WO2022095751A1 - 光学防抖摄像模组 - Google Patents

光学防抖摄像模组 Download PDF

Info

Publication number
WO2022095751A1
WO2022095751A1 PCT/CN2021/126324 CN2021126324W WO2022095751A1 WO 2022095751 A1 WO2022095751 A1 WO 2022095751A1 CN 2021126324 W CN2021126324 W CN 2021126324W WO 2022095751 A1 WO2022095751 A1 WO 2022095751A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
driving
camera module
lens
movable part
Prior art date
Application number
PCT/CN2021/126324
Other languages
English (en)
French (fr)
Inventor
魏罕钢
卞强龙
刘佳
袁栋立
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to CN202180069891.4A priority Critical patent/CN116349235A/zh
Publication of WO2022095751A1 publication Critical patent/WO2022095751A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors

Definitions

  • the present invention relates to the technical field of camera equipment, and in particular, the present invention relates to an optical anti-shake camera module.
  • FIG. 1 shows a typical camera module with a motor in the prior art.
  • the camera module generally includes a lens 1 , a motor mechanism 2 (may be referred to as a motor for short) and a photosensitive assembly 3 .
  • the lens 1 is fixed on the motor carrier of the motor (shown in detail in FIG. 1 ), and the motor carrier is a movable part, which can usually drive the lens 1 in the direction of the optical axis under the action of the driving element of the motor. move up to achieve the focus function.
  • the motor often has a more complex structure. This is because the motor needs to drive the lens 1 to move in other degrees of freedom (eg, the direction perpendicular to the optical axis) in addition to driving the lens to move in the direction of the optical axis to compensate for the shake during shooting.
  • degrees of freedom e.g, the direction perpendicular to the optical axis
  • the shaking of the camera module includes translation in the direction perpendicular to the optical axis (translation in the x-axis, y-axis direction) and rotation (referring to the rotation in the xoy plane, and the rotation axis direction can be roughly the same as the optical axis) , and tilt jitter (referring to the rotation around the x and y axes, in the field of camera modules, tilt jitter is also called tilt jitter).
  • the gyroscope (or other position sensing element) in the module detects the shaking in a certain direction, it can issue an instruction to make the motor drive the lens to move a distance in the opposite direction, thereby compensating for the shaking of the lens.
  • the lens is only translated and/or rotated in the direction perpendicular to the optical axis to compensate for the shake of the camera module. This is because if the lens is rotated around the x and y axes, that is, if the tilt adjustment of the lens is used to achieve The anti-shake effect may reduce the image quality of the module, and even cause image blur, making it difficult to meet the basic image quality requirements.
  • the purpose of the present invention is to overcome the deficiencies of the prior art and provide a solution that can improve the anti-shake stroke and anti-shake response speed of the camera module.
  • an optical anti-shake camera module which includes: a lens; a photosensitive component, which has a photosensitive chip; and a first driving part, which is suitable for installing the lens and driving the lens in translate in the x-axis and y-axis directions; and a second driving part, which is adapted to drive the photosensitive chip to translate in the x-axis and y-axis directions, the second driving part includes a second base part and a second movable part,
  • the second base part includes a base and a cover, at least a part of the base is located below the photosensitive assembly, the bottom of the cover is connected to the base, and the top of the cover is connected to the first driving part;
  • the second movable part is movably connected with the second base part through balls, and the freedom of movement is limited in the xoy plane through the balls; wherein, the lens and the photosensitive chip are configured to be driven at the same time , and move in the opposite direction; the ball is located outside the
  • the second driving part is also used for driving the photosensitive chip to rotate on the xoy plane.
  • the lens movement distance b of the first drive module to drive the lens to move is determined, and the second drive module to drive the photosensitive chip to move the photosensitive chip
  • the moving distance c; wherein, the moving distance b of the lens, the moving distance c of the photosensitive chip, and the image-side focal length f of the camera module satisfy: a arctan(b/f)+arctan(c/f) .
  • the driving structure further includes a driving logic module, which is configured to keep the ratio between the moving distance b of the lens and the moving distance c of the photosensitive chip at a preset fixed ratio.
  • the driving structure further includes a driving logic module, which has an anti-shake threshold K, and the driving logic module is configured to move the lens by a distance when the tilt angle a is less than or equal to the anti-shake threshold K
  • the preset fixed ratio between the moving distance of the lens and the moving distance of the photosensitive chip is based on the weight of the lens, the driving force of the first driving part, the weight of the photosensitive chip or the photosensitive component, and the weight of the first
  • the driving forces of the two driving parts are set so that the time when the lens and the photosensitive chip move to their respective anti-shake target positions are consistent.
  • the first driving part includes a first base part and a first movable part; the top of the cover is fixed with the first base part, and the second movable part is located above the base and movably connected with the second base part, the photosensitive component is fixed on the upper surface of the second movable part; the second movable part is movably connected with the second base part through the balls, wherein the The upper surface of the second base part, the balls and the lower surface of the second movable part bear in turn in the z-axis direction, so that the second movable part moves relative to the second base part
  • the degrees of freedom are constrained within the xoy plane, where the z-axis is perpendicular to the xoy plane.
  • the balls are arranged in the four-corner area of the second driving part in a plan view.
  • the second base portion is provided with at least three grooves, and at least three balls are provided in the at least three grooves, so as to support the second movable portion on the xoy plane.
  • the second movable part includes a movable part bottom plate and a movable part side wall, and the movable part side wall is formed by extending upward from the edge region of the movable part bottom plate; the photosensitive component is placed in the in the accommodating groove formed by the bottom plate of the movable part and the side wall of the movable part; there is glue between the inner side surface of the side wall of the movable part and the outer side surface of the photosensitive component, so that the second movable part is The part is fixed with the photosensitive assembly.
  • the cover includes a side wall of the cover and a bearing platform formed by extending inward from the top of the side wall of the cover;
  • the second movable part also includes a side wall formed by extending outward from the movable part
  • the base includes a base plate and base sidewalls formed by extending upward from an edge region of the base plate, the base plate is located under the photosensitive component, and the top surface of the base sidewall has a first grooves, the balls are located in the first grooves, and the lower surface of the epitaxial structure is supported by the balls.
  • the side wall of the cover and the side wall of the base are connected to form a complete side wall of the base portion.
  • the epitaxial structure is formed by extending outward from the top of the sidewall of the movable portion.
  • the balls include a first ball and a second ball; the first ball is located in the first groove, the epitaxial structure is formed by extending outward from the middle of the side wall of the movable part, and the The upper surface of the epitaxial structure has a second groove, the second ball is located in the second groove, and the lower surface of the bearing platform is supported by the second ball.
  • the base includes a base plate
  • the driving element of the second driving part is a combination of coil magnets; wherein the magnets are arranged at the edge area of the base plate, and the coils are arranged at the edge area of the bottom plate of the movable part; or the The coil and the magnet are respectively provided on the side walls of the second movable part and the second base part.
  • the coil magnet combination includes a first coil magnet pair, a second coil magnet pair and a third coil magnet pair; wherein, the first coil magnet pair and the second coil magnet pair are used to provide the x-axis direction
  • the third pair of coil magnets is used to provide the driving force in the y-axis direction; and in a top view, the first pair of coil magnets and the second pair of coil magnets can be along the The first side and the second side of the two driving parts are arranged, the first side and the second side do not intersect, and the second coil magnet pair is arranged along the third side of the second driving part, so The third side intersects both the first side and the second side.
  • the present application can improve the anti-shake stroke of the camera module, thereby compensating for the larger shaking of the camera module.
  • the present application can improve the anti-shake response speed of the camera module.
  • the optical anti-shake camera module of the present application has the advantage of compact structure, and is especially suitable for miniaturized camera modules.
  • settings can be made according to factors such as the weight of the lens, the driving force of the first driving part, the weight of the photosensitive chip (or photosensitive component), the driving force of the second driving part, etc., so that the lens and the photosensitive chip
  • the time to move to the respective anti-shake target positions is basically the same, so as to obtain a better anti-shake effect.
  • the second driving part does not need to be provided with a light-passing hole, so that the thickness of the base part or/and the movable part of the second driving part can be reduced, thereby helping to reduce the thickness of the camera module. the height of.
  • the movable part of the second driving part and the base part are movably connected by balls, and the movement is limited on the xoy plane, and the balls are arranged on the outside of the photosensitive assembly (meaning being arranged on the photosensitive surface).
  • the outer side of the outer side of the assembly so as to avoid occupying the space in the height direction of the camera module and help to reduce the height of the camera module.
  • the movable part of the second driving part and the base of the base part are both arranged below the circuit board of the photosensitive assembly, so as to avoid the problem of picture stains caused by leakage of the glue material (referring to the problem of image blemishes caused by the image formation).
  • FIG. 1 shows a typical camera module with a motor in the prior art
  • FIG. 2 shows a schematic cross-sectional view of a camera module with an anti-shake function according to an embodiment of the present application
  • FIG. 3 shows a schematic cross-sectional view of a comparative example of a camera module with anti-shake function according to another embodiment of the present application
  • FIG. 4 shows a schematic diagram of the relationship between the moving distance of the lens and the photosensitive chip and the inclination angle of the module under four different situations in this application;
  • FIG. 5 shows a schematic cross-sectional view of a camera module in an embodiment of the present application
  • Figure 6a shows a schematic perspective view of a second driving part in an embodiment of the present application
  • Fig. 6b shows a schematic exploded perspective view of the second driving part in an embodiment of the present application
  • FIG. 7 shows a schematic cross-sectional view of a camera module according to an embodiment of the present application.
  • Fig. 8a shows the ball structure of the second driving part in a modified embodiment of the present application
  • Figure 8b shows a schematic diagram of the rotation of the movable part in the xoy plane
  • Fig. 9 shows a schematic diagram of a typical assembly manner of the second driving part in an embodiment of the present application.
  • Fig. 10 shows a schematic diagram of a disassembled state before assembly of the second driving part in another embodiment of the present application
  • FIG. 11 shows a schematic diagram of an intermediate state in the assembling process of the second driving part in another embodiment of the present application.
  • FIG. 12 shows the installation position of the driving element of the second driving part in a top view according to an embodiment of the present application
  • Fig. 13a shows a schematic cross-sectional view of a second driving part including driving elements in an embodiment of the present application
  • Fig. 13b shows a schematic cross-sectional view of a second driving part including driving elements in another embodiment of the present application
  • FIG. 14 shows a schematic diagram of an assembly method of a camera module in an embodiment of the present application
  • Fig. 15a shows the arrangement of the camera module and its connecting belt in an embodiment of the present application
  • Fig. 15b shows a schematic perspective view of the second driving part in an embodiment of the present application
  • FIG. 16 shows a schematic diagram of the connection between the photosensitive assembly and the second movable part in another embodiment of the present application
  • FIG. 17 shows a schematic cross-sectional view of a camera module according to another embodiment of the present application.
  • FIG. 18 shows a schematic cross-sectional view of a camera module according to another embodiment of the present application.
  • FIG. 2 shows a schematic cross-sectional view of a camera module with an anti-shake function according to an embodiment of the present application.
  • the camera module includes a lens 10 , a photosensitive assembly 20 , a first driving part 30 and a second driving part 40 .
  • the photosensitive component 20 includes a photosensitive chip 21 .
  • the first driving part 30 is configured to drive the lens 10 to move in the x and y directions
  • the second driving part 40 is configured to drive the photosensitive chip 21 to move in the x and y directions.
  • the x and y directions are perpendicular to each other, and both are parallel to the photosensitive surface of the photosensitive element 20 .
  • FIG. 2 also shows a three-dimensional Cartesian coordinate system constructed based on the x, y, and z directions.
  • the optical anti-shake of the camera module is realized by simultaneously driving the lens 10 and the photosensitive chip 21 to move in opposite directions by the control module.
  • the lens 1 and the photosensitive chip 21 are configured to be driven at the same time and move in opposite directions.
  • the photosensitive chip 21 when the lens 10 is driven to move in the positive direction of the x-axis, the photosensitive chip 21 is driven to move in the negative direction of the x-axis; If it is driven to move in the positive direction of the y-axis, the photosensitive chip 21 is driven to move in the negative direction of the y-axis; or the lens 10 is driven to move in the x-axis and y-axis, and the photosensitive chip 21 is driven in the x-axis and y-axis to move in the same direction as the lens. 10 moves in the opposite direction.
  • the camera module usually includes a position sensor, and the position sensor is used to detect the shaking of the camera module or the terminal device (that is, the electronic device equipped with the camera module, such as a mobile phone).
  • the position sensor sends a signal to the camera module, and drives the lens 10 and the photosensitive chip 21 to move accordingly to compensate for the jitter, so as to achieve the purpose of optical anti-shake.
  • the lens 10 and the photosensitive chip 21 are configured to move at the same time, and the lens 10 and the photosensitive chip 21 move in opposite directions, which can achieve faster response and better anti-shake effect.
  • the anti-shake angle range of the camera module is usually limited by the suspension system and the driving system, and a relatively large compensation angle range cannot be achieved.
  • the lens 10 and the photosensitive chip 21 are driven to move in opposite directions at the same time. , to achieve large-angle shake compensation.
  • this embodiment by simultaneously driving the lens 10 or the photosensitive chip 21 to move in opposite directions, compared with the solution of only driving the lens 10 to move, there is a larger relative movement stroke between the lens 10 and the photosensitive chip 21 (for For convenience of description, this relative movement stroke may be referred to as the anti-shake stroke for short), which can have a better compensation effect.
  • this embodiment also has a better compensation effect for the tilting and shaking of the camera module.
  • the moving direction of the anti-shake movement in this embodiment can be limited in the xoy plane, and it is not necessary to tilt the optical axis of the lens 10 or the photosensitive chip 21, thereby avoiding the problem of image blur caused by the anti-shake movement.
  • the photosensitive chip 21 can also be driven by the second driving part 40 to rotate in the xoy plane, so as to compensate for the shake in the rotation direction of the camera module.
  • the camera module includes a first driving part 30 , a lens 10 , a second driving part 40 and a photosensitive assembly 20 .
  • the lens 10 is mounted on the first driving part 30 .
  • the first driving part 30 can have a cylindrical first motor carrier, the first motor carrier can be used as a movable part of the first driving part, and the lens is mounted on the inner side of the first motor carrier.
  • the first driving part also has a stationary part, or a base part.
  • the base portion may be implemented as a motor housing.
  • the motor housing may include a base and a cover.
  • the base has a light hole.
  • the movable part is movably connected with the base part.
  • the driving element may be a coil magnet combination, which may be installed between the movable part and the base part.
  • it can be mounted between the first motor carrier and the motor housing.
  • the first driving part in this embodiment can directly adopt the common structure of the optical anti-shake motor in the prior art.
  • the second driving part 40 may also include a base part and a movable part.
  • the base part may include a base plate and a base part side wall, the bottom part of the base part side wall is connected with the base plate, and the top part is connected with the base part of the first driving part.
  • the base part of the first drive part 30 is sometimes referred to as the first base part
  • the base part of the second drive part 40 is called the second base part
  • the movable part of the first drive part 30 is called the first base part.
  • the first movable portion the movable portion of the second driving portion 40 is referred to as a second movable portion.
  • the second movable portion is located above the base plate of the second base portion, and is movably connected with the second base portion through a ball structure.
  • the photosensitive assembly 20 includes a circuit board 23 , a photosensitive chip 21 mounted on the surface of the circuit board, and a mirror base 22 surrounding the photosensitive chip 21 .
