WO2022078386A1 - 用于光学致动器的驱动结构及相应的摄像模组和组装方法 - Google Patents

用于光学致动器的驱动结构及相应的摄像模组和组装方法 Download PDF

Info

Publication number
WO2022078386A1
WO2022078386A1 PCT/CN2021/123532 CN2021123532W WO2022078386A1 WO 2022078386 A1 WO2022078386 A1 WO 2022078386A1 CN 2021123532 W CN2021123532 W CN 2021123532W WO 2022078386 A1 WO2022078386 A1 WO 2022078386A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
base
photosensitive
movable part
movable
Prior art date
Application number
PCT/CN2021/123532
Other languages
English (en)
French (fr)
Inventor
魏罕钢
袁栋立
卞强龙
吴湖
刘佳
李剑虹
张琼
黄坚斌
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011097162.3A external-priority patent/CN114428430B/zh
Priority claimed from CN202011191352.1A external-priority patent/CN114531523B/zh
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to CN202180055159.1A priority Critical patent/CN116134369A/zh
Priority to EP21879429.5A priority patent/EP4231091A4/en
Publication of WO2022078386A1 publication Critical patent/WO2022078386A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B5/02Lateral adjustment of lens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0015Movement of one or more optical elements for control of motion blur by displacing one or more optical elements normal to the optical axis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0038Movement of one or more optical elements for control of motion blur by displacing the image plane with respect to the optical axis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element
    • G03B2205/0069Driving means for the movement of one or more optical element using electromagnetic actuators, e.g. voice coils

Definitions

  • the present invention relates to the technical field of camera equipment, and in particular, the present invention relates to a driving structure for an optical actuator, a corresponding camera module and an assembling method.
  • FIG. 1 shows a typical camera module with a motor in the prior art.
  • the camera module generally includes a lens 1 , a motor mechanism 2 (may be referred to as a motor for short) and a photosensitive assembly 3 .
  • the lens 1 is fixed on the motor carrier of the motor (shown in detail in FIG. 1 ), and the motor carrier is a movable part, which can usually drive the lens 1 in the direction of the optical axis under the action of the driving element of the motor. move up to achieve the focus function.
  • the motor often has a more complicated structure. This is because the motor needs to drive the lens 1 to move in other degrees of freedom (eg, the direction perpendicular to the optical axis) in addition to driving the lens to move in the direction of the optical axis to compensate for the shake during shooting.
  • degrees of freedom e.g, the direction perpendicular to the optical axis
  • the shaking of the camera module includes translation in the direction perpendicular to the optical axis (translation in the x-axis, y-axis direction) and rotation (referring to the rotation in the xoy plane, and the rotation axis direction can be roughly the same as the optical axis) , and tilt jitter (referring to the rotation around the x and y axes, in the field of camera modules, tilt jitter is also called tilt jitter).
  • the gyroscope (or other position sensing element) in the module detects the shaking in a certain direction, it can issue an instruction to make the motor drive the lens to move a distance in the opposite direction, thereby compensating for the shaking of the lens.
  • the lens is only translated and/or rotated in the direction perpendicular to the optical axis to compensate for the shake of the camera module. This is because if the lens is rotated around the x and y axes, that is, if the tilt adjustment of the lens is used to achieve The anti-shake effect may reduce the image quality of the module, and even cause image blur, making it difficult to meet the basic image quality requirements.
  • the purpose of the present invention is to overcome the deficiencies of the prior art and provide a solution that can improve the anti-shake stroke and anti-shake response speed of the camera module.
  • the present invention provides a driving structure for an optical actuator, which includes: a first driving part, which is suitable for installing a lens and driving the lens to translate in the x-axis and y-axis directions; and a second driving part, which is adapted to drive the photosensitive chip to translate in the x-axis and y-axis directions; wherein the lens and the photosensitive chip are configured to be driven simultaneously and move in opposite directions.
  • the second driving part is suitable for installing a photosensitive component
  • the photosensitive component includes the photosensitive chip
  • the second driving part drives the photosensitive component to move to realize the direction of the photosensitive chip in the x-axis and y-axis directions of translation.
  • the second driving part is also used for driving the photosensitive chip to rotate on the xoy plane.
  • the lens movement distance b of the first drive module to drive the lens to move is determined, and the second drive module to drive the photosensitive chip to move the photosensitive chip
  • the moving distance c; wherein, the moving distance b of the lens, the moving distance c of the photosensitive chip, and the image-side focal length f of the camera module satisfy: a arctan(b/f)+arctan(c/f) .
  • the driving structure further includes a driving logic module, which is configured to keep the ratio between the moving distance b of the lens and the moving distance c of the photosensitive chip at a preset fixed ratio.
  • the driving structure further includes a driving logic module, which has an anti-shake threshold K, and the driving logic module is configured to move the lens by a distance when the tilt angle a is less than or equal to the anti-shake threshold K
  • the preset fixed ratio between the moving distance of the lens and the moving distance of the photosensitive chip is based on the weight of the lens, the driving force of the first driving part, the weight of the photosensitive chip or the photosensitive component, and the weight of the first
  • the driving forces of the two driving parts are set so that the time when the lens and the photosensitive chip move to their respective anti-shake target positions are consistent.
  • the first drive part includes a first base part and a first movable part
  • the second drive part includes a second base part and a second movable part; wherein the second base part and the first The base parts are fixed together, the second movable part is located under the second base part and is movably connected with the second base part, and the photosensitive component is located under the second movable part and fixed to the second base part. the second movable part.
  • the second movable part is movably connected with the second base part through balls, and the degree of freedom of movement of the second movable part relative to the second base part is controlled by a suspension system based on the balls Constrained within the xoy plane.
  • the balls are arranged in the four-corner area of the second driving part in a plan view.
  • the driving structure further includes a rear casing located under the second driving part, the rear casing is connected with the second base part and forms a accommodating cavity, the second movable part and the The photosensitive components are all located in the accommodating cavity; and there is a gap between the photosensitive components and the bottom of the rear case.
  • the second movable part has an extension arm extending downward, and the extension arm is bonded to the circuit board of the photosensitive component; the extension arm is provided with an FPC, and the FPC is directly welded to the circuit board .
  • both the second movable part and the center of the second base part have a light-passing hole.
  • the second base part includes a base and a cover
  • the cover includes a side wall extending downward from the base and surrounding the second movable part, and a bearing formed by extending horizontally inward from the side wall.
  • the ball and the edge region of the second movable part are clamped between the base and the bearing platform.
  • the upper surface of the second base part has a stepped structure
  • the stepped structure includes a first stepped surface located on the outer side and a second stepped surface located on the inner side, and the height of the second stepped surface is lower than that of the first stepped surface. The height of the step surface.
  • the upper surface of the edge region of the second movable part has grooves, and the balls are placed in the grooves.
  • the upper surface of the edge area of the second movable part has a concave step
  • the outer step surface of the concave step is lower than the inner step surface thereof
  • the concave step is connected to the side wall of the cover and the The bases together form an accommodating cavity for accommodating the balls.
  • the ball is located between the bearing platform and the second movable part.
  • a layer of balls are respectively arranged between the base and the second movable part and between the second movable part and the bearing platform.
  • the outer side surface of the second movable part is provided with an inwardly recessed card slot, and the support platform is fitted into the card slot.
  • glue is arranged between the lower end surface of the second movable part and the upper end surface of the mirror base of the photosensitive component, and the glue avoids the four corner areas of the second movable part.
  • the driving element of the second driving part is a combination of coil magnets; wherein the magnet is arranged on the edge area of the second base part, and the coil is arranged on the edge area of the second movable part; or the coil and the The magnets are respectively disposed on the side walls of the second movable part and the second base part.
  • the coil magnet combination includes a first coil magnet pair, a second coil magnet pair and a third coil magnet pair; wherein, the first coil magnet pair and the second coil magnet pair are used to provide the x-axis direction
  • the third pair of coil magnets is used to provide the driving force in the y-axis direction; and in a top view, the first pair of coil magnets and the second pair of coil magnets can be along the The first side and the second side of the two driving parts are arranged, the first side and the second side do not intersect, and the second coil magnet pair is arranged along the third side of the second driving part, so The third side intersects both the first side and the second side.
  • a camera module which includes: a lens; a photosensitive assembly; and the drive structure for an optical actuator according to any one of the foregoing; wherein the lens is mounted on In the first driving part, the photosensitive component is mounted on the second driving part.
  • the photosensitive assembly includes a circuit board
  • the camera module further includes a first connecting belt and a second connecting belt
  • the first connecting belt is arranged on the top area of the first driving part and is electrically connected to the first connecting belt.
  • the second connecting belt is connected to and conducting with the circuit board of the photosensitive assembly; wherein the second connecting belt is provided with a plurality of bends to form a curved layered shape.
  • the first drive part includes a first base part and a first movable part
  • the second drive part includes a second base part and a second movable part; wherein the second base part and the first The base parts are fixed together, the second movable part is located under the second base part and is movably connected with the second base part, and the photosensitive component is located under the second movable part and fixed to the second base part.
  • the photosensitive assembly includes a suspended circuit board, the suspended circuit board includes a rigid circuit board main body and a flexible connection belt, the connection belt extends from the first side of the circuit board main body and the The second side is drawn out and bent upwards to form a bent portion, and the top of the bent portion extends along the periphery of the photosensitive assembly in the horizontal direction, so that the connecting belt surrounds the first side of the photosensitive assembly , the periphery of the second side and the third side, and the connecting strips located on the first side, the second side and the third side each have at least one overhang, and the overhang is fixed to the first side.
  • the second base part of the two driving parts is fixed with the second base part through an intermediary; wherein, the photosensitive component has a first side surface and a second side surface that are consistent with the position of the main body of the circuit board, so The first side surface and the second side surface are arranged opposite to each other, and the third side surface intersects with both the first side surface and the second side surface.
  • the suspending portion has a suspending hole
  • the second base portion or the intermediate has a hook
  • the hook is hooked on the suspending hole
  • a part of the connecting strip is attached to the rigid substrate for reinforcement, so as to form the suspension portion.
  • the suspended circuit board is made of a flexible-rigid board, wherein the circuit board main body and the suspension part are formed by the rigid board part of the flexible-rigid board, and the bent part is connected to a plurality of The connecting strap sections between the suspensions are formed by the flex-board portion of the flex-rigid board.
  • the connecting tape includes a third connecting tape and a fourth connecting tape
  • the third connecting tape is drawn out from the first side surface of the circuit board body and bent upward to form one of the bent portions, and then along the extending along the first side surface of the photosensitive component, bending horizontally at the corners and continuing to extend along the third side surface
  • the fourth connecting tape is drawn out from the second side surface of the circuit board main body and extends along the third side surface. Bending upward to form another bending portion, then extending along the second side of the photosensitive component, and horizontally bending at the corner and continuing to extend along the third side; the third connection
  • the strap and the fourth connecting strap are joined and communicated with each other at the third side surface.
  • the suspension part of the connection strip on the third side is also connected with a fifth connection strip, and the fifth connection strip has a connector for external connection; the suspended circuit board also has a the fixing part for fixing the fifth connecting belt.
  • an optical anti-shake camera module which includes: a lens; a photosensitive component, which has a photosensitive chip; and a first driving part, which is suitable for installing the lens and driving the lens translation in the x-axis and y-axis directions; and a second driving part adapted to drive the photosensitive chip to translate in the x-axis and y-axis directions, the second driving part includes a base and a cover, the base is located at Below the photosensitive assembly, the top of the cover is connected to the base, and the top of the cover is connected to the first driving part; wherein, the lens and the photosensitive chip are configured to be driven at the same time, and face opposite directions direction move.
  • the second driving part is also used for driving the photosensitive chip to rotate on the xoy plane.
  • the lens movement distance b of the first drive module to drive the lens to move is determined, and the second drive module to drive the photosensitive chip to move the photosensitive chip
  • the moving distance c; wherein, the moving distance b of the lens, the moving distance c of the photosensitive chip, and the image-side focal length f of the camera module satisfy: a arctan(b/f)+arctan(c/f) .
  • the driving structure further includes a driving logic module, which is configured to keep the ratio between the moving distance b of the lens and the moving distance c of the photosensitive chip at a preset fixed ratio.
  • the driving structure further includes a driving logic module, which has an anti-shake threshold K, and the driving logic module is configured to move the lens by a distance when the tilt angle a is less than or equal to the anti-shake threshold K
  • the preset fixed ratio between the moving distance of the lens and the moving distance of the photosensitive chip is based on the weight of the lens, the driving force of the first driving part, the weight of the photosensitive chip or the photosensitive component, and the weight of the first
  • the driving forces of the two driving parts are set so that the time when the lens and the photosensitive chip move to their respective anti-shake target positions are consistent.
  • the first drive part includes a first base part and a first movable part
  • the second drive part includes a second base part and a second movable part
  • the second base part includes the base and The cover; wherein the top of the cover is fixed with the first base part, the second movable part is located above the base and is movably connected with the second base part, and the photosensitive component is fixed on the upper surface of the second movable part.
  • the second movable part is movably connected with the second base part through balls, wherein the upper surface of the second base part, the balls and the lower surface of the second movable part are in the z-axis direction
  • the upper and lower parts are supported in sequence, so that the freedom of movement of the second movable part relative to the second base part is limited within the xoy plane, wherein the z-axis is perpendicular to the xoy plane.
  • the balls are arranged in the four-corner area of the second driving part in a plan view.
  • the second base portion is provided with at least three grooves, and at least three balls are provided in the at least three grooves, so as to support the second movable portion on the xoy plane.
  • the base includes a base plate, and the balls are arranged at an edge region of the base plate.
  • the second movable part includes a movable part bottom plate and a movable part side wall, and the movable part side wall is formed by extending upward from the edge region of the movable part bottom plate; the photosensitive component is placed in the into the accommodating groove formed by the bottom plate of the movable part and the side wall of the movable part.
  • glue is provided between the inner side surface of the side wall of the movable portion and the outer side surface of the photosensitive member, so as to fix the second movable portion and the photosensitive member together.
  • the cover includes a cover side wall and a bearing platform formed by extending inward from the top of the cover side wall; the ball and the edge area of the second movable part are clamped on the base and the bearing platform.
  • the base includes a base plate
  • the driving element of the second driving part is a combination of coil magnets; wherein the magnets are arranged at the edge area of the base plate, and the coils are arranged at the edge area of the bottom plate of the movable part; or the The coil and the magnet are respectively provided on the side walls of the second movable part and the second base part.
  • the coil magnet combination includes a first coil magnet pair, a second coil magnet pair and a third coil magnet pair; wherein, the first coil magnet pair and the second coil magnet pair are used to provide the x-axis direction
  • the third pair of coil magnets is used to provide the driving force in the y-axis direction; and in a top view, the first pair of coil magnets and the second pair of coil magnets can be along the The first side and the second side of the two driving parts are arranged, the first side and the second side do not intersect, and the second coil magnet pair is arranged along the third side of the second driving part, so The third side intersects both the first side and the second side.
  • the base includes a base plate and a side wall of the base; a first gap is formed between the side wall of the movable part and the base, and the first gap is greater than 200 ⁇ m.
  • the third gap there is a third gap between the lower surface of the movable part bottom plate and the substrate, and the third gap is less than 10 ⁇ m.
  • the photosensitive assembly includes a circuit board
  • the camera module further includes a first connecting belt and a second connecting belt
  • the first connecting belt is arranged on the top area of the first driving part and is electrically connected to the first connecting belt.
  • the second connecting belt is connected to and conducting with the circuit board of the photosensitive assembly; wherein the second connecting belt is provided with a plurality of bends to form a curved layered shape.
  • the present application can improve the anti-shake stroke of the camera module, thereby compensating for the larger shaking of the camera module.
  • the present application can improve the anti-shake response speed of the camera module.
  • the driving structure for the optical actuator of the present application has the advantage of compact structure, and is especially suitable for miniaturized camera modules.
  • settings can be made according to factors such as the weight of the lens, the driving force of the first driving part, the weight of the photosensitive chip (or photosensitive component), the driving force of the second driving part, etc., so that the lens and the photosensitive chip
  • the time to move to the respective anti-shake target positions is basically the same, so as to obtain a better anti-shake effect.
  • the interference of the connection belt on the anti-shake movement of the photosensitive assembly can be reduced by the suspended circuit board, thereby effectively ensuring the anti-shake stroke and response speed.
  • the second driving part does not need to be provided with a light-passing hole, so that the thickness of the base part or/and the movable part of the second driving part can be reduced, thereby helping to reduce the thickness of the camera module. the height of.
  • the movable part of the second driving part and the base of the base part are both arranged below the circuit board of the photosensitive assembly, so as to avoid the problem of picture stains caused by leakage of the glue material (referring to the problem of image blemishes caused by the image formation).
  • the interference of the connection belt on the anti-shake movement of the photosensitive assembly can be reduced by the suspended circuit board, thereby effectively ensuring the anti-shake stroke and response speed.
  • the lens and the photosensitive chip are allowed to move in opposite directions at the same time, thereby avoiding the image blur caused by the anti-shake movement and improving the anti-shake stroke of the camera module. and anti-shake response speed.
  • the lens and the photosensitive chip are allowed to move in opposite directions at the same time, thereby avoiding the problem of image blur caused by the anti-shake movement and improving the anti-shake stroke of the camera module. and anti-shake response speed.
  • the lower end surface of the second movable part can be lower than the lower end surface of the second base part to ensure that the photosensitive component does not touch the first movable part after being attached to the second movable part.
  • the cover of the base part prevents the photosensitive assembly from touching or rubbing the cover when it is moving for anti-shake.
  • the flow of glue used for bonding the photosensitive component and the second movable part to the filter can be reduced. risks of.
  • the glue is arranged to avoid the four corner areas, which can prevent the glue from leaking into the gaps of the ball accommodating structures located at the four corners, thereby avoiding a negative impact on the anti-shake movement.
  • the driving structure controls the second movable part to maintain the position of the second movable part by cooperating with the driving force of the elastic element and the driving element, so that the A pair of conjugated driving forces for maintaining the second movable part at its initial position is eliminated, thereby eliminating an additional driving element for providing the conjugated driving force, thereby helping to reduce the space occupied by the driving elements. volume.
  • the assembly methods of some embodiments of the present application can realize position adjustment based on active calibration, thereby improving the imaging quality of the camera module.
  • the assembly of a camera module with dual OIS anti-shake function can be realized, and the dual OIS anti-shake capability of the camera module of the present application can not only avoid the problem of image blur, but also improve the anti-shake stroke or anti-shake function. Jitter response speed.
  • FIG. 1 shows a typical camera module with a motor in the prior art
  • FIG. 2 shows a schematic cross-sectional view of a camera module with an anti-shake function according to an embodiment of the present application
  • FIG. 3 shows a schematic cross-sectional view of a camera module with anti-shake function according to another embodiment of the present application
  • FIG. 4 shows a schematic diagram of the relationship between the moving distance of the lens and the photosensitive chip and the tilt angle of the module under four different situations in this application;
  • FIG. 5 shows a schematic cross-sectional view of a camera module in an embodiment of the present application
  • FIG. 6 shows a schematic cross-sectional view of a camera module according to another embodiment of the present application.
  • FIG. 7 shows a schematic cross-sectional view of a camera module in yet another embodiment of the present application.
