties were measured and evaluated as follows.
<光硬化した状態の厚さ変化率>
 25℃の環境下で、実施例、及び比較例で得られた各光湿気硬化性樹脂組成物を、ディスペンス装置を用いて、ポリカーボネート基板(長さ50mm、幅25mm、厚さ2mm)に線幅1.0±0.1mm、長さ25±0.2mm、及び厚さが0.4±0.1mmとなるように塗布した。なお、実施例1、2、5~8及び比較例1で得られた光湿気硬化性樹脂組成物は、50℃で1時間加温した後に塗布し、実施例3で得られた光湿気硬化性樹脂組成物は、120℃で1時間加温した後に塗布し、実施例4、及び比較例2で得られた光湿気硬化性樹脂組成物は、常温で塗布した。
 塗布完了後1分以内に、UV-LED(波長365nm)を用いて、紫外線を1000mJ/cm照射することによって、光湿気硬化性樹脂組成物を光硬化させた。紫外線の照射直後の厚さを測定し、荷重作用前の厚さとした。光硬化した状態の硬化物の上に、ポリカーボネート基板と同じサイズのガラス基板を重ね、その上に100gの錘を10秒間静置させることで、光硬化した状態の硬化物に対して0.04MPaの荷重を10秒間作用させた。荷重作用後の厚さとして、光硬化した状態の硬化物の厚さを測定し、以下のように厚さ変化率(%)を測定した。
厚さ変化率(%)=(光照射直後の厚さ-荷重作用後の厚さ)/(光照射直後の厚さ)×100
 なお、光硬化した状態の硬化物の厚さは、デジタルマイクロスコープ(商品名「KH-7800」、ハイロックス社製)により観察して測定した。
<Thickness change rate in the photo-cured state>
In an environment of 25 ° C., each thermosetting resin composition obtained in Examples and Comparative Examples was applied to a polycarbonate substrate (length 50 mm, width 25 mm, thickness 2 mm) using a dispensing device. The coating was applied so as to have a length of 1.0 ± 0.1 mm, a length of 25 ± 0.2 mm, and a thickness of 0.4 ± 0.1 mm. The photo-moisture-curable resin compositions obtained in Examples 1, 2, 5 to 8 and Comparative Example 1 were applied after heating at 50 ° C. for 1 hour, and the photo-moisture-curable resin compositions obtained in Example 3 were applied. The sex resin composition was applied after heating at 120 ° C. for 1 hour, and the photomoisture curable resin compositions obtained in Example 4 and Comparative Example 2 were applied at room temperature.
Within 1 minute after the completion of the coating, the photo-moisture-curable resin composition was photocured by irradiating with UV-LED (wavelength 365 nm) at 1000 mJ / cm 2 of ultraviolet rays. The thickness immediately after irradiation with ultraviolet rays was measured and used as the thickness before the load was applied. By stacking a glass substrate of the same size as the polycarbonate substrate on the cured product in the photocured state and allowing a 100 g weight to stand on it for 10 seconds, 0.04 MPa is applied to the cured product in the photocured state. The load of was applied for 10 seconds. As the thickness after the action of the load, the thickness of the cured product in the photocured state was measured, and the thickness change rate (%) was measured as follows.
Thickness change rate (%) = (thickness immediately after light irradiation-thickness after load action) / (thickness immediately after light irradiation) x 100
The thickness of the cured product in the photocured state was measured by observing with a digital microscope (trade name "KH-7800", manufactured by Hirox Corporation).
<光硬化した状態の硬化物の貯蔵弾性率>
 光湿気硬化性樹脂組成物をUV照射レオメータ(商品名HAAKE MARS 40/60、Thermo Fisher Scientific社製)へ3gセットした。セット完了から30秒後に、UV-LEDランプを用いて紫外線を1000mJ/cm照射することによって光硬化させた。紫外線照射から60秒後に、25℃、50RH%環境下、周波数F=1.6Hzの条件でせん断貯蔵弾性率を測定した。なお、UV-LEDランプは、波長365nmのものを用いた。
<Storage elastic modulus of the cured product in the photo-cured state>