  • the bottom of the mirror base 22 can be mounted on the surface of the circuit board 23 .
  • the center of the lens holder 22 has a light-passing hole, and a filter 24 is installed on the lens holder 22 (the filter 24 can also be regarded as an integral part of the photosensitive assembly 20 ).
  • the bottom surface of the circuit board may be fixed (eg, bonded) to the upper surface of the second movable portion. In this way, driven by the second movable portion, the photosensitive assembly 20 can translate relative to the base portion in the x and y directions or rotate on the xoy plane.
  • the second movable part can be arranged on the back of the circuit board, the bases of the second movable part and the second base part can not be provided with light through holes, so that the same structural strength can be achieved.
  • the second movable part can be designed to be lighter and thinner, which is beneficial to the miniaturization of the camera module.
  • the following description will be given in conjunction with a comparative example.
  • FIG. 3 shows a schematic cross-sectional view of a comparative example of a camera module with an anti-shake function according to another embodiment of the present application.
  • the camera module includes a first driving part 30 , a lens 10 , a second driving part 40 and a photosensitive assembly 20 .
  • the lens 10 is mounted on the first driving part 30 .
  • the structures and assembling methods of the first driving part 30 and the lens 10 may be the same as those of the previous embodiment shown in FIG. 2 , and will not be repeated here.
  • the difference between this comparative example and the previous embodiment is that the second driving part 40 is located between the lens 10 and the photosensitive component 20 .
  • the second base portion 41 can be directly fixed on the bottom surface of the first base portion, and the second movable portion 42 is located below the second base portion 41 and is movably connected with the second base portion 41, so that the second movable portion 42 It is movable relative to the second base part 41 on the xoy plane.
  • the photosensitive element 20 is installed below the second movable portion 42 . Wherein, the top surface of the mirror base 22 of the photosensitive assembly 20 is connected and fixed with the bottom surface of the second movable portion 42 , so that the photosensitive assembly 20 can be driven by the second movable portion 42 relative to the second movable portion 42 .
  • the base portion 41 translates in the x, y direction or rotates in the xoy plane.
  • the circuit board 23 of the photosensitive component 20 may be supported on the main board 90 of the electronic device (eg, mobile phone).
  • the filter 24 can be mounted on the lens holder 22 .
  • both the second base part 41 and the second movable part 42 are located on the imaging light path, both the second base part 41 and the second movable part 42 need to be provided with a light-through hole in the center so that light can pass through .
  • the thicknesses of the second base portion 41 and the second movable portion must be increased, which may lead to an increase in the height of the camera module.
  • the base of the second base portion 41 and the second movable portion 42 are both disposed on the back of the circuit board of the photosensitive assembly 20 . Therefore, under the premise of the same structural strength, the first The thicknesses of the bases of the two base portions 41 and the second movable portion 42 can be reduced, thereby helping to reduce the height of the camera module and helping to achieve miniaturization of the camera module.
  • FIG. 16 shows a schematic diagram of the connection between the photosensitive component and the second movable part in another embodiment of the present application.
  • the second movable part 42 may include a movable part bottom plate 42a and a movable part side wall 42b, and the movable part side wall 42b is upward from the edge region of the movable part bottom plate 42a formed by extension.
  • the photosensitive assembly 20 can be placed in a receiving groove formed by the movable part bottom plate 42a and the movable part side wall 42b.
  • the glue 91 can be arranged between the inner side of the side wall 42b of the movable part and the outer side of the photosensitive component 20, that is, in this embodiment, the second movable part 42 and the photosensitive component 20 are fixed by arranging glue on the side. together.
  • FIG. 4 is a schematic diagram showing the relationship between the moving distance of the lens and the photosensitive chip and the inclination angle of the module in four different situations in the present application.
  • the position A in the figure represents the combination of the moving distance of the lens and the photosensitive chip for compensating for the shaking angle a of the camera module.
  • the moving distance of the lens in the figure is b
  • the moving distance of the photosensitive chip (hereinafter sometimes referred to as the chip)
  • the moving distance of the lens or chip can be equivalent to the angle of the image plane deviating from the optical axis during optical imaging.
  • the translation distance of the lens in the xoy plane is b
  • it causes an arithmetic relationship between the image plane offset angle ⁇ 1 and the image distance.
  • the image distance is different under different shooting distances.
  • the image distance is replaced by the image square focal length.
  • the photosensitive chip moves at a distance c on the xoy plane
  • the moving distances of the lens and the photosensitive chip may be set to be unequal, for example, the moving distance of the lens may be greater than the moving distance of the photosensitive chip, that is, b>c.
  • the second driving part can select a driver with a smaller size (eg, a mems driver, etc., and the movable stroke of such a driver is usually relatively small), so as to help the overall miniaturization of the camera module.
  • the compensation effect within the range is uniform, and it is also beneficial to reduce the design difficulty of the driving logic module of the anti-shake system of the camera module.
  • an anti-shake threshold can be set. For example, for the jitter angle a that needs to be compensated, a threshold K can be set.
  • the anti-shake angle corresponding to the maximum travel b max of the lens movement may be smaller than the maximum distance of the photosensitive chip.
  • the anti-shake system of the camera module can have a faster response speed.
  • the lens In high-end lenses, the lens often has a large number of lenses. For example, the number of lenses in the rear main camera lens of a smartphone can reach 8. In order to further improve the image quality, some lenses also use glass lenses. These all result in the lens being heavier.
  • the photosensitive chip or photosensitive assembly is relatively light in weight, and can reach a preset position with a small driving force. Therefore, in the solution of this embodiment, the advantages of the photosensitive chip or photosensitive assembly being relatively close in weight and relatively fast moving can be better utilized to effectively improve the response speed of the anti-shake system of the camera module.
  • the fixed ratio of the moving distance of the lens to the moving distance of the photosensitive chip may be based on the weight of the lens, the driving force of the first driving part, the weight of the photosensitive chip (or the photosensitive component), Factors such as the driving force of the second driving part are set, and an appropriate fixed ratio can be set, so that the time for the lens and the photosensitive chip to move to their respective anti-shake target positions is basically the same, so as to obtain a better anti-shake effect.
  • the weight of the lens and the driving force of the first driving part can basically determine the moving speed of the lens
  • the weight of the photosensitive chip (or photosensitive component) and the driving force of the second driving part can basically determine the moving speed of the photosensitive chip.
  • the moving speed of the photosensitive chip is lower than the moving speed of the photosensitive chip (for example, when the weight of the lens is large), when the fixed ratio is set, the moving distance of the photosensitive chip can occupy a larger proportion.
  • the fast feature makes the photosensitive chip move a longer distance, so that the time for the lens and the photosensitive chip to move to their respective anti-shake target positions is basically the same.
  • the first driving part may adopt a driving element with a large driving force and a suspension system with a large stroke.
  • the first driving part may be driven by an SMA (shape memory alloy) element.
  • SMA shape memory alloy
  • the SMA element can provide a larger driving force with a smaller occupied space, so the first driving part can be designed to be more compact, which is beneficial to the miniaturization of the camera module.
  • FIG. 5 shows a schematic cross-sectional view of a camera module in an embodiment of the present application.
  • the second base portion 41 of the second drive portion 40 is fixed to the first base portion of the first drive portion 30 (the first base portion may be composed of the casing 33 and the first base 34 ) together.
  • the lens 10 may be mounted on the first movable portion of the first driving portion 30 (eg, may be mounted on the first motor carrier 31 of the first movable portion).
  • the photosensitive component 20 includes a circuit board 23 , a photosensitive chip 21 , a lens holder 22 , a filter 24 and the like.
  • the photosensitive assembly 20 may be mounted on the second movable part 42 of the second driving part 40 .
  • the bottom surface of the moving part 42 can bear against the top surface of the lens holder 22 of the photosensitive assembly 20 .
  • the second base part 41 and the second movable part 42 can be elastically connected through a suspension system.
  • the suspension system allows the second movable part 42 to translate relative to the second base part 41 in the xoy plane.
  • the suspension system can be a ball system, the advantage of which is that in the z direction, the second movable part 42 and the second base part 41 are in contact with each other through balls, and the second movable part 42 only moves in the xoy plane, The movement in the optical axis direction (ie, the z-axis direction) can be blocked by the balls between the second movable part 42 and the second base part 41 , so as to avoid affecting the focus of the camera module.
  • the suspension system may include an elastic element (such as a spring) through which the fixed part and the movable part are connected, which allows the movable part to be in the xoy plane relative to the base part Translates, but prevents movement of the movable part relative to the base part outside the xoy plane.
  • an elastic element such as a spring
  • the advantage of arranging the elastic element is that the elastic element can provide an initial force between the base part and the movable part, and the initial force can control the movement of the movable part in cooperation with the driving force of the driving element. distance or maintain its position without additionally providing a driving element to provide a conjugate driving force to control the position of the movable part.
  • the movable part can move freely relative to the base part in the xoy direction without the driving force provided by the driving element, so it is often necessary to provide at least a pair of mutually opposite driving forces to control the movable part The part remains in its original position.
  • anti-shake can be achieved by driving the entire photosensitive assembly 20 to move.
  • the circuit board 23, the photosensitive chip 21, the lens holder 22, and the optical filter 24 are packaged as a whole.
  • the circuit board 23, the lens holder 22, and the optical filter 24 form a closed space.
  • the photosensitive chip 21 is accommodated in the closed space, which improves the The closedness of the photosensitive assembly 20 ensures that the imaging of the photosensitive chip 21 is not affected by dust during the production or use of the camera module.
  • the first driving part 30 is implemented to be adapted to drive the lens 10 to move in the direction of the optical axis to realize the focusing function, and also to drive the lens 10 to move in the xoy plane to achieve anti-shake function.
  • the first driving part 30 includes at least two carriers, namely a first carrier 31 and a second carrier 32 , the lens 10 is supported on the first carrier 31 , and a space between the first carrier 31 and the second carrier 32 is provided.
  • Suspension system a suspension system is provided between the second carrier 32 and the casing 33 of the first driving part 30 .
  • the suspension system between the first carrier 31 and the second carrier 32 (ie, the first suspension system) is set as a ball system
  • the suspension system between the second carrier 32 and the housing 33 ie, the second suspension system
  • the suspension system between the second carrier 32 and the housing 33 can be It is a ball structure (for example, the ball structure may include a vertical groove and a plurality of balls arranged in the vertical groove), or a suspension system based on elastic elements (such as spring sheets).
  • the bottom surface of the casing 33 can be mounted on the first base 34 , and the first base 34 and the casing 33 can jointly constitute the first base part of the first driving part 30 .
  • the second suspension system is arranged outside the first suspension system, the first suspension system allows the lens 10 and the first carrier 31 to translate in the xoy plane to realize the anti-shake function, the second suspension system allows the lens 10, the first carrier 31 to translate in the xoy plane
  • the carrier 31 and the second carrier 32 are integrally moved in the optical axis direction to realize the focusing function.
  • the second suspension system may also be arranged inside the first suspension system.
  • the second suspension system can also be arranged below the first suspension system.
  • the suspension system refers to a system in which two components are movably connected, and the relative movement degrees of freedom (ie, movement directions) of the two components are limited to a certain extent.
  • the two movably connected parts may be referred to as the base part and the movable part, respectively.
  • suspension systems are used in conjunction with drive elements such as SMA elements or coil magnet combinations.
  • a driving force is provided by the driving element, and under the action of the driving force, the movable part moves relative to the base part in the movement direction defined by the suspension system.
  • FIG. 6a shows a schematic perspective view of the second driving part in an embodiment of the present application.
  • Fig. 6b shows a schematic exploded perspective view of the second driving part in an embodiment of the present application.
  • FIG. 7 shows a schematic cross-sectional view of a camera module according to an embodiment of the present application, wherein a cross-section of the second driving part is shown.
  • the second driving part 40 includes a second base part 41 and a second movable part 42 .
  • the second base part 41 is sometimes referred to as the base part 41 for short, and the second movable part 42 is simply referred to as the movable part 42, which will not be repeated below.
  • the base portion 41 includes a base 41a and a cover 41b.
  • the base 41a can be in the shape of a flat plate, so it can also be called a bottom plate
  • the cover 41b includes a cover side wall 41b1 and a self-cover side wall A bearing platform 41b2 formed by extending the top of 41b1 inward
  • the movable part 42 is located between the bearing platform 41b2 and the base 41a
  • the four corners of the base 41a can be provided with grooves 41a1, balls placed in the groove 41a1.
  • the bottom surface of the movable portion 42 is in contact with the balls and is supported by the balls 46 , thereby forming an active connection between the base portion 41 and the movable portion 42 .
  • the support base 41b2 and the base 41a can clamp the movable portion 42, thereby limiting the movement of the movable portion 42 in the z-axis direction.
  • the movement degrees of freedom of the movable part 42 relative to the base part 41 are limited to the xoy plane.
  • the movement degrees of freedom of the movable part 42 relative to the base part 41 may include x-axis translation, y-axis translation, and z-axis translation. Rotation of the axis (i.e. rotation in the xoy plane).
  • the grooves 41a1 are provided at the corresponding positions of the balls 46.
  • the balls 46 can be placed in the grooves 41a1 during the assembly process, so as to facilitate the assembly of the second driving part 40; on the other hand, the grooves 41a1 can be The maximum moving distance of the movable part 42 relative to the base part 41 is limited, so as to avoid collision during the relative movement of the movable part 42 and the base part 41 .
  • four grooves 41a1 can be provided on the upper surface of the base 41a of the base portion 41, and there are also four balls 46, which are respectively arranged in the four corner regions of the second driving portion 40 (refer to Fig. 6b ). ).
  • the grooves and the balls may also be arranged at four sides of the second driving part.
  • the inner surface of the side wall of the base part 41 and the outer surface of the movable part 42 have a first gap 43 , and the first gap 43 is larger than
  • the maximum distance of the anti-shake movement of the movable part 42 (that is, the maximum stroke in one direction, where the one direction can be, for example, the positive x-axis direction, the negative x-axis direction, the positive direction of the y-axis, or the negative direction of the y-axis)
  • the first gap 43 Usually it can be larger than 200 ⁇ m.
  • the ball structure is used to realize the movable connection, which can reduce the movement resistance of the movable part 42, thereby reducing the driving force required to drive the movable part 42 to move, and then the movable part 42 can be designed to have a larger journey. Therefore, in some embodiments, the first gap 43 may be larger than 300 ⁇ m.
  • a second gap 44 may also be formed between the lower surface of the bearing platform 41b2 and the movable part 42 .
  • the two gaps 44 may be smaller than 10 ⁇ m to reduce friction between the movable portion 42 and the bearing platform 41b2. This reduces frictional resistance and avoids friction debris.
  • the bearing platform 41b2 can still limit the movable portion 42 in the z-axis direction, so as to prevent the movement of the movable portion 42 from deviating from the xoy plane.
  • a third gap 45 is formed between the lower surface of the movable part 42 and the upper surface of the base 41a.
  • the diameter of the ball is greater than the depth of the groove in which the ball is accommodated.
  • the third gap 45 may be smaller than 10 ⁇ m, for example.
  • the upper surface of the cover 41b ie, the upper surface of the support table 41b2
  • the top surface of the photosensitive assembly 20 mirror seat
  • Fig. 8a shows the ball structure of the second driving part in a modified embodiment of the present application.
  • the number of balls 46 between the base portion 41 and the movable portion 42 of the second driving portion 40 may be three, and the corresponding number of grooves 41a1 for accommodating the balls 46 may also be is three.
  • the number of the balls and the positions at which they are arranged are sufficient as long as the movable portion 42 can be supported on a reference plane (for example, a horizontal plane).
  • the reference plane is the xoy plane.
  • the bottom surface of the groove 41a1 is set as a plane, and the balls can move freely on the bottom surface of the groove 41a1, thereby allowing the movable part 42 to translate in the x-axis and y-axis, and also allow the movable part 42 to translate in the xoy plane.
