WO2022102063A1 - 無線通信システム、無線通信方法、および受信装置 - Google Patents

無線通信システム、無線通信方法、および受信装置 Download PDF

Info

Publication number
WO2022102063A1
WO2022102063A1 PCT/JP2020/042306 JP2020042306W WO2022102063A1 WO 2022102063 A1 WO2022102063 A1 WO 2022102063A1 JP 2020042306 W JP2020042306 W JP 2020042306W WO 2022102063 A1 WO2022102063 A1 WO 2022102063A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
stream
channel
wireless communication
transmission
Prior art date
Application number
PCT/JP2020/042306
Other languages
English (en)
French (fr)
Inventor
隼人 福園
圭太 栗山
正文 吉岡
利文 宮城
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2022561792A priority Critical patent/JPWO2022102063A1/ja
Priority to US18/036,315 priority patent/US20230421210A1/en
Priority to PCT/JP2020/042306 priority patent/WO2022102063A1/ja
Publication of WO2022102063A1 publication Critical patent/WO2022102063A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference

Definitions

  • the present invention improves the accuracy of the estimation result of the communication path response in the SC (Single Carrier) -MIMO (Multiple-Input Multiple-Output) type wireless communication system that performs FIR (Finite Impulse Response) type transmission beam formation processing.
  • SC Single Carrier
  • MIMO Multiple-Input Multiple-Output
  • FIR Finite Impulse Response
  • a transmission beam forming process for removing inter-stream interference and a waveform equalization process for removing intersymbol interference are performed in the frequency domain or time. It is done in the area.
  • Non-Patent Document 1 a multi-user MIMO-SC-FDE (Frequency Domain Equalization) communication system that performs FIR type transmission beam forming processing is disclosed (see, for example, Non-Patent Document 1).
  • MIMO-SC-FDE Frequency Domain Equalization
  • Non-Patent Document 2 a FIR type transmission beam forming method that can be used in a non-square MIMO channel matrix system in which the number of transmitting antennas and the number of receiving antennas are different is being studied (see, for example, Non-Patent Document 2).
  • Hayato Fukuzono Keita Kuriyama, Masafumi Yoshioka, Tsutomu Tateda, "Adaptive CP Length Technology in Multi-User MIMO-SC-FDE System Using FIR Transmission Beam Formation", September 2019 IEICE Society Tournament B-5-62.
  • Hayato Fukuzono Keita Kuriyama, Masafumi Yoshioka, Takafumi Hayashi, "Spatial Diversity Technology Based on FIR Transmission Beam Formation in Multi-User MIMO-SC System”
  • the inverse matrix of the communication path matrix H (z) is represented by a translocation adjugate matrix (adj [H (z)]) and a determinant (det [H (z)]), and on the transmitter side, adj.
  • the transmission beam formation process is performed by the transmission weight using [H (z)], and the communication path matrix is diagonalized.
  • the equalization processing is performed by the receiving weight using det [H (z)].
  • the equalization process is performed by dividing the received signal in the frequency domain by the det [H (z)] converted into the frequency domain.
  • the present invention is a wireless communication system in which a transmitting device and a receiving device perform wireless communication by the SC-MIMO method, wherein the transmitting device is a predetermined known signal for the receiving device to estimate a communication path response.
  • a training signal generation unit that generates a transmission beam and a transmission beam forming unit that forms a transmission beam for eliminating interstream interference by a transmission weight calculated based on a channel response estimated by the receiver.
  • the receiving device is a channel estimation unit that receives the known signal and estimates the channel response, and a compositing unit that synthesizes a plurality of channel responses for each stream estimated by the known signal from which inter-stream interference is removed. It is characterized by including an equalization unit that performs an equalization process for removing intersymbol interference for each stream by a reception weight calculated based on the communication path response synthesized by the synthesis unit.
  • the present invention is a wireless communication method for performing wireless communication by the SC-MIMO method between a transmitting device and a receiving device, wherein the transmitting device is predetermined for the receiving device to estimate a communication path response.
  • a training signal generation process for generating a known signal and a transmission beam formation process for forming a transmission beam for eliminating interstream interference by a transmission weight calculated based on a channel response estimated by the receiver are performed.
  • the receiving device synthesizes a channel estimation process for receiving the known signal and estimating the channel response, and a plurality of channel responses for each stream estimated by the known signal from which inter-stream interference has been removed. It is characterized in that a synthesis process and an equalization process for removing intersymbol interference for each stream are performed by a reception weight calculated based on the communication path response synthesized by the synthesis process.
  • a predetermined known signal for estimating a channel response transmitted from the transmitting device is received.
  • a channel estimation unit that estimates the channel response, and a compositing unit that synthesizes a plurality of channel responses for each stream estimated by a known signal from which inter-stream interference transmitted by forming a beam from the transmission device is removed. It is characterized by including an equalization unit that performs an equalization process for removing intersymbol interference for each stream by a reception weight calculated based on a communication path response synthesized by the synthesis unit.
  • the wireless communication system, the wireless communication method, and the receiving device synthesize the estimation results of the channel response for each stream in the SC-MIMO system that performs the FIR type transmission beam forming process, and the synthesized channel response. It is possible to improve the accuracy of the estimation result of the channel response by performing the equalization processing of the received signal of each stream based on the estimation result of.
  • FIG. 1 shows an example of a wireless communication system 100 according to the present embodiment.
  • the wireless communication system 100 includes a transmitter 101 having N antennas (N is a positive integer) from the antenna ATt (0) to the antenna ATt (N-1), and an antenna from the antenna Att (0). It has a receiving device 102 having N antennas up to Att (N-1), and communication by the SC-MIMO method is performed between the transmitting device 101 and the receiving device 102.
  • the antenna ATt When a common explanation is given from the antenna ATt (0) to the antenna ATt (N-1), the (number) at the end of the code is omitted and referred to as the antenna ATt. Further, when a plurality of the same blocks are arranged in parallel with respect to the antenna Att and other blocks described later, they are described in the same manner as the antenna ATt.
  • the transmitting device 101 has N antennas ATt (0) to antennas ATt (N-1) and a transmitting beam forming unit 204.
  • components other than the transmitting beam forming unit 204 such as a block for generating a training signal for estimating a channel response on the receiving device 102 side, are omitted. The components will be described in detail later.
  • the transmission beam forming unit 204 inputs signals for each stream corresponding to the N antennas ATt, and performs FIR type transmission beam forming processing in the time domain, for example.
  • the signal of each stream from which the interstream interference is removed by the transmission beam forming process is transmitted from each of the N antennas ATt.
  • the transmission beam forming unit 204 inputs N signals from the streams s 1, t to the streams s N, t , and performs a transmission beam forming process by the transmission weight W (z). Then, the signals of the N streams processed to form the transmission beam are transmitted from the N antennas ATt, respectively.
  • the transmission weight W (z) will be described later. Further, a process of adding a CP (Cyclic Prefix) is appropriately performed to the signal of each stream input by the transmission beam forming unit 204.
  • the receiving device 102 has N antennas Atl (0) to antenna Att (N-1) and an equalizing unit 305.
  • components other than the equalizing unit 305 such as a block that estimates the channel response based on the training signal transmitted from the transmitting device 101, are omitted, and their configurations are omitted. The elements will be described in detail later.
  • the equalization unit 305 receives the signal transmitted from the transmission device 101 by N antennas Att, and performs equalization processing for removing intersymbol interference from the signal of each stream received by each antenna Att. .. Specifically, the equalization unit 305 inputs N signals from y 1, t to y N, t received by the N antennas Atl, respectively, and removes intersymbol interference from each signal. In addition, equalization processing is performed by the reception weight. The reception weight will be described later. Further, the CP added on the transmission device 101 side when the equalization process is performed by the FDE is removed from the signal input to the equalization unit 305.
  • the antennas are directly connected to each other. There are multipaths with various delay times as well as waves.
  • the communication path response between the antenna ATt (0) to the antenna ATt (N-1) of the transmitting device 101 and the antenna ATt (0) to the antenna Att (N-1) of the receiving device 102 is a channel matrix. It is represented by H (z).
  • FIG. 2 shows an example of a delay profile.
  • the delay profile of FIG. 2 includes the antenna ATt (n) of the transmitting device 101 (n is an integer from 0 to N-1) and the antenna Att (m) of the receiving device 102 (m is an integer from 0 to N-1).
  • the horizontal axis represents the delay time l
  • the vertical axis represents the gain (dB) of the delayed wave.
  • ATt (n) indicates any of the N antennas ATt of the transmitting device 101
  • Att (m) indicates any of the N antennas Att of the receiving device 102.
  • L (L: a positive integer) is the CIR length of the one having the delay wave with the maximum delay in the channel response (CIR (channel impulse response)).
  • CIR channel impulse response
  • the communication path response (H m, n (z)) between the antenna ATt (n) of the transmitting device 101 and the antenna Att (m) of the receiving device 102 is expressed by the equation (1).
  • z of z- l is a delay operator which performs time shift.
  • the communication path response in the MIMO communication path between the transmitting device 101 having the N antennas ATt and the receiving device 102 having the N antennas Att is of the equation (1). It is represented by a channel matrix H (z) having N ⁇ N channel responses between each antenna as elements.
  • H (z) the inverse matrix of H (z) is expressed by the equation (3) when the transposed adjugate matrix is expressed as adj [H (z)] and the determinant is expressed as det [H (z)].
  • H (z) represents det [H (z)].
  • adj adjugate matrix
  • adj adjugate matrix
  • the communication path matrix H (z) is diagonalized, and each diagonal element is diagonalized. It is known to be equal to det [H (z)] (see, for example, Non-Patent Document 1).
  • the communication path matrix when the transmission beam formation process is performed with adj [H (z)] as the transmission weight W (z) is equivalently represented by the equation (4).
  • I is an identity matrix.
  • the channel matrix H (z) is diagonalized and the non-diagonal representing the inter-stream interference component is represented.
  • the component becomes 0 and the inter-stream interference is eliminated.
  • the intersymbol interference of the received signal of each stream can be removed by performing the equalization processing using det [H (z)] on the data signal from which the interstream interference has been removed. It was done.
  • det [H (z)] det [H (z)]
  • the accuracy of the estimation result of the channel response is improved by paying attention to the fact that the channel matrix is diagonalized by the above-mentioned transmission beam forming process and the same reception weight is used in a plurality of streams. do.
  • the wireless communication system 100 estimates the communication path matrices H (z) of the plurality of streams after removing the interference between the streams, and synthesizes the estimated communication path matrices H (z). , Improve the accuracy of channel response estimation results. Then, the accuracy of the equalization process is improved by calculating the reception weight from the combined channel response ⁇ H (z).
  • transmission signals are s 1, t to s N, t
  • noise is w 1
  • a channel matrix is H (z)
  • a transmission beam is formed.