3 g of the light-moisture-curable resin composition was set in a UV irradiation rheometer (trade name: HAAKE MARS 40/60, manufactured by Thermo Fisher Scientific). Thirty seconds after the setting was completed, the film was photocured by irradiating with an ultraviolet ray of 1000 mJ / cm 2 using a UV-LED lamp. Sixty seconds after the irradiation with ultraviolet rays, the shear storage elastic modulus was measured under the condition of frequency F = 1.6 Hz under the condition of 25 ° C. and 50 RH% environment. The UV-LED lamp used had a wavelength of 365 nm.
<光湿気硬化した状態の硬化物の貯蔵弾性率>
 実施例及び比較例で得られた各光湿気硬化性樹脂組成物を、幅3mm、長さ30mm、厚み1mmのテフロン(登録商標)型に充填した。充填完了後1分以内に、UV-LED(波長365nm)を用いて、紫外線を1000mJ/cm照射することによって、硬化性樹脂組成物を光硬化させた。その後、23℃、50RH%の環境下に3日間静置することにより湿気硬化(本硬化)させた。
 得られた硬化体を用いて動的粘弾性測定装置(IT計測制御社製、商品名「DVA-200」)により、-100℃~150℃の範囲で動的粘弾性を測定し、室温(25℃)における貯蔵弾性率を求めた。測定条件は、変形モードが引っ張り、設定ひずみが1%、測定周波数が1Hz、昇温速度が5℃/minであった。
<Storage modulus of cured product in a light-moisture-cured state>
Each of the photo-moisture-curable resin compositions obtained in Examples and Comparative Examples was filled into a Teflon (registered trademark) mold having a width of 3 mm, a length of 30 mm, and a thickness of 1 mm. Within 1 minute after the completion of filling, the curable resin composition was photocured by irradiating with UV-LED (wavelength 365 nm) at 1000 mJ / cm 2 of ultraviolet rays. Then, it was allowed to stand in an environment of 23 ° C. and 50 RH% for 3 days to be moisture-cured (mainly cured).
Using the obtained cured product, the dynamic viscoelasticity was measured in the range of -100 ° C to 150 ° C by a dynamic viscoelasticity measuring device (manufactured by IT Measurement Control Co., Ltd., trade name "DVA-200"), and the room temperature ( The storage elastic modulus at 25 ° C.) was determined. The measurement conditions were that the deformation mode was pulled, the set strain was 1%, the measurement frequency was 1 Hz, and the temperature rising rate was 5 ° C./min.
<粘度>
 実施例及び比較例で得られた各光湿気硬化性樹脂組成物の粘度を、コープレート型粘度計(東機産業社製、「VISCOMETER TV-22」)を用い、25℃において回転速度1rpmの条件で測定した。
<Viscosity>
The viscosities of the light-moisture-curable resin compositions obtained in Examples and Comparative Examples were measured using a coplate type viscometer (“VISCOMETER TV-22” manufactured by Toki Sangyo Co., Ltd.) at a rotation speed of 1 rpm at 25 ° C. Measured under conditions.
<高温接着性(100℃での接着力)>
 図1(a)、(b)に示すように、実施例及び比較例で得られた各光湿気硬化性樹脂組成物10を、幅0.4±0.05mm、長さ25±2mm、及び厚さが0.2±0.05mmとなるようにガラス板11に塗布した。塗布完了後1分以内に、UV-LED(波長365nm)を用いて、紫外線を1000mJ/cm照射することによって、硬化性樹脂組成物10を光硬化させた。その後、ガラス板12を重ね合わせて、その上に100gの錘を10秒間静置させることで、光硬化した状態の硬化物に対して0.04MPaの荷重を10秒間作用させた。その後、100gの錘を取り除き、3日間、23℃、50RH%の環境下に放置することにより湿気硬化(本硬化)させ、評価用サンプル13を作製した。作製した評価用サンプル13を、100℃、50%RH雰囲気下において、引張り試験機を用いて剪断方向Sに12mm/secの速度で引張り、ガラス板11とガラス板12とが剥がれる際の強度を測定して100℃における接着力を測定した。測定された接着力により、以下の評価基準により評価した。
 A:35N以上
 B:20N以上35N未満
 C:20N未満
<High temperature adhesiveness (adhesive strength at 100 ° C)>