  • rotation (as shown in Figure 8b, which shows a schematic diagram of the rotation of the movable part in the xoy plane).
  • the balls 46 are arranged below the photosensitive assembly 20 , that is, the projections of the balls 46 and the photosensitive assembly 20 on the reference plane at least partially overlap, or in other words, when viewed from a top view,
  • the balls 46 are completely located within the projection range of the photosensitive assembly 20 or at least partially within the projection range of the photosensitive assembly 20 .
  • This design can prevent the ball mechanism from occupying extra space in the radial direction of the camera module (ie, the x-axis or the y-axis direction), which helps to reduce the lateral dimension of the second driving part 40 (ie, the x-axis or the y-axis). size in the direction), which is conducive to the miniaturization of the module.
  • FIG. 9 shows a schematic diagram of a typical assembly manner of the second driving part in an embodiment of the present application.
  • the second driving part 40 can be assembled by three main components separated from each other, the three components are the base 41a, the cover 41b and the movable part 42 respectively, which can be vertically assemble in the direction.
  • the base 41a with the balls 46 can be arranged on the assembly table first, and then the movable part 42 can be placed above the base 41a to be supported by the balls 46 in the base 41a, and finally the cover can be placed 41b is moved to the top of the base 41a and the movable part 42, and then the cover 41b is moved downward so that the bottom surface of the cover side wall 41b1 is close to the top surface of the base 41a, and then the bottom surface of the cover side wall 41b1 and the base The top surface of 41a is bonded to complete the assembly of the second driving part 40 .
  • the base 41a is in the shape of a flat plate without base side walls, so it can also be called a base plate or a bottom plate.
  • the base 41a can also be composed of the base side wall and the base plate.
  • the second driving part as shown in FIG. 9 The assembly method may be the same as that shown in FIG. 9 . That is to say, three main components, which are the base, the cover and the movable part, are separated from each other first, and then the three are assembled together in the vertical direction.
  • FIG. 10 shows a schematic diagram of a disassembled state before assembly of the second driving part in another embodiment of the present application.
  • FIG. 11 shows a schematic diagram of an intermediate state in the assembling process of the second driving part in another embodiment of the present application.
  • the second driving portion 40 may be assembled by a lateral assembly method. Specifically, three main components (refer to FIG. 10 ), which are the base part main body 41 ′, the movable part 42 and the side cover 41 b ′′, which are separated from each other, can be prepared first.
  • the base part main body 41 ′ can include the base 41 a and the base
  • the cover body 41b' to which the seat 41a is attached (in some embodiments, the base 41a and the cover body 41b' may be integrally formed), the cover body 41b' is a part of the complete cover 41b, which is connected with the side cover 41b" together constitute the complete cover 41b.
  • the cover body 41b' can surround the movable part 42 (or the photosensitive component) on three sides, for example, and the other side is left for the movable part 42 (or the movable part 42 and the photosensitive component)
  • the combination body is inserted into the notch of the base body 41' from the side.
  • the side cover 41b" corresponds to the notch.
  • the side cover 41b" can be approached from the side to the base 41a, and The outer side of the base 41a and the inner side of the side cover 41b" are bonded together to form a complete second driving part 40.
  • the upper and lower end surfaces of the base part 41 are The parallelism is only determined by the manufacturing accuracy of the base part 41 itself, so this method of bonding and fixing from the side can improve the parallelism of the upper and lower end surfaces of the base part 41 and the parallelism between the upper end surface of the base part 41 and the movable part 42 .
  • FIG. 12 shows the installation position of the driving element of the second driving part in a plan view according to an embodiment of the present application.
  • Fig. 13a shows a schematic cross-sectional view of a second driving part including driving elements in an embodiment of the present application.
  • the driving element of the second driving part 40 is a combination of coil magnets.
  • the magnet 61 may be provided in the edge area of the bottom plate of the base part 41 (i.e. the base 41a), and the coil 62 may be provided in the edge area of the movable part bottom plate 42a of the movable part 42.
  • the magnet may be disposed on the bottom plate of the base portion 41 .
  • the coil 62 can be connected to the circuit board 23 of the photosensitive assembly 20 by welding through the FPC board (soft board) provided on the movable part 42 .
  • the advantage of arranging the coil 62 on the movable part 42 is that the movable part 42 and the photosensitive component 20 move synchronously during the anti-shake process. There is no relative movement, reducing the risk of electrical failure at the weld.
  • the connection method through the FPC board is not the only electrical connection method in this application.
  • the coil can also be connected to the circuit board through a contact or a contact array arranged on the upper surface of the movable part. The bottom surface realizes the electrical connection.
  • the arrangement of the driving elements shown in FIG. 13a helps to reduce the lateral dimension (ie, the dimension perpendicular to the optical axis direction) of the camera module.
  • FIG. 13b shows a schematic cross-sectional view of a second driving part including driving elements in another embodiment of the present application.
  • the coil 62 and the magnet 61 may be disposed on the side walls of the movable portion 42 and the base portion 41 .
  • This design is beneficial to reduce the thickness of the second driving portion 40, thereby reducing the height of the camera module.
  • the magnet 61 is arranged on the base 41a of the base part 41 instead of the cover 41b, and this design can leave the connection (may be adhesive) area between the base part 41 and the first driving part 30 .
  • three pairs of coil magnets are provided, respectively referred to as the first pair of coil magnets 63 and the second pair of coil magnets 64 and the third coil magnet pair 65.
  • the first pair of coil magnets 63 and the second pair of coil magnets 64 are used to drive the translation of the movable portion 42 in the x-axis direction, that is, to provide a driving force in the x-axis direction.
  • the third coil magnet pair 65 is used to drive the translation of the movable portion 42 in the y-axis direction, that is, to provide a driving force in the y-axis direction.
  • the first pair of coil magnets 63 and the second pair of coil magnets 64 may be arranged along two opposite sides of the second driving part, and the two opposite sides may be referred to as the first Side 48 and second side 49, first side 48 and second side 49 do not intersect.
  • the second coil magnet pair 64 may be arranged along the third side 47 of the second driving part, and the third side 47 intersects with both the first side 48 and the second side 49 .
  • the three coil-magnet pairs can realize both the x-axis translation and the y-axis translation, as well as the rotation on the xoy plane.
  • first coil magnet pair 63 and the second coil magnet pair 64 provide driving forces in opposite directions, a combined driving force for rotating the movable portion on the xoy plane can be generated.
  • the driving force for the rotation on the xoy plane is not unique.
  • first coil magnet pair 63 and the third coil magnet pair 65 work, it is also possible to generate a driving force that makes the movable part rotate on the xoy plane. Combined drive.
  • the positions of the first coil magnet pair and the second coil magnet pair may be staggered (that is, the arrangement positions of the first coil magnet pair and the second coil magnet pair may be asymmetrical with respect to the central axis of the second driving part), so as to The rotation of the movable part in the xoy plane (ie, the movement in the Rz direction) is realized by providing a driving force.
  • FIG. 14 shows a schematic diagram of an assembly method of a camera module in an embodiment of the present application.
  • the lens 10 is first installed on the first driving part 30, the photosensitive assembly 20 is installed on the second driving part 40, and then the relative position between the photosensitive assembly 20 and the lens 10 is adjusted through an active calibration process Then, the first driving part 30 and the second driving part 40 are bonded and fixed by the glue 92, so that the relative position of the bonded photosensitive assembly 20 and the lens 10 is maintained at the relative position determined by the active calibration.
  • the glue 92 may be disposed between the base portion of the first driving portion 30 and the base portion of the second driving portion 40 .
  • FIG. 15a shows the arrangement of the camera module and its connection straps in an embodiment of the present application.
  • the camera module may include a first connecting strip 26a and a second connecting strip 26b.
  • the first connecting strip 26a is disposed on the top area of the first driving part 30 and is electrically connected to the first driving part 30 and the second connecting strip 26a.
  • the belt 26b communicates with the circuit board 23 of the photosensitive member 20 .
  • the second connecting belt 26b may be provided with a plurality of bends to form a curved layered shape, so as to buffer the stress caused by the movement of the photosensitive assembly 20 .
  • a connector can be provided at the end of the second connecting strip 26b, and the connector can be optionally fixed and electrically connected to the transfer post 26c by pressing, and then the main board (or other components) of the terminal device is conducted through the transfer post 26c.
  • the end of the first connecting strip 26a can also be connected to a connector, the connector can be fixed by pressing and electrically connected to the transfer column 26c, and then the main board (or other components) of the terminal device can be connected through the transfer column 26c.
  • the conduction circuit of the first driving part 30 can be separated from the photosensitive component 20 and is not affected by the movement of the photosensitive component 20 .
  • the second connecting belt 26b and the intermediate post 26c can be accommodated in the second casing 70 (the second casing 70 can be a connecting belt receiving casing), the first connecting belt 26a is located outside the second casing 70, the second casing
  • the top of the body 70 may have a third through hole 70a, so that the connector of the first connecting strip 26a can protrude into and be in electrical communication with the second connecting strip 26b or the transfer post 26c.
  • FIG. 15b shows a schematic perspective view of the second driving part in an embodiment of the present application.
  • one side surface of the movable part 42 and the base part 41 has a slot or a window, so that the first connecting belt passes through the side of the movable part 42 wall and the side wall of the base portion 41 .
  • the first driving part and the second driving part may constitute a dual optical anti-shake driving structure (also referred to as a dual OIS driving structure).
  • the first driving part is suitable for installing the lens
  • the second driving part is suitable for installing the photosensitive component
  • the lens and the photosensitive chip are configured to be driven simultaneously and move in opposite directions.
  • the lens is driven to move in the positive direction of the x-axis
  • the photosensitive chip is driven to move in the negative direction of the x-axis
  • the lens is driven to move in the positive direction of the y-axis
  • the photosensitive chip is driven to move in the negative direction of the y-axis
  • the lens is driven to move in the negative direction of the y-axis.
  • the x-axis and y-axis move, and the photosensitive chip is driven to move in the opposite direction of the lens movement on the x-axis and y-axis.
  • the directions of the vector and the displacement vector of the photosensitive chip are opposite.
  • the lens and the photosensitive chip are configured to move at the same time, and the lens and the photosensitive chip move in opposite directions, which can achieve faster response and better anti-shake effect.
  • the anti-shake angle range of the existing camera module is usually limited by the suspension system and the driving system, and a relatively large compensation angle range cannot be achieved. Move in the opposite direction to achieve large-angle shake compensation.
  • the distance between the lens and the photosensitive chip is larger.
  • the relative movement stroke of (for convenience of description, this relative movement stroke may be referred to as the anti-shake stroke for short), which can have a better compensation effect.
  • the present application also has a better compensation effect for the tilt shake of the camera module.
  • the movement direction of the anti-shake movement may be limited in the xoy plane, and it is not necessary to tilt the optical axis of the lens or the photosensitive chip, thereby avoiding the problem of image blur caused by the anti-shake movement.
  • FIG. 17 shows a schematic cross-sectional view of a camera module according to another embodiment of the present application.
  • the ball structure is arranged on the outer side of the photosensitive assembly 20 , so as to prevent the ball structure from occupying the space of the camera module in the height direction (ie, in the z-axis direction) , in order to reduce the height of the camera module.
  • the base part 41 may include a base 41a and a cover 41b.
  • the base 41 a includes a base plate 41 a 2 and base side walls 41 a 3 extending upward from the edge of the base plate 41 a 2 .
  • the cover 41b includes a cover side wall 41b1 and a bearing platform 41b2 formed by extending inward from the top of the cover side wall 41b1.
  • the bottom surface of the cover side wall 41b1 may be connected (eg bonded) to the top surface of the base side wall 41a3, and the base side wall 41a3 and the cover side wall 41b1 may together form a complete base side wall.
  • the movable portion 42 may include a movable portion bottom plate 42a, a movable portion sidewall 42b and an epitaxial structure 42c, wherein the movable portion sidewall 42b is formed by extending upward from the edge of the movable portion bottom plate 42a, and the photosensitive assembly 20 can be fixed on The movable part bottom plate 42a and the movable part side wall 42b form the accommodating groove.
  • the epitaxial structure 42c is formed by extending outward from the top of the movable portion sidewall 42b.
  • the epitaxial structure 42c is located between the bearing platform 41b2 of the base portion 41 and the top surface of the base side wall 41a3.
  • the epitaxial structure 42c may be located above the first groove 41a4 on the top surface of the base sidewall 41a3, and the lower surface thereof may be supported by the balls 46, so that the movable portion 42 and the base portion 41 are movably connected.
  • the fifth gap may be greater than 200 ⁇ m, so as to allow the movable portion 42 to have a lateral movement stroke of 200 ⁇ m in one direction. Further, the fifth gap may also be larger than 300 ⁇ m, so as to further increase the lateral movement stroke of the movable portion 42 and improve its anti-shake capability.
  • the camera module has two driving parts, and the first driving part for driving the lens assembly often has a relatively large lateral dimension.
  • the lateral dimension of the second driving part is slightly The increase will not significantly increase the overall lateral size of the module, but can more fully utilize the space outside the photosensitive assembly to significantly reduce the height of the module.
  • mobile terminals such as mobile phones
  • the area of the multi-camera module installation area of the mobile terminal is relatively large. Therefore, there is less restriction on the lateral size of a single camera module.
  • arranging the ball structure on the outside of the photosensitive assembly can reduce the height of the camera module, which is beneficial to reduce the installation of multi-camera modules in mobile terminals (such as mobile phones).
  • the height of the protruding part of the area can significantly improve the user experience of a mobile terminal (eg, a cell phone).
  • FIG. 18 shows a schematic cross-sectional view of a camera module according to another embodiment of the present application.
  • two layers of balls can be arranged between the base portion 41 and the movable portion 42 of the second driving portion 40 , thereby avoiding friction generated when the movable portion 42 moves relative to the base portion 41 .
  • the cover 41b of the base portion 41 can have a better limiting effect in the z-axis direction.
  • the base portion 41 may include a base 41a and a cover 41b.
  • the base 41a includes a base plate 41a2 and base side walls 41a3 extending upward from the edge of the base plate 41a2.
  • the top surface of the base side walls 41a3 can be provided with first grooves 41a4 to accommodate the first balls 46a.
  • the cover 41b includes a cover side wall 41b1 and a bearing platform 41b2 formed by extending inward from the top of the cover side wall 41b1.
  • the bottom surface of the cover side wall 41b1 may be connected (eg bonded) to the top surface of the base side wall 41a3, and the base side wall 41a3 and the cover side wall 41b1 may together form a complete base side wall.
  • the movable portion 42 may include a movable portion bottom plate 42a, a movable portion sidewall 42b and an epitaxial structure 42c, wherein the movable portion sidewall 42b is formed by extending upward from the edge of the movable portion bottom plate 42a, and the photosensitive assembly 20 can be fixed on The movable part bottom plate 42a and the movable part side wall 42b form the accommodating groove.
  • the epitaxial structure 42c is formed by extending outward from the middle of the movable portion sidewall 42b.
  • the epitaxial structure 42b is located between the bearing platform 41b2 of the base portion 41 and the top surface of the base side wall 41a3.
  • the epitaxial structure 42b may be located above the first groove 41a4 on the top surface of the base sidewall 41a3, and the lower surface of the epitaxial structure 42b may be supported by the first balls 46a, so that the movable portion 42 and the base portion 41 are connected. Form active connections. Different from the embodiment of FIG. 17 , in this embodiment, the upper surface of the epitaxial structure 42c is disposed in the second groove 42b1 , and the second ball 46b is disposed in the second groove 42b1 .
  • the bearing platform 41b2 may be supported by the second ball 46b. Due to the addition of the second balls 46b, the connection between the bearing base 41b2 and the movable portion 42 in the z-axis direction is rigid, and has an excellent limiting effect.
  • the second ball 46b also plays a role in reducing the movement resistance, and can also prevent the bearing platform 41b2 from rubbing against the epitaxial structure 42c produce debris.
  • FIG. 7 and FIG. 8 can also be improved by using the design of two layers of balls, so as to improve the z-axis limiting effect while avoiding the cover friction with the movable part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