  • the wait of is W (z)
  • the received signals y 1, t to y N, t of each stream are expressed by the equation (5).
  • the channel matrix after removing the interference between streams is represented by the equation (6) as the channel matrix H W (z) of each stream.
  • the equation (6) corresponds to the above equation (4).
  • H W (z) is the same for all streams. That is, it can be considered that the received signals y 1, t to y N, t after removing the interference between the streams are virtually independent SISO transmission in each stream as shown in the equation (7).
  • the communication path matrix of each stream at this time is the same H W (z).
  • the communication path matrices H 0 , 0 (z), H 1, 1 of each stream are set as known signals (training signals) in which s 1, t to s N, t are predetermined. 1 (z), H 2 , 2 (z), ..., H N-1, N-1 (z) are estimated, respectively. Then, the combined channel response ⁇ H W (z) obtained by synthesizing the channel matrices of the estimated N streams is calculated. Then, the combined channel response ⁇ H W (z) is used as the H W (z) of the equations (6) and (7).
  • H0,0 (z) indicates the channel response between the antenna ATt (0) and the antenna Att (0).
  • the channel matrix H 1 , 1 (z) is between the antenna ATt (1) and the antenna Att (1), and H 2 , 2 (z) is between the antenna ATt (2) and the antenna Att (2).
  • H N-1, N-1 (z) indicate the respective communication path responses between the antenna ATt (N-1) and the antenna Att (N-1).
  • the average value obtained by averaging the estimation results of the channel responses of the plurality of streams is referred to as the composite channel response ⁇ H W (z). can do.
  • the estimated channel matrix ⁇ H 1, W (z) is the channel matrix H 1, 1 (z)
  • the estimated channel matrix ⁇ H 2, W (z) is the channel matrix H 2 , 2.
  • the estimated channel matrix ⁇ H N-1, W (z) are estimated values corresponding to the channel matrices H N-1, N-1 (z), respectively.
  • the wireless communication system 100 uses the highly accurate synthetic channel response ⁇ H W (z), the accuracy of the equalization process is improved.
  • the reception wait is 1 / ⁇ H W (z) using the combined channel response ⁇ H W (z).
  • the average value obtained by simply averaging the estimation results of the channel responses of a plurality of streams is defined as the composite channel response ⁇ H W (z), but the composite value is obtained by a well-known statistical process. May be good.
  • weighting may be performed according to the state of each stream, or processing such as excluding the maximum value or the minimum value of N estimated values may be performed.
  • the channel matrix of square MIMO in which the number of antennas of the transmitting device 101 and the number of antennas of the receiving device 102 are the same has been described, but the number of antennas of the transmitting device 101 and the number of antennas of the receiving device 102 have been described.
  • a non-square MIMO communication path matrix as described in Non-Patent Document 2, the product Y (z) (H (z) H (z) of the communication path matrix H (z) and its complex conjugate transpose.
  • the transposed adjugate matrix adj [Y (z)] (which is approximately equal to H )
  • transmission weights can be generated to form the transmission beam.
  • H (z) can be diagonalized, so that the same processing as in the previous embodiment can be performed thereafter.
  • the receiving device 102 estimates the channel response of each stream after forming the transmission beam using the training signal transmitted from the transmitting device 101, and synthesizes the channel response of the estimated plurality of streams.
  • the equalization process can be performed using the synthetic channel response ⁇ H W (z).
  • FIG. 3 shows a configuration example of the transmission device 101 according to the present embodiment.
  • the transmission device 101 includes an information bit generation unit 201, a data signal modulation unit 202, a training signal generation unit 203, a transmission beam forming unit 204, a transmission unit 205, a reception unit 206, a transmission weight calculation unit 207, and an antenna ATt ( It has an antenna ATt (N-1) from 0).
  • a CP addition unit may be provided between the data signal modulation unit 202 and the transmission beam forming unit 204.
  • the information bit generation unit 201 generates data information bits of N streams to be transmitted to the receiving device 102.
  • the data information bit is, for example, a bit string corresponding to a data signal input from the outside (not shown), a data signal generated internally, or the like.
  • the information bit generation unit 201 may have an error correction coding function, an interleaving function, or the like that generate an error correction code at a predetermined coding rate.
  • the data signal modulation unit 202 has data signal modulation units 202 (0) to data signal modulation units 202 (N-1) corresponding to the antennas ATt (0) to the antennas ATt (N-1), respectively.
  • Each data signal modulation unit 202 outputs a data signal obtained by modulating the bit string of each stream output by the information bit generation unit 201 by a predetermined modulation method (for example, quadrature amplitude modulation (QAM)).
  • a predetermined modulation method for example, quadrature amplitude modulation (QAM)
  • the training signal generation unit 203 generates a known signal (training signal) for estimating the communication path response between the transmission device 101 and the reception device 102 (training signal generation processing).
  • the training signal is a predetermined signal obtained by modulating predetermined information such as a preamble for signal detection (for example, a specific pattern such as an alternating pattern of "01") by a modulation method such as PSK (Phase Shift Keying) that is less susceptible to interference.
  • PSK Phase Shift Keying
  • the transmission beam forming unit 204 uses the transmission weight adj [H (z)] calculated by the transmission weight calculation unit 207 described later, and N ⁇ N with respect to the signal output by the N data signal modulation units 202. A transmission beam forming process for removing inter-stream interference in MIMO transmission is performed.
  • the transmission beam forming unit 204 may have a function of normalizing the transmission power.
  • the transmitting unit 205 has a transmitting unit 205 (0) to a transmitting unit 205 (N-1) corresponding to the antenna ATt (0) to the antenna ATt (N-1), respectively.
  • Each transmission unit 205 is composed of a pulse shaping unit (Pulse Shaping: performing necessary band limitation by a roll-off filter or the like), a DAC (Digital to Analog Conversion), an RF unit (Radio Frequency), and the like, and is composed of a transmission beam forming unit.
  • the processing for converting the signal for each stream output by 204 into a high frequency signal and transmitting it from the antenna ATt is performed.
  • the receiving unit 206 has a receiving unit 206 (0) to a receiving unit 206 (N-1) corresponding to the antenna ATt (0) to the antenna ATt (N-1), respectively.
  • Each receiving unit 206 is composed of an RF unit, an ADC (Analog to Digital Conversion), a pulse forming unit, and the like, and receives high frequencies received by the respective antennas of the antenna ATt (0) to the antenna ATt (N-1). Frequency converts the signal to a low frequency baseband signal.
  • the receiving unit 206 receives the signal including the information of the channel matrix H (z) from the receiving device 102 and outputs it to the transmission weight calculation unit 207.
  • the receiving unit 206 may have the function of the demodulation unit that demodulates the information of the channel matrix from the baseband signal, or the transmission weight calculation unit 207 may have the function. Further, the signal including the information of the channel matrix H (z) may be received from the receiving unit 206 (0) by any receiving unit 206 of the receiving unit 206 (N-1), or may be received by a plurality of receiving units. It may be received in parallel or distributed at 206.
  • the transmission weight calculation unit 207 calculates adj [H (z)] described in the equation (3) as the transmission weight W (z) based on the channel matrix H (z) estimated on the receiving device 102 side. Weight calculation process). The calculated transmission weight is output to the transmission beam forming unit 204.
  • the transmitting device 101 transmits a training signal for estimating the channel response, and the estimation result of the channel response between the receiving devices 102 and each antenna of N ⁇ N is obtained by the channel matrix H (z). ). Then, the transmission device 101 performs transmission beam formation processing using adj [H (z)] calculated based on the communication path matrix H (z) as a transmission weight, and removes inter-stream interference.
  • the transmission weight calculation unit 207 is provided in the transmission device 101, but the reception device 102 may calculate the transmission weight and transmit it to the transmission device 101.
  • the receiving unit 206 receives the information of adj [H (z)] from the receiving device 102 and outputs it to the transmission beam forming unit 204.
  • FIG. 4 shows a configuration example of the receiving device 102 according to the present embodiment.
  • the receiving device 102 includes a receiving unit 301, a communication path estimation unit 302a, a transmitting unit 303, an estimation result synthesis unit 304, an equalization unit 305, a data signal demodulation unit 306, an information bit detection unit 307, and an antenna Atl (0). ) To have an antenna Att (N-1).
  • the receiving unit 301 has a receiving unit 301 (0) to a receiving unit 301 (N-1) corresponding to the antenna Att (0) to the antenna Att (N-1), respectively.
  • each receiving unit 301 is composed of an RF unit, an ADC unit, a pulse forming unit, and the like, and frequency-converts a high-frequency signal received by the antenna Atl into a baseband signal.
  • the channel estimation unit 302a has an estimation unit 302 (0) to an estimation unit 302 (N-1) corresponding to the antenna Att (0) to the antenna Atl (N-1), respectively.
  • Each estimation unit 302 estimates the channel response based on the training signal transmitted from the transmission device 101 (channel estimation process).
  • the estimation unit 302 is used for first estimation processing for calculating the transmission weight used in the transmission beam forming unit 204 of the transmission device 101 and for calculating the reception weight used in the equalization unit 305 of the reception device 102.
  • the second estimation process is performed.
  • the channel response between all N ⁇ N antennas is estimated, and the channel matrix H (z) having the channel response of N ⁇ N as an element (the above equation (2)). Is obtained.
  • N channel responses for each stream ⁇ H k, W (z) (k is an integer from 1 to N) are estimated. The details of the processing of the channel estimation unit 302a will be described later.
  • the transmission unit 303 has transmission units 303 (0) to transmission units 303 (N-1) corresponding to antenna Att (0) to antenna Att (N-1), respectively.
  • each transmission unit 303 is composed of a pulse forming unit, a DAC unit, an RF unit, and the like, and information on the communication path matrix H (z) output from the communication path estimation unit 302a. Etc. are converted into high frequency signals and transmitted from the antenna Atl.
  • the transmission unit 303 may have the function of the modulation unit that modulates the information of the channel matrix H (z) into the baseband signal, or the channel estimation unit 302a may have the function.
  • the estimation result synthesis unit 304 estimates the channel response ( ⁇ H 1, W (z) to ⁇ H N, W (z)) for each of the N streams estimated by the estimation unit 302 in the second estimation process. Is synthesized, and a highly accurate synthetic channel response ⁇ H W (z) is calculated. Then, 1 / ⁇ H W (z) is calculated as a reception weight based on the combined channel response ⁇ H W (z), and is output to the equalization unit 305 (weight calculation process). The weight calculation process may be performed by the equalization unit 305. Further, the combined channel response ⁇ H W (z) is calculated as an average value obtained by averaging the estimation results of the channel responses of N streams, for example, as described in the equation (8).
  • the equalization unit 305 receives 1 / ⁇ WH (z) as the reception weight of each stream based on the synthetic channel response ⁇ H W (z) output from the estimation result synthesis unit 304, and receives it in the reception unit 301. Performs equalization processing to eliminate intersymbol interference of data signals for each stream. As shown in the above equation (6), since the communication path matrix is diagonalized by the transmission beam forming process of the transmission device 101 and the diagonal elements are the same, the reception unit 301 (0) to the reception unit 301 ( The same combined channel response ⁇ H W (z) is used for each stream of N).