As shown in FIGS. 1 (a) and 1 (b), each of the photomoisture-curable resin compositions 10 obtained in Examples and Comparative Examples had a width of 0.4 ± 0.05 mm, a length of 25 ± 2 mm, and a length of 25 ± 2 mm. It was applied to the glass plate 11 so as to have a thickness of 0.2 ± 0.05 mm. Within 1 minute after the completion of coating, the curable resin composition 10 was photocured by irradiating with UV-LED (wavelength 365 nm) at 1000 mJ / cm 2 of ultraviolet rays. Then, the glass plates 12 were overlapped and a weight of 100 g was allowed to stand on the glass plates 12 for 10 seconds, so that a load of 0.04 MPa was applied to the cured product in the photocured state for 10 seconds. Then, 100 g of the weight was removed, and the mixture was left to stand in an environment of 23 ° C. and 50 RH% for 3 days to be moisture-cured (mainly cured) to prepare an evaluation sample 13. The prepared evaluation sample 13 is pulled at a speed of 12 mm / sec in the shearing direction S using a tensile tester at 100 ° C. in a 50% RH atmosphere to determine the strength at which the glass plate 11 and the glass plate 12 are peeled off. The adhesive strength at 100 ° C. was measured. The measured adhesive strength was evaluated according to the following evaluation criteria.
A: 35N or more B: 20N or more and less than 35N C: less than 20N
<応力緩和性(冷熱サイクル試験)>
 ガラス板11をポリカーボネート板に変更したこと以外は、上記高温接着性の評価と同様にして評価用サンプル13を作製した。評価用サンプルに対して、-40℃で30分間と、80℃で30分間を繰り返す冷熱サイクル試験を1000サイクル実施した。冷熱試験前と冷熱試験後の各評価用サンプルについて、25℃、50%RH雰囲気下において、引張り試験機を用いて剪断方向Sに12mm/secの速度で引張り、ポリカーボネート板とガラス板12とが剥がれる際の強度を測定して25℃における接着力を測定した。
 冷熱サイクル試験前の接着力と冷熱サイクル試験後の接着力から、以下の評価基準により光湿気硬化型樹脂組成物の応力緩和性を評価した。
[評価基準]
A:(冷熱サイクル後の接着力)/(冷熱サイクル前の接着力)≧0.8
B:0.8>(冷熱サイクル後の接着力)/(冷熱サイクル前の接着力)≧0.6
C:0.6>(冷熱サイクル後の接着力)/(冷熱サイクル前の接着力)≧0.4
D:0.4>(冷熱サイクル後の接着力)/(冷熱サイクル前の接着力)
<Stress relaxation property (cold heat cycle test)>
An evaluation sample 13 was prepared in the same manner as in the above-mentioned evaluation of high-temperature adhesiveness, except that the glass plate 11 was changed to a polycarbonate plate. The evaluation sample was subjected to 1000 cycles of a thermal cycle test in which 40 ° C. for 30 minutes and 80 ° C. for 30 minutes were repeated. For each evaluation sample before and after the cold test, the polycarbonate plate and the glass plate 12 were pulled together in the shearing direction S at a speed of 12 mm / sec using a tensile tester under a 25 ° C. and 50% RH atmosphere. The strength at the time of peeling was measured, and the adhesive strength at 25 ° C. was measured.
The stress relaxation property of the photomoisture-curable resin composition was evaluated from the adhesive strength before the cold cycle test and the adhesive strength after the cold cycle test according to the following evaluation criteria.
[Evaluation criteria]
A: (Adhesive force after cold cycle) / (Adhesive force before cold cycle) ≧ 0.8
B: 0.8> (Adhesive force after cold cycle) / (Adhesive force before cold cycle) ≧ 0.6
C: 0.6> (Adhesive force after cold cycle) / (Adhesive force before cold cycle) ≧ 0.4
D: 0.4> (Adhesive force after cold cycle) / (Adhesive force before cold cycle)
<塗布性>