本申请涉及一种光学防抖摄像模组,其包括:镜头;感光组件;第一驱动部,其适于安装所述镜头并驱动所述镜头在在x轴和y轴方向平移;以及第二驱动部,其适于驱动感光芯片在x轴和y轴方向平移,第二驱动部包括第二基础部和第二可动部,第二基础部包括基座和盖,基座的至少一部分位于感光组件下方,盖的底部连接基座,盖的顶部连接第一驱动部;第二可动部通过滚珠与第二基础部实现活动连接,并且通过滚珠将移动自由度限制在xoy平面内;其中,镜头与感光芯片被配置为同时驱动,且朝向相反的方向移动;滚珠位于所述感光组件的外侧面的外侧。本申请能够提高摄像模组的防抖行程以及防抖响应速度,同时可以有助于减小摄像模组的高度。

Description

光学防抖摄像模组
相关申请
本申请要求名称为“光学防抖摄像模组”、于2020年11月6日提交的申请号为202011231140.1的中国专利申请的优先权,并在此通过引用包含上述申请的全部内容。
技术领域
本发明涉及摄像器材技术领域,具体地说,本发明涉及一种光学防抖摄像模组。
背景技术
随着消费者对于手机拍照需求的增加,手机摄像头(即摄像模组)的功能越来越丰富,人像拍摄、远距拍摄、光学变焦、光学防抖等功能都集成在了体积有限的摄像头中,而其中自动对焦、光学防抖、光学变焦等功能往往都需要依靠光学致动器(有时也可以称为马达)来实现。
图1示出了现有技术中一种典型的具有马达的摄像模组。参考图1,该摄像模组通常包括镜头1、马达机构2(可简称为马达)和感光组件3。该摄像模组在拍摄状态下,来自拍摄对象的光线通过镜头1聚焦到感光组件3的感光元件3a上。在结构上,镜头1固定于马达的马达载体(图1中为具体示出)上,该马达载体是可活动部件,它通常可在马达的驱动元件的作用下,带动镜头1在光轴方向上移动以实现对焦功能。而对于具有光学防抖(OIS)功能的摄像模组,其马达往往具有更复杂的结构。这是因为该马达除了要驱动镜头在光轴方向上移动外,还需要驱动镜头1在其他自由度上(例如垂直于光轴的方向上)移动以补偿拍摄时的抖动。通常来说,摄像模组的抖动包括在垂直于光轴的方向上平移(x轴、y轴方向的平移)和旋转(指在xoy平面内的旋转,其转轴方向可以与光轴大致相同),以及倾斜抖动(指绕x、y轴的旋转,在摄像模组领域中,倾斜抖动又称为tilt抖动)。当模组中的陀螺仪(或其他位置感测元件)检测到某一方向的抖动时,可以发出指令使马达驱动镜头朝相反的方向运动一距离,从而补偿镜头的抖动。通常来说,镜头只在垂直于光轴的方向上进行平 移和/或旋转来补偿摄像模组的抖动,这是因为如果让镜头绕x、y轴旋转,即如果通过镜头的tilt调节来实现防抖效果,可能会导致模组的成像品质下降,甚至会造成像糊而难以达到基本的成像品质要求。
然而,随着手机摄像模组的成像质量要求越来越高,镜头的体积和重量越来越大,对马达的驱动力要求也越来越高。而当前电子设备(例如手机)对摄像模组的体积也有很大的限制,马达的占用体积随着镜头的增大而相应的增加。换句话说,在镜头向更大体积、更大重量发展的趋势下,马达所能提供的驱动力却难以相应地增加。在驱动力受限的前提下,镜头越重,马达能够驱动镜头移动的行程越短,影响防抖能力。另一方面,镜头越重,马达能够驱动镜头移动的速度也越慢,镜头到达预定的补偿位置的时间也越长,这也会影响防抖效果。
因此,当前迫切需要一种能够提高摄像模组的防抖行程以及防抖响应速度的解决方案。
发明内容
本发明的目的在于,克服现有技术的不足,提供一种能够提高摄像模组的防抖行程以及防抖响应速度的解决方案。
为解决上述技术问题,本发明提供了一种光学防抖摄像模组,其包括:镜头;感光组件,其具有感光芯片;第一驱动部,其适于安装所述镜头并驱动所述镜头在在x轴和y轴方向平移;以及第二驱动部,其适于驱动所述感光芯片在x轴和y轴方向平移,所述第二驱动部包括第二基础部和第二可动部,所述第二基础部包括基座和盖,所述基座的至少一部分位于所述感光组件下方,所述盖的底部连接所述基座,所述盖的顶部连接所述第一驱动部;所述第二可动部通过滚珠与所述第二基础部实现活动连接,并且通过所述滚珠将移动自由度限制在xoy平面内;其中,所述镜头与所述感光芯片被配置为同时驱动,且朝向相反的方向移动;所述滚珠位于所述感光组件的外侧面的外侧。
其中,所述第二驱动部还用于驱动所述感光芯片在xoy平面上旋转。
其中,根据所检测到的摄像模组的倾斜抖动角度a,确定所述第一驱动模块驱动所述镜头移动的镜头移动距离b,以及所述第二驱动模块驱动所述感光 芯片移动的感光芯片移动距离c;其中,所述镜头移动距离b、所述感光芯片移动距离c以及所述摄像模组的像方焦距f之间满足:a=arctan(b/f)+arctan(c/f)。
其中,所述驱动结构还包括驱动逻辑模块,其用于使所述镜头移动距离b和所述感光芯片移动距离c的比例保持在预设的固定比例。
其中,所述驱动结构还包括驱动逻辑模块,其具有一防抖阈值K,所述驱动逻辑模块用于在所述倾斜抖动角度a小于等于所述防抖阈值K时,使所述镜头移动距离b和所述感光芯片移动距离c的比例保持在预设的固定比例,在所述倾斜抖动角度a大于所述防抖阈值K时,使所述感光芯片移动距离c到达其移动行程的最大值c max,所述镜头移动距离b根据关系式b=tan(a/f)-c max计算获得。
其中,所述镜头移动距离和所述感光芯片移动距离的预设的固定比例根据所述镜头的重量、所述第一驱动部的驱动力、所述感光芯片或感光组件的重量以及所述第二驱动部的驱动力进行设定,以使得所述镜头和所述感光芯片移动到各自防抖目标位置的时间一致。
其中,所述第一驱动部包括第一基础部和第一可动部;所述盖的顶部与所述第一基础部固定在一起,所述第二可动部位于所述基座上方并与所述第二基础部活动连接,所述感光组件固定于所述第二可动部的上表面;所述第二可动部通过所述滚珠与所述第二基础部活动连接,其中所述第二基础部的上表面、所述滚珠和所述第二可动部的下表面在z轴方向上依次承靠,使得所述第二可动部相对于所述第二基础部的移动自由度限制在xoy平面以内,其中所述z轴垂直于所述xoy平面。
其中,在俯视角度下所述滚珠布置在所述第二驱动部的四角区域。
其中,所述第二基础部设置至少三个凹槽,至少三个滚珠设置于所述至少三个凹槽,以在所述xoy平面上承载所述第二可动部。
其中,所述第二可动部包括可动部底板和可动部侧壁,所述可动部侧壁自所述可动部底板的边缘区域向上延伸而形成;所述感光组件置于所述可动部底板和所述可动部侧壁形成的容纳槽中;所述可动部侧壁的内侧面与所述感光组件的外侧面之间具有胶水,以将所述第二可动部与所述感光组件固定在一起。
其中,所述盖包括盖侧壁和自所述盖侧壁的顶部向内延伸而形成的承靠台;所述第二可动部还包括自所述可动部侧壁向外延伸而形成的外延结构;所述基座包括基板和自所述基板的边缘区域向上延伸而形成的基座侧壁,所述基 板位于所述感光组件下方,所述基座侧壁的顶面具有第一凹槽,所述滚珠位于所述第一凹槽中,并且所述外延结构的下表面由所述滚珠支撑。
其中,所述盖侧壁与所述基座侧壁连接构成完整的基础部侧壁。
其中,所述外延结构自所述可动部侧壁的顶部向外延伸而形成。
其中,所述承靠台的下表面与所述外延结构的上表面之间具有第四间隙,所述第四间隙小于10μm。
其中,所述滚珠包括第一滚珠和第二滚珠;所述第一滚珠位于所述第一凹槽中,所述外延结构自所述可动部侧壁的中部向外延伸而形成,所述外延结构的上表面具有第二凹槽,所述第二滚珠位于所述第二凹槽中,所述承靠台的下表面由所述第二滚珠支撑。
其中,所述基座包括基板,所述第二驱动部的驱动元件为线圈磁石组合;其中磁石设置在所述基板的边缘区域,线圈设置在所述可动部底板的边缘区域;或者所述线圈和所述磁石分别设置在所述第二可动部和所述第二基础部的侧壁。
其中,所述线圈磁石组合包括第一线圈磁石对、第二线圈磁石对和第三线圈磁石对;其中,所述第一线圈磁石对与所述第二线圈磁石对用于提供x轴方向上的驱动力;所述第三线圈磁石对用于提供y轴方向上的驱动力;并且在俯视角度下,所述第一线圈磁石对与所述第二线圈磁石对可以分别沿着所述第二驱动部的第一边和第二边布置,所述第一边和所述第二边不相交,而所述第二线圈磁石对沿着所述第二驱动部的第三边布置,所述第三边与所述第一边和所述第二边均相交。
其中,所述可动部侧壁与所述基座侧壁之间具有第五间隙,所述第五间隙大于200μm。
与现有技术相比,本申请具有下列至少一个技术效果:
1.本申请能够提高摄像模组的防抖行程,从而可以对摄像模组的较大抖动进行补偿。
2.本申请能够提高摄像模组的防抖响应速度。
3.本申请的光学防抖摄像模组具有结构紧凑的优势,特别适合于小型化的摄像模组。
4.本申请的一些实施例中,可以根据镜头重量、第一驱动部的驱动力、感光芯片(或感光组件)重量、第二驱动部的驱动力等因素进行设定,使得镜头和感光芯片移动到各自防抖目标位置的时间基本一致,从而获得更好的防抖效果。
5.本申请的一些实施例中,第二驱动部不需要设置通光孔,从而使得第二驱动部的基础部或/和可动部的厚度可以减小,从而有助于降低摄像模组的高度。
6.本申请的一些实施例中,第二驱动部的可动部和基础部通过滚珠活动连接,并将移动限制在xoy平面上,并且所述滚珠设置在感光组件的外侧(指设置在感光组件的外侧面的外侧),从而避免占据摄像模组高度方向上的空间,有助于减小摄像模组的高度。
7.本申请的一些实施例中,第二驱动部的可动部和基础部的基座均设置在感光组件的线路板下方,从而避免胶材渗漏而造成的画面污点问题(指因成像光路中渗入污染物而造成的拍摄画面出现污点的问题)。
附图说明
图1示出了现有技术中一种典型的具有马达的摄像模组;
图2示出了本申请一个实施例的具有防抖功能的摄像模组的剖面示意图;
图3示出了本申请另一个实施例的具有防抖功能的摄像模组的比较例的剖面示意图;
图4示出了本申请中四种不同情形下的镜头和感光芯片的移动距离与模组倾斜角度的关系示意图;
图5示出了本申请一个实施例中的摄像模组的剖面示意图;
图6a示出了本申请一个实施例中的第二驱动部的立体示意图;
图6b示出了本申请一个实施例中的第二驱动部的立体分解示意图;
图7示出了本申请一个实施例的摄像模组的剖面示意图;
图8a示出了本申请一个变形的实施例中的第二驱动部的滚珠结构;
图8b示出了可动部在xoy平面内旋转的示意图;
图9示出了本申请一个实施例中第二驱动部的一种典型组装方式的示意图;
图10示出了本申请另一个实施例中第二驱动部的组装前的分解状态的示意图;
图11示出了本申请另一个实施例中第二驱动部的组装过程中的中间状态的示意图;
图12示出了本申请一个实施例中的第二驱动部的驱动元件在俯视角度下的安装位置;
图13a示出了本申请一个实施例中的第二驱动部的含驱动元件的剖面示意图;
图13b示出了本申请另一实施例中的第二驱动部的含驱动元件的剖面示意图;
图14示出了本申请一个实施例中的摄像模组的组装方式的示意图;
图15a示出了本申请一个实施例中的摄像模组及其连接带的布置方式;
图15b示出了本申请一个实施例中的第二驱动部的立体示意图;
图16示出了本申请另一实施例中的感光组件与第二可动部的连接示意图;
图17示出了本申请另一实施例的摄像模组的剖面示意图;
图18示出了本申请又一实施例的摄像模组的剖面示意图。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一主体也可被称作第二主体。
在附图中,为了便于说明,已稍微夸大了物体的厚度、尺寸和形状。附图仅为示例而并非严格按比例绘制。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或附加有一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列 特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
如在本文中使用的,用语“基本上”、“大约”以及类似的用语用作表近似的用语,而不用作表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
下面结合附图和具体实施例对本发明做进一步地描述。
图2示出了本申请一个实施例的具有防抖功能的摄像模组的剖面示意图。参考图2,本实施例中,所述摄像模组包括镜头10、感光组件20、第一驱动部30和第二驱动部40。其中感光组件20包括感光芯片21。第一驱动部30被配置为可驱动镜头10在x、y两个方向上移动,第二驱动部40被配置为可驱动感光芯片21在x、y两个方向上移动。本实施例中,x、y方向互相垂直,且均与感光组件20的感光面平行。z方向则与感光面的法线方向平行。为便于理解,图2中还示出了基于x、y、z方向所构建的三维直角坐标系。本实施例中,通过控制模块同时驱动镜头10与感光芯片21向相反的方向移动,来实现摄像模组的光学防抖。具体来说,镜头1与感光芯片21被配置为同时驱动,且朝向相反的方向移动,例如镜头10被驱动朝x轴正方向移动,则感光芯片21被驱动朝x轴负方向移动;镜头10被驱动朝向y轴正方向移动,则感光芯片21被驱动朝y轴负方向移动;或者镜头10被驱动在x轴及y轴移动,同时感光芯片21被驱动在x轴及y轴朝向与镜头10移动相反的方向移动,换句话说,当需要同时在x轴及y轴移动时,在xoy平面上镜头10的位移矢量和感光芯片21的位移矢量的方向是相反的。摄像模组通常包括位置传感器,该位置传感器用 于检测摄像模组或者终端设备(即搭载该摄像模组的电子设备,例如手机)的抖动。在检测出抖动时,位置传感器发出信号至摄像模组,驱动镜头10和感光芯片21作出相应的移动以补偿所述抖动,从而达到光学防抖的目的。本实施例中,将镜头10和感光芯片21配置为同时移动,且镜头10和感光芯片21移动方向相反,可以实现更快速的响应,具有更好的防抖效果更好。另外,通常摄像模组的防抖角度范围受悬挂***和驱动***的限制,无法做到比较大的补偿角度范围,本实施例中,通过同时驱动镜头10和感光芯片21在相反的方向上移动,实现了大角度的抖动补偿。另外,本实施例中通过同时驱动镜头10或及感光芯片21朝相反的方向移动,相比仅驱动镜头10移动的方案,镜头10与感光芯片21之间具有更大的相对移动的行程(为便于描述,可将这个相对移动的行程简称为防抖行程),可以具有较好的补偿效果。尤其是,由于防抖行程的增加,本实施例对于摄像模组的倾斜抖动也具有较好的补偿效果。进一步地,本实施例的防抖移动的移动方向可以限定在xoy平面内,不需要使镜头10的光轴或者感光芯片21倾斜,从而避免了防抖移动所造成的像糊问题。
进一步地,在本申请的另一实施例中,所述感光芯片21还可以被第二驱动部40驱动在xoy平面内旋转,从而实现对摄像模组旋转方向上抖动的补偿。