  • the equalization process is performed by FDE
  • the data signal converted into the frequency domain by DFT discrete Fourier transform
  • Equalization processing is performed.
  • the data signal in the frequency domain after equalization is converted into a data signal in the time domain by IDFT (inverse discrete Fourier transform) and output to the data signal demodulator 306.
  • the data signal demodulation unit 306 demodulates the data signal output by the equalization unit 305 into information bits and outputs a bit string.
  • the data signal demodulation unit 306 may be provided with an error correction / decoding function and a deinterleave function, depending on the function of the transmission device 101.
  • the information bit detection unit 307 outputs the received data obtained by converting the bit string output by the data signal demodulation unit 306 into digital data.
  • the error correction / decoding function and the deinterleave function may be performed on the information bit detection unit 307 side.
  • the receiving device 102 estimates the channel response for performing the transmission beam forming process by the first estimation process, and for each stream for performing the equalization process by the second estimation process. Estimate the channel response and synthesize the estimation results. As a result, the accuracy of the estimation result of the channel response can be improved, and the equalization process with high accuracy can be performed.
  • the channel estimation unit 302a includes N estimation units 302, and is a first estimation process for estimating the communication path response between the N antenna ATt and the N antenna Att. The second estimation process is performed.
  • the N ⁇ N channel response between all N ⁇ N antennas is estimated, and the channel matrix H (z) having the estimated N ⁇ N channel response as an element is obtained. Be done. For example, when the training signal is transmitted from the antenna ATt (0) of the transmitting device 101 and received by the antenna Att (N-1) from the antenna Att (0) of the receiving device 102, the respective communication path responses H0,0 ( z), H 0 , 1 (z), ..., H 0, N-1 (z) are estimated.
  • the training signal is transmitted from the antenna ATt (1) of the transmitting device 101 and received by the antenna Att (N-1) from the antenna Att (0) of the receiving device 102
  • the respective communication path responses H 1, 0 (Z), H 1,1 (z), ..., H 1, N-1 (z) are estimated.
  • the communication path between all the antennas of N ⁇ N The response is estimated, and a channel matrix H (z) having an N ⁇ N channel response as an element is obtained.
  • the antenna ATt other than the antenna ATt (0) does not transmit the signal.
  • the antenna ATt other than the antenna ATt (1) does not transmit the signal. The same applies to other antennas ATt.
  • the second estimation process is a process for calculating the reception weight used by the equalization unit 305 of the reception device 102, and the transmission beam is formed based on the transmission weight obtained in the first estimation process. It is done in the state. That is, the channel response ( ⁇ H 1, W (z) to ⁇ H N, W (z)) for each of N streams is estimated in a state where the inter-stream interference is removed. For example, the training signal transmitted from the antenna ATt (0) of the transmitting device 101 is received by the antenna Att (0) of the receiving device 102, and the communication of the stream between the antenna ATt (0) and the antenna Att (0) is performed. The road response H 0,0 (z) is estimated.
  • the training signal transmitted from the antenna ATt (1) of the transmitting device 101 is received by the antenna Att (1) of the receiving device 102, and the stream between the antenna ATt (1) and the antenna Att (1) is received.
  • the channel response H 1,1 (z) is estimated.
  • Communication path response H 0 , 0 (z), H 1 , 1 (z), H 2, 2 (z), ..., H N-2, N-2 (z), H N-1, N -1 (z)
  • the estimated channel response of each stream is ⁇ H 1, W (z), ⁇ H 2, W (z), ⁇ H 3, W (z), ... , ⁇ H N-1, W (z), ⁇ H N, W (z). Since the interstream interference is removed in the second estimation process, the training signals are simultaneously transmitted from the antenna ATt (0) of the transmitting device 101 to the N antennas ATt of the antenna ATt (N-1). Then, the communication path response of each stream may be estimated.
  • the channel estimation unit 302a first performs the first estimation process to acquire the channel matrix H (z) for calculating the transmission weight used by the transmission beam forming unit 204 of the transmission device 101.
  • a second estimation process is performed to estimate the channel response for each stream for calculating the reception weight used by the equalization unit 305 of the receiving device 102.
  • the wireless communication system 100 can remove the inter-stream interference by the transmission beam forming unit 204 and the intersymbol interference by the equalization unit 305.
  • the estimation result of the channel response in which the reception weight used in the equalization unit 305 is estimated for each stream of a plurality of streams is synthesized, the accuracy of the channel response estimation result can be improved.
  • FIG. 5 shows the processing flow of the wireless communication system 100 according to the present embodiment. The process shown in FIG. 5 is performed by each block of the transmitting device 101 and the receiving device 102 described with reference to FIGS. 3 and 4.
  • step S101 the estimation unit 302 of the receiving device 102 receives the training signal transmitted from the transmitting device 101 and estimates the channel matrix H (z) between all the antennas (first estimation process).
  • the estimated channel matrix H (z) is transmitted to the transmission device 101.
  • step S102 the transmission weight calculation unit 207 of the transmission device 101 calculates the transposed adjugate matrix adj [H (z)], and sets adj [H (z)] as the transmission weight of the transmission beam forming unit 204. As a result, the transmission device 101 can transmit a signal from which inter-stream interference has been removed.
  • step S103 the estimation unit 302 of the reception device 102 receives the training signal transmitted from the transmission device 101 and estimates the channel response ⁇ H k, W (z) for each stream (second estimation process). ).
  • the estimated channel response ⁇ H k, W (z) for each stream is output to the estimation result synthesis unit 304.
  • step S104 the estimation result synthesis unit 304 of the receiving device 102 synthesizes the communication path responses ⁇ H k, W (z) for each of the N streams output from the estimation unit 302, and the combined communication path response ⁇ H W. (Z) is calculated.
  • the combined channel response ⁇ H W (z) is calculated as an average value obtained by averaging the estimation results of the channel responses of N streams, for example, as described in the equation (8).
  • 1 / ⁇ H W (z) is set as the reception weight of the equalization unit 305 based on the combined channel response ⁇ H W (z).
  • the equalization unit 305 performs the equalization process for removing the intersymbol interference of each stream with 1 / ⁇ H W (z) as the reception weight.
  • step S105 the transmitting device 101 and the receiving device 102 start the communication of the data signal by MIMO transmission in a state where the interstream interference and the intersymbol interference are removed.
  • the wireless communication system 100 synthesizes the estimation results of the channel response for each stream in the SC-MIMO system that performs the FIR type transmission beam forming process, and the synthesized channel response.
  • the accuracy of the estimation result of the channel response can be improved.
  • FIG. 6 shows a configuration example of the receiving device 802 of the comparative example.
  • the receiving device 802 includes a receiving unit 301, a communication path estimation unit 902a, a transmitting unit 303, a receiving weight calculation unit 904, an equalization unit 905, a data signal demodulation unit 306, an information bit detection unit 307, and an antenna Atl (0).
  • an antenna Att N-1
  • the blocks having the same reference numerals as those in FIG. 4 operate in the same manner as in FIG.
  • the transmitting device of the comparative example shall be configured in the same manner as the transmitting device 101 of FIG.
  • the channel estimation unit 902a has an estimation unit 902 (0) to an estimation unit 902 (N-1) corresponding to the antenna Att (0) to the antenna Atl (N-1), respectively.
  • Each estimation unit 902 estimates the channel response based on the training signal transmitted from the transmission device 101, and acquires the channel matrix H (z). This process corresponds to the first estimation process in the above-described embodiment described with reference to FIG. However, the channel estimation unit 902a does not perform the second estimation process performed by the channel estimation unit 302a in FIG. 4.
  • the channel matrix H (z) acquired by the channel estimation unit 902a is transmitted to the transmission device 101 and output to the reception weight calculation unit 904.
  • the channel matrix H (z) transmitted to the transmission device 101 transmits adj [H (z)] calculated by the transmission weight calculation unit 207 of the transmission device 101 as a transmission weight, as in the embodiment of FIG. It is output to the beam forming unit 204.
  • the reception weight calculation unit 904 uses the det [H (z)] shown in the equation (3) and the equation (4) as the reception weight based on the communication path matrix H (z) input from the communication path estimation unit 902a. Calculate and output 1 / det [H (z)] to the equalization unit 905.
  • the equalization unit 905 receives 1 / det [H (z)] as a reception weight based on the determinant det [H (z)] output from the reception weight calculation unit 904, and is received by the reception unit 301. Performs equalization processing to eliminate intersymbol interference of stream data signals.
  • the equalization process is performed by the FDE, the equalization process is performed by dividing the data signal converted into the frequency domain by the DFT by the det [H (z)] converted into the frequency domain. Then, the data signal in the frequency domain after equalization is converted into a data signal in the time domain by IDFT and output to the data signal demodulation unit 306.
  • the data signal demodulation unit 306 and the information bit detection unit 307 operate in the same manner as in the embodiment of FIG.
  • FIG. 7 shows the processing flow of the wireless communication system of the comparative example. The process shown in FIG. 7 is performed by each block of the transmitting device 101 and the receiving device 802 described with reference to FIGS. 3 and 6.
  • step S901 similarly to step S101 of FIG. 5, the estimation unit 902 of the receiving device 802 receives the training signal transmitted from the transmitting device 101 and estimates the channel matrix H (z) between all the antennas. do.
  • the estimated channel matrix H (z) is transmitted to the transmission device 101.
  • step S902 similarly to step S102 of FIG. 5, the transmission weight calculation unit 207 of the transmission device 101 calculates the transposed adjugate matrix adj [H (z)] and forms the adj [H (z)] as a transmission beam. Set to the transmission weight of unit 204.
  • step S903 the reception weight calculation unit 904 of the reception device 102 calculates the det [H (z)] based on the channel matrix H (z) used for the calculation of the adj [H (z)], and 1 / set [H (z)] to the reception weight of the equalization unit 305.
  • step S904 the transmitting device 101 and the receiving device 802 start the communication of the data signal by MIMO transmission.
  • the receiving device 802 of the comparative example has the transmission weight adj [H (z)] and the reception weight det [H () based on the communication path matrix H (z) acquired by the channel estimation unit 902a. z)] and is calculated.
  • the receiving device 102 has a transmission wait adj [H (z) based on the channel matrix H (z) acquired by the first estimation process. )] Is calculated and the transmission beam formation process is performed, the channel response for each stream is estimated after the inter-stream interference is removed by the second estimation process, and the estimation results of the channel responses of multiple streams are combined.
  • the reception weight is calculated using the combined channel response.
  • the wireless communication system, the wireless communication method, and the receiving device synthesize the estimation results of the channel response for each stream in the SC-MIMO system that performs the FIR type transmission beam forming process.
  • the accuracy of the estimated result of the channel response can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Radio Transmission System (AREA)