 実施例及び比較例で得られた各光湿気硬化性樹脂組成物について、エアーディスペンサー(ML-5000XII、武蔵エンジニアリング社製)を用いて、常温、50℃、120℃の各温度における塗布性を評価した。評価方法としては、各光湿気硬化性樹脂組成物を10mLシリンジ(武蔵エンジニアリング社製)に充填し、各温度に設定したオーブンの中に1時間放置した後、以下のような標準的な吐出条件で細線塗布が可能かどうかを評価した。
使用した部品:精密ノズルHN-0.4N(武蔵エンジニアリング社製、内径0.40mm)
吐出圧:0.3MPa
[評価基準]
 1:常温で塗布が可能
 2:50℃で塗布が可能
 3:120℃で塗布が可能
<Applicability>
For each photomoisture-curable resin composition obtained in Examples and Comparative Examples, the coatability at room temperature, 50 ° C., and 120 ° C. was evaluated using an air dispenser (ML-5000XII, manufactured by Musashi Engineering Co., Ltd.). did. As an evaluation method, each light-moisture-curable resin composition is filled in a 10 mL syringe (manufactured by Musashi Engineering Co., Ltd.), left in an oven set at each temperature for 1 hour, and then standard discharge conditions as follows. It was evaluated whether or not fine wire application was possible.
Parts used: Precision nozzle HN-0.4N (Musashi Engineering Co., Ltd., inner diameter 0.40 mm)
Discharge pressure: 0.3 MPa
[Evaluation criteria]
1: Can be applied at room temperature 2: Can be applied at 50 ° C 3: Can be applied at 120 ° C
 各実施例及び比較例で使用した湿気硬化性ウレタン樹脂は、以下の合成例1~4に従って作製した。
 ポリエステル骨格を有する湿気硬化性ウレタン樹脂1は、以下の合成例1に従って作製した。
[合成例1]
 ポリオール化合物として100質量部のポリエステルポリオール(アジピン酸と1,6ヘキサンジオールの重縮合体であり、末端がアルコールであるポリオール)と、0.01質量部のジブチル錫ジラウレートとを500mL容のセパラブルフラスコに入れ、真空下(20mmHg以下)、100℃で30分間撹拌し、混合した。その後常圧とし、ポリイソシアネート化合物としてジフェニルメタンジイソシアネート(日曹商事社製、商品名「Pure MDI」)30質量部を入れ、80℃で3時間撹拌して反応させ、ポリエステル骨格を含有する湿気硬化性ウレタン樹脂1(重量平均分子量5000)を得た。
The moisture-curable urethane resin used in each Example and Comparative Example was prepared according to the following Synthesis Examples 1 to 4.
The moisture-curable urethane resin 1 having a polyester skeleton was produced according to the following Synthesis Example 1.
[Synthesis Example 1]
As a polyol compound, a separable volume of 100 parts by mass of a polyester polyol (polycondensate of adipic acid and 1,6 hexanediol and an alcohol at the end) and 0.01 parts by mass of dibutyltin dilaurate in a volume of 500 mL. It was placed in a flask, stirred under vacuum (20 mmHg or less) at 100 ° C. for 30 minutes, and mixed. After that, the pressure was adjusted to normal pressure, 30 parts by mass of diphenylmethane diisocyanate (manufactured by Nisso Shoji Co., Ltd., trade name "Pure MDI") was added as a polyisocyanate compound, and the mixture was stirred at 80 ° C. for 3 hours to react, and was moisture-curable containing a polyester skeleton. Urethane resin 1 (weight average molecular weight 5000) was obtained.
 ポリエステル骨格を有する湿気硬化性ウレタン樹脂2は、以下の合成例2に従って作製した。
[合成例2]
 ポリオール化合物として100質量部のポリエステルポリオール(アジピン酸、1,6-ヘキサンジオール及びイソフタル酸を主成分として得られたポリエステルポリオール、芳香環濃度15質量%、重量平均分子量1000)と、0.01質量部のジブチル錫ジラウレートとを500mL容のセパラブルフラスコに入れた。真空下(20mmHg以下)、100℃で30分間撹拌し、混合した。その後常圧とし、ポリイソシアネート化合物としてジフェニルメタンジイソシアネート(日曹商事社製、商品名「Pure MDI」)52.5質量部を入れ、80℃で3時間撹拌して反応させ、ポリエステル骨格を含有する湿気硬化性ウレタン樹脂2を得た。得られた湿気硬化性ウレタン樹脂の重量平均分子量は1500であった。
The moisture-curable urethane resin 2 having a polyester skeleton was produced according to the following Synthesis Example 2.
[Synthesis Example 2]