进一步地,仍然参考图2,在本申请的一个实施例中,摄像模组包括第一驱动部30、镜头10、第二驱动部40和感光组件20。所述镜头10安装于所述第一驱动部30。该第一驱动部30可以具有一个筒形的第一马达载体,该第一马达载体可以作为第一驱动部的可动部,镜头安装于第一马达载体的内侧面。第一驱动部还具有一静止部,或称为基础部。本实施例中,基础部可以被实施为马达壳体。该马达壳体可以包括一底座和一盖体。底座具有通光孔。所述可动部与所述基础部活动连接。驱动元件可以是线圈磁铁组合,其可以安装于可动部和基础部之间。例如可以安装于第一马达载体和马达壳体之间。实际上,本实施例中的第一驱动部可以直接采用现有技术中的光学防抖马达的常见结构。进一步地,本实施例中,第二驱动部40也可以包括基础部和可动部。其中基础部可包括基板和基础部侧壁,所述基础部侧壁的底部与所述基板连接,顶部与所述第一驱动部的基础部连接。为便于描述,本文中有时将第一驱动部30的基础部称为第一基础部,将第二驱动部40的基础部称为第二基础部,将第一驱动部30的可动部称为第一可动部,将第二驱动部40的可动部称为第二可动 部。本实施例中,第二可动部位于所述第二基础部的基板的上方,并与所述第二基础部通过滚珠结构实现活动连接。感光组件20包括线路板23、安装于线路板表面的感光芯片21以及围绕在感光芯片21周围的镜座22。所述镜座22的底部可以安装于所述线路板23表面。所述镜座22的中央具有通光孔,并且一滤光片24安装于所述镜座22(滤光片24也可以视为所述感光组件20的一个组成部分)。所述线路板的底面可以固定于(例如粘结于)第二可动部的上表面。这样,在所述第二可动部的带动下,所述感光组件20可以相对于所述基础部在x、y方向上平移或者在xoy平面上旋转。另一方面,本实施例中,由于第二可动部可以设置在线路板背面,因此第二可动部和第二基础部的基座均可以不设置通光孔,这样,在相同结构强度的情况下,第二可动部可设计得更加轻薄,有利于摄像模组的小型化。为便于理解,下面结合一个比较例进行说明。
图3示出了本申请另一个实施例的具有防抖功能的摄像模组的比较例的剖面示意图。该比较例中,摄像模组包括第一驱动部30、镜头10、第二驱动部40和感光组件20。所述镜头10安装于所述第一驱动部30。第一驱动部30和镜头10的结构和组装方式可以与图2所示的前一实施例一致,不再赘述。该比较例与前一实施例的区别在于:所述第二驱动部40位于镜头10与感光组件20之间。其中,第二基础部41可以直接固定于第一基础部的底面,第二可动部42则位于第二基础部41的下方并与第二基础部41活动连接,使得第二可动部42可在xoy平面上相对于所述第二基础部41移动。感光组件20则安装于所述第二可动部42的下方。其中,感光组件20的镜座22的顶面与所述第二可动部42的底面连接固定,从而所述感光组件20可以在第二可动部42的带动下,相对于所述第二基础部41在x、y方向上平移或者在xoy平面上旋转。其中,感光组件20的线路板23可以承靠于电子设备(例如手机)的主板90。滤光片24可以安装于镜座22。本比较例中,由于第二基础部41和第二可动部42均位于成像光路上,因此,第二基础部41和第二可动部42均需要在中央设置通光孔,以便光线通过。这样,为了保持所需的结构强度,第二基础部41和第二可动部的厚度势必要增加,从而可能导致摄像模组的高度增加。而前文所述的基于图2的实施例中,第二基础部41的基座和第二可动部42均设置在感光组件20的线路板的背面,因此在结构强度相同的前提下,第二基础部41的基座和第二可动部42的厚度均可以减小,从而有助于降低摄像模组的高度,有助于实现摄像模组的小型化。
需要说明,图2中的第二可动部42呈平板状,感光组件20的线路板23的底面可以与第二可动部42的上表面粘结。但这种设计并不是本申请唯一的方案。例如图16示出了本申请另一实施例中的感光组件与第二可动部的连接示意图。参考图16,该实施例中,所述第二可动部42可以包括可动部底板42a和可动部侧壁42b,所述可动部侧壁42b自可动部底板42a的边缘区域向上延伸而形成。所述感光组件20可以置于所述可动部底板42a和可动部侧壁42b形成的容纳槽中。胶水91可以布置在可动部侧壁42b的内侧面与感光组件20的外侧面之间,即本实施例中通过在侧面布置胶水将所述第二可动部42与所述感光组件20固定在一起。
下面,结合实施例进一步介绍基于本申请的设计思路对摄像模组倾斜抖动的补偿的方法。
图4示出了本申请中四种不同情形下的镜头和感光芯片的移动距离与模组倾斜角度的关系示意图。图中位置A代表用于补偿摄像模组抖动角度a的镜头和感光芯片的移动距离组合。如图4所示,图中镜头移动距离为b,感光芯片(下文中有时简称为芯片)移动距离为c,镜头或者芯片移动距离可等效为光学成像时像面偏离光轴的角度。具体来说,当镜头在xoy平面平移距离为b时,其造成像面偏移角度α1与像距之间具有一算术关系,像距在不同拍摄距离下是不同的,为了计算以及表述方便,这里像距用像方焦距代替。具体的,其造成像面偏移角度α1与镜头像方焦距f之间的关系为:tan(α1)=b/f,当感光芯片在xoy平面平移距离为c时,其造成像面偏移角度α2与镜头像方焦距f之间的关系为:tan(α2)=c/f。本实施例中,镜头和感光芯片的移动方向相反,因此摄像模组综合补偿角度a的计算方式为:a=α1+α2=arctan(b/f)+arctan(c/f)。在一个实施例中,镜头和感光芯片的移动距离可以设置成相同,即b=c。在另一个实施例中,镜头与感光芯片移动的距离可以被设置为不相等,例如镜头移动的距离可以大于感光芯片移动的距离,即b>c。该实施例中,第二驱动部可选择尺寸较小的驱动器(如mems驱动器等,此类驱动器的可移动行程通常也相对较小),以帮助摄像模组整体上实现小型化。
进步一地,在本申请的一个实施例中,镜头移动距离和感光芯片移动距离之比可选的设置为保持固定比例,如b/c=6:4,或者b/c=7:3,或者b/c=5:5,无论摄像模组抖动的补偿值(例如综合补偿角度a)是多少,镜头和感光芯片 移动的距离都保持该预设比例,有利于在摄像模组在可补偿范围内的补偿效果均匀,也有利于减小摄像模组防抖***驱动逻辑模块的设计难度。
进一步地,在镜头移动距离和感光芯片移动距离基于固定比例进行防抖移动的配置下,由于感光芯片的可移动范围较小,有时摄像模组的抖动可能超出感光芯片的最大移动行程。因此,在本申请的一个实施例中,可以设置一个防抖阈值,例如对于需要补偿的抖动角度a,可以设置一阈值K,当实际计算出的抖动角度a小于等于防抖阈值K时,镜头移动距离b与感光芯片移动距离c保持在固定比例,该固定比例可以预先设置,例如b/c=6:4,或者b/c=7:3,或者b/c=5:5。而当当实际计算出的抖动角度a大于防抖阈值K时,感光芯片移动距离c取其移动行程的最大值,即感光芯片最大行程c max,而镜头移动距离b=tan(a/f)-c max。换句话说,当摄像模组需要补偿的抖动角度在防抖阈值K以上时,基于预设的固定比例,镜头移动到对应于感光芯片移动距离最大值(即感光芯片最大行程c max)的位置后,第一驱动部可以驱动镜头继续移动,直到镜头移动距离b=tan(a/f)-c max。而与此同时,感光芯片先同步地向相反方向移动到感光芯片移动距离最大值c max,然后保持不动。
进一步地,在本申请的另一个实施例中,在xoy平面内,镜头移动的最大行程b max所对应的防抖角度(该防抖角度指摄像模组倾斜抖动的角度)可以小于感光芯片最大行程c max所对应的防抖角度。这种设计下,摄像模组的防抖***可以具有较快的响应速度。高端镜头中,镜头往往具有较多的镜片数,例如目前智能手机中后置主摄的镜头中的镜片数目可以达到8片,为了进一步地提高成像质量,有的镜头中还使用了玻璃镜片,这些都导致镜头重量较大。当驱动力没有明显增大时,驱动装置驱动镜头移动的速度将下降。而感光芯片或者感光组件的重量相对较轻,可以以较小的驱动力达到预设位置。因此,本实施例的方案中,可以更好地利用感光芯片或感光组件重量相对较近,移动速度相对较快的优势,有效地提高摄像模组防抖***的响应速度。
进一步地,在本申请的另一实施例中,所述镜头移动距离和所述感光芯片移动距离的固定比例可以根据镜头重量、第一驱动部的驱动力、感光芯片(或感光组件)重量、第二驱动部的驱动力等因素进行设定,设定合适的固定比例,可以使得镜头和感光芯片移动到各自防抖目标位置的时间基本一致,从而获得更好的防抖效果。具体来说,镜头重量和第一驱动部的驱动力可以基本决定镜 头的移动速度,而感光芯片(或感光组件)重量和第二驱动部的驱动力可以基本决定感光芯片的移动速度,当镜头的移动速度小于感光芯片的移动速度(例如镜头重量较大的情形)时,在设定所述的固定比例时,感光芯片的移动距离可以占有较大的比例,这样可以利用感光芯片移动速度较快的特点,使得该感光芯片移动更长的距离,让镜头和感光芯片移动到各自防抖目标位置的时间基本一致。
进一步地,在本申请的另一实施例中,所述第一驱动部可以采用具有较大驱动力的驱动元件,以及具有大行程的悬挂***。例如第一驱动部可以采用SMA(形状记忆合金)元件进行驱动。相比传统的线圈磁铁组合,SMA元件可以以较小的占用空间提供较大的驱动力,因此第一驱动部可以设计得更紧凑,有利于摄像模组的小型化。
进一步地,图5示出了本申请一个实施例中的摄像模组的剖面示意图。参考图5,本实施例中,第二驱动部40的第二基础部41与第一驱动部30的第一基础部(该第一基础部可以由外壳33和第一底座34共同构成)固定在一起。镜头10可以安装于第一驱动部30的第一可动部(例如可以安装于第一可动部的第一马达载体31)。感光组件20包括线路板23、感光芯片21、镜座22、滤光片24等。感光组件20可以安装于第二驱动部40的第二可动部42。具体来说,移动部42的底面可以承靠于感光组件20的镜座22的顶面。其中,在第二驱动部40中,第二基础部41与第二可动部42之间可以通过悬挂***弹性连接。本实施例中,悬挂***允许第二可动部42相对于第二基础部41在xoy平面平移。可选地,悬挂***可以为滚珠***,其优势是:在z方向上,第二可动部42和第二基础部41通过滚珠相接触,第二可动部42仅在xoy平面内移动,而在光轴方向(即z轴方向)上的移动可以被第二可动部42和第二基础部41之间的滚珠所阻止,从而避免对摄像模组的对焦产生影响。
可选地,在另一实施例中,所述悬挂***可以包含一弹性元件(如弹簧),固定部与可动部通过该弹性元件进行连接,其允许可动部相对于基础部在xoy平面平移,但阻止可动部相对于基础部在xoy平面以外的移动。相比于滚珠***,设置弹性元件的优点是:该弹性元件可以在基础部和可动部之间提供一初始力,该初始力与驱动元件的驱动力相配合即可控制可动部移动的距离或者保持其位置,无需另外设置驱动元件提供共轭驱动力来控制可动部的位置。如果 采用滚珠***,在驱动元件不提供驱动力的情形下,可动部相对于基础部在xoy方向上是自由移动的,因此往往需要提供至少一对互相反向的驱动力才可控制可动部的保持在其初始位置。
进一步地,仍然参考图5,在本申请的一个实施例中,可以通过驱动整个感光组件20移动来实现防抖。同时,线路板23、感光芯片21、镜座22、滤光片24封装为一体,线路板23、镜座22、滤光片24形成一封闭空间,感光芯片21容纳于该封闭空间,提升了感光组件20的封闭性,保证了在摄像模组制作或者使用过程中感光芯片21成像不受灰尘的影响。
仍然参考图5,在本申请的一个实施例中,第一驱动部30被实施为适于驱动镜头10在光轴方向上移动以实现对焦功能,同时还适于驱动镜头10在xoy平面内移动以实现防抖功能。可选地,第一驱动部30至少包括两个载体,分别是第一载体31与第二载体32,镜头10承靠于第一载体31,第一载体31与第二载体32之间设置有悬挂***,第二载体32与第一驱动部30的外壳33之间设置有悬挂***。本实施例中第一载体31与第二载体32之间的悬挂***(即第一悬挂***)设置为滚珠***,第二载体32与外壳33之间的悬挂***(即第二悬挂***)可以是滚珠结构(该滚珠结构例如可以包括竖直槽和设置于竖直槽中的多个滚珠),也可以是基于弹性元件(如弹片)的悬挂***。外壳33的底面可以安装于第一底座34,该第一底座34和外壳33可以共同构成所述的第一驱动部30的第一基础部。本实施例中,第二悬挂***设置在第一悬挂***外侧,第一悬挂***允许镜头10和第一载体31在xoy平面内平移以实现防抖功能,第二悬挂***允许镜头10、第一载体31和第二载体32整体地在光轴方向上移动以实现对焦功能。可选地,在另一实施例中,第二悬挂***也可以设置在第一悬挂***内侧。在另一变形的实施例中,第二悬挂***还可以设置在第一悬挂***下方。本实施例中,悬挂***是指将两个部件可活动连接,且二者的相对移动的自由度(即移动方向)受到一定限制的***。这两个可活动连接的部件可以分别称为基础部和可动部。通常来说,悬挂***与驱动元件(例如SMA元件或者线圈磁铁组合)配合使用。其中,由驱动元件提供驱动力,在该驱动力的作用下,可动部相对于基础部在悬挂***所限定的移动方向上移动。
进一步地,图6a示出了本申请一个实施例中的第二驱动部的立体示意图。图6b示出了本申请一个实施例中的第二驱动部的立体分解示意图。进一步地,图7示出了本申请一个实施例的摄像模组的剖面示意图,其中示出了第二驱动部的剖面。参考图7,并结合参考图6a和图6b,本实施例中,第二驱动部40包括第二基础部41和第二可动部42。为便于描述,本文中在介绍第二驱动部40的段落中,有时将第二基础部41简称为基础部41,将第二可动部42简称为可动部42,下文中不再赘述。本实施例中,基础部41包括基座41a和盖41b,本实施例中,基座41a可以呈平板状,因此也可以称为底板,所述盖41b包括盖侧壁41b1和自盖侧壁41b1顶部向内延伸而形成的承靠台41b2,所述可动部42位于所述承靠台41b2和所述基座41a之间,所述基座41a的四角区域可以设置凹槽41a1,滚珠置于所述凹槽41a1中。所述可动部42的底面与所述滚珠接触并由所述滚珠46支撑,从而形成基础部41与可动部42之间的活动连接。所述承靠台41b2和所述基座41a可以将所述可动部42夹持,从而对可动部42在z轴方向的移动进行限位。这样可动部42相对于基础部41的移动自由度被限制在xoy平面上,具体来说,可动部42相对于基础部41的移动自由度可以包括x轴平移、y轴平移和绕z轴的旋转(即在xoy平面内的旋转)。本实施例中,在滚珠46对应位置设置凹槽41a1,一方面可以在组装过程中将滚珠46放置于凹槽41a1,从而便于第二驱动部40的组装;另一方面,该凹槽41a1可以限制可动部42相对于基础部41的最大移动距离,避免可动部42与基础部41相对移动过程中发生碰撞。如图6b所示,本实施例中,基础部41的基座41a上表面可以设置四个凹槽41a1,滚珠46也为四个,分别设置在第二驱动部40的四角区域(参考图6b)。当然在其他实施例中,凹槽和滚珠也可设置在第二驱动部的四边处。
进一步地,在本申请的一个实施例中,所述第二驱动部40中,所述基础部41的侧壁的内侧面与可动部42外侧面具有第一间隙43,第一间隙43大于可动部42防抖移动的最大距离(即单向的最大行程,这里的单向例如可以是x轴正方向、x轴负方向、y轴正方向或y轴负方向),第一间隙43通常情况下可大于200μm。本实施例中,采用滚珠结构实现活动连接,可以降低可动部42的移动阻力,从而减小驱动可动部42移动所需的驱动力,进而可以将可动部42设计为具有较大的行程。因此,在一些实施例中,所述第一间隙43可大于300μm。
进一步地,在本申请的一个实施例中,所述第二驱动部40中,所述承靠台41b2的下表面与所述可动部42之间也可具有一第二间隙44,该第二间隙44可以小于10μm,以减小可动部42与承靠台41b2之间的摩擦。这样可以减小摩擦阻力同时也避免摩擦碎屑的产生。同时,由于第二间隙44较小,因此承靠台41b2仍然可以在z轴方向上对可动部42实现限位,避免可动部42的移动偏离xoy平面。
进一步地,在本申请的一个实施例中,所述第二驱动部40中,可动部42的下表面与基座41a上表面之间具有一第三间隙45。通常来说,滚珠直径大于容纳该滚珠的凹槽的深度。第三间隙45例如可以小于10μm。