  • FIG. 8 shows a schematic cross-sectional view of a camera module in yet another embodiment of the present application.
  • Figure 9a shows a schematic perspective view of a second driving part in an embodiment of the present application.
  • Fig. 9b shows a schematic exploded perspective view of the second driving part in an embodiment of the present application.
  • FIG. 10a shows a schematic cross-sectional view of the second driving part and the photosensitive assembly in an embodiment of the present application
  • Fig. 10b shows a schematic cross-sectional view of the second driving part in which the balls are arranged on the lower side of the movable part in a modified embodiment of the present application;
  • Fig. 10c shows a schematic cross-sectional view of a second driving part with two layers of balls according to a modified embodiment of the present application
  • Fig. 11a shows a schematic cross-sectional view of the second driving part in an embodiment of the present application
  • Fig. 11b shows a schematic diagram of the assembly of the second driving part in an embodiment of the present application
  • Fig. 11c shows a schematic cross-sectional view of the second driving part in another embodiment of the present application.
  • FIG. 12 shows a schematic cross-sectional view of a second driving part in yet another embodiment of the present application.
  • Figure 13a shows a schematic bottom view of the movable part of the second driving part in an embodiment of the present application
  • Fig. 13b shows a schematic bottom view of the movable part of the second driving part in another embodiment of the present application
  • FIG. 14 shows the installation position of the driving element of the second driving part in the bottom view angle in an embodiment of the present application
  • Fig. 15a shows a schematic cross-sectional view of a second driving part including driving elements in an embodiment of the present application
  • Fig. 15b shows a schematic cross-sectional view of a second driving part including driving elements in another embodiment of the present application
  • Fig. 15c shows a schematic cross-sectional view of a second driving part including driving elements in another embodiment of the present application
  • 16a shows a schematic cross-sectional view of a camera module in an embodiment of the present application
  • Fig. 16b shows a schematic diagram of an assembly method of a camera module in an embodiment of the present application
  • 16c shows a schematic cross-sectional view of a camera module in another embodiment of the present application.
  • FIG. 17 shows the arrangement of the camera module and its connection straps in an embodiment of the present application
  • FIG. 18 shows a schematic perspective view of the assembled second driving part and the photosensitive assembly in an embodiment of the present application
  • FIG. 19 shows an exploded schematic view of the second driving part and the photosensitive assembly in an embodiment of the present application
  • FIG. 20 shows a schematic perspective view of a photosensitive assembly and a suspended circuit board used in an embodiment of the present application
  • Figure 21a shows a schematic front view of the suspended circuit board in an embodiment of the present application after it is unfolded
  • Fig. 21b shows a schematic view of the rear side of the suspended circuit board in an embodiment of the present application after being unfolded.
  • FIG. 22 shows a schematic cross-sectional view of a camera module with anti-shake function according to an embodiment of the present application
  • FIG. 23 shows a schematic cross-sectional view of a comparative example of a camera module with anti-shake function according to another embodiment of the present application.
  • FIG. 24 shows a schematic cross-sectional view of a camera module in an embodiment of the present application.
  • FIG. 25 shows a schematic perspective view of the second driving part in an embodiment of the present application.
  • Fig. 26 shows a schematic exploded perspective view of the second driving part in an embodiment of the present application
  • FIG. 27 shows a schematic cross-sectional view of a camera module according to an embodiment of the present application.
  • Figure 28a shows the ball structure of the second driving part in a modified embodiment of the present application
  • Figure 28b shows a schematic diagram of the rotation of the movable part in the xoy plane
  • Fig. 29 shows a schematic diagram of a typical assembly method of the second driving part in an embodiment of the present application.
  • Fig. 30 shows a schematic diagram of a disassembled state before assembly of the second driving part in another embodiment of the present application
  • Fig. 31 shows a schematic diagram of an intermediate state in the assembling process of the second driving part in another embodiment of the present application
  • FIG. 32 shows the installation position of the driving element of the second driving part in a top view according to an embodiment of the present application
  • Figure 33a shows a schematic cross-sectional view of the second driving part including driving elements in an embodiment of the present application
  • Fig. 33b shows a schematic cross-sectional view of a second driving part including driving elements in another embodiment of the present application
  • FIG. 34 shows a schematic diagram of an assembly method of a camera module in an embodiment of the present application
  • Fig. 35a shows the arrangement of the camera module and its connecting belt in an embodiment of the present application
  • Figure 35b shows a schematic perspective view of the second driving part in an embodiment of the present application.
  • FIG. 36 shows a schematic diagram of the connection between the photosensitive assembly and the second movable part in another embodiment of the present application.
  • FIG. 2 shows a schematic cross-sectional view of a camera module with an anti-shake function according to an embodiment of the present application.
  • the camera module includes a lens 10 , a photosensitive assembly 20 , a first driving part 30 and a second driving part 40 .
  • the photosensitive component 20 includes a photosensitive chip 21 .
  • the first driving part 30 is configured to drive the lens 10 to move in the x and y directions
  • the second driving part 40 is configured to drive the photosensitive chip 21 to move in the x and y directions.
  • the x and y directions are perpendicular to each other, and both are parallel to the photosensitive surface of the photosensitive element 20 .
  • FIG. 2 also shows a three-dimensional Cartesian coordinate system constructed based on the x, y, and z directions.
  • the optical anti-shake of the camera module is realized by simultaneously driving the lens 10 and the photosensitive chip 21 to move in opposite directions by the control module.
  • the lens 1 and the photosensitive chip 21 are configured to be driven at the same time and move in opposite directions.
  • the photosensitive chip 21 when the lens 10 is driven to move in the positive direction of the x-axis, the photosensitive chip 21 is driven to move in the negative direction of the x-axis; If it is driven to move in the positive direction of the y-axis, the photosensitive chip 21 is driven to move in the negative direction of the y-axis; or the lens 10 is driven to move in the x-axis and y-axis, and the photosensitive chip 21 is driven in the x-axis and y-axis to move in the same direction as the lens. 10 moves in the opposite direction.
  • the camera module usually includes a position sensor, and the position sensor is used to detect the shaking of the camera module or a terminal device (ie, an electronic device equipped with the camera module, such as a mobile phone).
  • the position sensor sends a signal to the camera module, and drives the lens 10 and the photosensitive chip 21 to move accordingly to compensate for the jitter, so as to achieve the purpose of optical anti-shake.
  • the lens 10 and the photosensitive chip 21 are configured to move at the same time, and the lens 10 and the photosensitive chip 21 move in opposite directions, which can achieve faster response and better anti-shake effect.
  • the anti-shake angle range of the camera module is usually limited by the suspension system and the driving system, and a relatively large compensation angle range cannot be achieved.
  • the lens 10 and the photosensitive chip 21 are driven to move in opposite directions at the same time. , to achieve large-angle shake compensation.
  • this embodiment by simultaneously driving the lens 10 or the photosensitive chip 21 to move in opposite directions, compared with the solution of only driving the lens 10 to move, there is a larger relative movement stroke between the lens 10 and the photosensitive chip 21 (for For convenience of description, this relative movement stroke may be referred to as the anti-shake stroke for short), which can have a better compensation effect.
  • this embodiment also has a better compensation effect for the tilting and shaking of the camera module.
  • the moving direction of the anti-shake movement in this embodiment can be limited in the xoy plane, and it is not necessary to tilt the optical axis of the lens 10 or the photosensitive chip 21, thereby avoiding the problem of image blur caused by the anti-shake movement.
  • the photosensitive chip 21 can also be driven by the second driving part 40 to rotate in the xoy plane, so as to compensate for the shake in the rotation direction of the camera module.
  • the camera module includes a first driving part 30 , a lens 10 , a second driving part 40 and a photosensitive assembly 20 .
  • the lens 10 is mounted on the first driving part 30 .
  • the first driving part 30 can have a cylindrical first motor carrier, the first motor carrier can be used as a movable part of the first driving part, and the lens is mounted on the inner side of the first motor carrier.
  • the first driving part also has a stationary part, or a base part.
  • the base portion may be implemented as a motor housing.
  • the motor housing may include a base and a cover.
  • the base has a light hole.
  • the movable part is movably connected with the base part.
  • the driving element may be a coil magnet combination, which may be installed between the movable part and the base part.
  • it can be mounted between the first motor carrier and the motor housing.
  • the first driving part in this embodiment can directly adopt the common structure of the optical anti-shake motor in the prior art.
  • the second driving part 40 can be supported and fixed on the bottom surface of the first driving part 30 .
  • the second driving part 40 may also include a base part and a movable part. Wherein the base part is directly connected with the first driving part.
  • the movable part is located below the base part and is movably connected with the base part.
  • the photosensitive assembly 20 includes a circuit board 23 , a photosensitive chip 21 mounted on the surface of the circuit board, and a mirror base 22 surrounding the photosensitive chip 21 .
  • the bottom of the mirror base 22 can be installed on the surface of the circuit board 23 , and the top surface of the mirror base 22 can be fixed on the movable part of the second driving part 40 .
  • the center of the lens holder 22 has a light-passing hole, and a filter 24 is installed on the lens holder 22 (the filter 24 can also be regarded as an integral part of the photosensitive assembly 20 ).
  • the photosensitive assembly 20 can translate relative to the base part in the x and y directions or rotate on the xoy plane.
  • the base part of the first drive part 30 is sometimes referred to as the first base part
  • the base part of the second drive part 40 is called the second base part
  • the movable part of the first drive part 30 is called the first base part.
  • the first movable portion the movable portion of the second driving portion 40 is referred to as a second movable portion.
  • FIG. 3 shows a schematic cross-sectional view of a camera module with an anti-shake function according to another embodiment of the present application.
  • the camera module includes a first driving part 30 , a lens 10 , a second driving part 40 and a photosensitive assembly 20 .
  • the lens 10 is mounted on the first driving part 30 .
  • the structures and assembling methods of the first driving part 30 and the lens 10 may be the same as those of the previous embodiment shown in FIG. 2 , and will not be repeated here.
  • the second driving part 40 is located inside the photosensitive assembly 20 .
  • the photosensitive component 20 includes a circuit board 23 , a lens holder 22 , a filter 24 , and a photosensitive chip 21 .
  • the bottom of the mirror base 22 can be installed on the surface of the circuit board 23 , and the top surface of the mirror base 22 can be fixed on the base of the first driving part 30 .
  • the center of the lens holder 22 has a light-passing hole, and a filter 24 is mounted on the lens holder 22 .
  • the lens holder 22 , the filter 24 and the circuit board 23 can form a cavity, and the photosensitive chip 21 is located in the cavity 25 .
  • the second driving part 40 may also be located in the cavity 25 .
  • the base portion of the second driving portion 40 may be mounted on the surface of the circuit board 23 , and the movable portion of the second driving portion 40 is movably connected to the base portion.
  • the photosensitive chip 21 is mounted on the surface of the movable part. In this way, the photosensitive chip 21 can translate relative to the base part in the x and y directions or rotate on the xoy plane under the driving of the movable part of the second driving part 40 .
  • FIG. 4 is a schematic diagram showing the relationship between the moving distance of the lens and the photosensitive chip and the inclination angle of the module in four different situations in the present application.
  • the position A in the figure represents the combination of the moving distance of the lens and the photosensitive chip for compensating for the shaking angle a of the camera module.
  • the moving distance of the lens in the figure is b
  • the moving distance of the photosensitive chip (hereinafter sometimes referred to as the chip)
  • the moving distance of the lens or chip can be equivalent to the angle of the image plane deviating from the optical axis during optical imaging.
  • the translation distance of the lens in the xoy plane is b
  • it causes an arithmetic relationship between the image plane offset angle ⁇ 1 and the image distance.
  • the image distance is different under different shooting distances.
  • the image distance is replaced by the image square focal length.
  • the photosensitive chip moves at a distance c on the xoy plane
  • the moving distances of the lens and the photosensitive chip may be set to be unequal, for example, the moving distance of the lens may be greater than the moving distance of the photosensitive chip, that is, b>c.
  • the second driving part can select a driver with a smaller size (eg, a mems driver, etc., and the movable stroke of such a driver is usually relatively small), so as to help the overall miniaturization of the camera module.
  • the compensation effect within the range is uniform, and it is also beneficial to reduce the design difficulty of the driving logic module of the anti-shake system of the camera module.
  • an anti-shake threshold can be set. For example, for the jitter angle a that needs to be compensated, a threshold K can be set.
  • the anti-shake angle corresponding to the maximum travel b max of the lens movement may be smaller than the maximum distance of the photosensitive chip.
  • the anti-shake system of the camera module can have a faster response speed.
  • the lens In high-end lenses, the lens often has a large number of lenses. For example, the number of lenses in the rear main camera lens in a smartphone can reach 8. In order to further improve the image quality, some lenses also use glass lenses. These all result in the lens being heavier.
  • the photosensitive chip or photosensitive assembly is relatively light in weight, and can reach a preset position with a small driving force. Therefore, in the solution of this embodiment, the advantages of the photosensitive chip or photosensitive assembly being relatively close in weight and relatively fast moving can be better utilized, and the response speed of the anti-shake system of the camera module can be effectively improved.
  • the fixed ratio of the moving distance of the lens to the moving distance of the photosensitive chip may be based on the weight of the lens, the driving force of the first driving part, the weight of the photosensitive chip (or the photosensitive component), Factors such as the driving force of the second driving part are set, and an appropriate fixed ratio can be set, so that the time for the lens and the photosensitive chip to move to their respective anti-shake target positions is basically the same, so as to obtain a better anti-shake effect.
  • the weight of the lens and the driving force of the first driving part can basically determine the moving speed of the lens
  • the weight of the photosensitive chip (or photosensitive component) and the driving force of the second driving part can basically determine the moving speed of the photosensitive chip.
  • the moving speed of the photosensitive chip is lower than the moving speed of the photosensitive chip (for example, when the weight of the lens is large), when the fixed ratio is set, the moving distance of the photosensitive chip can occupy a larger proportion.
  • the fast feature makes the photosensitive chip move a longer distance, so that the time for the lens and the photosensitive chip to move to their respective anti-shake target positions is basically the same.
  • the first driving part may adopt a driving element with a large driving force and a suspension system with a large stroke.
  • the first driving part may be driven by an SMA (shape memory alloy) element.
  • SMA shape memory alloy
  • the SMA element can provide a larger driving force with a smaller occupied space, so the first driving part can be designed to be more compact, which is beneficial to the miniaturization of the camera module.
  • FIG. 5 shows a schematic cross-sectional view of a camera module in an embodiment of the present application.
  • the base part 41 of the second driving part 40 is fixed with the base part (not shown in FIG. 5 ) of the first driving part 30 .
  • the lens 10 may be mounted on a movable part of the first driving part 30 (eg, a first motor carrier, not specifically shown in FIG. 5 ).
  • the photosensitive component 20 includes a circuit board 23 , a photosensitive chip 21 , a lens holder 22 , a filter 24 and the like.
  • the photosensitive assembly 20 may be mounted on the movable part 42 of the second driving part 40 .
  • the bottom surface of the moving part 42 can bear against the top surface of the lens holder 22 of the photosensitive assembly 20 .
  • the base part 41 and the movable part 42 can be elastically connected by a suspension system.
  • the suspension system allows the movable portion 42 to translate relative to the base portion 41 in the xoy plane.
  • the suspension system can be a ball system, which has the advantage that in the z direction, the movable part 42 and the base part 41 are in contact with the balls, and the movable part 42 only moves in the xoy plane, but in the direction of the optical axis
  • the movement of the camera module can be prevented by the ball between the movable part 42 and the base part 41, so as to avoid affecting the focus of the camera module.
  • the suspension system may include an elastic element (such as a spring) through which the fixed part and the movable part are connected, which allows the movable part to be in the xoy plane relative to the base part Translates, but prevents movement of the movable part relative to the base part outside the xoy plane.
  • an elastic element such as a spring
  • the advantage of arranging the elastic element is that the elastic element can provide an initial force between the base part and the movable part, and the initial force can control the movement of the movable part in cooperation with the driving force of the driving element. distance or maintain its position without additionally providing a driving element to provide a conjugate driving force to control the position of the movable part.
  • the movable part can move freely relative to the base part in the xoy direction without the driving force provided by the driving element, so it is often necessary to provide at least a pair of mutually opposite driving forces to control the movable part The part remains in its original position.
  • anti-shake can be achieved by driving the entire photosensitive assembly 20 to move.
  • the circuit board 23, the photosensitive chip 21, the lens holder 22, and the optical filter 24 are packaged as a whole.
  • the circuit board 23, the lens holder 22, and the optical filter 24 form a closed space.
  • the photosensitive chip 21 is accommodated in the closed space, which improves the The closedness of the photosensitive assembly 20 ensures that the imaging of the photosensitive chip 21 is not affected by dust during the production or use of the camera module.
  • the back of the circuit board can directly support a terminal device (that is, an electronic device equipped with the camera module, such as a mobile phone), specifically In other words, the back of the circuit board 23 can bear on the main board of the terminal device or other bearing members 90 .
  • a terminal device that is, an electronic device equipped with the camera module, such as a mobile phone
  • the back of the circuit board 23 can bear on the main board of the terminal device or other bearing members 90 .
  • the movable part 42 is connected to the photosensitive assembly 20 and the base part 41 is connected to the first driving part 30 in this embodiment, it can be understood that the movements of the movable part 42 and the base part 41 are relative.
  • the moving direction is opposite means that the moving direction of the movable part of the first driving part relative to its base part is opposite to the moving direction of the movable part of the second driving part relative to its base part.
  • FIG. 6 shows a schematic cross-sectional view of a camera module according to another embodiment of the present application.
  • a rear shell 49 is added below the second driving part 40 , and the rear shell 49 is connected to the base part 41 of the second driving part 40 and forms an accommodating cavity for the second driving part 40 .
  • Both the movable part 42 of the driving part 40 and the photosensitive assembly 20 are accommodated in the accommodating cavity.
  • the rear case 49 is directly supported on the terminal device. Since the rear case 49 is connected to the terminal device, the second driving part 40 and the base part of the first driving part 30, during the anti-shake process, the terminal device is used as a reference, and the first driving part 30 and the second driving part 40 are The movable part drives the lens 10 and the photosensitive assembly 20 to move in opposite directions at the same time. Further, in this embodiment, the movable part 42 of the second driving part 40 is directly bonded to the upper end surface of the photosensitive assembly 20, so that the filter 24 can be separated from the external space, so as to prevent the movable part 42 from being opposite to each other. The debris generated by friction or collision during the movement of the base portion 41 directly falls on the surface of the color filter 24 .
  • FIG. 7 shows a schematic cross-sectional view of a camera module in yet another embodiment of the present application.
  • the first driving part 30 is implemented to be suitable for driving the lens 10 to move in the direction of the optical axis to realize the focusing function, and also suitable for driving the lens 10 to move in the xoy plane to realize the anti-shake function.
  • the first driving part 30 includes at least two carriers, namely a first carrier 31 and a second carrier 32 , the lens 10 is supported on the first carrier 31 , and a space between the first carrier 31 and the second carrier 32 is provided. Suspension system, a suspension system is provided between the second carrier 32 and the casing 33 of the first driving part 30 .