As a polyol compound, 100 parts by mass of a polyester polyol (a polyester polyol obtained mainly containing adipic acid, 1,6-hexanediol and isophthalic acid, an aromatic ring concentration of 15% by mass, a weight average molecular weight of 1000) and 0.01 mass by mass. A portion of dibutyltin dilaurate was placed in a 500 mL separable flask. The mixture was stirred and mixed at 100 ° C. for 30 minutes under vacuum (20 mmHg or less). After that, the pressure was adjusted to normal pressure, 52.5 parts by mass of diphenylmethane diisocyanate (manufactured by Nisso Shoji Co., Ltd., trade name "Pure MDI") was added as a polyisocyanate compound, and the mixture was stirred at 80 ° C. for 3 hours to react, and the moisture containing the polyester skeleton was added. A curable urethane resin 2 was obtained. The weight average molecular weight of the obtained moisture-curable urethane resin was 1500.
 ポリエーテル骨格を有する湿気硬化性ウレタン樹脂1は、以下の合成例3に従って作製した。
[合成例3]
 ポリオール化合物として100質量部のポリプロピレングリコール(旭硝子社製、商品名「EXCENOL 2020」)と、0.01質量部のジブチル錫ジラウレートとを500mL容のセパラブルフラスコに入れ、真空下(20mmHg以下)、100℃で30分間撹拌し、混合した。その後常圧とし、ポリイソシアネート化合物としてジフェニルメタンジイソシアネート(日曹商事社製、商品名「Pure MDI」)26.5質量部を入れ、80℃で3時間撹拌して反応させ、ポリエーテル骨格を含有する湿気硬化性ウレタン樹脂1(重量平均分子量2900)を得た。
The moisture-curable urethane resin 1 having a polyether skeleton was produced according to the following Synthesis Example 3.
[Synthesis Example 3]
As a polyol compound, 100 parts by mass of polypropylene glycol (manufactured by Asahi Glass Co., Ltd., trade name "EXCENOL 2020") and 0.01 parts by mass of dibutyltin dilaurate are placed in a 500 mL separable flask and placed under vacuum (20 mmHg or less). The mixture was stirred at 100 ° C. for 30 minutes and mixed. Then, at normal pressure, 26.5 parts by mass of diphenylmethane diisocyanate (manufactured by Nisso Shoji Co., Ltd., trade name "Pure MDI") was added as a polyisocyanate compound, and the mixture was stirred at 80 ° C. for 3 hours to react and contain a polyether skeleton. A moisture-curable urethane resin 1 (weight average molecular weight 2900) was obtained.
 ポリエーテル骨格を有する湿気硬化性ウレタン樹脂2は、以下の合成例4に従って作製した。
[合成例4]
 ポリオール化合物として100質量部のポリテトラメチレンエーテルグリコール(三菱化学社製、商品名「PTMG-2000」)と、0.01質量部のジブチル錫ジラウレートとを500mL容のセパラブルフラスコに入れ、真空下(20mmHg以下)、100℃で30分間撹拌し、混合した。その後常圧とし、ポリイソシアネート化合物としてジフェニルメタンジイソシアネート(日曹商事社製、商品名「Pure MDI」)26.5質量部を入れ、80℃で3時間撹拌して反応させ、ポリエーテル骨格を含有する湿気硬化性ウレタン樹脂2(重量平均分子量2700)を得た。
The moisture-curable urethane resin 2 having a polyether skeleton was prepared according to the following Synthesis Example 4.
[Synthesis Example 4]
100 parts by mass of polytetramethylene ether glycol (manufactured by Mitsubishi Chemical Corporation, trade name "PTMG-2000") and 0.01 parts by mass of dibutyltin dilaurate as a polyol compound are placed in a 500 mL separable flask and placed under vacuum. (20 mmHg or less), stirred at 100 ° C. for 30 minutes and mixed. Then, at normal pressure, 26.5 parts by mass of diphenylmethane diisocyanate (manufactured by Nisso Shoji Co., Ltd., trade name "Pure MDI") was added as a polyisocyanate compound, and the mixture was stirred at 80 ° C. for 3 hours to react and contain a polyether skeleton. A moisture-curable urethane resin 2 (weight average molecular weight 2700) was obtained.