进一步地,在本申请的一个实施例中,所述第二驱动部40中,所述盖41b的上表面(即承靠台41b2的上表面)高于感光组件20(镜座)的顶面,以避免感光组件20在水平移动时摩擦到第一驱动部30。
进一步地,图8a示出了本申请一个变形的实施例中的第二驱动部的滚珠结构。参考图8a,本实施例中,第二驱动部40的基础部41与可动部42之间的滚珠46的数目可以是三个,对应的用于容纳滚珠46的凹槽41a1的数目也可以是三个。事实上,滚珠的数目及其所设置的位置只要能够将可动部42承载于基准面(例如水平面)即可。其中,基准面即xoy平面。本实施例中,凹槽41a1底面被设置为平面,滚珠可在凹槽41a1底面自由移动,从而允许可动部42在x轴、y轴平移,同时也允许可动部42在xoy平面内平移和旋转(如图8b所示,图8b示出了可动部在xoy平面内旋转的示意图)。另一方面,结合参考图7,本实施例中,滚珠46设置在感光组件20下方,即滚珠46和感光组件20在基准面上的投影至少有部分重叠,或者说,在俯视角度下看,滚珠46完全位于感光组件20投影范围内或者至少部分位于感光组件20投影范围内。这种设计可以避免滚珠机构在摄像模组的径向方向上(即x轴或y轴方向上)占据额外空间,有助于减小第二驱动部40的横向尺寸(即x轴或y轴方向上的尺寸),有利于模组的小型化。
进一步地,图9示出了本申请一个实施例中第二驱动部的一种典型组装方式的示意图。参考图9,本实施例中,所述第二驱动部40可以由彼此分离的三个主要构件进行组装,这三个构件分别是基座41a、盖41b和可动部42,它们 可以在垂直方向上进行组装。例如,可以先将具有滚珠46的基座41a布置于组装台,然后将可动部42置于所述基座41a的上方,使其由基座41a中的滚珠46所支撑,最后再将盖41b移动至基座41a和可动部42的上方,再将盖41b向下移动使其盖侧壁41b1的底面接近所述基座41a的顶面,进而将盖侧壁41b1的底面与基座41a的顶面粘结,从而完成第二驱动部40的组装。图9中,所述基座41a呈平板状,没有基座侧壁,因此也可以称为基板或底板。但需注意,在其他实施例中,所述基座41a也可以由基座侧壁和基板共同构成,基于这种基座,可以组装成如图13b中所示出的第二驱动部,其组装方法与图9所示的组装方法可以是一致的。即先准备基座、盖和可动部这三个彼此分离的主要构件,然后再在垂直方向上将三者组装在一起。
图10示出了本申请另一个实施例中第二驱动部的组装前的分解状态的示意图。图11示出了本申请另一个实施例中第二驱动部的组装过程中的中间状态的的示意图。本实施例中,可以采用侧向组装方式来组装第二驱动部40。具体来说,可以先准备基础部主体41’、可动部42和侧盖41b”这三个彼此分离的主要构件(参考图10)。其中基础部主体41’可以包括基座41a和与基座41a连接的盖主体41b’(在一些实施例中,基座41a和盖主体41b’可以是一体成型的),所述盖主体41b’是完整的盖41b的一部分,它与所述侧盖41b”共同构成完整的盖41b。本实施例中,盖主体41b’例如可以在三个侧面围绕所述可动部42(或者感光组件),另一侧面则留下用于将可动部42(或者可动部42和感光组件的组合体)从侧面***所述基础部主体41’的缺口。而侧盖41b”则对应于缺口,待可动部42和感光组件的组合体从缺口***后(参考图10和图11),可将侧盖41b”从侧面接近所述基座41a,并将基座41a的外侧面与所述侧盖41b”的内侧面粘结在一起,从而构成完整的第二驱动部40。这种从侧边粘接固定的方式下,基础部41上下端面的平行度仅由基础部41本身制造精度所决定,因此这种从侧边粘接固定的方式可以提高基础部41上下端面的平行度以及基础部41上端面与可动部42之间的平行度。
进一步地,图12示出了本申请一个实施例中的第二驱动部的驱动元件在俯视角度下的安装位置。图13a示出了本申请一个实施例中的第二驱动部的含驱动元件的剖面示意图。结合参考图12和图13a,本申请的一个实施例中,第二驱动部40的驱动元件为线圈磁石组合。其中磁石61可以设置在基础部41的底 板(即基座41a)的边缘区域,线圈62可以设置在可动部42的可动部底板42a的边缘区域。本实施例中,磁石可以设置在基础部41的底板。进一步地,线圈62可通过设置在可动部42上的FPC板(软板)与感光组件20的线路板23焊接导通。将线圈62设置在可动部42的优势在于,可动部42和感光组件20在防抖过程中是同步移动的,线圈62通过FPC板焊接到线路板23能保证移动过程中导线或者焊接部没有相对运动,从而减小焊接处的电失效的风险。需注意,通过FPC板的连接方式并不是本申请唯一的电连接方式,在另一实施例中,所述线圈还可以通过设置在可动部上表面的触点或触点阵列与线路板的底面实现电连接。图13a所示的驱动元件设置方式有助于减小摄像模组的横向尺寸(即垂直于光轴方向的尺寸)。
进一步地,图13b示出了本申请另一实施例中的第二驱动部的含驱动元件的剖面示意图。本实施例中,线圈62和磁石61可设置在可动部42和基础部41的侧壁。这种设计有利于减小第二驱动部40的厚度,从而降低摄像模组的高度。具体来说,本实施例中,将磁石61设置在基础部41的基座41a而不是盖41b,这种设计可以留出基础部41与第一驱动部30的连接(可以是粘接)区域。
仍然参考图12,在本申请的一个实施例中,优选地,设置三个线圈磁石对(一个线圈磁石对即一个线圈磁石组合),分别称为第一线圈磁石对63、第二线圈磁石对64和第三线圈磁石对65。其中,第一线圈磁石对63与第二线圈磁石64对用于驱动可动部42在x轴方向上的平移,即提供x轴方向上的驱动力。第三线圈磁石对65用于驱动可动部42在y轴方向上的平移,即提供y轴方向上的驱动力。在俯视角度(或仰视角度)下,第一线圈磁石对63与第二线圈磁石对64可以分别沿着第二驱动部的两条相对的边布置,这两条相对的边可称为第一边48和第二边49,第一边48和第二边49不相交。而第二线圈磁石对64可以沿着第二驱动部的第三边47布置,第三边47与第一边48和第二边49均相交。本实施例中,三个线圈磁石对既可以实现x轴平移和y轴平移,也可以实现xoy平面上的旋转。例如第一线圈磁石对63与第二线圈磁石对64提供方向相反的驱动力时,可以产生使可动部在xoy平面上的旋转的组合驱动力。需注意,这种xoy平面上的旋转的驱动力提供方式并不是唯一的,例如第一线圈磁石对63与第三线圈磁石对65工作,也可以产生使可动部在xoy平面上的旋 转的组合驱动力。可选的,第一线圈磁石对与第二线圈磁石的位置可以错开(即第一线圈磁石对和第二线圈磁石对的设置位置关于第二驱动部的中轴线可以是不对称的),以提供驱动力实现可动部在xoy平面内的旋转(即Rz方向的移动)。
进一步地,图14示出了本申请一个实施例中的摄像模组的组装方式的示意图。本实施例中,可选地,先将镜头10安装于第一驱动部30,将感光组件20安装于第二驱动部40,然后通过主动校准工艺调整感光组件20和镜头10之间的相对位置,再通过胶水92将第一驱动部30和第二驱动部40粘接固定,使得粘结后的感光组件20和镜头10的相对位置保持在主动校准所确定的相对位置。本实施例中,用于胶水92例如可以设置在第一驱动部30的基础部和第二驱动部40的基础部之间。
进一步地,图15a示出了本申请一个实施例中的摄像模组及其连接带的布置方式。本实施例中,摄像模组可以包括第一连接带26a和第二连接带26b,第一连接带26a设置于第一驱动部30的顶部区域,并电连接第一驱动部30,第二连接带26b与感光组件20的线路板23连通。其中第二连接带26b可以设置多个弯折,形成弯曲层叠状,以缓冲感光组件20移动所带来的应力。第二连接带26b的末端可以设置连接器,连接器可选地通过按压的方式固定并电连接于中转柱26c,再通过中转柱26c导通终端设备的主板(或其他构件)。同样地,第一连接带26a的末端也可以连接一连接器,该连接器通过可通过按压的方式固定并电连接于中转柱26c,再通过中转柱26c导通终端设备的主板(或其他构件)。本实施例的方案中,第一驱动部30的导通电路可以与感光组件20分开,不受感光组件20的移动所影响。第二连接带26b和中转柱26c可以容纳在第二壳体70(第二壳体70可以是一个连接带收纳壳体)中,第一连接带26a位于第二壳体70外部,第二壳体70的顶部可以具有第三通孔70a,以便第一连接带26a的连接器伸入并与第二连接带26b或者中转柱26c电导通。进一步地,图15b示出了本申请一个实施例中的第二驱动部的立体示意图。结合参考图15a和图15b,可以看出本实施例中,可动部42和基础部41的一个侧面均具有开槽或开窗,以便第一连接带穿过所述可动部42的侧壁和所述基础部41的侧壁。
上述实施例中,所述的第一驱动部和第二驱动部可以构成双光学防抖驱动结构(也可以称为双OIS驱动结构)。该驱动结构中,第一驱动部适于安装镜头,第二驱动部适于安装感光组件,镜头与感光芯片被配置为同时驱动,且朝向相反的方向移动。例如镜头被驱动朝x轴正方向移动,则感光芯片被驱动朝x轴负方向移动;镜头被驱动朝向y轴正方向移动,则感光芯片被驱动朝y轴负方向移动;或者镜头被驱动在x轴及y轴移动,同时感光芯片被驱动在x轴及y轴朝向与镜头移动相反的方向移动,换句话说,当需要同时在x轴及y轴移动时,在xoy平面上镜头的位移矢量和感光芯片的位移矢量的方向是相反的。在本申请一些实施例中,将镜头和感光芯片配置为同时移动,且镜头和感光芯片移动方向相反,可以实现更快速的响应,具有更好的防抖效果更好。另外,通常现有的摄像模组的防抖角度范围受悬挂***和驱动***的限制,无法做到比较大的补偿角度范围,而在本申请一些实施例中,通过同时驱动镜头和感光芯片在相反的方向上移动,实现了大角度的抖动补偿。另外,相比某些现有技术中的仅驱动镜头移动的防抖方案,本申请的一些实施例中通过同时驱动镜头或及感光芯片朝相反的方向移动,镜头与感光芯片之间具有更大的相对移动的行程(为便于描述,可将这个相对移动的行程简称为防抖行程),可以具有较好的补偿效果。尤其是,由于防抖行程的增加,本申请对于摄像模组的倾斜抖动也具有较好的补偿效果。进一步地,本申请的一些实施例中,防抖移动的移动方向可以限定在xoy平面内,不需要使镜头的光轴或者感光芯片倾斜,从而避免了防抖移动所造成的像糊问题。
进一步地,图17示出了本申请另一实施例的摄像模组的剖面示意图。参考图17,本实施例中,所述第二驱动部40中,将滚珠结构设置于感光组件20的外侧,从而避免滚珠结构占用摄像模组在高度方向上(即z轴方向上)的空间,以便降低摄像模组的高度。进一步地,所述第二驱动部40中,所述基础部41可以包括基座41a和盖41b。其中基座41a包括基板41a2和自基板41a2边缘向上延伸而形成的基座侧壁41a3,所述基座侧壁41a3的顶面可以设置第一凹槽41a4,以便容纳滚珠46。所述盖41b包括盖侧壁41b1和自盖侧壁41b1的顶部向内延伸而形成的承靠台41b2。所述盖侧壁41b1的底面可以与基座侧壁41a3的顶面连接(例如粘结),基座侧壁41a3和盖侧壁41b1可以共同构成一完整的基础部侧壁。所述可动部42可以包括可动部底板42a、可动部侧壁42b和外延结构42c,其中可动部侧壁42b自可动部底板42a边缘向上延伸而形成,感光 组件20可以固定于所述可动部底板42a和可动部侧壁42b所形成的容纳槽中。所述外延结构42c是自所述可动部侧壁42b的顶部向外延伸而形成的。该外延结构42c位于基础部41的承靠台41b2与基座侧壁41a3的顶面之间。所述外延结构42c可以位于所述基座侧壁41a3的顶面第一凹槽41a4的上方,其下表面可以由滚珠46支撑,从而使得可动部42与基础部41形成活动连接。本实施例中,基础部41的承靠台41b2与可动部42的外延结构42c之间可以具有第四间隙,该第四间隙可以小于10μm,以便使承靠台41b2对可动部42可以具有z方向上的限位作用,同时还可以减小承靠台41b2与可动部42之间的摩擦。所述可动部侧壁42b与所述基座侧壁41a3之间可以具有第五间隙,该第五间隙可以大于200μm,以便允许可动部42具有单向200μm的横向移动行程。进一步地,所述第五间隙还可以大于300μm,以便进一步地增加可动部42的横向移动行程,提升其防抖能力。本实施例中,摄像模组具有两个驱动部件,其中用于驱动镜头组件的第一驱动部往往具有相对较大的横向尺寸,故本实施例中,即便第二驱动部的横向尺寸略有增加也不会显著增大模组的整体横向尺寸,反而可以更充分地利用感光组件外侧的空间来显著降低模组高度。另一方面,目前移动终端(例如手机)采用多摄成为趋势,移动终端的多摄模组安装区域(该多摄模组安装区域通常在手机背部呈凸台状)的面积也相对较大,因此对其中单个摄像模组的横向尺寸的限制较小。本实施例中,将滚珠结构布置在感光组件的外侧(指感光组件的外侧面的外侧),可以减小摄像模组的高度,有利于减小移动终端(例如手机)的多摄模组安装区域的突出部分的高度,可以明显改善移动终端(例如手机)的用户体验。
进一步地,图18示出了本申请又一实施例的摄像模组的剖面示意图。参考图18,本实施例中,所述第二驱动部40的基础部41和可动部42之间可以设置两层滚珠,从而避免了可动部42在相对基础部41移动时产生的摩擦,同时也能使基础部41的盖41b具有更好的z轴方向上的限位效果。具体来说,所述基础部41可以包括基座41a和盖41b。其中基座41a包括基板41a2和自基板41a2边缘向上延伸而形成的基座侧壁41a3,所述基座侧壁41a3的顶面可以设置第一凹槽41a4,以便容纳第一滚珠46a。所述盖41b包括盖侧壁41b1和自盖侧壁41b1的顶部向内延伸而形成的承靠台41b2。所述盖侧壁41b1的底面可以与基座侧壁41a3的顶面连接(例如粘结),基座侧壁41a3和盖侧壁41b1可以共同构成一完整的基础部侧壁。所述可动部42可以包括可动部底板42a、可动 部侧壁42b和外延结构42c,其中可动部侧壁42b自可动部底板42a边缘向上延伸而形成,感光组件20可以固定于所述可动部底板42a和可动部侧壁42b所形成的容纳槽中。所述外延结构42c是自所述可动部侧壁42b的中部向外延伸而形成的。该外延结构42b位于基础部41的承靠台41b2与基座侧壁41a3的顶面之间。所述外延结构42b可以位于所述基底侧壁41a3的顶面第一凹槽41a4的上方,所述外延结构42b的下表面可以由第一滚珠46a支撑,从而使得可动部42与基础部41形成活动连接。与图17的实施例不同,本实施例中,所述外延结构42c的上表面设置于第二凹槽42b1,所述第二凹槽42b1中设置有第二滚珠46b,所述基础部41的承靠台41b2可以由所述第二滚珠46b支撑。由于增加了第二滚珠46b,因此承靠台41b2在z轴方向上与可动部42的连接是刚性的,具有优异的限位效果。同时可动部42相对于基础部41横向移动时(指在xoy平面内的移动),第二滚珠46b还起到了减小移动阻力的作用,并且还可以防止承靠台41b2与外延结构42c摩擦产生碎屑。
进一步地,基于图18及相应实施例的描述,可以理解的是,图7、图8所对应的实施例也可使用两层滚珠的设计进行改进,以改进z轴限位效果,同时避免盖与可动部之间的摩擦。
以上描述仅为本申请的较佳实施方式以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (18)