  • the suspension system between the first carrier 31 and the second carrier 32 (ie the first suspension system) is set as a ball system
  • the suspension system between the second carrier 32 and the housing 33 ie the second suspension system
  • the second suspension system is Suspension systems based on elastic elements such as shrapnel.
  • the second suspension system is arranged outside the first suspension system, the first suspension system allows the lens 10 and the first carrier 31 to translate in the xoy plane to realize the anti-shake function, the second suspension system allows the lens 10, the first carrier 31 to translate in the xoy plane
  • the carrier 31 and the second carrier 32 are integrally moved in the optical axis direction to realize the focusing function.
  • the second suspension system may also be arranged inside the first suspension system.
  • the second suspension system can also be arranged below the first suspension system.
  • the suspension system refers to a system in which two components are movably connected, and the relative movement degrees of freedom (ie, movement directions) of the two components are limited to a certain extent.
  • the two movably connected parts may be referred to as the base part and the movable part, respectively.
  • suspension systems are used in conjunction with drive elements such as SMA elements or coil magnet combinations. Wherein, a driving force is provided by the driving element, and under the action of the driving force, the movable part moves relative to the base part in the movement direction defined by the suspension system.
  • FIG. 8 shows a schematic cross-sectional view of a camera module in yet another embodiment of the present application.
  • the movable portion of the second driving portion 40 in this embodiment may be provided with an extending arm 42 a extending downward, and the extending arm 42 a is bonded to the circuit board 23 of the photosensitive assembly 20 .
  • the extension arm 42a can be provided with an FPC board 42b, and the FPC board 42b can be directly welded to the circuit board 23, so that the driving element mounted on the movable part and the circuit board 23 are electrically connected.
  • This embodiment can prevent the glue from flowing onto the filter when the photosensitive component 20 is bonded to the movable part, thereby affecting the imaging.
  • there is a gap between the upper end surface (ie, the top end) of the photosensitive element 20 and the second driving part 40 which can prevent the color filter from being scratched or broken.
  • FIG. 9a shows a schematic perspective view of the second driving part in an embodiment of the present application
  • FIG. 9b shows a perspective exploded schematic view of the second driving part in an embodiment of the present application
  • the movable part 42 of the second driving part 40 and the center of the base part 41 both have a light-passing hole, and the light passing through the lens enters the photosensitive chip through the light-passing hole and forms an image.
  • there are preferably four balls 80 which are respectively disposed at four corners of the second driving portion 40 (referring to the four corner positions in a plan view).
  • FIG. 10a shows a schematic cross-sectional view of the second driving part and the photosensitive assembly in an embodiment of the present application.
  • the second driving part 40 includes a movable part 42 and a base part 41, wherein the base part 41 includes a base 41a and a cover 41b.
  • the cover 41b includes a side wall 41c extending downward from the base 41a to surround the movable portion 42 and a bearing platform 41d extending horizontally inward from the side wall 41c.
  • the top of the side wall 41c is connected to the base 41a, and the lower surface of the edge region 42a of the movable portion 42 can bear against the upper surface of the bearing platform 41d.
  • the balls 80 and the edge region 42a of the movable portion 42 are sandwiched between the base 41a and the bearing platform 41d of the cover 41b, which ensures that the movable portion 42 and the base portion 41 are not in the optical axis direction (ie, the z-axis direction). relative movement.
  • the second driving part 40 only allows the movable part 42 to translate relative to the base part 41 in the xoy plane. More specifically, at least one accommodating space is provided between the base 41a and the cover 41b, the accommodating space is provided with balls 80, and the movable portion 42 and the base 41a are in close contact with the balls 80 respectively, thereby ensuring that the movable portion 42 and the base portion 41 does not produce relative movement in the optical axis direction.
  • the movable portion 42 may include a main body portion 42b and an edge region 42a, and the thickness of the edge region 42a may be smaller than the thickness of the main body portion 42b.
  • the lower surface (also referred to as the lower end surface) of the main body portion 42b may be lower than the lower surface (also referred to as the lower end surface) of the cover 41b, so as to ensure that the photosensitive assembly 20 is not attached to the movable portion 42 after it is attached.
  • the cover 41b will be contacted to prevent the photosensitive assembly 20 from touching or rubbing the cover during the anti-shake movement.
  • the upper surface of the base portion 41 may have a stepped structure, and the stepped structure may include a first stepped surface 41e located on the outer side and a second stepped surface 41e located on the inner side.
  • the heights of the stepped surface 41f and the second stepped surface 41f are lower than the height of the first stepped surface 41e, thereby providing a large axial (ie, z-axis direction) movement space for the focusing of the camera module.
  • the first driving portion can be mounted on the first stepped surface 41 e of the base portion 41 of the second driving portion 40 .
  • the upper surface of the edge region 42a of the movable part 42 may form a groove, the groove can accommodate the balls 80 and restrict the movement of the balls 80 in the grooves, and also can rub the balls 80 with the movable part 42 or the base part 41. The resulting debris remains in the grooves. Also, since the balls 80 can be placed in the grooves, the movable portion 42, the base 41a of the base portion 41 and the cover 41b can be assembled more easily. In another embodiment, the boss located on the outer side of the groove can be eliminated, and this design can reduce the lateral dimension of the second driving portion, which is beneficial to the miniaturization of the camera module.
  • the groove actually degenerates into a concave step at this time, the outer step surface of the concave step is lower than the inner step surface, and the concave step is common with the side wall of the cover and the base.
  • An accommodating cavity for accommodating the balls is formed.
  • a plurality of grooves may be provided on the edge area of the movable portion, and the number of the grooves may match the number of the balls.
  • Each of the balls is respectively accommodated in a corresponding groove.
  • the bottom surface of the groove can be flat, which can ensure that the movable part does not tilt during translation, and at the same time, only a single layer of balls can realize the relative movement between the movable part and the base part on three axes in the xoy plane.
  • a base groove may also be provided at a position of the base corresponding to the groove of the movable part. This design can reduce the thickness of the second driving part when the diameter of the balls is constant.
  • the bottom surface of the groove or the bottom surface of the concave step (referring to the outer step surface of the concave step) is a plane, which can allow the movable part to rotate relative to the base part in the xoy plane, that is, rotate around the z-axis.
  • the direction of rotation around the z-axis may be referred to as the Rz direction, and may also be referred to as the Rz-axis rotation.
  • the photosensitive chip can move in three directions of x, y, and Rz to achieve anti-shake, so it has better anti-shake capability.
  • the above-mentioned relative movement on the three axes in the xoy plane refers to the movement in the three directions of x, y, and Rz.
  • Fig. 10b shows a schematic cross-sectional view of the second driving part in which the balls are arranged on the lower side of the movable part according to a modified embodiment of the present application.
  • the balls 80 are located between the bearing base 41 d of the cover 41 b and the movable portion 42 .
  • the edge region 42 a and/or the bearing platform 41 d of the movable part 42 may be provided with grooves, and the bottom surface of the grooves may be set to be flat, thereby allowing the movable part 42 to be only in the position relative to the base part 41 . Moves in the xoy plane and does not tilt when moving in the xoy plane.
  • Fig. 10c shows a schematic cross-sectional view of a second driving part with two layers of balls in a modified embodiment of the present application.
  • two layers of balls 81 and 82 are provided.
  • a layer of balls 81 is provided between the base 41 a and the movable portion 42
  • a layer of balls 82 is provided between the movable portion 42 and the support base 41 d of the cover 41 b.
  • a layer of balls 82 is added between the movable portion 42 and the bearing platform 41d, so the movable portion 42 will not directly contact the bearing platform during the anti-shake movement. 41d friction, reducing debris generation.
  • the resistance of the movable part 42 when moving can be reduced.
  • FIG. 11a shows a schematic cross-sectional view of the second driving part in an embodiment of the present application.
  • an inwardly recessed engaging groove 42c is provided on the outer side surface of the movable portion 42 , and the bearing platform 41d of the cover 41b of the base portion 41 is fitted into the engaging groove 42c.
  • the lower end surface of the second driving part 40 can have a larger area, and when the mirror base 22 is attached to the movable part 42, the glue can be arranged on the outer area of the mirror base 22, so that the glue can be kept as far away from the filter as possible.
  • the movable part 42 may be of a separate type.
  • the movable part 42 may include a first movable part 43 and a second movable part second member 44
  • the movable part 42 may include a second movable part. 44 and/or the side surface of the first member 43 of the movable part is inwardly recessed to form the locking groove 42c.
  • FIG. 11b shows an assembly schematic diagram of the second driving part in an embodiment of the present application. Referring to FIGS.
  • the first movable part 43 , the base part 41 and the ball 80 can be assembled first, and then the movable part second member 44 can be attached on the lower end surface of the first member 43 of the movable portion.
  • FIG. 11c shows a schematic cross-sectional view of the second driving part in another embodiment of the present application.
  • the movable portion 42 may be integrally formed, that is, the locking groove 42c is directly formed when the movable portion 42 is formed.
  • the cover 41b may be of a separate type. Referring to FIG. 11c
  • the cover 41b may include two separate cover members 41b1 and 41b2, and the two separate cover members 41b1 and 41b2 can be inserted into the card slots 42c of the movable portion 42 laterally from the left and right sides, respectively, to fix The axial (ie, z-axis direction) positions of the movable part 42 and the base part 41 complete the packaging of the second driving part 40 .
  • FIG. 12 shows a schematic cross-sectional view of the second driving part in yet another embodiment of the present application.
  • an inwardly recessed card slot 42c is provided on the outer side surface of the movable portion 42 , and the bearing platform 41d of the base portion 41 and the ball 80 are both arranged in the card slot.
  • the movable part is bonded to the upper end surface of the lens base of the photosensitive assembly, so as to realize the connection between the movable part and the photosensitive assembly.
  • the movable part can also be configured to have an extension arm extending downward, and the circuit board of the photosensitive assembly is bonded by the extension arm, so as to realize the connection between the movable part and the photosensitive assembly.
  • the mirror holder can be selected as a small mirror holder 22a with a lower height, and the small mirror holder 22a is only used to install the photosensitive chip 24.
  • Fig. 13a shows a schematic bottom view of the movable part of the second driving part in an embodiment of the present application.
  • the glue 50 is disposed between the lower end surface of the movable portion 42 and the upper end surface of the mirror base of the photosensitive component.
  • the arrangement of the glue 50 can avoid the four corner areas, so as to prevent the glue 50 from leaking into the gaps of the ball accommodating structures located at the four corners, which will negatively affect the anti-shake movement.
  • the edge of the movable portion 42 can be prevented from being too close to the filter, thereby reducing the risk of the glue contaminating the filter.
  • Fig. 13b shows a schematic bottom view of the movable part of the second driving part in another embodiment of the present application.
  • the glue 50 can be arranged in a closed circle along the edge region of the lower end surface of the movable part 42. This design can increase the sealing of the photosensitive element and prevent dust from falling on the color filter.
  • the above embodiments can be combined with each other.
  • the design of the card slot shown in FIG. 11a, FIG. 11b and FIG. 12 can be combined with the double-layer ball design.
  • the groove/concave step can be provided on the bearing platform or on the movable part.
  • FIG. 14 shows the installation position of the driving element of the second driving part in a bottom view angle in an embodiment of the present application.
  • Fig. 15a shows a schematic cross-sectional view of a second driving part including driving elements in an embodiment of the present application.
  • the driving element of the second driving part 40 is a combination of coil magnets.
  • the magnet 61 may be disposed on the edge area of the base portion 41
  • the coil 62 may be disposed on the edge area 42 a of the movable portion 42 .
  • the coil 62 can pass through the FPC board (soft board) provided on the movable part 42 , and the FPC board and the circuit board 23 of the photosensitive component 20 can be welded and conducted. Since the movable part 42 and the photosensitive assembly 20 move synchronously during the anti-shake process, welding the coil 62 to the circuit board 23 through the FPC board can ensure that the wire or the welding part does not move relative to each other during the moving process, reducing the electric current at the welding place. Risk of connection failure or poor contact.
  • the magnet may be disposed on the base 41 a of the base portion 41 .
  • FIG. 15b shows a schematic cross-sectional view of a second driving part including driving elements in another embodiment of the present application.
  • the magnet 61 is disposed on the bearing platform 41 d of the cover 41 b of the base portion 41 .
  • FIG. 15c shows a schematic cross-sectional view of the second driving part including driving elements in another embodiment of the present application.
  • the coil 62 and the magnet 61 may be disposed on the side walls of the movable portion 42 and the base portion 41 . This design is beneficial to reduce the thickness of the second driving portion 40, thereby reducing the height of the camera module.
  • three pairs of coil magnets are provided, respectively referred to as the first pair of coil magnets 63 and the second pair of coil magnets 64 and the third coil magnet pair 65.
  • the first pair of coil magnets 63 and the second pair of coil magnets 64 are used to drive the translation of the movable portion 42 in the x-axis direction, that is, to provide a driving force in the x-axis direction.
  • the third coil magnet pair 65 is used to drive the translation of the movable portion 42 in the y-axis direction, that is, to provide a driving force in the y-axis direction.
  • the first pair of coil magnets 63 and the second pair of coil magnets 64 may be arranged along two opposite sides of the second driving part, and the two opposite sides may be referred to as the first The side 45 and the second side 46, the first side 45 and the second side 46 do not intersect.
  • the second coil magnet pair 64 may be arranged along the third side 47 of the second driving part, and the third side 47 intersects with both the first side 45 and the second side 46 .
  • the three coil-magnet pairs can realize both the x-axis translation and the y-axis translation, as well as the rotation on the xoy plane.
  • first coil magnet pair 63 and the second coil magnet pair 64 provide driving forces in opposite directions, a combined driving force for rotating the movable portion on the xoy plane can be generated.
  • the driving force for the rotation on the xoy plane is not unique.
  • first coil magnet pair 63 and the third coil magnet pair 65 work, it is also possible to generate a driving force that makes the movable part rotate on the xoy plane. Combined drive.
  • the positions of the first coil magnet pair and the second coil magnet pair may be staggered (that is, the arrangement positions of the first coil magnet pair and the second coil magnet pair may be asymmetrical with respect to the central axis of the second driving part), so as to The rotation of the movable part in the xoy plane (ie, the movement in the Rz direction) is realized by providing a driving force.
  • FIG. 16a shows a schematic cross-sectional view of a camera module in an embodiment of the present application.
  • the side wall of the rear case 49 may have a first through hole 49b, so that the flexible board (FPC) of the circuit board 23 can pass through, thereby realizing electrical connection with the main board or other components of the terminal device.
  • the center of the bottom plate 49c of the rear case 49 may have a second through hole 49d to facilitate the assembly of the camera module.
  • the process of assembling the camera module may include: firstly installing the lens 10 on the first driving part 30 , then attaching the second driving part 40 to the bottom of the first driving part 30 , and finally passing the photosensitive assembly 20 through the bottom of the rear case 49 .
  • the second through hole 49d is upwardly attached to the movable portion 42 of the second driving portion 40 .
  • FIG. 16b shows a schematic diagram of an assembly method of a camera module in an embodiment of the present application.
  • the photosensitive assembly 20 can be placed on the adjustment device 29, and the second through hole 49d at the bottom of the rear case 49 allows the adjustment device 29 to determine its preferred position and location of the photosensitive assembly 20 through an active calibration process. posture, and then bonded with the movable part 42 of the second driving part 40 by the glue 28 .
  • FIG. 16c shows a schematic cross-sectional view of a camera module in another embodiment of the present application.
  • the bottom of the rear case 49 is a complete bottom plate 49c, that is, the bottom plate 49c is not provided with a second through hole.
  • the second driving part 40 and the photosensitive assembly 20 can be attached together first A first assembly is formed, the first driving part 30 and the lens 10 are assembled together to form a second assembly, and then the relative positions of the first assembly and the second assembly are determined through an active calibration process (active calibration includes position and attitude).
  • active calibration includes position and attitude
  • the glue 27 for bonding the first assembly and the second assembly can be arranged on the first between the bottom surface of the driving part 30 and the top surface of the second driving part 40 .
  • FIG. 17 shows the arrangement of the camera module and its connection straps in an embodiment of the present application.
  • the camera module may include a first connection strip 26 a and a second connection strip 26 b , the first connection strip 26 a is disposed on the top area of the first driving part 30 and is electrically connected to the first driving part 30 , the second connecting belt 26b communicates with the circuit board 23 of the photosensitive assembly 20 .
  • the second connecting belt 26b may be provided with a plurality of bends to form a curved layered shape, so as to buffer the stress caused by the movement of the photosensitive assembly 20 .
  • the end of the second connecting strip 26b can be provided with a connector, the connector can be optionally fixed by pressing and electrically connected to the transfer column, and then the main board (or other components) of the terminal device can be connected through the transfer column 26c.
  • the end of the first connecting strip 26a can also be connected to a connector, the connector can be fixed by pressing and electrically connected to the transfer column 26c, and then the main board (or other components) of the terminal device can be connected through the transfer column 26c.
  • the conduction circuit of the first driving part 30 can be separated from the photosensitive component 20 and is not affected by the movement of the photosensitive component 20 .
  • the second connecting strip 26b and the transfer column 26c may be accommodated in the second housing 70, the first connecting strip 26a is located outside the second housing 70, and the top of the second housing 70 may have a third through hole 70a so that the first The connector of the connecting strip 26a protrudes into and is electrically connected to the second connecting strip 26b or the transfer column 26c.
  • the first driving part and the second driving part can constitute a driving structure for the optical actuator.
  • the driving structure the first driving part is suitable for installing the lens
  • the second driving part is suitable for installing the lens.
  • the lens and the photosensitive chip are configured to be driven simultaneously and move in opposite directions. For example, when the lens is driven to move in the positive direction of the x-axis, the photosensitive chip is driven to move in the negative direction of the x-axis; the lens is driven to move in the positive direction of the y-axis, and the photosensitive chip is driven to move in the negative direction of the y-axis; or the lens is driven to move in the negative direction of the y-axis.
  • the x-axis and y-axis move, and the photosensitive chip is driven to move in the opposite direction of the lens movement on the x-axis and y-axis.
  • the directions of the vector and the displacement vector of the photosensitive chip are opposite.
  • the lens and the photosensitive chip are configured to move at the same time, and the lens and the photosensitive chip move in opposite directions, which can achieve faster response and better anti-shake effect.
  • the anti-shake angle range of the camera module is usually limited by the suspension system and the driving system, and a relatively large compensation angle range cannot be achieved. In this embodiment, by simultaneously driving the lens and the photosensitive chip to move in opposite directions, the Large angle shake compensation.
  • the anti-shake stroke for short
  • this embodiment also has a better compensation effect for the tilting and shaking of the camera module.
  • the moving direction of the anti-shake movement in this embodiment can be limited in the xoy plane, and it is not necessary to tilt the optical axis of the lens or the photosensitive chip, thereby avoiding the problem of image blur caused by the anti-shake movement.
  • the circuit board of the photosensitive assembly usually includes a rigid circuit board body and a flexible connecting tape, one end of the flexible connecting tape is connected to the circuit board body, and the other end is connected and connected through a connector.