Abstract

送信装置は、受信装置が通信路応答を推定するための既知信号を生成するトレーニング信号生成部と、通信路応答に基づいて算出された送信ウェイトによりストリーム間干渉を除去するための送信ビームを形成する送信ビーム形成部とを備え、受信装置は、既知信号を受信して通信路応答を推定する通信路推定部と、ストリーム間干渉が除去された既知信号により推定されたストリームごとの複数の通信路応答を合成する合成部と、合成部により合成された通信路応答に基づいて算出された受信ウェイトにより、ストリームごとに符号間干渉を除去する等化部とを備える。これにより、通信路応答の推定結果の精度を向上することができる。

Description

無線通信システム、無線通信方法、および受信装置
 本発明は、FIR(Finite Impulse Response)型送信ビーム形成処理を行うSC(Single Carrier)-MIMO(Multiple-Input Multiple-Output)方式の無線通信システムにおいて、通信路応答の推定結果の精度を向上する技術に関する。
 周波数選択性フェージングがある通信環境下で広帯域のSC-MIMO伝送を行う場合、複数のアンテナの空間的な広がりにより生じるストリーム間干渉の除去と、通信路特性の時間的な広がりにより生じる符号間干渉の除去とを行う必要がある。
 一般的なMIMO伝送では、送信装置および受信装置の少なくとも一方において、ストリーム間干渉を除去するための送信ビーム形成処理と、符号間干渉を除去するための波形等化処理とが、周波数領域または時間領域で行われている。
 例えば、FIR型送信ビーム形成処理を行うマルチユーザMIMO-SC-FDE(Frequency Domain Equalization)系の通信システムが開示されている(例えば、非特許文献1参照)。
 また、送信アンテナの数と受信アンテナの数とが異なる非正方のMIMO通信路行列の系にも使用できるFIR型送信ビーム形成方法が検討されている(例えば、非特許文献2参照)。
福園隼人,栗山圭太,吉岡正文,立田努,"FIR送信ビーム形成を用いたマルチユーザMIMO-SC-FDE系における適応CP長技術",2019年9月 IEICE ソサイエティ大会 B-5-62. 福園隼人,栗山圭太,吉岡正文,林崇文,"マルチユーザMIMO-SC系におけるFIR送信ビーム形成に基づく空間ダイバーシティ技術",2020年3月 IEICE 総合大会 B-5-163.
 従来技術では、通信路行列H(z)の逆行列を転置余因子行列(adj[H(z)])と行列式(det[H(z)])とで表し、送信装置側において、adj[H(z)]を用いた送信ウェイトにより送信ビーム形成処理が行われ、通信路行列が対角化される。そして、受信装置側において、det[H(z)]を用いた受信ウェイトにより等化処理が行われる。例えばFDEの場合、周波数領域の受信信号を周波数領域に変換したdet[H(z)]で除算することにより等化処理が行われる。ここで、等化処理の精度を向上するためには、通信路応答の推定結果の精度をできるだけ高くする必要がある。
 本発明は、通信路応答の推定結果の精度を向上することができる無線通信システム、無線通信方法、および受信装置を提供することを目的とする。
 本発明は、送信装置と受信装置との間でSC-MIMO方式による無線通信を行う無線通信システムにおいて、前記送信装置は、前記受信装置が通信路応答を推定するための予め定められた既知信号を生成するトレーニング信号生成部と、前記受信装置により推定された通信路応答に基づいて算出された送信ウェイトによりストリーム間干渉を除去するための送信ビームを形成する送信ビーム形成部とを備え、前記受信装置は、前記既知信号を受信して通信路応答を推定する通信路推定部と、ストリーム間干渉が除去された前記既知信号により推定されたストリームごとの複数の通信路応答を合成する合成部と、前記合成部により合成された通信路応答に基づいて算出された受信ウェイトにより、ストリームごとに符号間干渉を除去する等化処理を行う等化部とを備えることを特徴とする。
 また、本発明は、送信装置と受信装置との間でSC-MIMO方式による無線通信を行う無線通信方法において、前記送信装置は、前記受信装置が通信路応答を推定するための予め定められた既知信号を生成するトレーニング信号生成処理と、前記受信装置により推定された通信路応答に基づいて算出された送信ウェイトによりストリーム間干渉を除去するための送信ビームを形成する送信ビーム形成処理とを行い、前記受信装置は、前記既知信号を受信して通信路応答を推定する通信路推定処理と、ストリーム間干渉が除去された前記既知信号により推定されたストリームごとの複数の通信路応答を合成する合成処理と、前記合成処理により合成された通信路応答に基づいて算出された受信ウェイトにより、ストリームごとに符号間干渉を除去する等化処理とを行うことを特徴とする。
 また、本発明は、送信装置との間でSC-MIMO方式による無線通信を行う受信装置において、前記送信装置から送信される通信路応答を推定するための予め定められた既知信号を受信して通信路応答を推定する通信路推定部と、前記送信装置からビーム形成して送信されるストリーム間干渉が除去された既知信号により推定されたストリームごとの複数の通信路応答を合成する合成部と、前記合成部により合成された通信路応答に基づいて算出された受信ウェイトにより、ストリームごとに符号間干渉を除去する等化処理を行う等化部とを備えることを特徴とする。
 本発明に係る無線通信システム、無線通信方法、および受信装置は、FIR型送信ビーム形成処理を行うSC-MIMO方式において、各ストリームに対する通信路応答の推定結果を合成し、合成された通信路応答の推定結果に基づいて各ストリームの受信信号の等化処理を行うことより、通信路応答の推定結果の精度を向上させることができる。
本実施形態に係る無線通信システムの一例を示す図である。 遅延プロファイルの一例を示す図である。 本実施形態に係る送信装置の構成例を示す図である。 本実施形態に係る受信装置の構成例を示す図である。 本実施形態に係る無線通信システムの処理の流れを示す図である。 比較例の受信装置の構成例を示す図である。 比較例の無線通信システムの処理の流れを示す図である。
 以下、図面を参照して本発明に係る無線通信システム、無線通信方法、および受信装置の実施形態について説明する。
 図1は、本実施形態に係る無線通信システム100の一例を示す。図1において、無線通信システム100は、アンテナATt(0)からアンテナATt(N-1)までのN個(Nは正の整数)のアンテナを有する送信装置101と、アンテナATr(0)からアンテナATr(N-1)までのN個のアンテナを有する受信装置102とを有し、送信装置101と受信装置102との間でSC-MIMO方式による通信が行われる。
 なお、アンテナATt(0)からアンテナATt(N-1)に共通の説明を行う場合は符号末尾の(番号)を省略してアンテナATtと表記する。また、アンテナATrおよび後述の他のブロックについても、複数の同じブロックが並列に配置される場合は、アンテナATtと同様に表記する。
 図1において、送信装置101は、N個のアンテナATt(0)からアンテナATt(N-1)と、送信ビーム形成部204とを有する。なお、図1に示す送信装置101において、例えば受信装置102側で通信路応答を推定するためのトレーニング信号を生成するブロックなど、送信ビーム形成部204以外の構成要素は省略されており、それらの構成要素については後で詳しく説明する。
 送信ビーム形成部204は、N個のアンテナATtに対応するストリームごとの信号を入力し、例えば時間領域でFIR型の送信ビーム形成処理を行う。送信ビーム形成処理によりストリーム間干渉の除去された各ストリームの信号は、N個のアンテナATtからそれぞれ送信される。具体的には、送信ビーム形成部204は、ストリームs1,tからストリームsN,tまでのN個の信号を入力し、送信ウェイトW(z)により送信ビーム形成処理を行う。そして、送信ビーム形成処理されたN個のストリームの信号は、N個のアンテナATtからそれぞれ送信される。なお、送信ウェイトW(z)については後述する。また、送信ビーム形成部204が入力する各ストリームの信号には、適宜、CP(Cyclic Prefix)を付加する処理が行われる。
 受信装置102は、N個のアンテナATr(0)からアンテナATr(N-1)と、等化部305とを有する。なお、図1に示す受信装置102において、例えば送信装置101から送信されるトレーニング信号に基づいて通信路応答を推定するブロックなど、等化部305以外の構成要素は省略されており、それらの構成要素については後で詳しく説明する。
 等化部305は、送信装置101から送信される信号をN個のアンテナATrで受信し、各アンテナATrで受信されたそれぞれのストリームの信号から符号間干渉を除去するための等化処理を行う。具体的には、等化部305は、N個のアンテナATrでそれぞれ受信されるy1,tからyN,tまでのN個の信号を入力し、各信号から符号間干渉を除去するために、受信ウェイトにより等化処理を行う。なお、受信ウェイトについては後述する。また、FDEによる等化処理を行う場合に送信装置101側で付加されたCPは、等化部305に入力される信号から除去される。
 ここで、送信装置101のアンテナATt(0)からアンテナATt(N-1)と、受信装置102のアンテナATr(0)からアンテナATr(N-1)との間の通信路ではアンテナ間の直接波だけではなく様々な遅延時間を有するマルチパスが存在する。なお、送信装置101のアンテナATt(0)からアンテナATt(N-1)と、受信装置102のアンテナATr(0)からアンテナATr(N-1)との間の通信路応答は、通信路行列H(z)で表される。
 図2は、遅延プロファイルの一例を示す。図2の遅延プロファイルは、送信装置101のアンテナATt(n)(nは0からN-1の整数)と、受信装置102のアンテナATr(m)(mは0からN-1の整数)との間の遅延プロファイルである。図2において、横軸は遅延時間l、縦軸は遅延波の利得(dB)をそれぞれ示す。なお、ATt(n)は送信装置101のN個のアンテナATtのいずれかを示し、ATr(m)は受信装置102のN個のアンテナATrのいずれかを示す。また、L(L:正の整数)は、通信路応答(CIR(channel impulse response))内で最大遅延の遅延波をもつもののCIR長である。なお、図1の(a)に示す遅延時間の0,1・・・L-1は、後述する遅延作用素の次数に相当する。
 図2において、|hm,n,0|は次数0の遅延時間の利得(dB)を示す。同様に、|hm,n,1|は次数1の遅延時間の利得、|hm,n,L-1|は次数(L-1)の遅延時間の利得をそれぞれ示す。
 ここで、送信装置101のアンテナATt(n)と受信装置102のアンテナATr(m)との間の通信路応答(Hm,n(z))は、式(1)で表される。なお、式(1)において、z-lのzは時間シフトを行う遅延作用素である。
Figure JPOXMLDOC01-appb-M000001