 各実施例、比較例で使用した、湿気硬化性ウレタン樹脂以外の成分は、以下のとおりであった。
ウレタンアクリレート:ダイセル・オルネクス社製、「EBECRYL8411」、2官能
テトラヒドロフルフリルアクリレート:共栄社化学社製、「ライトアクリレートTHF-A」、単官能
ステアリルアクリレート:サートマー社製、「SR257」、単官能
3,3,5-トリメチルシクロヘキシルアクリレート:大阪有機化学工業社製、「ビスコート#196」、単官能
1,6-ヘキサンジアクリレート:共栄社化学社製、「ライトアクリレート1,6-HX-A」、2官能
トリメチロールプロパントリアクリレート:共栄社化学社製、「ライトアクリレートTMP-A」、3官能
光重合開始剤:2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(BASF社製、「IRGACURE369」)
カップリング剤:3-アクリロキシプロピルトリメトキシシラン、信越化学工業社製、「KBM-5103」
充填剤:トリメチルシリル化処理シリカ(日本アエロジル社製、「R812」、一次粒子径7nm)
スペーサ粒子:樹脂粒子(積水化学工業社製、「ミクロパール GS-L250」、平均粒子径(カタログ値):250.0±12.5μm、CV値(カタログ値):約7%)
着色剤:チタンブラック
The components other than the moisture-curable urethane resin used in each Example and Comparative Example were as follows.
Urethane acrylate: "EBECRYL8411" manufactured by Daicel Ornex, bifunctional tetrahydrofurfuryl acrylate: manufactured by Kyoeisha Chemical Co., Ltd., "light acrylate THF-A", monofunctional stearyl acrylate: manufactured by Sartomer, "SR257", monofunctional 3, 3,5-trimethylcyclohexyl acrylate: manufactured by Osaka Organic Chemical Industry Co., Ltd., "Viscoat # 196", monofunctional 1,6-hexanediacrylate: manufactured by Kyoeisha Chemical Co., Ltd., "light acrylate 1,6-HX-A", bifunctional Trimethylolpropane Triacrylate: "Light Acrylate TMP-A" manufactured by Kyoeisha Chemical Co., Ltd., Trifunctional photopolymerization initiator: 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 (BASF) Made by the company, "IRGACURE 369")
Coupling agent: 3-acryloxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., "KBM-5103"
Filler: Trimethylsilylated silica (manufactured by Nippon Aerosil Co., Ltd., "R812", primary particle size 7 nm)
Spacer particles: Resin particles (manufactured by Sekisui Chemical Co., Ltd., "Micropearl GS-L250", average particle size (catalog value): 250.0 ± 12.5 μm, CV value (catalog value): about 7%)
Colorant: Titanium Black
[実施例1~8、比較例1、2]
 表1に記載された配合比に従い、各材料を、遊星式撹拌装置(シンキー社製、「あわとり練太郎」)にて温度50℃で撹拌した後、セラミック3本ロールにて温度50℃で均一に混合して実施例1~3、比較例1、2の光湿気硬化型樹脂組成物を得た。
[Examples 1 to 8, Comparative Examples 1 and 2]
According to the compounding ratios shown in Table 1, each material is stirred at a temperature of 50 ° C. with a planetary stirrer (Sinky Co., Ltd., “Awatori Rentaro”), and then at a temperature of 50 ° C. with three ceramic rolls. The mixture was uniformly mixed to obtain a photomoisture-curable resin composition of Examples 1 to 3 and Comparative Examples 1 and 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 以上の実施例に示すように、光湿気硬化型樹脂組成物は、ポリエステル骨格を有する湿気硬化性ウレタン樹脂を含むことで、高温接着性が良好になることがわかる。また、厚さ変化率が50%以下となることで、応力緩和性が良好になり、接着力の耐久性が良好になることがわかる。 As shown in the above examples, it can be seen that the light-moisture-curable resin composition has good high-temperature adhesiveness by containing a moisture-curable urethane resin having a polyester skeleton. Further, it can be seen that when the thickness change rate is 50% or less, the stress relaxation property becomes good and the durability of the adhesive force becomes good.