  • Motherboards or other components of electronic equipment In the prior art, the flexible connecting tape of the photosensitive assembly is usually drawn out from the side of the circuit board main body, and the flexible connecting tape is roughly parallel to the surface of the circuit board cylinder. In this arrangement, the flexible connecting belt will have a greater resistance to the movement of the circuit board body, which may increase the force required to drive the movement of the circuit board body, resulting in insufficient stroke for anti-shake compensation and a rapid response. decline.
  • a suspended circuit board is provided as a circuit board of a photosensitive assembly adapted to the second driving part, and this design method will help to overcome the above-mentioned defects caused by the connecting belt .
  • FIG. 18 shows a schematic perspective view of the assembled second driving part and the photosensitive assembly in an embodiment of the present application.
  • FIG. 19 shows an exploded schematic view of the second driving part and the photosensitive assembly in an embodiment of the present application.
  • FIG. 20 shows a schematic perspective view of a photosensitive assembly and a suspended circuit board used in an embodiment of the present application.
  • the photosensitive component 20 is connected to the movable part 42 of the second driving part 40 , so the circuit board main body 71 can be driven by the movable part 42 to move in the xoy move within the plane.
  • the circuit board 23 of this embodiment is designed to be a suspended structure.
  • the circuit board 23 includes a rigid circuit board body 71 and a flexible connecting strip 72
  • the connecting strip 72 may include a third connecting strip 72a and a fourth connecting strip 72b, the third connecting strip 72a and the fourth connecting strip 72a
  • the connection strips 72b may be drawn out from two opposite sides of the circuit board main body 71 (for convenience of description, the two opposite sides may be referred to as a first side 74a and a second side 74b) and bent upwards.
  • the bent third connecting strip 72a and the fourth connecting strip 72b can respectively form a suspension portion 75 .
  • the suspension portion 75 may be connected with the base portion of the second driving portion 40 (or the first driving portion 30 ) to form a suspension structure.
  • the suspending structure allows the base portion to suspend the circuit board main body 71 and various components mounted on the surface thereof (ie, suspend the photosensitive assembly 20 ) through the bent portion 73 of the flexible connecting belt 72 .
  • the suspension portion 75 may have a through hole (a suspension hole 75a ), and the base portion 41 of the second driving portion 40 may have a corresponding hook 75b that hooks the The through holes of the suspension portion 75 are connected to the suspension portion 75 .
  • the connecting strip and the circuit board main body are usually on the same plane, and in this case, the deflection of the connecting strip relative to the circuit board main body on the same plane will generate a greater resistance.
  • the connecting position of the connecting strip 72 and the circuit board main body 71 is provided with a bending portion 73 formed by bending upward.
  • the connecting strip 72 is formed on the xoy plane (can be regarded as a horizontal plane) relative to the circuit board main body 71 resistance is relatively small.
  • the third connection belt 72a and the fourth connection belt 72b may extend along the periphery of the circuit board main body 71 and the photosensitive assembly 20, so as to connect the Belt 72 surrounds the photosensitive assembly on at least three sides. And, the third connection strip 72a and the fourth connection strip 72b are connected to each other and are electrically connected.
  • the photosensitive assembly 20 has a first side surface 74a and a second side surface 74b which are in the same position as the circuit board main body 71 .
  • the first side surface 74a and the second side surface 74b are arranged opposite to each other (ie, they do not intersect with each other), and the third side surface 74c of the photosensitive assembly 20 intersects both the first side surface 74a and the second side surface 74b.
  • the connecting belt 72 may surround the first side 74a , the second side 74b and the third side 74c of the photosensitive assembly 20 .
  • the third connecting tape 72a is drawn out from the first side 74a of the circuit board main body 71 and bent upward to form the bending portion 73, and then extends along the first side 74a of the photosensitive assembly 20, and extends at the corners. It is bent in the horizontal direction and continues to extend along the third side surface 74c.
  • the fourth connecting strip 72b is drawn out from the second side 74b of the circuit board main body 71 and bent upward to form another bending portion 73, and then extends along the second side 74b of the photosensitive assembly 20, and extends at the corners. It is bent horizontally at the point and continues to extend along the third side surface 74c.
  • the third connecting strip 72 a and the fourth connecting strip 72 b can be joined and communicated with each other at the third side surface 74 c , so as to form a complete connecting strip 72 .
  • the three connecting strap sections located on the first side 74a, the second side 74b and the third side 74c may respectively have at least one overhang 75, each of which has at least one through hole for connecting with all of the overhangs 75.
  • the base part 41 of the second driving part 40 (or the first driving part 30 ) is connected.
  • the suspending portion 75 can suspend the circuit board body 71 through the bending portions 73 located on opposite sides of the circuit board body 71 , so that when the circuit board body 71 is driven to move by the second driving portion 40 , The bending portion 73 and the connecting strip 72 can be bent and deformed to meet the movement stroke of the circuit board main body 71 .
  • the suspension portions 73 of the three connecting belt segments located on the first side 74a, the second side 74b and the third side 74c may all be made of rigid substrates reinforcement.
  • a rigid substrate may be attached to a partial area of the flexible connecting tape to form the suspension portion 73 .
  • other areas of the flexible connecting tape are still in a flexible state so as to be able to be bent and deformed to meet the movement stroke of the circuit board main body 71 .
  • the connecting band section located on the third side surface 74c may have a rigid suspension portion 75c, and the suspension portion 75c may lead out a fifth connecting band 76, the first The five connecting strips 76 can be used to connect to the motherboard of an electronic device (eg, a mobile phone).
  • an electronic device eg, a mobile phone
  • the suspension portion may also be connected to an outer bracket (not shown in the figure), and the outer bracket is directly or indirectly fixed to the base portion of the second driving portion together.
  • the suspension portion may be fixed with the base portion of the second driving portion through other intermediaries.
  • the intermediary may be directly or indirectly fixed to the base portion of the second driving portion.
  • the intermediary has hooks to hook the suspension portion, or the intermediary is bonded to the suspension portion.
  • the intermediary may be the outer bracket, the base part of the first driving part, or other intermediaries.
  • the suspension portion may not have the through hole.
  • the suspension portion may be fixed with the base portion of the second driving portion (or with the base portion of the first driving portion or the outer bracket) by means of bonding.
  • the third connecting belt and the fourth connecting belt may be flexible and rigid boards, wherein the part forming the suspension portion may be a rigid board, and the connecting Both the part of the suspension part and the bent part formed by bending upward can be made of a flexible board. Since the suspending portion is directly formed by a rigid board, in this embodiment, the suspending portion can no longer be attached to a rigid substrate for reinforcement.
  • the circuit board main body, the third connection strip, and the fourth connection strip may be composed of a complete rigid-flex board.
  • the circuit board may further have a fixing portion 76 a for fixing the fifth connecting strip 76 , and this design can avoid
  • the circuit board main body 71 , the third connection strip 72 a and the fourth connection strip 72 b are affected by external factors.
  • Fig. 21a shows a schematic front view of the suspended circuit board in an embodiment of the present application after deployment
  • Fig. 21b shows a schematic rear view of the suspended circuit board in an embodiment of the present application after deployment.
  • the circuit board 23 may be composed of a rigid-flex board.
  • the sections of the third connecting strip 72a and the fourth connecting strip 72b located on the third side surface 74c can be fastened to each other through connectors 78 and 79 (refer to FIG. 20 in combination), so that the first The three connecting strips 72a and the fourth connecting strip 72b are connected and fixed and further realize electrical connection.
  • Both the third connection strip 72a and the fourth connection strip 72b are provided with circuits, so as to lead out the lines in the circuit board main body 71, and then connect the external circuit through the fifth connection strip 76 and its connector 77. Since the third connecting strip 72a and the fourth connecting strip 72b can respectively lead out a part of the lines through the corresponding bending parts 73 formed by bending upward, the lines required to be drawn out from each bending part 73 can be reduced, In this way, the width of each bending portion 73 can be reduced, so as to further reduce the resistance formed by the flexible connecting belt 72 to the movement of the circuit board main body 71 , thereby reducing the driving force required to be provided by the second driving portion 40 .
  • the circuit of the circuit board body may also pass through only one of the bending parts (for example, the upwardly bent bending part of the third connection strip or the upwardly bent bending part of the fourth connection strip). Bending part) lead out.
  • the bases of the second driving parts are all located between the lens and the photosensitive component, but the present application is not limited to this.
  • the base of the second driving part may be located below the photosensitive assembly. 22-36 and a series of embodiments, the solution in which the base of the second driving part is located below the photosensitive assembly will be further described below.
  • FIG. 22 shows a schematic cross-sectional view of a camera module with an anti-shake function according to an embodiment of the present application.
  • the camera module includes a lens 10 , a photosensitive assembly 20 , a first driving part 30 and a second driving part 40 .
  • the photosensitive component 20 includes a photosensitive chip 21 .
  • the first driving part 30 is configured to drive the lens 10 to move in the x and y directions
  • the second driving part 40 is configured to drive the photosensitive chip 21 to move in the x and y directions.
  • the x and y directions are perpendicular to each other, and both are parallel to the photosensitive surface of the photosensitive element 20 .
  • FIG. 22 also shows a three-dimensional Cartesian coordinate system constructed based on the x, y, and z directions.
  • the optical anti-shake of the camera module is realized by simultaneously driving the lens 10 and the photosensitive chip 21 to move in opposite directions by the control module.
  • the lens 1 and the photosensitive chip 21 are configured to be driven at the same time and move in opposite directions.
  • the photosensitive chip 21 when the lens 10 is driven to move in the positive direction of the x-axis, the photosensitive chip 21 is driven to move in the negative direction of the x-axis; If it is driven to move in the positive direction of the y-axis, the photosensitive chip 21 is driven to move in the negative direction of the y-axis; or the lens 10 is driven to move in the x-axis and y-axis, and the photosensitive chip 21 is driven in the x-axis and y-axis to move in the same direction as the lens. 10 moves in the opposite direction.
  • the camera module usually includes a position sensor, and the position sensor is used to detect the shaking of the camera module or a terminal device (ie, an electronic device equipped with the camera module, such as a mobile phone).
  • the position sensor sends a signal to the camera module, and drives the lens 10 and the photosensitive chip 21 to move accordingly to compensate for the jitter, so as to achieve the purpose of optical anti-shake.
  • the lens 10 and the photosensitive chip 21 are configured to move at the same time, and the lens 10 and the photosensitive chip 21 move in opposite directions, which can achieve faster response and better anti-shake effect.
  • the anti-shake angle range of the camera module is usually limited by the suspension system and the driving system, and a relatively large compensation angle range cannot be achieved.
  • the lens 10 and the photosensitive chip 21 are driven to move in opposite directions at the same time. , to achieve large-angle shake compensation.
  • this embodiment by simultaneously driving the lens 10 or the photosensitive chip 21 to move in opposite directions, compared with the solution of only driving the lens 10 to move, there is a larger relative movement stroke between the lens 10 and the photosensitive chip 21 (for For convenience of description, this relative movement stroke may be referred to as the anti-shake stroke for short), which can have a better compensation effect.
  • this embodiment also has a better compensation effect for the tilting and shaking of the camera module.
  • the moving direction of the anti-shake movement in this embodiment can be limited in the xoy plane, and it is not necessary to tilt the optical axis of the lens 10 or the photosensitive chip 21, thereby avoiding the problem of image blur caused by the anti-shake movement.
  • the photosensitive chip 21 can also be driven by the second driving part 40 to rotate in the xoy plane, so as to compensate for the shake in the rotation direction of the camera module.
  • the camera module includes a first driving part 30 , a lens 10 , a second driving part 40 and a photosensitive assembly 20 .
  • the lens 10 is mounted on the first driving part 30 .
  • the first driving part 30 can have a cylindrical first motor carrier, the first motor carrier can be used as a movable part of the first driving part, and the lens is mounted on the inner side of the first motor carrier.
  • the first driving part also has a stationary part, or a base part.
  • the base portion may be implemented as a motor housing.
  • the motor housing may include a base and a cover.
  • the base has a light hole.
  • the movable part is movably connected with the base part.
  • the driving element may be a coil magnet combination, which may be installed between the movable part and the base part.
  • it can be mounted between the first motor carrier and the motor housing.
  • the first driving part in this embodiment can directly adopt the common structure of the optical anti-shake motor in the prior art.
  • the second driving part 40 may also include a base part and a movable part.
  • the base part may include a base plate and a base part side wall, the bottom part of the base part side wall is connected with the base plate, and the top part is connected with the base part of the first driving part.
  • the base part of the first drive part 30 is sometimes referred to as the first base part
  • the base part of the second drive part 40 is called the second base part
  • the movable part of the first drive part 30 is called the first base part.
  • the first movable portion the movable portion of the second driving portion 40 is referred to as a second movable portion.
  • the second movable portion is located above the base plate of the second base portion, and is movably connected with the second base portion through a ball structure.
  • the photosensitive assembly 20 includes a circuit board 23 , a photosensitive chip 21 mounted on the surface of the circuit board, and a mirror base 22 surrounding the photosensitive chip 21 .
  • the bottom of the mirror base 22 can be mounted on the surface of the circuit board 23 .
  • the center of the lens holder 22 has a light-passing hole, and a filter 24 is installed on the lens holder 22 (the filter 24 can also be regarded as a component of the photosensitive assembly 20).
  • the bottom surface of the circuit board may be fixed (eg, bonded) to the upper surface of the second movable portion. In this way, driven by the second movable portion, the photosensitive assembly 20 can translate relative to the base portion in the x and y directions or rotate on the xoy plane.
  • the second movable part can be arranged on the back of the circuit board, the bases of the second movable part and the second base part can not be provided with light through holes, so that the same structural strength can be achieved.
  • the second movable part can be designed to be lighter and thinner, which is beneficial to the miniaturization of the camera module.
  • the following description will be given in conjunction with a comparative example.
  • FIG. 23 shows a schematic cross-sectional view of a comparative example of a camera module with anti-shake function according to another embodiment of the present application.
  • the camera module includes a first driving part 30 , a lens 10 , a second driving part 40 and a photosensitive assembly 20 .
  • the lens 10 is mounted on the first driving part 30 .
  • the structures and assembling methods of the first driving part 30 and the lens 10 may be the same as those of the previous embodiment shown in FIG. 22 , and will not be repeated here.
  • the difference between this comparative example and the previous embodiment is that the second driving part 40 is located between the lens 10 and the photosensitive component 20 .
  • the second base portion 41 can be directly fixed on the bottom surface of the first base portion, and the second movable portion 42 is located below the second base portion 41 and is movably connected with the second base portion 41, so that the second movable portion 42 It is movable relative to the second base part 41 on the xoy plane.
  • the photosensitive element 20 is installed below the second movable portion 42 . Wherein, the top surface of the mirror base 22 of the photosensitive assembly 20 is connected and fixed with the bottom surface of the second movable portion 42 , so that the photosensitive assembly 20 can be driven by the second movable portion 42 relative to the second movable portion 42 .
  • the base portion 41 translates in the x, y direction or rotates in the xoy plane.
  • the circuit board 23 of the photosensitive component 20 may be supported on the main board 90 of the electronic device (eg, mobile phone).
  • the filter 24 can be mounted on the lens holder 22 .
  • both the second base part 41 and the second movable part 42 are located on the imaging light path, both the second base part 41 and the second movable part 42 need to be provided with a light-through hole in the center so that light can pass through .
  • the thicknesses of the second base portion 41 and the second movable portion must be increased, which may lead to an increase in the height of the camera module.
  • the base of the second base portion 41 and the second movable portion 42 are both disposed on the back of the circuit board of the photosensitive assembly 20. Therefore, under the premise of the same structural strength, the first The thicknesses of the bases of the two base portions 41 and the second movable portion 42 can be reduced, thereby helping to reduce the height of the camera module and helping to achieve miniaturization of the camera module.
  • the second movable portion 42 in FIG. 22 is in the shape of a flat plate, and the bottom surface of the circuit board 23 of the photosensitive assembly 20 can be bonded to the upper surface of the second movable portion 42 .
  • Fig. 36 shows a schematic diagram of the connection between the photosensitive assembly and the second movable part in another embodiment of the present application.
  • the second movable part 42 may include a movable part bottom plate 42a and a movable part side wall 42b, and the movable part side wall 42b is upward from the edge region of the movable part bottom plate 42a formed by extension.
  • the photosensitive assembly 20 can be placed in a receiving groove formed by the movable part bottom plate 42a and the movable part side wall 42b.
  • the glue 91 can be arranged between the inner side of the side wall 42b of the movable part and the outer side of the photosensitive component 20, that is, in this embodiment, the second movable part 42 and the photosensitive component 20 are fixed by arranging glue on the side. together.
  • FIG. 24 shows a schematic cross-sectional view of a camera module in an embodiment of the present application.
  • the second base portion 41 of the second drive portion 40 is fixed to the first base portion of the first drive portion 30 (the first base portion may be composed of the casing 33 and the first base 34 ) together.
  • the lens 10 may be mounted on the first movable portion of the first driving portion 30 (eg, may be mounted on the first motor carrier 31 of the first movable portion).
  • the photosensitive component 20 includes a circuit board 23 , a photosensitive chip 21 , a lens holder 22 , a filter 24 and the like.
  • the photosensitive assembly 20 may be mounted on the second movable part 42 of the second driving part 40 .
  • the bottom surface of the moving part 42 can bear against the top surface of the lens holder 22 of the photosensitive assembly 20 .
  • the second base part 41 and the second movable part 42 can be elastically connected through a suspension system.
  • the suspension system allows the second movable part 42 to translate relative to the second base part 41 in the xoy plane.
  • the suspension system can be a ball system, the advantage of which is that in the z direction, the second movable part 42 and the second base part 41 are in contact with each other through balls, and the second movable part 42 only moves in the xoy plane, The movement in the optical axis direction (ie, the z-axis direction) can be blocked by the balls between the second movable part 42 and the second base part 41 , so as to avoid affecting the focus of the camera module.
  • the suspension system may include an elastic element (such as a spring) through which the fixed part and the movable part are connected, which allows the movable part to be in the xoy plane relative to the base part Translates, but prevents movement of the movable part relative to the base part outside the xoy plane.
  • an elastic element such as a spring
  • the advantage of arranging the elastic element is that the elastic element can provide an initial force between the base part and the movable part, and the initial force can control the movement of the movable part in cooperation with the driving force of the driving element. distance or maintain its position without additionally providing a driving element to provide a conjugate driving force to control the position of the movable part.
  • the movable part can move freely relative to the base part in the xoy direction without the driving force provided by the driving element, so it is often necessary to provide at least a pair of mutually opposite driving forces to control the movable part The part remains in its original position.
  • anti-shake can be achieved by driving the entire photosensitive assembly 20 to move.
  • the circuit board 23, the photosensitive chip 21, the lens holder 22, and the optical filter 24 are packaged as a whole.
  • the circuit board 23, the lens holder 22, and the optical filter 24 form a closed space.
  • the photosensitive chip 21 is accommodated in the closed space, which improves the The closedness of the photosensitive assembly 20 ensures that the imaging of the photosensitive chip 21 is not affected by dust during the production or use of the camera module.
  • the first driving part 30 is implemented to be adapted to drive the lens 10 to move in the direction of the optical axis to realize the focusing function, and also to drive the lens 10 to move in the xoy plane to achieve anti-shake function.
  • the first driving part 30 includes at least two carriers, namely a first carrier 31 and a second carrier 32 , the lens 10 is supported on the first carrier 31 , and a space between the first carrier 31 and the second carrier 32 is provided.