 そして、N個のアンテナATtを有する送信装置101とN個のアンテナATrを有する受信装置102との間のMIMO通信路における通信路応答は、式(2)に示すように、式(1)の各アンテナ間のN×N個の通信路応答を要素とする通信路行列H(z)で表される。
Figure JPOXMLDOC01-appb-M000002
 ここで、H(z)の逆行列は、転置余因子行列をadj[H(z)]、行列式をdet[H(z)]として表現すると、式(3)で表される。ここで、式(3)および以降の数式において、|H(z)|はdet[H(z)]を表す。
Figure JPOXMLDOC01-appb-M000003
 なお、adj(adjugate matrix)は、エルミート転置を表す転置余因子行列(adjoint matrix)とは異なる。
 このように、転置余因子行列adj[H(z)]を送信ビーム形成処理の送信ウェイトW(z)に用いることで、通信路行列H(z)が対角化され、各対角要素はdet[H(z)]と等しくなることが知られている(例えば、非特許文献1参照)。 
 そして、adj[H(z)]を送信ウェイトW(z)として送信ビーム形成処理を行った場合の通信路行列は、等価的に式(4)で表される。ここで、Iは単位行列である。
Figure JPOXMLDOC01-appb-M000004
 このように、adj[H(z)]を送信ウェイトW(z)として送信ビーム形成処理を行なうことにより、通信路行列H(z)が対角化され、ストリーム間干渉成分を表す非対角成分が0になり、ストリーム間干渉が除去される。
 ここで、従来技術では、ストリーム間干渉が除去されたデータ信号に対して、det[H(z)]を用いて等化処理を行うことにより、各ストリームの受信信号の符号間干渉の除去が行われていた。しかし、等化処理の精度を向上するためには、通信路応答の推定結果の精度をできるだけ高くする必要がある。
 そこで、本実施形態では、上述の送信ビーム形成処理により通信路行列が対角化され、複数のストリームで同一の受信ウェイトが用いられることに着目して、通信路応答の推定結果の精度を向上する。
 本実施形態に係る無線通信システム100は、ストリーム間干渉除去後の複数のストリームの通信路行列H(z)をそれぞれ推定し、推定された複数の通信路行列H(z)を合成することにより、通信路応答の推定結果の精度を向上する。そして、合成通信路応答^H(z)から受信ウェイトを計算することにより、等化処理の精度が向上する。
 (合成処理)
 次に、本実施形態に係る無線通信システム100における通信路応答の推定結果の合成処理について説明する。
 図1において、時刻tにおけるN個のストリームについて、送信信号をs1,tからsN,t、雑音をw1,tからwN,t、通信路行列をH(z)、送信ビーム形成のウェイトをW(z)とすると、各ストリームの受信信号y1,tからyN,tは、式(5)で表される。
Figure JPOXMLDOC01-appb-M000005
 ここで、ストリーム間干渉除去後の通信路行列は、各ストリームの通信路行列H(z)として、式(6)で表される。なお、式(6)は、先述の式(4)に対応する。
Figure JPOXMLDOC01-appb-M000006
 式(6)において、H(z)は全てのストリームで同一となる。つまり、ストリーム間干渉除去後の受信信号y1,tからyN,tは、式(7)に示すように、仮想的に各ストリームで独立したSISO伝送を行っていると考えることができ、このときの各ストリームの通信路行列は、同一のH(z)となる。
Figure JPOXMLDOC01-appb-M000007
 本実施形態では、この点に着目し、s1,tからsN,tを予め決められた既知信号(トレーニング信号)として、各ストリームの通信路行列H0,0(z)、H1,1(z)、H2,2(z)、・・・、HN-1,N-1(z)をそれぞれ推定する。そして、推定されたN個のストリームの通信路行列を合成した合成通信路応答^H(z)を計算する。そして、合成通信路応答^H(z)が式(6)および式(7)のH(z)として用いられる。
 ここで、H0,0(z)は、アンテナATt(0)とアンテナATr(0)との間の通信路応答を示す。同様に、通信路行列H1,1(z)はアンテナATt(1)とアンテナATr(1)との間、H2,2(z)はアンテナATt(2)とアンテナATr(2)との間、HN-1,N-1(z)はアンテナATt(N-1)とアンテナATr(N-1)との間、のそれぞれの通信路応答を示す。
 このように、推定された複数の通信路行列を合成する処理を行うことにより、雑音や変動などが除去され、通信路応答の推定結果の精度が向上する。
 推定された複数の通信路応答の合成は、例えば、式(8)に示すように、複数のストリームの通信路応答の推定結果を平均した平均値を合成通信路応答^H(z)とすることができる。
Figure JPOXMLDOC01-appb-M000008
 式(8)において、推定通信路行列^H1,W(z)は通信路行列H1,1(z)、推定通信路行列^H2,W(z)は通信路行列H2,2(z)、推定通信路行列^HN-1,W(z)は通信路行列HN-1,N-1(z)、にそれぞれ対応する推定値である。
 そして、先述の式(7)は、合成通信路応答^H(z)を用いて、式(9)で表すことができる。
Figure JPOXMLDOC01-appb-M000009
 このようにして、本実施形態に係る無線通信システム100は、高精度な合成通信路応答^H(z)を用いるので、等化処理の精度が向上する。なお、受信ウェイトは、合成通信路応答^H(z)を用いて1/^H(z)となる。
 ここで、上述の説明では、複数のストリームの通信路応答の推定結果を単純に平均した平均値を合成通信路応答^H(z)としたが、周知の統計処理により合成値を求めてもよい。あるいは、各ストリームの状態に応じて重み付けを行ってもよいし、N個の推定値の最大値や最小値を除外するなどの処理を行ってもよい。
 また、上述の説明では、送信装置101のアンテナの数と受信装置102のアンテナの数が同じ正方MIMOの通信路行列について説明したが、送信装置101のアンテナの数と受信装置102のアンテナの数が異なる非正方MIMOの通信路行列についても同様に適用できる。例えば非正方MIMOの通信路行列の場合、非特許文献2に記載されているように、通信路行列H(z)とその複素共役転置の積Y(z)(H(z)H(z)にほぼ等しい)の転置余因子行列adj[Y(z)]を利用して、送信ウェイトを生成して、送信ビーム形成を行うことができる。これにより、H(z)を対角化できるので、以降は、先の実施形態と同様に処理することができる。具体的には、受信装置102は、送信装置101から送信されるトレーニング信号を用いて送信ビーム形成後の各ストリームの通信路応答を推定し、推定された複数のストリームの通信路応答を合成した合成通信路応答^H(z)を用いて等化処理を行うことができる。
 このようにして、非正方MIMO通信においても、通信路応答の推定結果の精度を向上することにより、精度の高い等化処理を行うことができる。
 (送信装置101の構成例)
 図3は、本実施形態に係る送信装置101の構成例を示す。
 図3において、送信装置101は、情報ビット生成部201、データ信号変調部202、トレーニング信号生成部203、送信ビーム形成部204、送信部205、受信部206、送信ウェイト算出部207およびアンテナATt(0)からアンテナATt(N-1)を有する。なお、受信側でFDEによる等化処理を行う場合、データ信号変調部202と送信ビーム形成部204との間にCP付加部を有してもよい。
 情報ビット生成部201は、受信装置102へ送信するN個のストリームのデータ情報ビットを生成する。データ情報ビットは、例えば外部(不図示)から入力するデータ信号や内部で生成するデータ信号などに対応するビット列である。なお、情報ビット生成部201は、所定の符号化率で誤り訂正符号を生成する誤り訂正符号化機能やインターリーブ機能などを有してもよい。
 データ信号変調部202は、N個のアンテナATt(0)からアンテナATt(N-1)にそれぞれ対応するデータ信号変調部202(0)からデータ信号変調部202(N-1)を有する。各々のデータ信号変調部202は、情報ビット生成部201が出力する各ストリームのビット列を所定の変調方式(例えば直交振幅変調(QAM:Quadrature Amplitude Modulation)など)で変調したデータ信号をそれぞれ出力する。
 トレーニング信号生成部203は、送信装置101と受信装置102との間の通信路応答を推定するための既知信号(トレーニング信号)を生成する(トレーニング信号生成処理)。トレーニング信号は、信号検出用のプリアンブルなどの予め定められた情報(例えば”01”の交互パターン等の特定パターン)をPSK(Phase Shift Keying)など干渉を受けにくい変調方式で変調した所定の信号であり、受信装置102が通信路応答を推定するために用いられる。なお、トレーニング信号の情報は、送信装置101と受信装置102との間で既知である。
 送信ビーム形成部204は、後述する送信ウェイト算出部207により算出された送信ウェイトadj[H(z)]を用いて、N個のデータ信号変調部202が出力する信号に対してN×NのMIMO伝送におけるストリーム間干渉を除去するための送信ビーム形成処理を行う。なお、送信ビーム形成部204は、送信電力を正規化する機能を有してもよい。
 送信部205は、アンテナATt(0)からアンテナATt(N-1)にそれぞれ対応する送信部205(0)から送信部205(N-1)を有する。各々の送信部205は、パルス成形部(Pulse Shaping:ロールオフフィルタなどにより必要な帯域制限を行う)、DAC(Digital to Analog Conversion)およびRF部(Radio Frequency)などにより構成され、送信ビーム形成部204が出力するストリームごとの信号を高周波信号に変換してアンテナATtから送出するための処理を行う。
 受信部206は、アンテナATt(0)からアンテナATt(N-1)にそれぞれ対応する受信部206(0)から受信部206(N-1)を有する。各々の受信部206は、RF部、ADC(Analog to Digital Conversion)およびパルス成形部などにより構成され、アンテナATt(0)からアンテナATt(N-1)のそれぞれのアンテナにより受信された高周波の受信信号を低周波のベースバンド信号に周波数変換する。ここで、図3の例では、受信部206は、受信装置102から通信路行列H(z)の情報を含む信号を受信し、送信ウェイト算出部207に出力する。なお、ベースバンド信号から通信路行列の情報を復調する復調部の機能は、受信部206が有してもよいし、送信ウェイト算出部207が有してもよい。また、通信路行列H(z)の情報を含む信号は、受信部206(0)から受信部206(N-1)のいずれかの受信部206で受信してもよいし、複数の受信部206で並列または分散して受信してもよい。
 送信ウェイト算出部207は、受信装置102側で推定され通信路行列H(z)に基づいて、式(3)で説明したadj[H(z)]を送信ウェイトW(z)として算出する(ウェイト算出処理)。なお、算出された送信ウェイトは、送信ビーム形成部204に出力される。
 このようにして、送信装置101は、通信路応答を推定するためのトレーニング信号を送信して、受信装置102からN×Nの各アンテナ間の通信路応答の推定結果を通信路行列H(z)として受信する。そして、送信装置101は、通信路行列H(z)に基づいて算出したadj[H(z)]を送信ウェイトとして送信ビーム形成処理を行い、ストリーム間干渉を除去する。
 なお、図3の例では、送信ウェイト算出部207を送信装置101に設けたが、受信装置102が送信ウェイトを算出して送信装置101に送信するようにしてもよい。この場合、受信部206が受信装置102からadj[H(z)]の情報を受信して送信ビーム形成部204に出力する。
 (受信装置102の構成例)
 図4は、本実施形態に係る受信装置102の構成例を示す。
 図4において、受信装置102は、受信部301、通信路推定部302a、送信部303、推定結果合成部304、等化部305、データ信号復調部306、情報ビット検出部307およびアンテナATr(0)からアンテナATr(N-1)を有する。
 受信部301は、アンテナATr(0)からアンテナATr(N-1)にそれぞれ対応する受信部301(0)から受信部301(N-1)を有する。各々の受信部301は、送信装置101の受信部206と同様に、RF部、ADC部およびパルス成形部などにより構成され、アンテナATrが受信する高周波信号をベースバンド信号に周波数変換する。
 通信路推定部302aは、アンテナATr(0)からアンテナATr(N-1)にそれぞれ対応する推定部302(0)から推定部302(N-1)を有する。各々の推定部302は、送信装置101から送信されるトレーニング信号に基づいて通信路応答を推定する(通信路推定処理)。ここで、推定部302は、送信装置101の送信ビーム形成部204で用いる送信ウェイトを算出するための第1の推定処理と、受信装置102の等化部305で用いる受信ウェイトを算出するための第2の推定処理とを行う。第1の推定処理では、N×Nの全てのアンテナ間の通信路応答を推定して、N×Nの通信路応答を要素とする通信路行列H(z)(先述の式(2))が得られる。第2の推定処理では、ストリームごとのN個の通信路応答^Hk,W(z)(kは1からNの整数)が推定される。なお、通信路推定部302aの処理の詳細は後述する。
 送信部303は、アンテナATr(0)からアンテナATr(N-1)にそれぞれ対応する送信部303(0)から送信部303(N-1)を有する。各々の送信部303は、送信装置101の送信部205と同様に、パルス成形部、DAC部およびRF部などにより構成され、通信路推定部302aから出力される通信路行列H(z)の情報などを高周波信号に変換してアンテナATrから送信する。なお、通信路行列H(z)の情報をベースバンド信号に変調する変調部の機能は、送信部303が有してもよいし、通信路推定部302aが有してもよい。