  1. 一种光学防抖摄像模组,其特征在于,包括:
    镜头;
    感光组件,其具有感光芯片;
    第一驱动部,其适于安装所述镜头并驱动所述镜头在在x轴和y轴方向平移;以及
    第二驱动部,其适于驱动所述感光芯片在x轴和y轴方向平移,所述第二驱动部包括第二基础部和第二可动部,所述第二基础部包括基座和盖,所述基座的至少一部分位于所述感光组件下方,所述盖的底部连接所述基座,所述盖的顶部连接所述第一驱动部;所述第二可动部通过滚珠与所述第二基础部实现活动连接,并且通过所述滚珠将移动自由度限制在xoy平面内;
    其中,所述镜头与所述感光芯片被配置为朝相反的方向移动;且所述滚珠位于所述感光组件的外侧面的外侧。
  2. 根据权利要求1所述的光学防抖摄像模组,其特征在于,所述第二驱动部还用于驱动所述感光芯片在xoy平面上旋转。
  3. 根据权利要求1所述的光学防抖摄像模组,其特征在于,根据所检测到的摄像模组的倾斜抖动角度a,确定所述第一驱动模块驱动所述镜头移动的镜头移动距离b,以及所述第二驱动模块驱动所述感光芯片移动的感光芯片移动距离c;其中,所述镜头移动距离b、所述感光芯片移动距离c以及所述摄像模组的像方焦距f之间满足:a=arctan(b/f)+arctan(c/f)。
  4. 根据权利要求3所述的光学防抖摄像模组,其特征在于,所述驱动结构还包括驱动逻辑模块,其用于使所述镜头移动距离b和所述感光芯片移动距离c的比例保持在预设的固定比例。
  5. 根据权利要求3所述的光学防抖摄像模组,其特征在于,所述驱动结构还包括驱动逻辑模块,其具有一防抖阈值K,所述驱动逻辑模块用于在所述倾斜抖动角度a小于等于所述防抖阈值K时,使所述镜头移动距离b和所述感光 芯片移动距离c的比例保持在预设的固定比例,在所述倾斜抖动角度a大于所述防抖阈值K时,使所述感光芯片移动距离c到达其移动行程的最大值c max,所述镜头移动距离b根据关系式b=tan(a/f)-c max计算获得。
  6. 根据权利要求4或5所述的光学防抖摄像模组,其特征在于,所述镜头移动距离和所述感光芯片移动距离的预设的固定比例根据所述镜头的重量、所述第一驱动部的驱动力、所述感光芯片或感光组件的重量以及所述第二驱动部的驱动力进行设定,以使得所述镜头和所述感光芯片移动到各自防抖目标位置的时间一致。
  7. 根据权利要求1或2所述的光学防抖摄像模组,其特征在于,所述第一驱动部包括第一基础部和第一可动部;所述盖的顶部与所述第一基础部固定在一起,所述第二可动部位于所述基座上方并与所述第二基础部活动连接,所述感光组件固定于所述第二可动部的上表面;所述第二可动部通过所述滚珠与所述第二基础部活动连接,其中所述第二基础部的上表面、所述滚珠和所述第二可动部的下表面在z轴方向上依次承靠,使得所述第二可动部相对于所述第二基础部的移动自由度限制在xoy平面以内,其中所述z轴垂直于所述xoy平面。
  8. 根据权利要求7所述的光学防抖摄像模组,其特征在于,在俯视角度下所述滚珠布置在所述第二驱动部的四角区域。
  9. 根据权利要求7所述的光学防抖摄像模组,其特征在于,所述第二基础部设置至少三个凹槽,至少三个滚珠设置于所述至少三个凹槽,以在所述xoy平面上承载所述第二可动部。
  10. 根据权利要求7所述的光学防抖摄像模组,其特征在于,所述第二可动部包括可动部底板和可动部侧壁,所述可动部侧壁自所述可动部底板的边缘区域向上延伸而形成;所述感光组件置于所述可动部底板和所述可动部侧壁形成的容纳槽中;所述可动部侧壁的内侧面与所述感光组件的外侧面之间具有胶水,以将所述第二可动部与所述感光组件固定在一起。
  11. 根据权利要求10所述的光学防抖摄像模组,其特征在于,所述盖包括盖侧壁和自所述盖侧壁的顶部向内延伸而形成的承靠台;所述第二可动部还包括自所述可动部侧壁向外延伸而形成的外延结构;所述基座包括基板和自所述基板的边缘区域向上延伸而形成的基座侧壁,所述基板位于所述感光组件下方,所述基座侧壁的顶面具有第一凹槽,所述滚珠位于所述第一凹槽中,并且所述外延结构的下表面由所述滚珠支撑。
  12. 根据权利要求11所述的光学防抖摄像模组,其特征在于,所述盖侧壁与所述基座侧壁连接构成完整的基础部侧壁。
  13. 根据权利要求11所述的光学防抖摄像模组,其特征在于,所述外延结构自所述可动部侧壁的顶部向外延伸而形成。
  14. 根据权利要求13所述的光学防抖摄像模组,其特征在于,所述承靠台的下表面与所述外延结构的上表面之间具有第四间隙,所述第四间隙小于10μm。
  15. 根据权利要求11所述的光学防抖摄像模组,其特征在于,所述滚珠包括第一滚珠和第二滚珠;所述第一滚珠位于所述第一凹槽中,所述外延结构自所述可动部侧壁的中部向外延伸而形成,所述外延结构的上表面具有第二凹槽,所述第二滚珠位于所述第二凹槽中,所述承靠台的下表面由所述第二滚珠支撑。
  16. 根据权利要求15所述的光学防抖摄像模组,其特征在于,所述基座包括基板,所述第二驱动部的驱动元件为线圈磁石组合;其中磁石设置在所述基板的边缘区域,线圈设置在所述可动部底板的边缘区域;或者所述线圈和所述磁石分别设置在所述第二可动部和所述第二基础部的侧壁。
  17. 根据权利要求16所述的光学防抖摄像模组,其特征在于,所述线圈磁石组合包括第一线圈磁石对、第二线圈磁石对和第三线圈磁石对;其中,所述第一线圈磁石对与所述第二线圈磁石对用于提供x轴方向上的驱动力;所述第 三线圈磁石对用于提供y轴方向上的驱动力;并且在俯视角度下,所述第一线圈磁石对与所述第二线圈磁石对可以分别沿着所述第二驱动部的第一边和第二边布置,所述第一边和所述第二边不相交,而所述第二线圈磁石对沿着所述第二驱动部的第三边布置,所述第三边与所述第一边和所述第二边均相交。
  18. 根据权利要求11所述的光学防抖摄像模组,其特征在于,所述可动部侧壁与所述基座侧壁之间具有第五间隙,所述第五间隙大于200μm。
PCT/CN2021/126324 2020-11-06 2021-10-26 光学防抖摄像模组 WO2022095751A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180069891.4A CN116349235A (zh) 2020-11-06 2021-10-26 光学防抖摄像模组