Claims (12)

  1.  ラジカル重合性化合物と、湿気硬化性ウレタン樹脂と、光重合開始剤とを含み、
     前記湿気硬化性ウレタン樹脂は、ポリエステル骨格を有する湿気硬化性ウレタン樹脂を含み、
     紫外線を1000mJ/cm照射することにより光硬化した状態の硬化物に対して、0.04MPaの荷重を作用させたときに、荷重前後の厚さ変化率が50%以下である、光湿気硬化性樹脂組成物。
    It contains a radically polymerizable compound, a moisture-curable urethane resin, and a photopolymerization initiator.
    The moisture-curable urethane resin contains a moisture-curable urethane resin having a polyester skeleton.
    When a load of 0.04 MPa is applied to a cured product that has been photocured by irradiating 1000 mJ / cm 2 of ultraviolet rays, the rate of change in thickness before and after the load is 50% or less. Sex resin composition.
  2.  25℃、1rpmにおける粘度が3000Pa・s以下である、請求項1記載の光湿気硬化性樹脂組成物。 The photomoisture-curable resin composition according to claim 1, wherein the viscosity at 25 ° C. and 1 rpm is 3000 Pa · s or less.
  3.  前記湿気硬化性ウレタン樹脂は、ポリエーテル骨格を有する湿気硬化性ウレタン樹脂をさらに含む、請求項1又は2に記載の光湿気硬化性樹脂組成物。 The photo-moisture-curable resin composition according to claim 1 or 2, wherein the moisture-curable urethane resin further contains a moisture-curable urethane resin having a polyether skeleton.
  4.  前記ポリエステル骨格を有する湿気硬化性ウレタン樹脂は、分子内にポリエーテル骨格を有する、請求項1又は2に記載の光湿気硬化性樹脂組成物。 The photo-moisture-curable resin composition according to claim 1 or 2, wherein the moisture-curable urethane resin having a polyester skeleton has a polyether skeleton in the molecule.
  5.  前記光湿気硬化性樹脂組成物は、スペーサ粒子をさらに含む、請求項1~4のいずれか1項に記載の光湿気硬化性樹脂組成物。 The photo-moisture-curable resin composition according to any one of claims 1 to 4, further comprising spacer particles.
  6.  前記光湿気硬化性樹脂組成物100質量%中、ラジカル重合性化合物の含有量が3質量%以上である、請求項1~5のいずれか1項に記載の光湿気硬化性樹脂組成物。 The photo-moisture-curable resin composition according to any one of claims 1 to 5, wherein the content of the radically polymerizable compound is 3% by mass or more in 100% by mass of the photo-moisture-curable resin composition.
  7.  前記光重合開始剤は、アシルフォスフィンオキサイド系骨格を有する化合物、又はα-アミノアルキルフェノン系骨格を有する化合物である、請求項1~6のいずれか1項に記載の光湿気硬化性樹脂組成物。 The photomoisture-curable resin composition according to any one of claims 1 to 6, wherein the photopolymerization initiator is a compound having an acylphosphine oxide-based skeleton or a compound having an α-aminoalkylphenone-based skeleton. thing.
  8.  前記光硬化した状態の硬化物の25℃における貯蔵弾性率が10kPa以上である、請求項1~7のいずれか1項に記載の光湿気硬化性樹脂組成物。 The photomoisture-curable resin composition according to any one of claims 1 to 7, wherein the photocured cured product has a storage elastic modulus of 10 kPa or more at 25 ° C.
  9.  前記光硬化した状態の硬化物を23℃、50RH%の環境下に3日間静置することにより得られる硬化物の25℃における貯蔵弾性率が1MPa以上である、請求項1~8のいずれか1項に記載の光湿気硬化性樹脂組成物。 Any of claims 1 to 8, wherein the cured product obtained by allowing the cured product in the photocured state to stand in an environment of 23 ° C. and 50 RH% for 3 days has a storage elastic modulus of 1 MPa or more at 25 ° C. The photo-moisture-curable resin composition according to item 1.
  10.  請求項1~9のいずれか1項に記載の光湿気硬化性樹脂組成物からなる、電子部品用接着剤。 An adhesive for electronic components, which comprises the photomoisture curable resin composition according to any one of claims 1 to 9.
  11.  請求項10に記載の電子部品用接着剤を加熱する工程と、
     加熱した前記電子部品用接着剤を電子部品に塗布する工程と、を含む、電子機器の製造方法。
    The step of heating the adhesive for electronic components according to claim 10.
    A method for manufacturing an electronic device, which comprises a step of applying a heated adhesive for an electronic component to an electronic component.
  12.  請求項1~9のいずれか1項に記載の光湿気硬化性樹脂組成物の硬化体。 A cured product of the photo-moisture-curable resin composition according to any one of claims 1 to 9.
PCT/JP2021/003989 2020-02-05 2021-02-03 Photo/moisture curable resin composition, adhesive for electronic components, method for producing electronic component, and cured body WO2021157624A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180005424.5A CN114423834A (en) 2020-02-05 2021-02-03 Light-moisture-curable resin composition, adhesive for electronic component, method for producing electronic component, and cured body
JP2021514450A JPWO2021157624A1 (en) 2020-02-05 2021-02-03
KR1020227008921A KR20220137865A (en) 2020-02-05 2021-02-03 Optical moisture curable resin composition, adhesive for electronic parts, manufacturing method for electronic parts, and cured product