 推定結果合成部304は、推定部302が第2の推定処理で推定したN個のストリームごとの通信路応答(^H1,W(z)から^HN,W(z))の推定結果を合成し、高精度な合成通信路応答^H(z)を計算する。そして、合成通信路応答^H(z)に基づいて1/^H(z)を受信ウェイトとして算出し、等化部305に出力する(ウェイト算出処理)。なお、ウェイト算出処理は等化部305で行ってもよい。また、合成通信路応答^H(z)は、例えば式(8)で説明したように、N個のストリームの通信路応答の推定結果を平均した平均値として計算される。
 等化部305は、推定結果合成部304から出力される合成通信路応答^H(z)に基づいて、1/^H(z)を各ストリームの受信ウェイトとして、受信部301で受信されるストリームごとのデータ信号の符号間干渉を除去するための等化処理を行う。なお、先述の式(6)に示すように、送信装置101の送信ビーム形成処理により通信路行列は対角化され、かつ対角要素は同じなので、受信部301(0)から受信部301(N)の各ストリームに対して同じ合成通信路応答^H(z)が用いられる。ここで、等化処理をFDEで行う場合、DFT(離散フーリエ変換)により周波数領域に変換されたデータ信号を周波数領域に変換された合成通信路応答^H(z)で除算することにより、等化処理が行われる。なお、等化後の周波数領域のデータ信号は、IDFT(逆離散フーリエ変換)により時間領域のデータ信号に変換され、データ信号復調部306に出力される。
 データ信号復調部306は、等化部305が出力するデータ信号を情報ビットに復調し、ビット列を出力する。なお、データ信号復調部306は、送信装置101側の機能に応じて、誤り訂正復号機能やデインターリーブ機能を備えてもよい。
 情報ビット検出部307は、データ信号復調部306が出力するビット列をデジタルデータに変換した受信データを出力する。なお、誤り訂正復号機能やデインターリーブ機能を情報ビット検出部307側で行ってもよい。
 このようにして、受信装置102は、第1の推定処理により、送信ビーム形成処理を行うための通信路応答の推定を行い、第2の推定処理により、等化処理を行うためのストリームごとの通信路応答の推定を行い、推定結果を合成する。これにより、通信路応答の推定結果の精度を高めることができ、精度の高い等化処理を行うことができる。
 (通信路推定部302aの処理)
 先述のように、通信路推定部302aは、N個の推定部302を備え、N個のアンテナATtとN個のアンテナATrとの間の通信路応答を推定するための第1の推定処理と第2の推定処理とを行う。
 第1の推定処理では、N×Nの全てのアンテナ間のN×Nの通信路応答が推定され、推定されたN×Nの通信路応答を要素とする通信路行列H(z)が得られる。例えば、送信装置101のアンテナATt(0)からトレーニング信号が送信され、受信装置102のアンテナATr(0)からアンテナATr(N-1)で受信したときのそれぞれの通信路応答H0,0(z)、H0,1(z)、・・・、H0,N-1(z)が推定される。同様に、送信装置101のアンテナATt(1)からトレーニング信号が送信され、受信装置102のアンテナATr(0)からアンテナATr(N-1)で受信したときのそれぞれの通信路応答H1,0(z)、H1,1(z)、・・・、H1,N-1(z)が推定される。このようにして、送信装置101のアンテナATt(0)からアンテナATt(N-1)までのそれぞれのアンテナATtから順番にトレーニング信号を送信することにより、N×Nの全てのアンテナ間の通信路応答が推定され、N×Nの通信路応答を要素とする通信路行列H(z)が得られる。なお、第1の推定処理において、送信装置101のアンテナATt(0)からトレーニング信号の送信中は、アンテナATt(0)以外のアンテナATtは信号を送信しない。同様に、アンテナATt(1)からトレーニング信号の送信中は、アンテナATt(1)以外のアンテナATtは信号を送信しない。他のアンテナATtについても同様である。
 次に、第2の推定処理は、受信装置102の等化部305で用いる受信ウェイトを算出するための処理であり、第1の推定処理で得られた送信ウェイトに基づいて送信ビーム形成された状態で行われる。つまり、ストリーム間干渉が除去された状態において、N個のストリームごとの通信路応答(^H1,W(z)から^HN,W(z))が推定される。例えば、送信装置101のアンテナATt(0)から送信されるトレーニング信号を受信装置102のアンテナATr(0)で受信して、アンテナATt(0)とアンテナATr(0)との間のストリームの通信路応答H0,0(z)が推定される。同様に、送信装置101のアンテナATt(1)から送信されるトレーニング信号を受信装置102のアンテナATr(1)で受信して、アンテナATt(1)とアンテナATr(1)との間のストリームの通信路応答H1,1(z)が推定される。このようにして、送信装置101のアンテナATt(0)からアンテナATt(N-1)と同番号の受信装置102のアンテナATr(0)からアンテナATr(N-1)との間のストリームごとの通信路応答(H0,0(z)、H1,1(z)、H2,2(z)、・・・、HN-2,N-2(z)、HN-1,N-1(z))が推定される。ここで、N個のH0,0(z)、H1,1(z)、H2,2(z)、・・・、HN-2,N-2(z)、HN-1,N-1(z)に対応する各ストリームの推定された通信路応答を^H1,W(z)、^H2,W(z)、^H3,W(z)、・・・、^HN-1,W(z)、^HN,W(z)と記載する。なお、第2の推定処理では、ストリーム間干渉が除去されているので、送信装置101のアンテナATt(0)からアンテナATt(N-1)のN個のアンテナATtから一斉にトレーニング信号を送信して、各ストリームの通信路応答を推定してもよい。
 このようにして、通信路推定部302aは、先ず第1の推定処理を行って、送信装置101の送信ビーム形成部204で用いる送信ウェイトを算出するための通信路行列H(z)を取得し、次に第2の推定処理を行って、受信装置102の等化部305で用いる受信ウェイトを算出するためのストリームごとの通信路応答の推定を行う。これにより、本実施形態に係る無線通信システム100は、送信ビーム形成部204によるストリーム間干渉の除去と、等化部305による符号間干渉の除去とを行うことができる。特に本実施形態では、等化部305で用いる受信ウェイトを複数のストリームのストリームごとに推定した通信路応答の推定結果を合成するので、通信路応答の推定結果の精度を高めることができる。
 図5は、本実施形態に係る無線通信システム100の処理の流れを示す。図5に示す処理は、図3および図4で説明した送信装置101および受信装置102の各ブロックにより行われる。
 ステップS101において、受信装置102の推定部302は、送信装置101から送信されるトレーニング信号を受信して、全てのアンテナ間の通信路行列H(z)を推定する(第1の推定処理)。なお、推定された通信路行列H(z)は、送信装置101に送信される。
 ステップS102において、送信装置101の送信ウェイト算出部207は、転置余因子行列adj[H(z)]を計算し、adj[H(z)]を送信ビーム形成部204の送信ウェイトに設定する。これにより、送信装置101は、ストリーム間干渉が除去された信号を送信することができる。
 ステップS103において、受信装置102の推定部302は、送信装置101から送信されるトレーニング信号を受信して、ストリームごとの通信路応答^Hk,W(z)を推定する(第2の推定処理)。なお、推定されたストリームごとの通信路応答^Hk,W(z)は、推定結果合成部304に出力される。
 ステップS104において、受信装置102の推定結果合成部304は、推定部302から出力されるN個のストリームごとの通信路応答^Hk,W(z)を合成し、合成通信路応答^H(z)を計算する。なお、合成通信路応答^H(z)は、例えば式(8)で説明したように、N個のストリームの通信路応答の推定結果を平均した平均値として計算される。そして、合成通信路応答^H(z)に基づいて、1/^H(z)が等化部305の受信ウェイトに設定される。そして、等化部305は、1/^H(z)を受信ウェイトとして、各ストリームの符号間干渉を除去する等化処理を行う。
 ステップS105において、送信装置101と受信装置102は、ストリーム間干渉および符号間干渉が除去された状態で、MIMO伝送によるデータ信号の通信を開始する。
 このようにして、本実施形態に係る無線通信システム100は、FIR型送信ビーム形成処理を行うSC-MIMO方式において、各ストリームに対する通信路応答の推定結果を合成し、合成された通信路応答の推定結果に基づいて各ストリームの受信信号の等化処理を行うことより、通信路応答の推定結果の精度を向上させることができる。
 (比較例)
 図6は、比較例の受信装置802の構成例を示す。図6において、受信装置802は、受信部301、通信路推定部902a、送信部303、受信ウェイト算出部904、等化部905、データ信号復調部306、情報ビット検出部307およびアンテナATr(0)からアンテナATr(N-1)を有する。なお、図6において、図4と同符号のブロックは、図4と同様に動作する。また、比較例の送信装置は、図3の送信装置101と同様に構成されるものとする。
 通信路推定部902aは、アンテナATr(0)からアンテナATr(N-1)にそれぞれ対応する推定部902(0)から推定部902(N-1)を有する。各々の推定部902は、送信装置101から送信されるトレーニング信号に基づいて通信路応答を推定し、通信路行列H(z)を取得する。この処理は、図4で説明した先述の実施形態における第1の推定処理に相当する。但し、通信路推定部902aは、図4の通信路推定部302aが行う第2の推定処理を行わない。
 比較例では、通信路推定部902aにより取得された通信路行列H(z)は、送信装置101に送信されるとともに、受信ウェイト算出部904に出力される。送信装置101に送信された通信路行列H(z)は、図3の実施形態と同様に、送信装置101の送信ウェイト算出部207により算出されたadj[H(z)]を送信ウェイトとして送信ビーム形成部204に出力される。
 一方、受信ウェイト算出部904は、通信路推定部902aから入力する通信路行列H(z)に基づいて、式(3)および式(4)に示すdet[H(z)]を受信ウェイトとして算出し、1/det[H(z)]を等化部905に出力する。
 等化部905は、受信ウェイト算出部904から出力される行列式det[H(z)]に基づいて、1/det[H(z)]を受信ウェイトとして、受信部301で受信される各ストリームのデータ信号の符号間干渉を除去するための等化処理を行う。なお、等化処理をFDEで行う場合、DFTにより周波数領域に変換されたデータ信号を周波数領域に変換されたdet[H(z)]で除算することにより、等化処理が行われる。そして、等化後の周波数領域のデータ信号は、IDFTにより時間領域のデータ信号に変換され、データ信号復調部306に出力される。
 以降、データ信号復調部306および情報ビット検出部307は、図4の実施形態と同様に動作する。
 図7は、比較例の無線通信システムの処理の流れを示す。図7に示す処理は、図3および図6で説明した送信装置101および受信装置802の各ブロックにより行われる。
 ステップS901において、図5のステップS101と同様に、受信装置802の推定部902は、送信装置101から送信されるトレーニング信号を受信して、全てのアンテナ間の通信路行列H(z)を推定する。なお、推定された通信路行列H(z)は、送信装置101に送信される。
 ステップS902において、図5のステップS102と同様に、送信装置101の送信ウェイト算出部207は、転置余因子行列adj[H(z)]を計算し、adj[H(z)]を送信ビーム形成部204の送信ウェイトに設定する。
 ステップS903において、受信装置102の受信ウェイト算出部904は、adj[H(z)]の算出に用いた通信路行列H(z)に基づいてdet[H(z)]を計算し、1/det[H(z)]を等化部305の受信ウェイトに設定する。
 ステップS904において、送信装置101と受信装置802は、MIMO伝送によるデータ信号の通信を開始する。
 このように、比較例の受信装置802は、通信路推定部902aにより取得された通信路行列H(z)に基づいて、送信ウェイトのadj[H(z)]と受信ウェイトのdet[H(z)]とを算出する。
 これに対して、図4および図5で説明した本実施形態に係る受信装置102は、第1の推定処理により取得した通信路行列H(z)に基づいて、送信ウェイトのadj[H(z)]を算出して送信ビーム形成処理を行い、第2の推定処理によりストリーム間干渉が除去された後のストリームごとの通信路応答を推定し、複数のストリームの通信路応答の推定結果を合成した合成通信路応答を用いて受信ウェイトを算出する。これにより、通信路応答の推定結果の精度を高めることができるので、比較例に比べて精度の高い等化処理を行うことができる。
 以上、説明したように、本発明に係る無線通信システム、無線通信方法、および受信装置は、FIR型送信ビーム形成処理を行うSC-MIMO方式において、各ストリームに対する通信路応答の推定結果を合成し、合成された通信路応答の推定結果に基づいて各ストリームの受信信号の等化処理を行うことにより、通信路応答の推定結果の精度を向上させることができる。
100・・・無線通信システム;101・・・送信装置;102・・・受信装置;201・・・情報ビット生成部;202・・・データ信号変調部;203・・・トレーニング信号生成部;204・・・送信ビーム形成部;205・・・送信部;206・・・受信部;207・・・送信ウェイト算出部;301・・・受信部;302a,902a・・・通信路推定部;302,902・・・推定部;303・・・送信部;304・・・推定結果合成部;305,905・・・等化部;306・・・データ信号復調部;307・・・情報ビット検出部;904・・・受信ウェイト算出部;ATt,ATr・・・アンテナ