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011231140.1A CN114449158B (zh) 2020-11-06 2020-11-06 光学防抖摄像模组
CN202011231140.1 2020-11-06

Publications (1)

Publication Number Publication Date
WO2022095751A1 true WO2022095751A1 (zh) 2022-05-12

Family

ID=81361301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126324 WO2022095751A1 (zh) 2020-11-06 2021-10-26 光学防抖摄像模组

Country Status (2)

Country Link
CN (3) CN114449159A (zh)
WO (1) WO2022095751A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116033267A (zh) * 2022-10-13 2023-04-28 荣耀终端有限公司 防抖机构、摄像模组及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101141566A (zh) * 2006-09-05 2008-03-12 索尼株式会社 照相机抖动校正机构和图像捕获装置
CN204989716U (zh) * 2015-09-06 2016-01-20 南昌欧菲光电技术有限公司 摄像头模组的防抖装置和摄像头模组
CN105573014A (zh) * 2016-01-22 2016-05-11 南昌欧菲光电技术有限公司 具有对焦及防抖功能的摄像头模组
CN110139013A (zh) * 2019-06-01 2019-08-16 瑞声科技(新加坡)有限公司 摄像模组和潜望式摄像头
CN209402560U (zh) * 2019-03-14 2019-09-17 南昌欧菲光电技术有限公司 摄像头模组及电子设备
CN111478549A (zh) * 2020-05-21 2020-07-31 江苏新鑫星科技有限公司 一种摄像模组用音圈马达
CN111698352A (zh) * 2019-03-14 2020-09-22 南昌欧菲光电技术有限公司 摄像头模组及电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104020546B (zh) * 2014-06-19 2017-04-26 深圳市世尊科技有限公司 一种可同时实现光学变焦和光学防抖的对焦马达
CN110673297A (zh) * 2019-11-12 2020-01-10 东莞市亚登电子有限公司 微型光学镜头自动对焦及防抖的驱动装置
CN110784650B (zh) * 2019-11-12 2022-01-07 Oppo广东移动通信有限公司 防抖摄像模组及电子设备
CN210781015U (zh) * 2019-12-03 2020-06-16 南昌欧菲光电技术有限公司 摄像头模组及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101141566A (zh) * 2006-09-05 2008-03-12 索尼株式会社 照相机抖动校正机构和图像捕获装置
CN204989716U (zh) * 2015-09-06 2016-01-20 南昌欧菲光电技术有限公司 摄像头模组的防抖装置和摄像头模组
CN105573014A (zh) * 2016-01-22 2016-05-11 南昌欧菲光电技术有限公司 具有对焦及防抖功能的摄像头模组
CN209402560U (zh) * 2019-03-14 2019-09-17 南昌欧菲光电技术有限公司 摄像头模组及电子设备
CN111698352A (zh) * 2019-03-14 2020-09-22 南昌欧菲光电技术有限公司 摄像头模组及电子设备
CN110139013A (zh) * 2019-06-01 2019-08-16 瑞声科技(新加坡)有限公司 摄像模组和潜望式摄像头
CN111478549A (zh) * 2020-05-21 2020-07-31 江苏新鑫星科技有限公司 一种摄像模组用音圈马达

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116033267A (zh) * 2022-10-13 2023-04-28 荣耀终端有限公司 防抖机构、摄像模组及电子设备
CN116033267B (zh) * 2022-10-13 2023-10-24 荣耀终端有限公司 防抖机构、摄像模组及电子设备

Also Published As

Publication number Publication date
CN114449159A (zh) 2022-05-06
CN114449158B (zh) 2023-08-18
CN114449158A (zh) 2022-05-06
CN116349235A (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
US11586001B2 (en) Optical system
JP6138969B2 (ja) カメラモジュール
WO2022111263A1 (zh) 用于光学致动器的驱动结构及相应的摄像模组
CN113572918B (zh) 潜望式连续光变模组及相应的多摄模组
JP7485665B2 (ja) カメラモジュール
CN114520858A (zh) 光学防抖摄像模组
CN114531523B (zh) 光学防抖摄像模组
WO2022095751A1 (zh) 光学防抖摄像模组
CN215340557U (zh) 光学***
WO2022122008A1 (zh) 驱动装置和摄像模组
CN114428432B (zh) 用于光学致动器的驱动结构及相应的摄像模组
CN114554070A (zh) 光学防抖摄像模组
WO2022078386A1 (zh) 用于光学致动器的驱动结构及相应的摄像模组和组装方法
JP2022542671A (ja) 駆動装置、カメラモジュール及び携帯端末機器
US20240022816A1 (en) Optical image stabilization camera module
KR102312300B1 (ko) 광 굴절식 카메라 모듈용 액추에이터 및 이를 포함하는 카메라 모듈
CN117595602A (zh) 音圈马达、光学防抖组件、摄像模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21888448

Country of ref document: EP

Kind code of ref document: A1