  • Suspension system a suspension system is provided between the second carrier 32 and the casing 33 of the first driving part 30 .
  • the suspension system between the first carrier 31 and the second carrier 32 (ie, the first suspension system) is set as a ball system
  • the suspension system between the second carrier 32 and the housing 33 ie, the second suspension system
  • the suspension system between the second carrier 32 and the housing 33 can be It is a ball structure (for example, the ball structure may include a vertical groove and a plurality of balls arranged in the vertical groove), or a suspension system based on elastic elements (such as spring sheets).
  • the bottom surface of the casing 33 can be mounted on the first base 34 , and the first base 34 and the casing 33 can jointly constitute the first base part of the first driving part 30 .
  • the second suspension system is arranged outside the first suspension system, the first suspension system allows the lens 10 and the first carrier 31 to translate in the xoy plane to realize the anti-shake function, the second suspension system allows the lens 10, the first carrier 31 to translate in the xoy plane
  • the carrier 31 and the second carrier 32 are integrally moved in the optical axis direction to realize the focusing function.
  • the second suspension system may also be arranged inside the first suspension system.
  • the second suspension system can also be arranged below the first suspension system.
  • the suspension system refers to a system in which two components are movably connected, and the relative movement degrees of freedom (ie, movement directions) of the two components are limited to a certain extent.
  • the two movably connected parts may be referred to as the base part and the movable part, respectively.
  • suspension systems are used in conjunction with drive elements such as SMA elements or coil magnet combinations.
  • a driving force is provided by the driving element, and under the action of the driving force, the movable part moves relative to the base part in the movement direction defined by the suspension system.
  • FIG. 25 shows a schematic perspective view of the second driving part in an embodiment of the present application.
  • FIG. 26 shows a schematic exploded perspective view of the second driving part in an embodiment of the present application.
  • FIG. 27 shows a schematic cross-sectional view of a camera module according to an embodiment of the present application, wherein a cross-section of the second driving part is shown.
  • the second driving part 40 includes a second base part 41 and a second movable part 42 .
  • the second base portion 41 is sometimes referred to as the base portion 41 for short, and the second movable portion 42 is referred to as the movable portion 42 for short, which will not be repeated hereinafter.
  • the base portion 41 includes a base 41a and a cover 41b.
  • the base 41a can be in the shape of a flat plate, so it can also be called a bottom plate
  • the cover 41b includes a cover side wall 41b1 and a self-cover side wall A bearing platform 41b2 formed by extending the top of 41b1 inward
  • the movable part 42 is located between the bearing platform 41b2 and the base 41a
  • the four corners of the base 41a can be provided with grooves 41a1, balls placed in the groove 41a1.
  • the bottom surface of the movable portion 42 is in contact with the balls and is supported by the balls 46 , thereby forming an active connection between the base portion 41 and the movable portion 42 .
  • the support base 41b2 and the base 41a can clamp the movable portion 42, thereby limiting the movement of the movable portion 42 in the z-axis direction.
  • the movement degrees of freedom of the movable part 42 relative to the base part 41 are limited to the xoy plane.
  • the movement degrees of freedom of the movable part 42 relative to the base part 41 may include x-axis translation, y-axis translation, and z-axis translation. Rotation of the axis (i.e. rotation in the xoy plane).
  • the grooves 41a1 are provided at the corresponding positions of the balls 46.
  • the balls 46 can be placed in the grooves 41a1 during the assembly process, so as to facilitate the assembly of the second driving part 40; on the other hand, the grooves 41a1 can be The maximum moving distance of the movable part 42 relative to the base part 41 is limited, so as to avoid collision during the relative movement of the movable part 42 and the base part 41 .
  • four grooves 41a1 may be provided on the upper surface of the base 41a of the base portion 41, and there are also four balls 46, which are respectively provided in the four corner areas of the second driving portion 40 (refer to FIG. 26 ).
  • the grooves and the balls may also be arranged at four sides of the second driving part.
  • the inner surface of the side wall of the base part 41 and the outer surface of the movable part 42 have a first gap 43 , and the first gap 43 is larger than
  • the maximum distance of the anti-shake movement of the movable part 42 (that is, the maximum stroke in one direction, where the one direction can be, for example, the positive x-axis direction, the negative x-axis direction, the positive direction of the y-axis, or the negative direction of the y-axis)
  • the first gap 43 Usually it can be larger than 200 ⁇ m.
  • the ball structure is used to realize the movable connection, which can reduce the movement resistance of the movable part 42, thereby reducing the driving force required to drive the movable part 42 to move, and then the movable part 42 can be designed to have a larger journey. Therefore, in some embodiments, the first gap 43 may be larger than 300 ⁇ m.
  • a second gap 44 may also be formed between the lower surface of the bearing platform 41b2 and the movable part 42 .
  • the two gaps 44 may be smaller than 10 ⁇ m to reduce friction between the movable portion 42 and the bearing platform 41b2. This reduces frictional resistance and avoids friction debris.
  • the bearing platform 41b2 can still limit the movable portion 42 in the z-axis direction, so as to prevent the movement of the movable portion 42 from deviating from the xoy plane.
  • a third gap 45 is formed between the lower surface of the movable part 42 and the upper surface of the base 41a.
  • the diameter of the ball is greater than the depth of the groove in which the ball is accommodated.
  • the third gap 45 may be smaller than 10 ⁇ m, for example.
  • the upper surface of the cover 41b ie, the upper surface of the support table 41b2
  • the top surface of the photosensitive assembly 20 mirror seat
  • FIG. 28a shows the ball structure of the second driving part in a modified embodiment of the present application.
  • the number of balls 46 between the base portion 41 and the movable portion 42 of the second driving portion 40 may be three, and the corresponding number of grooves 41a1 for accommodating the balls 46 may also be is three.
  • the number of the balls and the positions at which they are arranged are sufficient as long as the movable portion 42 can be supported on a reference plane (for example, a horizontal plane).
  • the reference plane is the xoy plane.
  • the bottom surface of the groove 41a1 is set as a plane, and the balls can move freely on the bottom surface of the groove 41a1, thereby allowing the movable part 42 to translate in the x-axis and y-axis, and also allow the movable part 42 to translate in the xoy plane.
  • rotation (as shown in Figure 28b, which shows a schematic diagram of the rotation of the movable part in the xoy plane).
  • the balls 46 are arranged below the photosensitive assembly 20 , that is, the projections of the balls 46 and the photosensitive assembly 20 on the reference plane at least partially overlap, or in other words, when viewed from a top view,
  • the balls 46 are completely located within the projection range of the photosensitive assembly 20 or at least partially within the projection range of the photosensitive assembly 20 .
  • This design can prevent the ball mechanism from occupying extra space in the radial direction of the camera module (ie, the x-axis or the y-axis direction), which helps to reduce the lateral dimension of the second driving part 40 (ie, the x-axis or the y-axis). size in the direction), which is conducive to the miniaturization of the module.
  • FIG. 29 shows a schematic diagram of a typical assembly manner of the second driving part in an embodiment of the present application.
  • the second driving part 40 can be assembled by three main components separated from each other, the three components are the base 41a, the cover 41b and the movable part 42, which can be vertically assemble in the direction.
  • the base 41a with the balls 46 can be arranged on the assembly table first, and then the movable part 42 can be placed above the base 41a to be supported by the balls 46 in the base 41a, and finally the cover can be placed 41b is moved to the top of the base 41a and the movable part 42, and then the cover 41b is moved downward so that the bottom surface of the cover side wall 41b1 is close to the top surface of the base 41a, and then the bottom surface of the cover side wall 41b1 and the base The top surface of 41a is bonded to complete the assembly of the second driving part 40 .
  • the base 41a is in the shape of a flat plate without base side walls, so it can also be called a base plate or a bottom plate.
  • the base 41a can also be composed of the base side wall and the base plate.
  • the second driving part as shown in FIG. The assembly method may be the same as that shown in FIG. 29 . That is to say, three main components, which are the base, the cover and the movable part, are separated from each other first, and then the three are assembled together in the vertical direction.
  • FIG. 30 shows a schematic diagram of a disassembled state before assembly of the second driving part in another embodiment of the present application.
  • FIG. 31 shows a schematic diagram of an intermediate state in the assembling process of the second driving part in another embodiment of the present application.
  • the second driving portion 40 may be assembled by a lateral assembly method. Specifically, three main components (refer to FIG. 30 ) that are separated from each other, the base part main body 41 ′, the movable part 42 and the side cover 41 b ′′, can be prepared first.
  • the base part main body 41 ′ can include a base 41 a and a base 41 ′.
  • the cover body 41b' to which the seat 41a is attached (in some embodiments, the base 41a and the cover body 41b' may be integrally formed), the cover body 41b' is a part of the complete cover 41b, which is connected with the side cover 41b" together constitute the complete cover 41b.
  • the cover body 41b' can surround the movable part 42 (or the photosensitive component) on three sides, for example, and the other side is left for the movable part 42 (or the movable part 42 and the photosensitive component)
  • the combination body is inserted into the notch of the base body 41' from the side.
  • the side cover 41b" corresponds to the notch.
  • the side cover 41b" can be approached from the side to the base 41a, and The outer side of the base 41a and the inner side of the side cover 41b" are bonded together to form a complete second driving part 40.
  • the upper and lower end surfaces of the base part 41 are The parallelism is only determined by the manufacturing accuracy of the base part 41 itself, so this method of bonding and fixing from the side can improve the parallelism of the upper and lower end surfaces of the base part 41 and the parallelism between the upper end surface of the base part 41 and the movable part 42 .
  • FIG. 32 shows the installation position of the driving element of the second driving part in a plan view according to an embodiment of the present application.
  • Fig. 33a shows a schematic cross-sectional view of a second driving part including driving elements in an embodiment of the present application.
  • the driving element of the second driving part 40 is a combination of coil magnets.
  • the magnet 61 may be disposed on the edge area of the bottom plate of the base part 41 (ie, the base 41 a ), and the coil 62 may be disposed on the edge area of the movable part bottom plate of the movable part 42 .
  • the magnet may be disposed on the bottom plate of the base portion 41 .
  • the coil 62 can be connected to the circuit board 23 of the photosensitive assembly 20 by welding through the FPC board (soft board) provided on the movable part 42 .
  • the advantage of arranging the coil 62 on the movable part 42 is that the movable part 42 and the photosensitive component 20 move synchronously during the anti-shake process. There is no relative movement, reducing the risk of electrical failure at the weld.
  • the connection method through the FPC board is not the only electrical connection method in this application.
  • the coil can also be connected to the circuit board through a contact or a contact array arranged on the upper surface of the movable part. The bottom surface realizes the electrical connection.
  • the arrangement of the driving elements shown in FIG. 33a helps to reduce the lateral dimension (ie, the dimension perpendicular to the optical axis direction) of the camera module.
  • FIG. 33b shows a schematic cross-sectional view of a second driving part including driving elements in another embodiment of the present application.
  • the coil 62 and the magnet 61 may be disposed on the side walls of the movable portion 42 and the base portion 41 .
  • This design is beneficial to reduce the thickness of the second driving portion 40, thereby reducing the height of the camera module.
  • the magnet 61 is arranged on the base 41a of the base part 41 instead of the cover 41b, and this design can leave the connection (may be adhesive) area between the base part 41 and the first driving part 30 .
  • three pairs of coil magnets are provided, respectively referred to as the first pair of coil magnets 63 and the second pair of coil magnets 64 and the third coil magnet pair 65.
  • the first pair of coil magnets 63 and the second pair of coil magnets 64 are used to drive the translation of the movable portion 42 in the x-axis direction, that is, to provide a driving force in the x-axis direction.
  • the third coil magnet pair 65 is used to drive the translation of the movable portion 42 in the y-axis direction, that is, to provide a driving force in the y-axis direction.
  • the first pair of coil magnets 63 and the second pair of coil magnets 64 may be arranged along two opposite sides of the second driving part, and the two opposite sides may be referred to as the first Side 48 and second side 49, first side 48 and second side 49 do not intersect.
  • the second coil magnet pair 64 may be arranged along the third side 47 of the second driving part, and the third side 47 intersects with both the first side 48 and the second side 49 .
  • the three coil-magnet pairs can realize both the x-axis translation and the y-axis translation, as well as the rotation on the xoy plane.
  • first coil magnet pair 63 and the second coil magnet pair 64 provide driving forces in opposite directions, a combined driving force for rotating the movable portion on the xoy plane can be generated.
  • the driving force for the rotation on the xoy plane is not unique.
  • first coil magnet pair 63 and the third coil magnet pair 65 work, it is also possible to generate a driving force that makes the movable part rotate on the xoy plane. Combined drive.
  • the positions of the first coil magnet pair and the second coil magnet pair may be staggered (that is, the arrangement positions of the first coil magnet pair and the second coil magnet pair may be asymmetrical with respect to the central axis of the second driving part), so as to The rotation of the movable part in the xoy plane (ie, the movement in the Rz direction) is realized by providing a driving force.
  • FIG. 34 shows a schematic diagram of an assembly method of a camera module in an embodiment of the present application.
  • the lens 10 is first installed on the first driving part 30, the photosensitive assembly 20 is installed on the second driving part 40, and then the relative position between the photosensitive assembly 20 and the lens 10 is adjusted through an active calibration process Then, the first driving part 30 and the second driving part 40 are bonded and fixed by the glue 92, so that the relative position of the bonded photosensitive assembly 20 and the lens 10 is maintained at the relative position determined by the active calibration.
  • the glue 92 may be disposed between the base portion of the first driving portion 30 and the base portion of the second driving portion 40 .
  • FIG. 35a shows the arrangement of the camera module and its connection straps in an embodiment of the present application.
  • the camera module may include a first connecting strip 26a and a second connecting strip 26b.
  • the first connecting strip 26a is disposed on the top area of the first driving part 30 and is electrically connected to the first driving part 30 and the second connecting strip 26a.
  • the belt 26b communicates with the circuit board 23 of the photosensitive member 20 .
  • the second connecting belt 26b may be provided with a plurality of bends to form a curved layered shape, so as to buffer the stress caused by the movement of the photosensitive assembly 20 .
  • a connector can be provided at the end of the second connecting strip 26b, and the connector can be optionally fixed and electrically connected to the transfer post 26c by pressing, and then the main board (or other components) of the terminal device is conducted through the transfer post 26c.
  • the end of the first connecting strip 26a can also be connected to a connector, the connector can be fixed by pressing and electrically connected to the transfer column 26c, and then the main board (or other components) of the terminal device can be connected through the transfer column 26c.
  • the conduction circuit of the first driving part 30 can be separated from the photosensitive component 20 and is not affected by the movement of the photosensitive component 20 .
  • the second connecting belt 26b and the intermediate post 26c can be accommodated in the second casing 70 (the second casing 70 can be a connecting belt receiving casing), the first connecting belt 26a is located outside the second casing 70, the second casing
  • the top of the body 70 may have a third through hole 70a, so that the connector of the first connecting strip 26a can protrude into and be in electrical communication with the second connecting strip 26b or the transfer post 26c.
  • FIG. 35b shows a schematic perspective view of the second driving part in an embodiment of the present application.
  • one side surface of the movable part 42 and the base part 41 has a slot or a window, so that the first connecting belt passes through the side of the movable part 42 wall and the side wall of the base portion 41 .
  • the first driving part and the second driving part may constitute a dual optical anti-shake driving structure (also referred to as a dual OIS driving structure).
  • the first driving part is suitable for installing the lens
  • the second driving part is suitable for installing the photosensitive component
  • the lens and the photosensitive chip are configured to be driven simultaneously and move in opposite directions.
  • the lens is driven to move in the positive direction of the x-axis
  • the photosensitive chip is driven to move in the negative direction of the x-axis
  • the lens is driven to move in the positive direction of the y-axis
  • the photosensitive chip is driven to move in the negative direction of the y-axis
  • the lens is driven to move in the negative direction of the y-axis.
  • the x-axis and y-axis move, and the photosensitive chip is driven to move in the opposite direction of the lens movement on the x-axis and y-axis.
  • the directions of the vector and the displacement vector of the photosensitive chip are opposite.
  • the lens and the photosensitive chip are configured to move at the same time, and the lens and the photosensitive chip move in opposite directions, which can achieve faster response and better anti-shake effect.
  • the anti-shake angle range of the existing camera module is usually limited by the suspension system and the driving system, and a relatively large compensation angle range cannot be achieved. Move in the opposite direction to achieve large-angle shake compensation.
  • the distance between the lens and the photosensitive chip is larger.
  • the relative movement stroke of (for convenience of description, this relative movement stroke may be referred to as the anti-shake stroke for short), which can have a better compensation effect.
  • the present application also has a better compensation effect for the tilt shake of the camera module.