Claims (8)

  1.  送信装置と受信装置との間でSC-MIMO方式による無線通信を行う無線通信システムにおいて、
     前記送信装置は、
     前記受信装置が通信路応答を推定するための予め定められた既知信号を生成するトレーニング信号生成部と、
     前記受信装置により推定された通信路応答に基づいて算出された送信ウェイトによりストリーム間干渉を除去するための送信ビームを形成する送信ビーム形成部と
     を備え、
     前記受信装置は、
     前記既知信号を受信して通信路応答を推定する通信路推定部と、
     ストリーム間干渉が除去された前記既知信号により推定されたストリームごとの複数の通信路応答を合成する合成部と、
     前記合成部により合成された通信路応答に基づいて算出された受信ウェイトにより、ストリームごとに符号間干渉を除去する等化処理を行う等化部と
     を備えることを特徴とする無線通信システム。
  2.  請求項1に記載の無線通信システムにおいて、
     前記通信路推定部は、前記送信ウェイトを算出するための第1の推定処理を行った後、前記受信ウェイトを算出するための第2の推定処理を行う
     ことを特徴とする無線通信システム。
  3.  請求項2に記載の無線通信システムにおいて、
     前記合成部は、前記第2の推定処理で推定されたストリームごとの通信路応答の平均値を計算し、
     前記等化部は、前記合成部により計算された通信路応答の平均値に基づいて算出された前記受信ウェイトにより、ストリームごとに符号間干渉を除去する等化処理を行う
     ことを特徴とする無線通信システム。
  4.  送信装置と受信装置との間でSC-MIMO方式による無線通信を行う無線通信方法において、
     前記送信装置は、
     前記受信装置が通信路応答を推定するための予め定められた既知信号を生成するトレーニング信号生成処理と、
     前記受信装置により推定された通信路応答に基づいて算出された送信ウェイトによりストリーム間干渉を除去するための送信ビームを形成する送信ビーム形成処理と
     を行い、
     前記受信装置は、
     前記既知信号を受信して通信路応答を推定する通信路推定処理と、
     ストリーム間干渉が除去された前記既知信号により推定されたストリームごとの複数の通信路応答を合成する合成処理と、
     前記合成処理により合成された通信路応答に基づいて算出された受信ウェイトにより、ストリームごとに符号間干渉を除去する等化処理と
     を行うことを特徴とする無線通信方法。
  5.  請求項4に記載の無線通信方法において、
     前記通信路推定処理では、前記送信ウェイトを算出するための第1の推定処理を行った後、前記受信ウェイトを算出するための第2の推定処理を行う
     ことを特徴とする無線通信方法。
  6.  請求項5に記載の無線通信方法において、
     前記合成処理では、前記第2の推定処理で推定されたストリームごとの通信路応答の平均値を計算し、
     前記等化処理では、前記合成処理で計算された通信路応答の平均値に基づいて算出された前記受信ウェイトにより、ストリームごとに符号間干渉を除去する
     ことを特徴とする無線通信方法。
  7.  送信装置との間でSC-MIMO方式による無線通信を行う受信装置において、
     前記送信装置から送信される通信路応答を推定するための予め定められた既知信号を受信して通信路応答を推定する通信路推定部と、
     前記送信装置からビーム形成して送信されるストリーム間干渉が除去された既知信号により推定されたストリームごとの複数の通信路応答を合成する合成部と、
     前記合成部により合成された通信路応答に基づいて算出された受信ウェイトにより、ストリームごとに符号間干渉を除去する等化処理を行う等化部と
     を備えることを特徴とする受信装置。
  8.  請求項7に記載の受信装置において、
     前記通信路推定部は、前記送信装置がビーム形成に用いる送信ウェイトを算出するための第1の推定処理を行った後、前記受信ウェイトを算出するための第2の推定処理を行う
     ことを特徴とする受信装置。
PCT/JP2020/042306 2020-11-12 2020-11-12 無線通信システム、無線通信方法、および受信装置 WO2022102063A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022561792A JPWO2022102063A1 (ja) 2020-11-12 2020-11-12
US18/036,315 US20230421210A1 (en) 2020-11-12 2020-11-12 Wireless communication system, wireless communication method, and receiving device
PCT/JP2020/042306 WO2022102063A1 (ja) 2020-11-12 2020-11-12 無線通信システム、無線通信方法、および受信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/042306 WO2022102063A1 (ja) 2020-11-12 2020-11-12 無線通信システム、無線通信方法、および受信装置