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020017770 2020-02-05
JP2020-017770 2020-02-05
JP2020128734 2020-07-29
JP2020-128734 2020-07-29

Publications (1)

Publication Number Publication Date
WO2021157624A1 true WO2021157624A1 (en) 2021-08-12

Family

ID=77200509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003989 WO2021157624A1 (en) 2020-02-05 2021-02-03 Photo/moisture curable resin composition, adhesive for electronic components, method for producing electronic component, and cured body

Country Status (5)

Country Link
JP (1) JPWO2021157624A1 (en)
KR (1) KR20220137865A (en)
CN (1) CN114423834A (en)
TW (1) TW202134309A (en)
WO (1) WO2021157624A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112873A1 (en) * 2021-12-13 2023-06-22 積水化学工業株式会社 Adhesive composition, adhesive for electronic components, and adhesive for portable electronic devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248152A (en) * 2007-03-30 2008-10-16 Dic Corp Moisture-hardening polyurethane hot-melt adhesive and fixture material using it
JP2016074826A (en) * 2014-10-07 2016-05-12 Dic株式会社 Method for producing laminate and decorative fixture member
JP5999828B1 (en) * 2013-09-26 2016-09-28 昆山天洋熱熔膠有限公司 Method for producing moisture-curing reactive polyurethane hot melt adhesive for fabric bonding
WO2016163353A1 (en) * 2015-04-09 2016-10-13 積水化学工業株式会社 Photo/moisture curable resin composition, adhesive for electronic components, and adhesive for display elements

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101882197B1 (en) 2014-12-22 2018-07-26 (주)에스엔피월드 Impregnated NBR(nitrile butadiene rubber) sponge of gel form cosmetic composition and method of preparing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248152A (en) * 2007-03-30 2008-10-16 Dic Corp Moisture-hardening polyurethane hot-melt adhesive and fixture material using it
JP5999828B1 (en) * 2013-09-26 2016-09-28 昆山天洋熱熔膠有限公司 Method for producing moisture-curing reactive polyurethane hot melt adhesive for fabric bonding
JP2016074826A (en) * 2014-10-07 2016-05-12 Dic株式会社 Method for producing laminate and decorative fixture member
WO2016163353A1 (en) * 2015-04-09 2016-10-13 積水化学工業株式会社 Photo/moisture curable resin composition, adhesive for electronic components, and adhesive for display elements

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112873A1 (en) * 2021-12-13 2023-06-22 積水化学工業株式会社 Adhesive composition, adhesive for electronic components, and adhesive for portable electronic devices

Also Published As

Publication number Publication date
KR20220137865A (en) 2022-10-12
JPWO2021157624A1 (en) 2021-08-12
CN114423834A (en) 2022-04-29
TW202134309A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
JP5844504B1 (en) Light moisture curable resin composition, adhesive for electronic parts, and adhesive for display elements
JP5989902B2 (en) Light moisture curable resin composition, adhesive for electronic parts, and adhesive for display elements
JP6798791B2 (en) Adhesives for electronic components and adhesives for display elements
JP2016074783A (en) Photo- and moisture-curable resin composition
WO2021157624A1 (en) Photo/moisture curable resin composition, adhesive for electronic components, method for producing electronic component, and cured body
JP2024026609A (en) Curable resin composition and cured product
JP7453905B2 (en) Curable resin composition and cured product
JP7486414B2 (en) Photo-Moisture-Curable Urethane Compound, Photo-Moisture-Curable Urethane Prepolymer, and Photo-Moisture-Curable Resin Composition
WO2020149379A1 (en) Photo/moisture curable resin composition and cured body
JP2016074781A (en) Photo- and moisture-curable resin composition
WO2015146878A1 (en) Light-/moisture-curable resin composition, electronic component adhesive, and display element adhesive
JP2016147969A (en) Photo- and moisture-curable resin composition, adhesive agent for electronic component, and adhesive agent for display element
TWI712665B (en) Light moisture curable resin composition, adhesive for electronic parts, and adhesive for display elements
WO2022004416A1 (en) Photo/moisture curable resin composition and cured body
JPWO2019054463A1 (en) Light moisture curable resin composition, adhesive for electronic parts and adhesive for display elements
WO2020241803A1 (en) Curable resin composition, cured object, and electronic component
JP6622465B2 (en) Light moisture curable resin composition cured body for narrow frame design display element
WO2022230820A1 (en) Light/moisture-curable adhesive composition, and cured body
WO2022230819A1 (en) Moisture-curable adhesive composition and cured object
JP2019065309A (en) Photo-moisture curable resin composition cured body
JP2020045403A (en) Curable resin composition, cured product, electronic component, and assembly component
WO2024143421A1 (en) Adhesive composition, cured body, and adhesive for electronic devices
WO2022114186A1 (en) Moisture-curable resin composition and adhesive for electronic appliance
CN111479892B (en) Curable resin composition, cured body, electronic component, and assembled component
WO2019203277A1 (en) Curable resin composition, cured body, electronic part and assembly part

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021514450

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21750640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21750640

Country of ref document: EP

Kind code of ref document: A1