  • the movement direction of the anti-shake movement may be limited in the xoy plane, and it is not necessary to tilt the optical axis of the lens or the photosensitive chip, thereby avoiding the problem of image blur caused by the anti-shake movement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)

Abstract

本发明涉及一种用于光学致动器的驱动结构,其包括:第一驱动部,其适于安装镜头并驱动所述镜头在在x轴和y轴方向平移;以及第二驱动部,其适于驱动感光芯片在x轴和y轴方向平移;其中,所述镜头与所述感光芯片被配置为同时驱动,且朝向相反的方向移动。本发明还提供了相应的摄像模组、光学防抖摄像模组和相应的组装方法。本申请能够提高摄像模组的防抖行程以及防抖响应速度。

Description

用于光学致动器的驱动结构及相应的摄像模组和组装方法
相关申请
本申请要求名称为“用于光学致动器的驱动结构及相应的摄像模组”、于2020年10月14日提交的申请号为202011097162.3的中国专利申请,以及名称为“光学防抖摄像模组”、于2020年10月30日提交的申请号为202011191352.1的中国专利申请的优先权,并在此通过引用包含上述申请的全部内容。
本申请还通过引用包含以下分案申请的全部内容:
名称为“用于光学致动器的驱动结构及相应的摄像模组”、分案提交日为2020年12月11日、申请号为202011440069.8的中国专利分案申请;
名称为“用于光学致动器的驱动结构及相应的摄像模组”、分案提交日为2020年12月11日、申请号为202011440068.3的中国专利分案申请;
名称为“用于光学致动器的驱动结构及相应的摄像模组”、分案提交日为2020年12月11日、申请号为202011440056.0的中国专利分案申请;
名称为“用于光学致动器的驱动结构及相应的摄像模组”、分案提交日为2020年12月11日、申请号为202011440053.7的中国专利分案申请;
名称为“用于光学致动器的驱动结构及相应的摄像模组”、分案提交日为2020年12月11日、申请号为202011449524.0的中国专利分案申请;
名称为“用于光学致动器的驱动结构及相应的摄像模组”、分案提交日为2020年12月11日、申请号为202011449531.0的中国专利分案申请;
名称为“用于光学致动器的驱动结构及相应的摄像模组”、分案提交日为2020年12月11日、申请号为202011440028.9的中国专利分案申请;
名称为“光学防抖摄像模组”、分案提交日为2020年12月11日、申请号为202011449522.1的中国专利分案申请;
名称为“光学防抖摄像模组及其组装方法”、分案提交日为2020年12月11日、申请号为202011440026.X的中国专利分案申请;
名称为“光学防抖摄像模组”、分案提交日为2020年12月11日、申请号为202011449519.X的中国专利分案申请;以及
名称为“光学防抖摄像模组组装方法”、分案提交日为2020年12月11日、申请号为202011440011.3的中国专利分案申请。
技术领域
本发明涉及摄像器材技术领域,具体地说,本发明涉及一种用于光学致动器的驱动结构及相应的摄像模组和组装方法。
背景技术
随着消费者对于手机拍照需求的增加,手机摄像头(即摄像模组)的功能越来越丰富,人像拍摄、远距拍摄、光学变焦、光学防抖等功能都集成在了体积有限的摄像头中,而其中自动对焦、光学防抖、光学变焦等功能往往都需要依靠光学致动器(有时也可以称为马达)来实现。
图1示出了现有技术中一种典型的具有马达的摄像模组。参考图1,该摄像模组通常包括镜头1、马达机构2(可简称为马达)和感光组件3。该摄像模组在拍摄状态下,来自拍摄对象的光线通过镜头1聚焦到感光组件3的感光元件3a上。在结构上,镜头1固定于马达的马达载体(图1中为具体示出)上,该马达载体是可活动部件,它通常可在马达的驱动元件的作用下,带动镜头1在光轴方向上移动以实现对焦功能。而对于具有光学防抖(OIS)功能的摄像模组,其马达往往具有更复杂的结构。这是因为该马达除了要驱动镜头在光轴方向上移动外,还需要驱动镜头1在其他自由度上(例如垂直于光轴的方向上)移动以补偿拍摄时的抖动。通常来说,摄像模组的抖动包括在垂直于光轴的方向上平移(x轴、y轴方向的平移)和旋转(指在xoy平面内的旋转,其转轴方向可以与光轴大致相同),以及倾斜抖动(指绕x、y轴的旋转,在摄像模组领域中,倾斜抖动又称为tilt抖动)。当模组中的陀螺仪(或其他位置感测元件)检测到某一方向的抖动时,可以发出指令使马达驱动镜头朝相反的方向运动一距离,从而补偿镜头的抖动。通常来说,镜头只在垂直于光轴的方向上进行平移和/或旋转来补偿摄像模组的抖动,这是因为如果让镜头绕x、y轴旋转,即如果通过镜头的tilt调节来实现防抖效果,可能会导致模组的成像品质下降,甚至会造成像糊而难以达到基本的成像品质要求。
然而,随着手机摄像模组的成像质量要求越来越高,镜头的体积和重量越来越大,对马达的驱动力要求也越来越高。而当前电子设备(例如手机)对摄像模组的体积也有很大的限制,马达的占用体积随着镜头的增大而相应的增 加。换句话说,在镜头向更大体积、更大重量发展的趋势下,马达所能提供的驱动力却难以相应地增加。在驱动力受限的前提下,镜头越重,马达能够驱动镜头移动的行程越短,影响防抖能力。另一方面,镜头越重,马达能够驱动镜头移动的速度也越慢,镜头到达预定的补偿位置的时间也越长,这也会影响防抖效果。
因此,当前迫切需要一种能够提高摄像模组的防抖行程以及防抖响应速度的解决方案。
发明内容
本发明的目的在于,克服现有技术的不足,提供一种能够提高摄像模组的防抖行程以及防抖响应速度的解决方案。
为解决上述技术问题,本发明提供了一种用于光学致动器的驱动结构,其包括:第一驱动部,其适于安装镜头并驱动所述镜头在在x轴和y轴方向平移;以及第二驱动部,其适于驱动感光芯片在x轴和y轴方向平移;其中,所述镜头与所述感光芯片被配置为同时驱动,且朝向相反的方向移动。
其中,所述第二驱动部适于安装感光组件,所述感光组件包括所述感光芯片,所述第二驱动部通过带动所述感光组件移动来实现所述感光芯片在x轴和y轴方向的平移。
其中,所述第二驱动部还用于驱动所述感光芯片在xoy平面上旋转。
其中,根据所检测到的摄像模组的倾斜抖动角度a,确定所述第一驱动模块驱动所述镜头移动的镜头移动距离b,以及所述第二驱动模块驱动所述感光芯片移动的感光芯片移动距离c;其中,所述镜头移动距离b、所述感光芯片移动距离c以及所述摄像模组的像方焦距f之间满足:a=arctan(b/f)+arctan(c/f)。
其中,所述驱动结构还包括驱动逻辑模块,其用于使所述镜头移动距离b和所述感光芯片移动距离c的比例保持在预设的固定比例。
其中,所述驱动结构还包括驱动逻辑模块,其具有一防抖阈值K,所述驱动逻辑模块用于在所述倾斜抖动角度a小于等于所述防抖阈值K时,使所述镜头移动距离b和所述感光芯片移动距离c的比例保持在预设的固定比例,在所述倾斜抖动角度a大于所述防抖阈值K时,使所述感光芯片移动距离c到达其 移动行程的最大值c max,所述镜头移动距离b根据关系式b=tan(a/f)-c max计算获得。
其中,所述镜头移动距离和所述感光芯片移动距离的预设的固定比例根据所述镜头的重量、所述第一驱动部的驱动力、所述感光芯片或感光组件的重量以及所述第二驱动部的驱动力进行设定,以使得所述镜头和所述感光芯片移动到各自防抖目标位置的时间一致。
其中,所述第一驱动部包括第一基础部和第一可动部,所述第二驱动部包括第二基础部和第二可动部;其中所述第二基础部与所述第一基础部固定在一起,所述第二可动部位于所述第二基础部下方并与所述第二基础部活动连接,所述感光组件位于与所述第二可动部下方并固定于所述第二可动部。
其中,所述第二可动部通过滚珠与所述第二基础部活动连接,并且通过基于所述滚珠的悬挂***将所述第二可动部相对于所述第二基础部的移动自由度限制在xoy平面以内。
其中,在俯视角度下所述滚珠布置在所述第二驱动部的四角区域。
其中,所述驱动结构还包括一位于所述第二驱动部下方的后壳,所述后壳与所述第二基础部连接,并形成一容纳腔,所述第二可动部和所述感光组件均位于所述容纳腔中;并且所述感光组件与所述后壳的底部之间具有间隙。
其中,所述第二可动部具有向下延伸的延伸臂,所述延伸臂与所述感光组件的线路板粘接;所述延伸臂设置有FPC,所述FPC直接焊接于所述线路板。
其中,所述第二可动部和所述第二基础部的中央均具有通光孔。
其中,所述第二基础部包括基底和盖,所述盖包括自基底向下延伸而形成的环绕所述第二可动部的侧壁和自所述侧壁水平向内延伸而形成的承靠台。
其中,所述滚珠及所述第二可动部的边缘区域被夹持于所述基底和所述承靠台之间。
其中,所述第二基础部的上表面具有台阶结构,所述台阶结构包括位于外侧的第一台阶面和位于内侧的第二台阶面,所述第二台阶面的高度低于所述第一台阶面的高度。
其中,所述第二可动部的边缘区的上表面具有凹槽,所述滚珠置于所述凹槽中。
其中,所述第二可动部的边缘区的上表面具有凹陷台阶,所述凹陷台阶的外侧台阶面低于其内侧台阶面,并且所述凹陷台阶与所述盖的所述侧壁以及所述基底共同形成用于容纳所述滚珠的容纳腔。
其中,所述滚珠位于所述承靠台和所述第二可动部之间。
其中,所述基底与所述第二可动部之间、所述第二可动部与所述承靠台之间分别设置一层滚珠。
其中,所述第二可动部的外侧面设置向内凹陷的卡槽,所述承靠台嵌合进所述卡槽内。
其中,所述第二可动部的下端面与所述感光组件的镜座的上端面之间布置胶水,所述胶水避开所述第二可动部的四角区域。
其中,所述第二驱动部的驱动元件为线圈磁石组合;其中磁石设置在所述第二基础部的边缘区域,线圈设置在所述第二可动部的边缘区域;或者所述线圈和所述磁石分别设置在所述第二可动部和所述第二基础部的侧壁。
其中,所述线圈磁石组合包括第一线圈磁石对、第二线圈磁石对和第三线圈磁石对;其中,所述第一线圈磁石对与所述第二线圈磁石对用于提供x轴方向上的驱动力;所述第三线圈磁石对用于提供y轴方向上的驱动力;并且在俯视角度下,所述第一线圈磁石对与所述第二线圈磁石对可以分别沿着所述第二驱动部的第一边和第二边布置,所述第一边和所述第二边不相交,而所述第二线圈磁石对沿着所述第二驱动部的第三边布置,所述第三边与所述第一边和所述第二边均相交。
根据本申请的另一方面,还提供了一种摄像模组,其包括:镜头;感光组件;以及前述任一项所述的用于光学致动器的驱动结构;其中,所述镜头安装于所述第一驱动部,所述感光组件安装于所述第二驱动部。
其中,所述感光组件包括线路板,所述摄像模组还包括第一连接带和第二连接带,所述第一连接带设置于所述第一驱动部的顶部区域并电连接所述第一驱动部,所述第二连接带与感光组件的线路板连接并导通;其中所述第二连接带设置多个弯折形成弯曲层叠状。
其中,所述第一驱动部包括第一基础部和第一可动部,所述第二驱动部包括第二基础部和第二可动部;其中所述第二基础部与所述第一基础部固定在一起,所述第二可动部位于所述第二基础部下方并与所述第二基础部活动连接,所述感光组件位于与所述第二可动部下方并固定于所述第二可动部;所述感光 组件包括悬挂式线路板,所述悬挂式线路板包括刚性的线路板主体和柔性的连接带,所述连接带从所述线路板主体的第一侧面和第二侧面引出并向上弯折形成弯折部,所述弯折部的顶部在水平方向上沿着所述感光组件的周沿延伸,使得所述连接带围绕在所述感光组件的第一侧面、第二侧面和第三侧面***,并且位于所述第一侧面、所述第二侧面和所述第三侧面的连接带各自具有至少一个悬持部,所述悬持部固定于所述第二驱动部的所述第二基础部或者通过中介物与所述第二基础部固定;其中,所述所述感光组件具有与所述线路板主***置一致的第一侧面和第二侧面,所述第一侧面和所述第二侧面相对布置,所述第三侧面与所述第一侧面和所述第二侧面均相交。
其中,所述悬持部具有悬持孔,所述第二基础部或者所述中介物具有挂钩,所述挂钩勾住所述悬持孔。
其中,连接带的部分区段贴附刚性基板进行补强,以形成所述悬持部。
其中,所述悬挂式线路板采用软硬结合板制作,其中所述线路板主体和所述悬持部由所述软硬结合板的硬板部分形成,所述弯折部和连接在多个所述悬持部之间的连接带区段由所述软硬结合板的软板部分形成。
其中,所述连接带包括第三连接带和第四连接带,所述第三连接带自所述线路板主体的所述第一侧面引出并向上弯折形成一个所述弯折部,然后沿着所述感光组件的第一侧面延伸,并在拐角处在水平方向上弯折并继续沿着所述第三侧面延伸;所述第四连接带自所述线路板主体的第二侧面引出并向上弯折形成另一个所述弯折部,然后沿着所述感光组件的所述第二侧面延伸,并在拐角处水平弯折并继续沿着所述第三侧面延伸;所述第三连接带和所述第四连接带在所述第三侧面接合并互相导通。
其中,位于所述第三侧面的所述连接带的所述悬持部还连接一第五连接带,所述第五连接带具有用于外接的连接器;所述悬挂式线路板还具有用于固定所述第五连接带的固定部。
根据本申请的另一方面,还提供了一种光学防抖摄像模组,其包括:镜头;感光组件,其具有感光芯片;第一驱动部,其适于安装所述镜头并驱动所述镜头在在x轴和y轴方向平移;以及第二驱动部,其适于驱动所述感光芯片在x轴和y轴方向平移,所述第二驱动部包括基座和盖,所述基座位于所述感光组件下方,所述盖的顶部连接所述基座,所述该的顶部连接所述第一驱动部;其中,所述镜头与所述感光芯片被配置为同时驱动,且朝向相反的方向移动。
其中,所述第二驱动部还用于驱动所述感光芯片在xoy平面上旋转。
其中,根据所检测到的摄像模组的倾斜抖动角度a,确定所述第一驱动模块驱动所述镜头移动的镜头移动距离b,以及所述第二驱动模块驱动所述感光芯片移动的感光芯片移动距离c;其中,所述镜头移动距离b、所述感光芯片移动距离c以及所述摄像模组的像方焦距f之间满足:a=arctan(b/f)+arctan(c/f)。
其中,所述驱动结构还包括驱动逻辑模块,其用于使所述镜头移动距离b和所述感光芯片移动距离c的比例保持在预设的固定比例。
其中,所述驱动结构还包括驱动逻辑模块,其具有一防抖阈值K,所述驱动逻辑模块用于在所述倾斜抖动角度a小于等于所述防抖阈值K时,使所述镜头移动距离b和所述感光芯片移动距离c的比例保持在预设的固定比例,在所述倾斜抖动角度a大于所述防抖阈值K时,使所述感光芯片移动距离c到达其移动行程的最大值c max,所述镜头移动距离b根据关系式b=tan(a/f)-c max计算获得。
其中,所述镜头移动距离和所述感光芯片移动距离的预设的固定比例根据所述镜头的重量、所述第一驱动部的驱动力、所述感光芯片或感光组件的重量以及所述第二驱动部的驱动力进行设定,以使得所述镜头和所述感光芯片移动到各自防抖目标位置的时间一致。
其中,所述第一驱动部包括第一基础部和第一可动部,所述第二驱动部包括第二基础部和第二可动部,所述第二基础部包括所述基座和所述盖;其中所述盖的顶部与所述第一基础部固定在一起,所述第二可动部位于所述基座上方并与所述第二基础部活动连接,所述感光组件固定于所述第二可动部的上表面。
其中,所述第二可动部通过滚珠与所述第二基础部活动连接,其中所述第二基础部的上表面、所述滚珠和所述第二可动部的下表面在z轴方向上依次承靠,使得所述第二可动部相对于所述第二基础部的移动自由度限制在xoy平面以内,其中所述z轴垂直于所述xoy平面。
其中,在俯视角度下所述滚珠布置在所述第二驱动部的四角区域。
其中,所述第二基础部设置至少三个凹槽,至少三个滚珠设置于所述至少三个凹槽,以在所述xoy平面上承载所述第二可动部。
其中,所述基座包括基板,所述滚珠布置于所述基板的边缘区域。
其中,所述第二可动部包括可动部底板和可动部侧壁,所述可动部侧壁自所述可动部底板的边缘区域向上延伸而形成;所述感光组件置于所述可动部底板和所述可动部侧壁形成的容纳槽中。
其中,所述可动部侧壁的内侧面与所述感光组件的外侧面之间具有胶水,以将所述第二可动部与所述感光组件固定在一起。
其中,所述盖包括盖侧壁和自所述盖侧壁的顶部向内延伸而形成的承靠台;所述滚珠及所述第二可动部的边缘区域被夹持于所述基座和所述承靠台之间。
其中,所述承靠台的下表面与所述第二可动部之间具有第二间隙,所述第二间隙小于10μm。
其中,所述基座包括基板,所述第二驱动部的驱动元件为线圈磁石组合;其中磁石设置在所述基板的边缘区域,线圈设置在所述可动部底板的边缘区域;或者所述线圈和所述磁石分别设置在所述第二可动部和所述第二基础部的侧壁。
其中,所述线圈磁石组合包括第一线圈磁石对、第二线圈磁石对和第三线圈磁石对;其中,所述第一线圈磁石对与所述第二线圈磁石对用于提供x轴方向上的驱动力;所述第三线圈磁石对用于提供y轴方向上的驱动力;并且在俯视角度下,所述第一线圈磁石对与所述第二线圈磁石对可以分别沿着所述第二驱动部的第一边和第二边布置,所述第一边和所述第二边不相交,而所述第二线圈磁石对沿着所述第二驱动部的第三边布置,所述第三边与所述第一边和所述第二边均相交。
其中,所述基座包括基板和基座侧壁;所述可动部侧壁与所述基座之间具有第一间隙,所述第一间隙大于200μm。
其中,所述可动部底板的下表面与所述基板之间具有第三间隙,所述第三间隙小于10μm。
其中,所述感光组件包括线路板,所述摄像模组还包括第一连接带和第二连接带,所述第一连接带设置于所述第一驱动部的顶部区域并电连接所述第一驱动部,所述第二连接带与感光组件的线路板连接并导通;其中所述第二连接带设置多个弯折形成弯曲层叠状。
与现有技术相比,本申请具有下列至少一个技术效果:
1.本申请能够提高摄像模组的防抖行程,从而可以对摄像模组的较大抖动进行补偿。
2.本申请能够提高摄像模组的防抖响应速度。
3.本申请的用于光学致动器的驱动结构具有结构紧凑的优势,特别适合于小型化的摄像模组。
4.本申请的一些实施例中,可以根据镜头重量、第一驱动部的驱动力、感光芯片(或感光组件)重量、第二驱动部的驱动力等因素进行设定,使得镜头和感光芯片移动到各自防抖目标位置的时间基本一致,从而获得更好的防抖效果。
5.本申请的一些实施例中,可以通过悬挂式线路板来减小连接带对感光组件防抖移动的干扰,从而有效地保障防抖行程和响应速度。
6.本申请的一些实施例中,第二驱动部不需要设置通光孔,从而使得第二驱动部的基础部或/和可动部的厚度可以减小,从而有助于降低摄像模组的高度。