Publications (1)

Publication Number Publication Date
WO2022102063A1 true WO2022102063A1 (ja) 2022-05-19

Family

ID=81600986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042306 WO2022102063A1 (ja) 2020-11-12 2020-11-12 無線通信システム、無線通信方法、および受信装置

Country Status (3)

Country Link
US (1) US20230421210A1 (ja)
JP (1) JPWO2022102063A1 (ja)
WO (1) WO2022102063A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012005137A (ja) * 2005-09-30 2012-01-05 Sharp Corp 無線送信装置、送信方法および回路
JP2020141173A (ja) * 2019-02-26 2020-09-03 日本電信電話株式会社 無線通信システム、無線通信方法、送信局装置および受信局装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012005137A (ja) * 2005-09-30 2012-01-05 Sharp Corp 無線送信装置、送信方法および回路
JP2020141173A (ja) * 2019-02-26 2020-09-03 日本電信電話株式会社 無線通信システム、無線通信方法、送信局装置および受信局装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KEITA KURIYAMA, HAYATO FUKUZONO, MASAFUMI YOSHIOKA, TSUTOMU TATEDA: "FIR type transmission beam formation for wideband single carrier MIMO transmission", IEICE TECHNICAL REPORT, vol. 118, no. 434 (RCS2018-247), 24 January 2019 (2019-01-24), pages 31 - 36, XP009537325 *
KEITA KURIYAMA, HAYATO FUKUZONO, MASAFUMI YOSHIOKA, TSUTOMU TATEDA: "Residual IAI suppression method in wideband single carrier MIMO system using FIR type beam formation", ELECTRONIC INFORMATION AND COMMUNICATION SOCIETY 2019 COMMUNICATION SOCIETY CONFERENCE LECTURE PROCEEDINGS 1, 27 August 2019 (2019-08-27), JP, pages 317, XP009537323 *
KURIYAMA, KEITA; FUKUZONO, HAYATO; YOSHIOKA, MASAFUMI; TATSUTA, TSUTOMU: "B-5-105 Wide-band single carrier MIMO system that applies FIR-type transmit beamforming and reception with bidirectional equalization", 2019 IEICE GENERAL CONFERENCE; TOKYO, JAPAN; MARCH 19-22, 2019, 28 February 2019 (2019-02-28), pages 1 - 371, XP009537443 *

Also Published As

Publication number Publication date
JPWO2022102063A1 (ja) 2022-05-19
US20230421210A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
CN101589562B (zh) 接收装置以及移动通信***
JP4431578B2 (ja) 複数の送信アンテナのofdmチャネル推定及びトラッキング
CA2799574C (en) Time dependent equalization of frequency domain spread orthogonal frequency division multiplexing using decision feedback equalization
JP4836186B2 (ja) 送信装置
US10924170B2 (en) Smoothing beamforming matrices across sub-carriers
JP2008017143A (ja) 無線受信装置および方法
WO2001054305A1 (en) Wireless communication system and method using stochastic space-time/frequency division multiplexing
Daniels et al. A new MIMO HF data link: Designing for high data rates and backwards compatibility
JP6996496B2 (ja) Los-mimo復調装置、通信装置、los-mimo伝送システム、los-mimo復調方法及びプログラム
WO2020209093A1 (ja) 無線通信システム、無線通信方法、送信局装置および受信局装置
JP4382107B2 (ja) 受信装置、無線送受信システム及び無線受信方法
WO2006134168A1 (en) Ofdm channel estimator
US11283492B2 (en) Wireless communication system, wireless communication method, transmitting station device and receiving station device
US8649472B1 (en) Method and apparatus for improving channel estimation
JP7196687B2 (ja) 無線通信システム、無線通信方法、送信局装置および受信局装置
US20230055133A1 (en) Wireless communication system, wireless communication method, and transmission device
WO2022102063A1 (ja) 無線通信システム、無線通信方法、および受信装置
JP7298695B2 (ja) 無線通信システム、無線通信方法、送信局装置および受信局装置
JP7196686B2 (ja) 無線通信システム、無線通信方法、送信局装置および受信局装置
US20080045154A1 (en) Method and apparatus for beam-formed multiple input multiple output wireless communications
JP7302735B2 (ja) 無線通信システム、無線通信方法及び送信装置
KR101446267B1 (ko) 스위치를 사용하여 공간 시간 블록 코드 기술을 적용한 오에프디엠 송수신 시스템
JP7107271B2 (ja) 無線通信システム、無線通信方法、送信局装置および受信局装置
WO2019213976A1 (zh) 一种信号发送、接收方法和装置
JP2013150271A (ja) 受信装置及び受信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961591

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022561792

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18036315

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961591

Country of ref document: EP

Kind code of ref document: A1