7.本申请的一些实施例中,第二驱动部的可动部和基础部的基座均设置在感光组件的线路板下方,从而避免胶材渗漏而造成的画面污点问题(指因成像光路中渗入污染物而造成的拍摄画面出现污点的问题)。
8.本申请的一些实施例中,可以通过悬挂式线路板来减小连接带对感光组件防抖移动的干扰,从而有效地保障防抖行程和响应速度。
9.本申请在利用感光芯片的移动进行防抖时,不需要使感光芯片倾斜,从而避免了防抖移动所造成的像糊问题。
10.本申请的一些实施例中,在xoy平面上,允许镜头和感光芯片同时向相反方向移动,从而既避免了防抖移动所造成的像糊问题,又可以提高摄像模组的防抖行程和防抖响应速度。
11.本申请的一些实施例中,在xoy平面上,允许镜头和感光芯片同时向相反方向移动,从而既避免了防抖移动所造成的像糊问题,又可以提高摄像模组的防抖行程和防抖响应速度。
12.本申请的一些实施例中,可以通过使第二可动部的下端面低于第二基础部的下端面,来保证感光组件在贴附到第二可动部后不会接触到第二基础部的盖,避免感光组件进行防抖移动时碰到或者摩擦盖。
13.本申请的一些实施例中,可以通过设计较大面积的第二可动部的第二构件,来减小用于感光组件与第二可动部粘接的胶水流到滤光片上的风险。
14.本申请的一些实施例中,胶水的布设避开四角区域,可以避免胶水渗漏到位于四角的滚珠容纳结构的缝隙,进而避免对防抖移动造成负面影响。
15.本申请的一些实施例中,所述驱动结构通过弹性元件与驱动元件的驱动力相配合,来控制所述第二可动部使其保持所述第二可动部的位置,这样可以免去用于将第二可动部维持在其初始位置的一对共轭的驱动力,进而免去用于提供共轭的驱动力的额外的驱动元件,从而有利于减小驱动元件占用的体积。
16.本申请一些实施例的组装方法可以实现基于主动校准的位置调节,从而提升摄像模组的成像品质。
17.本申请的一些实施例中,可以实现具有双OIS防抖功能的摄像模组的组装,本申请的摄像模组的双OIS防抖能力既避免像糊问题又能够提高防抖行程或防抖响应速度。
附图说明
图1示出了现有技术中一种典型的具有马达的摄像模组;
图2示出了本申请一个实施例的具有防抖功能的摄像模组的剖面示意图;
图3示出了本申请另一个实施例的具有防抖功能的摄像模组的剖面示意图;
图4示出了本申请中四种不同情形下的镜头和感光芯片的移动距离与模组倾斜角度的关系示意图;
图5示出了本申请一个实施例中的摄像模组的剖面示意图;
图6示出了本申请另一实施例的摄像模组的剖面示意图;
图7示出了本申请又一个实施例中的摄像模组的剖面示意图;
图8示出了本申请再一实施例中的摄像模组的剖面示意图;
图9a示出了本申请一个实施例中的第二驱动部的立体示意图;
图9b示出了本申请一个实施例中的第二驱动部的立体分解示意图;
图10a示出了本申请一个实施例中的第二驱动部及感光组件的剖面示意图;
图10b示出了本申请一个变形实施例中滚珠被设置在可动部下侧的第二驱动部的剖面示意图;
图10c示出了本申请一个变形实施例中具有两层滚珠的第二驱动部的剖面示意图;
图11a示出了本申请一个实施例中的第二驱动部的剖面示意图;
图11b示出了本申请一个实施例中的第二驱动部的组装示意图;
图11c示出了本申请另一个实施例中的第二驱动部的剖面示意图;
图12示出了本申请又一个实施例中的第二驱动部的剖面示意图;
图13a示出了本申请一个实施例中的第二驱动部的可动部的仰视示意图;
图13b示出了本申请另一个实施例中的第二驱动部的可动部的仰视示意图;
图14示出了本申请一个实施例中的第二驱动部的驱动元件在仰视角度下的安装位置;
图15a示出了本申请一个实施例中的第二驱动部的含驱动元件的剖面示意图;
图15b示出了本申请另一实施例中的第二驱动部的含驱动元件的剖面示意图;
图15c示出了本申请又一实施例中的第二驱动部的含驱动元件的剖面示意图;
图16a示出了本申请一个实施例中的摄像模组的剖面示意图;
图16b示出了本申请一个实施例中的摄像模组的组装方式的示意图;
图16c示出了本申请另一个实施例中的摄像模组的剖面示意图;
图17示出了本申请一个实施例中的摄像模组及其连接带的布置方式;
图18示出了本申请一个实施例中的第二驱动部和感光组件组装后的立体示意图;
图19示出了本申请一个实施例中的第二驱动部和感光组件的分解示意图;
图20示出了本申请一个实施例中的感光组件及其所采用的悬挂式线路板的立体示意图;
图21a示出了本申请一个实施例中的悬挂式线路板展开后的正面示意图;
图21b示出了本申请一个实施例中的悬挂式线路板展开后的背面示意图。
图22示出了本申请一个实施例的具有防抖功能的摄像模组的剖面示意图;
图23示出了本申请另一个实施例的具有防抖功能的摄像模组的比较例的剖面示意图;
图24示出了本申请一个实施例中的摄像模组的剖面示意图;
图25示出了本申请一个实施例中的第二驱动部的立体示意图;
图26示出了本申请一个实施例中的第二驱动部的立体分解示意图;
图27示出了本申请一个实施例的摄像模组的剖面示意图;
图28a示出了本申请一个变形的实施例中的第二驱动部的滚珠结构;
图28b示出了可动部在xoy平面内旋转的示意图;
图29示出了本申请一个实施例中第二驱动部的一种典型组装方式的示意图;
图30示出了本申请另一个实施例中第二驱动部的组装前的分解状态的示意图;
图31示出了本申请另一个实施例中第二驱动部的组装过程中的中间状态的示意图;
图32示出了本申请一个实施例中的第二驱动部的驱动元件在俯视角度下的安装位置;
图33a示出了本申请一个实施例中的第二驱动部的含驱动元件的剖面示意图;
图33b示出了本申请另一实施例中的第二驱动部的含驱动元件的剖面示意图;
图34示出了本申请一个实施例中的摄像模组的组装方式的示意图;
图35a示出了本申请一个实施例中的摄像模组及其连接带的布置方式;
图35b示出了本申请一个实施例中的第二驱动部的立体示意图;
图36示出了本申请另一实施例中的感光组件与第二可动部的连接示意图。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一主体也可被称作第二主体。
在附图中,为了便于说明,已稍微夸大了物体的厚度、尺寸和形状。附图仅为示例而并非严格按比例绘制。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或附加有一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
如在本文中使用的,用语“基本上”、“大约”以及类似的用语用作表近似的用语,而不用作表程度的用语,并且旨在说明将由本领域普通技术人员认识到的、测量值或计算值中的固有偏差。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
下面结合附图和具体实施例对本发明做进一步地描述。
下面结合附图和具体实施例对本发明做进一步地描述。
图2示出了本申请一个实施例的具有防抖功能的摄像模组的剖面示意图。参考图2,本实施例中,所述摄像模组包括镜头10、感光组件20、第一驱动部30和第二驱动部40。其中感光组件20包括感光芯片21。第一驱动部30被配置为可驱动镜头10在x、y两个方向上移动,第二驱动部40被配置为可驱动感 光芯片21在x、y两个方向上移动。本实施例中,x、y方向互相垂直,且均与感光组件20的感光面平行。z方向则与感光面的法线方向平行。为便于理解,图2中还示出了基于x、y、z方向所构建的三维直角坐标系。本实施例中,通过控制模块同时驱动镜头10与感光芯片21向相反的方向移动,来实现摄像模组的光学防抖。具体来说,镜头1与感光芯片21被配置为同时驱动,且朝向相反的方向移动,例如镜头10被驱动朝x轴正方向移动,则感光芯片21被驱动朝x轴负方向移动;镜头10被驱动朝向y轴正方向移动,则感光芯片21被驱动朝y轴负方向移动;或者镜头10被驱动在x轴及y轴移动,同时感光芯片21被驱动在x轴及y轴朝向与镜头10移动相反的方向移动,换句话说,当需要同时在x轴及y轴移动时,在xoy平面上镜头10的位移矢量和感光芯片21的位移矢量的方向是相反的。摄像模组通常包括位置传感器,该位置传感器用于检测摄像模组或者终端设备(即搭载该摄像模组的电子设备,例如手机)的抖动。在检测出抖动时,位置传感器发出信号至摄像模组,驱动镜头10和感光芯片21作出相应的移动以补偿所述抖动,从而达到光学防抖的目的。本实施例中,将镜头10和感光芯片21配置为同时移动,且镜头10和感光芯片21移动方向相反,可以实现更快速的响应,具有更好的防抖效果更好。另外,通常摄像模组的防抖角度范围受悬挂***和驱动***的限制,无法做到比较大的补偿角度范围,本实施例中,通过同时驱动镜头10和感光芯片21在相反的方向上移动,实现了大角度的抖动补偿。另外,本实施例中通过同时驱动镜头10或及感光芯片21朝相反的方向移动,相比仅驱动镜头10移动的方案,镜头10与感光芯片21之间具有更大的相对移动的行程(为便于描述,可将这个相对移动的行程简称为防抖行程),可以具有较好的补偿效果。尤其是,由于防抖行程的增加,本实施例对于摄像模组的倾斜抖动也具有较好的补偿效果。进一步地,本实施例的防抖移动的移动方向可以限定在xoy平面内,不需要使镜头10的光轴或者感光芯片21倾斜,从而避免了防抖移动所造成的像糊问题。
进一步地,在本申请的另一实施例中,所述感光芯片21还可以被第二驱动部40驱动在xoy平面内旋转,从而实现对摄像模组旋转方向上抖动的补偿。
进一步地,仍然参考图2,在本申请的一个实施例中,摄像模组包括第一驱动部30、镜头10、第二驱动部40和感光组件20。所述镜头10安装于所述第一驱动部30。该第一驱动部30可以具有一个筒形的第一马达载体,该第一 马达载体可以作为第一驱动部的可动部,镜头安装于第一马达载体的内侧面。第一驱动部还具有一静止部,或称为基础部。本实施例中,基础部可以被实施为马达壳体。该马达壳体可以包括一底座和一盖体。底座具有通光孔。所述可动部与所述基础部活动连接。驱动元件可以是线圈磁铁组合,其可以安装于可动部和基础部之间。例如可以安装于第一马达载体和马达壳体之间。实际上,本实施例中的第一驱动部可以直接采用现有技术中的光学防抖马达的常见结构。进一步地,本实施例中,第二驱动部40可以承靠并固定于所述第一驱动部30的底面。第二驱动部40也可以包括基础部和可动部。其中基础部与所述第一驱动部直接连接。可动部位于基础部的下方并与基础部可活动连接。感光组件20包括线路板23、安装于线路板表面的感光芯片21以及围绕在感光芯片21周围的镜座22。所述镜座22的底部可以安装于所述线路板23表面,其顶面可以固定于所述第二驱动部40的可动部。所述镜座22的中央具有通光孔,并且一滤光片24安装于所述镜座22(滤光片24也可以视为所述感光组件20的一个组成部分)。在所述第二驱动部40的可动部的带动下,所述感光组件20可以相对于所述基础部在x、y方向上平移或者在xoy平面上旋转。为便于描述,本文中有时将第一驱动部30的基础部称为第一基础部,将第二驱动部40的基础部称为第二基础部,将第一驱动部30的可动部称为第一可动部,将第二驱动部40的可动部称为第二可动部。
图3示出了本申请另一个实施例的具有防抖功能的摄像模组的剖面示意图。本实施例中,摄像模组包括第一驱动部30、镜头10、第二驱动部40和感光组件20。所述镜头10安装于所述第一驱动部30。第一驱动部30和镜头10的结构和组装方式可以与图2所示的前一实施例一致,不再赘述。本实施例与前一实施例的区别在于:所述第二驱动部40位于感光组件20内部。本实施例中,感光组件20包括线路板23、镜座22、滤光片24、感光芯片21。所述镜座22的底部可以安装于所述线路板23表面,其顶面可以固定于所述第一驱动部30的基础部。所述镜座22的中央具有通光孔,并且一滤光片24安装于所述镜座22。镜座22、滤光片24、线路板23可形成一空腔,感光芯片21位于该空腔25中。本实施例中,第二驱动部40也可以位于所述空腔25中。具体来说,第二驱动部40的基础部可以安装于所述线路板23的表面,第二驱动部40的可动部则与所述基础部可活动连接。感光芯片21则安装于所述可动部的表面。这 样,感光芯片21可以在第二驱动部40的可动部的带动下,相对于所述基础部在x、y方向上平移或者在xoy平面上旋转。
以上结合两个实施例描述了本申请的所述摄像模组的第二驱动部在结构上的不同实现方式。下面进一步地介绍基于本申请的设计思路,实现对摄像模组倾斜抖动的补偿的方法。
图4示出了本申请中四种不同情形下的镜头和感光芯片的移动距离与模组倾斜角度的关系示意图。图中位置A代表用于补偿摄像模组抖动角度a的镜头和感光芯片的移动距离组合。如图4所示,图中镜头移动距离为b,感光芯片(下文中有时简称为芯片)移动距离为c,镜头或者芯片移动距离可等效为光学成像时像面偏离光轴的角度。具体来说,当镜头在xoy平面平移距离为b时,其造成像面偏移角度α1与像距之间具有一算术关系,像距在不同拍摄距离下是不同的,为了计算以及表述方便,这里像距用像方焦距代替。具体的,其造成像面偏移角度α1与镜头像方焦距f之间的关系为:tan(α1)=b/f,当感光芯片在xoy平面平移距离为c时,其造成像面偏移角度α2与镜头像方焦距f之间的关系为:tan(α2)=c/f。本实施例中,镜头和感光芯片的移动方向相反,因此摄像模组综合补偿角度a的计算方式为:a=α1+α2=arctan(b/f)+arctan(c/f)。在一个实施例中,镜头和感光芯片的移动距离可以设置成相同,即b=c。在另一个实施例中,镜头与感光芯片移动的距离可以被设置为不相等,例如镜头移动的距离可以大于感光芯片移动的距离,即b>c。该实施例中,第二驱动部可选择尺寸较小的驱动器(如mems驱动器等,此类驱动器的可移动行程通常也相对较小),以帮助摄像模组整体上实现小型化。
进步一地,在本申请的一个实施例中,镜头移动距离和感光芯片移动距离之比可选的设置为保持固定比例,如b/c=6:4,或者b/c=7:3,或者b/c=5:5,无论摄像模组抖动的补偿值(例如综合补偿角度a)是多少,镜头和感光芯片移动的距离都保持该预设比例,有利于在摄像模组在可补偿范围内的补偿效果均匀,也有利于减小摄像模组防抖***驱动逻辑模块的设计难度。
进一步地,在镜头移动距离和感光芯片移动距离基于固定比例进行防抖移动的配置下,由于感光芯片的可移动范围较小,有时摄像模组的抖动可能超出感光芯片的最大移动行程。因此,在本申请的一个实施例中,可以设置一个防 抖阈值,例如对于需要补偿的抖动角度a,可以设置一阈值K,当实际计算出的抖动角度a小于等于防抖阈值K时,镜头移动距离b与感光芯片移动距离c保持在固定比例,该固定比例可以预先设置,例如b/c=6:4,或者b/c=7:3,或者b/c=5:5。而当当实际计算出的抖动角度a大于防抖阈值K时,感光芯片移动距离c取其移动行程的最大值,即感光芯片最大行程c max,而镜头移动距离b=tan(a/f)-c max。换句话说,当摄像模组需要补偿的抖动角度在防抖阈值K以上时,基于预设的固定比例,镜头移动到对应于感光芯片移动距离最大值(即感光芯片最大行程c max)的位置后,第一驱动部可以驱动镜头继续移动,直到镜头移动距离b=tan(a/f)-c max。而与此同时,感光芯片先同步地向相反方向移动到感光芯片移动距离最大值c max,然后保持不动。
进一步地,在本申请的另一个实施例中,在xoy平面内,镜头移动的最大行程b max所对应的防抖角度(该防抖角度指摄像模组倾斜抖动的角度)可以小于感光芯片最大行程c max所对应的防抖角度。这种设计下,摄像模组的防抖***可以具有较快的响应速度。高端镜头中,镜头往往具有较多的镜片数,例如目前智能手机中后置主摄的镜头中的镜片数目可以达到8片,为了进一步地提高成像质量,有的镜头中还使用了玻璃镜片,这些都导致镜头重量较大。当驱动力没有明显增大时,驱动装置驱动镜头移动的速度将下降。而感光芯片或者感光组件的重量相对较轻,可以以较小的驱动力达到预设位置。因此,本实施例的方案中,可以更好地利用感光芯片或感光组件重量相对较近,移动速度相对较快的优势,有效地提高摄像模组防抖***的响应速度。
进一步地,在本申请的另一实施例中,所述镜头移动距离和所述感光芯片移动距离的固定比例可以根据镜头重量、第一驱动部的驱动力、感光芯片(或感光组件)重量、第二驱动部的驱动力等因素进行设定,设定合适的固定比例,可以使得镜头和感光芯片移动到各自防抖目标位置的时间基本一致,从而获得更好的防抖效果。具体来说,镜头重量和第一驱动部的驱动力可以基本决定镜头的移动速度,而感光芯片(或感光组件)重量和第二驱动部的驱动力可以基本决定感光芯片的移动速度,当镜头的移动速度小于感光芯片的移动速度(例如镜头重量较大的情形)时,在设定所述的固定比例时,感光芯片的移动距离可以占有较大的比例,这样可以利用感光芯片移动速度较快的特点,使得该感 光芯片移动更长的距离,让镜头和感光芯片移动到各自防抖目标位置的时间基本一致。
进一步地,在本申请的另一实施例中,所述第一驱动部可以采用具有较大驱动力的驱动元件,以及具有大行程的悬挂***。例如第一驱动部可以采用SMA(形状记忆合金)元件进行驱动。相比传统的线圈磁铁组合,SMA元件可以以较小的占用空间提供较大的驱动力,因此第一驱动部可以设计得更紧凑,有利于摄像模组的小型化。
进一步地,图5示出了本申请一个实施例中的摄像模组的剖面示意图。参考图5,本实施例中,第二驱动部40的基础部41与第一驱动部30的基础部(图5中未具体示出)固定在一起。镜头10可以安装于第一驱动部30的可动部(例如第一马达载体,图5中未具体示出)。感光组件20包括线路板23、感光芯片21、镜座22、滤光片24等。感光组件20可以安装于第二驱动部40的可动部42。具体来说,移动部42的底面可以承靠于感光组件20的镜座22的顶面。其中,在第二驱动部40中,基础部41与可动部42之间可以通过悬挂***弹性连接。本实施例中,悬挂***允许可动部42相对于基础部41在xoy平面平移。可选地,悬挂***可以为滚珠***,其优势是:在z方向上,可动部42和基础部41通过滚珠相接触,可动部42仅在xoy平面内移动,而在光轴方向上的移动可以被可动部42和基础部41之间的滚珠所阻止,从而避免对摄像模组的对焦产生影响。
可选地,在另一实施例中,所述悬挂***可以包含一弹性元件(如弹簧),固定部与可动部通过该弹性元件进行连接,其允许可动部相对于基础部在xoy平面平移,但阻止可动部相对于基础部在xoy平面以外的移动。相比于滚珠***,设置弹性元件的优点是:该弹性元件可以在基础部和可动部之间提供一初始力,该初始力与驱动元件的驱动力相配合即可控制可动部移动的距离或者保持其位置,无需另外设置驱动元件提供共轭驱动力来控制可动部的位置。如果采用滚珠***,在驱动元件不提供驱动力的情形下,可动部相对于基础部在xoy方向上是自由移动的,因此往往需要提供至少一对互相反向的驱动力才可控制可动部的保持在其初始位置。
进一步地,仍然参考图5,在本申请的一个实施例中,可以通过驱动整个感光组件20移动来实现防抖。同时,线路板23、感光芯片21、镜座22、滤光片24封装为一体,线路板23、镜座22、滤光片24形成一封闭空间,感光芯片21容纳于该封闭空间,提升了感光组件20的封闭性,保证了在摄像模组制作或者使用过程中感光芯片21成像不受灰尘的影响。
本实施例中,仍然参考图5,在本申请的一个实施例中,所述线路板的背面可以直接承靠于终端设备(即搭载所述摄像模组的电子设备,例如手机),具体来说,线路板23的背面可以承靠于终端设备的主板或者其他承靠件90。虽然本实施例中将可动部42连接于感光组件20、将基础部41连接于第一驱动部30,但可以理解的是,可动部42与基础部41的移动是相对的。防抖移动中,移动方向相反是指:第一驱动部的可动部相对于其基础部的移动方向,与第二驱动部的可动部相对于其基础部的移动方向是相反的。
进一步地,图6示出了本申请另一实施例的摄像模组的剖面示意图。参考图6,本实施例中,第二驱动部40的下方增加了一后壳49,该后壳49与所述第二驱动部40的基础部41连接,并形成一容纳腔,将第二驱动部40的可动部42和感光组件20均容纳于该容纳腔中。如图6,感光组件20与后壳49底部之间可以具有一间隙49a。即感光组件20悬空,该感光组件20仅与第二驱动部40的可动部42连接。本实施例中,后壳49直接承靠于终端设备。由于后壳49连接了终端设备和第二驱动部40以及第一驱动部30的基础部,因此在防抖过程中,以终端设备为参照物,第一驱动部30和第二驱动部40的可动部分别同时驱动镜头10和感光组件20朝向相反的方向移动。进一步地,本实施例中,第二驱动部40的可动部42直接与感光组件20的上端面粘接,这样可以将滤光片24与外部空间隔开,从而避免可动部42在相对于基础部41移动的过程中摩擦或者碰撞产生的碎屑直接落到滤色片24表面。
图7示出了本申请又一个实施例中的摄像模组的剖面示意图。参考图7,本实施例中,第一驱动部30被实施为适于驱动镜头10在光轴方向上移动以实现对焦功能,同时还适于驱动镜头10在xoy平面内移动以实现防抖功能。可选地,第一驱动部30至少包括两个载体,分别是第一载体31与第二载体32,镜头10承靠于第一载体31,第一载体31与第二载体32之间设置有悬挂***,第二载体32与第一驱动部30的外壳33之间设置有悬挂***。本实施例中第一 载体31与第二载体32之间的悬挂***(即第一悬挂***)设置为滚珠***,第二载体32与外壳33之间的悬挂***(即第二悬挂***)为基于弹性元件(如弹片)的悬挂***。本实施例中,第二悬挂***设置在第一悬挂***外侧,第一悬挂***允许镜头10和第一载体31在xoy平面内平移以实现防抖功能,第二悬挂***允许镜头10、第一载体31和第二载体32整体地在光轴方向上移动以实现对焦功能。可选地,在另一实施例中,第二悬挂***也可以设置在第一悬挂***内侧。在另一变形的实施例中,第二悬挂***还可以设置在第一悬挂***下方。本实施例中,悬挂***是指将两个部件可活动连接,且二者的相对移动的自由度(即移动方向)受到一定限制的***。这两个可活动连接的部件可以分别称为基础部和可动部。通常来说,悬挂***与驱动元件(例如SMA元件或者线圈磁铁组合)配合使用。其中,由驱动元件提供驱动力,在该驱动力的作用下,可动部相对于基础部在悬挂***所限定的移动方向上移动。
进一步地,图8示出了本申请再一实施例中的摄像模组的剖面示意图。参考图8,本实施例的所述第二驱动部40的可动部可设置一向下延伸的延伸臂42a,该延伸臂42a与感光组件20的线路板23进行粘接。延伸臂42a上可以设置FPC板42b,该FPC板42b可以直接焊接于线路板23,从而使安装于可动部的驱动元件与线路板23电导通。本实施例可以避免感光组件20与可动部粘接时胶水流到滤光片上,从而影响成像。另外,本实施例中,感光组件20的上端面(即顶端)与第二驱动部40具有一间隙,可以避免滤色片被划伤或者碰碎。
进一步地,图9a示出了本申请一个实施例中的第二驱动部的立体示意图,图9b示出了本申请一个实施例中的第二驱动部的立体分解示意图。参考图9a和图9b,本实施例中,第二驱动部40的可动部42和基础部41的中央均具有通光孔,经过镜头的光线通过该通光孔入射感光芯片并成像。本实施例中,滚珠80优选为四个,分别设置在第二驱动部40的四角处(指俯视角度下的四角位置)。
进一步地,图10a示出了本申请一个实施例中的第二驱动部及感光组件的剖面示意图。参考图10a,本实施例中,所述第二驱动部40包括可动部42和基础部41,其中基础部41包括基底41a和盖41b。所述盖41b包括自基底41a向下延伸而形成环绕所述可动部42的侧壁41c和自侧壁41c水平向内延伸而形成的承靠台41d。所述侧壁41c的顶部连接所述基底41a,所述可动部42的边 缘区域42a的下表面可以承靠于所述承靠台41d的上表面。滚珠80及可动部42的边缘区域42a被夹持于基底41a和盖41b的承靠台41d之间,保证了可动部42和基础部41在光轴方向上(即z轴方向)不会产生相对移动。这样,所述第二驱动部40仅允许可动部42相对于基础部41在xoy平面内平移。更具体地,所述基底41a和所述盖41b之间设置至少一容纳空间,该容纳空间设置滚珠80,可动部42与基底41a分别紧贴滚珠80,从而保证可动部42与基础部41在光轴方向上不产生相对移动。可动部42可以包括主体部42b和边缘区域42a,所述边缘区域42a的厚度可以小于所述主体部42b的厚度。所述主体部42b的下表面(也可以称为下端面)可以低于所述盖41b的下表面(也可以称为下端面),从而保证感光组件20在贴附到可动部42后不会接触到盖41b,避免感光组件20进行防抖移动时碰到或者摩擦到盖。
进一步地,仍然参考图10a,在本申请的一个实施例中,所述基础部41的上表面可以具有台阶结构,所述台阶结构可以包括位于外侧的第一台阶面41e和位于内侧的第二台阶面41f,第二台阶面41f的高度低于第一台阶面41e的高度,从而为摄像模组的对焦提供较大的轴向(即z轴方向)移动空间。本实施例中,第一驱动部可安装于第二驱动部40的基础部41的所述第一台阶面41e。可动部42的边缘区域42a的上表面可以形成凹槽,该凹槽可以容纳滚珠80并限制滚珠80在凹槽内移动,同时也能将滚珠80与可动部42或者基础部41摩擦而产生的碎屑留在凹槽内。并且,由于可将滚珠80放置于凹槽内,可动部42、基础部41的基底41a和盖41b在进行组装时可以更加便利。而在另一实施例中,所述凹槽的位于外侧的凸台可以取消,这种设计可减小第二驱动部的横向尺寸,有利于摄像模组的小型化。由于所述凹槽的位于外侧的凸台被取消,此时凹槽实际上退化为凹陷台阶,该凹陷台阶的外侧台阶面低于内侧台阶面,并且该凹陷台阶与盖的侧壁以及基底共同形成用于容纳滚珠的容纳腔。
进一步地,在本申请的一个实施例中,所述可动部的边缘区域可以设置多个凹槽,凹槽的数量可以与滚珠数量匹配。每个所述滚珠分别容纳于对应的凹槽内。凹槽的底面可以是平面,这样可以保证可动部在平移时不会倾斜,同时,仅通过单层滚珠即可实现可动部与基础部之间在xoy平面内三个轴上相对移动。可选地,所述基底的与可动部凹槽对应的位置处也可以设置基底凹槽。在滚珠直径一定的情况下,这种设计能够减小第二驱动部的厚度。并且,所述凹 槽的底面或者凹陷台阶的底面(指凹陷台阶的外侧台阶面)为平面,可以容许可动部相对于基础部在xoy平面内旋转,即绕z轴旋转。绕z轴旋转方向可称为Rz方向,也可以称为Rz轴旋转。本实施例中,感光芯片可以在x、y、Rz三个方向上移动以实现防抖,因此具有更好的防抖能力。由于x、y、Rz三个移动方向均处于xoy平面内,因此前文所述的在xoy平面内三个轴上相对移动,也就是指在x、y、Rz三个方向上的移动。
图10b示出了本申请一个变形实施例中滚珠被设置在可动部下侧的第二驱动部的剖面示意图。参考图10b,本实施例中,滚珠80位于盖41b的承靠台41d和可动部42之间。在滚珠80对应位置处,可动部42的边缘区域42a和/或承靠台41d可以设置凹槽,凹槽的槽底面可以设置为平面,从而允许可动部42相对于基础部41仅在xoy平面内移动,并且在xoy平面内移动时不产生倾斜。
图10c示出了本申请一个变形实施例中具有两层滚珠的第二驱动部的剖面示意图。本实施例中,设置两层滚珠81和82。具体来说,基底41a与可动部42之间设置一层滚珠81,可动部42与盖41b的承靠台41d之间设置一层滚珠82。相比图10a所示的实施例,本实施例由于在可动部42和承靠台41d之间增加了一层滚珠82,所以可动部42在防抖移动时不会直接与承靠台41d摩擦,减少了碎屑的产生。并且通过设置两层滚珠81和82可以减小可动部42在移动时的阻力。
进一步地,图11a示出了本申请一个实施例中的第二驱动部的剖面示意图。参考图11a,本实施例中,可动部42的外侧面设置向内凹陷的卡槽42c,基础部41的盖41b的承靠台41d嵌合进所述卡槽42c内。这种方案中,第二驱动部40的下端面可以具有较大的面积,镜座22与可动部42贴附时,胶水可以设置在镜座22更外侧的区域,从而使胶水尽量远离滤光片,减小了胶水流到滤光片24上的风险,同时也完全避免了镜座22在防抖移动过程中摩擦到基础部41的风险。进步一地,本实施例中,可动部42可以是分体式的,例如可动部42可以包括可动部第一构件43与第二可动部第二构件44,可动部第二构件44和/或可动部第一构件43侧面向内凹陷形成所述卡槽42c。进一步地,图11b示出了本申请一个实施例中的第二驱动部的组装示意图。结合参考图11a和图11b,在第二驱动部42的组装过程中,可以先将可动部第一构件43、基础部41和滚珠80组装完成,再将可动部第二构件44贴附于可动部第一构件43的下端 面。这种设计下,镜座贴附时无需担心胶水会接触基础部,同时胶水也可以设置在镜座靠近边缘的地方(不必避让四角的基础部)避免胶水污染滤色片。
可选地,图11c示出了本申请另一个实施例中的第二驱动部的剖面示意图。参考图11c,本实施例中,所述可动部42可以是一体成型的,即卡槽42c直接在可动部42成型时形成。而盖41b可以是分体式的。参考图11b,盖41b可以包括两个分体的盖构件41b1和41b2,这两个分体的盖构件41b1和41b2可以分别从左右两边横向***所述可动部42的卡槽42c,以固定可动部42和基础部41的轴向(即z轴方向)位置,进而完成第二驱动部40的封装。
进一步地,图12示出了本申请又一个实施例中的第二驱动部的剖面示意图。参考图12,本实施例中,所述可动部42的外侧面设置向内凹陷的卡槽42c,基础部41的承靠台41d和滚珠80均设置于该卡槽内。
进步一地,在本申请的一个实施例中,可动部粘接感光组件的镜座上端面,从而实现可动部与感光组件的连接。在变形的实施例中,所述可动部也可设置为具有一向下延伸的延伸臂,并通过所述延伸臂粘接感光组件的线路板,从而实现可动部与感光组件的连接。结合参考图8,在可动部的延伸臂42a粘接线路板23的方案中,可选地,镜座可以选择为高度较低的小镜座22a,小镜座22a仅用于安装感光芯片24,将高度较高的电子元件25如电容等设置于感光芯片21和小镜座22a的外侧。这种方案可以降低镜座高度,从而降低摄像模组的后焦,进而减小了模组的整体高度。而本实施方式中由于至少部分电子元件设置在镜座外侧,优选地,第二驱动部40的可动部的外侧面具有所述卡槽,以便将延伸臂设置在第二驱动部的边缘处,使得延伸臂尽量远离电子元件,避免胶水对电子元件产生影响。
图13a示出了本申请一个实施例中的第二驱动部的可动部的仰视示意图。本实施例中,胶水50设置于可动部42的下端面与感光组件的镜座上端面之间。胶水50的布设可以避开四角区域,以避免胶水50渗漏到位于四角的滚珠容纳结构的缝隙,对防抖移动造成负面影响。同时,还可以避免可动部42的边缘过于靠近滤光片,降低胶水污染滤光片的风险。图13b示出了本申请另一个实施例中的第二驱动部的可动部的仰视示意图。本实施例中,胶水50可以沿着可动 部42下端面的边缘区域布置成一个封闭的圈。这种设计可以增加感光组件的封闭性,避免灰尘掉落至滤色片上。
需注意,以上实施例可互相结合,例如11a、图11b以及图12所示的卡槽设计可以与双层滚珠设计相结合。其中,凹槽/凹陷台阶可设置在承靠台上也可设置在可动部上。
进一步地,图14示出了本申请一个实施例中的第二驱动部的驱动元件在仰视角度下的安装位置。图15a示出了本申请一个实施例中的第二驱动部的含驱动元件的剖面示意图。结合参考图14和图15a,本申请的一个实施例中,第二驱动部40的驱动元件为线圈磁石组合。其中磁石61可以设置在基础部41的边缘区域,线圈62可以设置在可动部42的边缘区域42a。线圈62可通过设置在可动部42的FPC板(软板),FPC板与感光组件20的线路板23焊接导通。由于可动部42和感光组件20在防抖过程中是同步移动的,所以将线圈62通过FPC板焊接到线路板23能保证移动过程中导线或者焊接部没有相对运动,减小了焊接处电连接失效或接触不良的风险。本实施例中,磁石可以设置在基础部41的基底41a。
进一步地,图15b示出了本申请另一实施例中的第二驱动部的含驱动元件的剖面示意图。参考图15b,本实施例中,磁石61设置于所述基础部41的盖41b的承靠台41d。
进一步地,图15c示出了本申请又一实施例中的第二驱动部的含驱动元件的剖面示意图。本实施例中,线圈62和磁石61可设置在可动部42和基础部41的侧壁。这种设计有利于减小第二驱动部40的厚度,从而降低摄像模组的高度。
仍然参考图14,在本申请的一个实施例中,优选地,设置三个线圈磁石对(一个线圈磁石对即一个线圈磁石组合),分别称为第一线圈磁石对63、第二线圈磁石对64和第三线圈磁石对65。其中,第一线圈磁石对63与第二线圈磁石64对用于驱动可动部42在x轴方向上的平移,即提供x轴方向上的驱动力。第三线圈磁石对65用于驱动可动部42在y轴方向上的平移,即提供y轴方向上的驱动力。在俯视角度(或仰视角度)下,第一线圈磁石对63与第二线圈磁石对64可以分别沿着第二驱动部的两条相对的边布置,这两条相对的边可称为 第一边45和第二边46,第一边45和第二边46不相交。而第二线圈磁石对64可以沿着第二驱动部的第三边47布置,第三边47与第一边45和第二边46均相交。本实施例中,三个线圈磁石对既可以实现x轴平移和y轴平移,也可以实现xoy平面上的旋转。例如第一线圈磁石对63与第二线圈磁石对64提供方向相反的驱动力时,可以产生使可动部在xoy平面上的旋转的组合驱动力。需注意,这种xoy平面上的旋转的驱动力提供方式并不是唯一的,例如第一线圈磁石对63与第三线圈磁石对65工作,也可以产生使可动部在xoy平面上的旋转的组合驱动力。可选的,第一线圈磁石对与第二线圈磁石的位置可以错开(即第一线圈磁石对和第二线圈磁石对的设置位置关于第二驱动部的中轴线可以是不对称的),以提供驱动力实现可动部在xoy平面内的旋转(即Rz方向的移动)。
进一步地,图16a示出了本申请一个实施例中的摄像模组的剖面示意图。参考图16a,本实施例中,后壳49的侧壁可以具有第一通孔49b,以便线路板23的软板(FPC)穿过,从而与终端设备的主板或其他部件实现电连接。后壳49的底板49c的中央可以具有第二通孔49d,以便于摄像模组的组装。组装摄像模组的过程可以包括:先将镜头10安装于第一驱动部30,然后将第二驱动部40贴附于第一驱动部30的底部,最后将感光组件20通过后壳49底部的第二通孔49d向上贴附于第二驱动部40的可动部42。
图16b示出了本申请一个实施例中的摄像模组的组装方式的示意图。本实施例中,可选地,可将感光组件20放置在调整设备29上,后壳49底部的第二通孔49d允许调整设备29将感光组件20通过主动校准工艺来确定其优选的位置和姿态,然后再与第二驱动部40的可动部42通过胶水28粘结。
图16c示出了本申请另一个实施例中的摄像模组的剖面示意图。参考图16c,本实施例中,后壳49底部为完整的底板49c,即底板49c上不设置第二通孔,在组装时,可以先将第二驱动部40与感光组件20贴附在一起形成第一组合体,第一驱动部30和镜头10组立在一起形成第二组合体,然后再通过主动校准工艺确定第一组合体和第二组合体的相对位置(主动校准包含位置和姿态的调整),最后再根据主动校准所确定的相对位置将第一驱动部30和第二驱动部40粘贴,其中用于粘结第一组合体和第二组合体的胶水27可以布置在第一驱动部30的底面和第二驱动部40的顶面之间。
进一步地,图17示出了本申请一个实施例中的摄像模组及其连接带的布置方式。参考图17,本实施例中,摄像模组可以包括第一连接带26a和第二连接带26b,第一连接带26a设置于第一驱动部30的顶部区域,并电连接第一驱动部30,第二连接带26b与感光组件20的线路板23连通。其中第二连接带26b可以设置多个弯折,形成弯曲层叠状,以缓冲感光组件20移动所带来的应力。第二连接带26b的末端可以设置连接器,连接器可选地通过按压的方式固定并电连接于中转柱,再通过中转柱26c导通终端设备的主板(或其他构件)。同样地,第一连接带26a的末端也可以连接一连接器,该连接器通过可通过按压的方式固定并电连接于中转柱26c,再通过中转柱26c导通终端设备的主板(或其他构件)。本实施例的方案中,第一驱动部30的导通电路可以与感光组件20分开,不受感光组件20的移动所影响。第二连接带26b和中转柱26c可以容纳在第二壳体70中,第一连接带26a位于第二壳体70外部,第二壳体70的顶部可以具有第三通孔70a,以便第一连接带26a的连接器伸入并与第二连接带26b或者中转柱26c电导通。
上述实施例中,所述的第一驱动部和第二驱动部可以构成用于光学致动器的驱动结构,该驱动结构中,第一驱动部适于安装镜头,第二驱动部适于安装感光组件,镜头与感光芯片被配置为同时驱动,且朝向相反的方向移动。例如镜头被驱动朝x轴正方向移动,则感光芯片被驱动朝x轴负方向移动;镜头被驱动朝向y轴正方向移动,则感光芯片被驱动朝y轴负方向移动;或者镜头被驱动在x轴及y轴移动,同时感光芯片被驱动在x轴及y轴朝向与镜头移动相反的方向移动,换句话说,当需要同时在x轴及y轴移动时,在xoy平面上镜头的位移矢量和感光芯片的位移矢量的方向是相反的。本实施例中,将镜头和感光芯片配置为同时移动,且镜头和感光芯片移动方向相反,可以实现更快速的响应,具有更好的防抖效果更好。另外,通常摄像模组的防抖角度范围受悬挂***和驱动***的限制,无法做到比较大的补偿角度范围,本实施例中,通过同时驱动镜头和感光芯片在相反的方向上移动,实现了大角度的抖动补偿。另外,本实施例中通过同时驱动镜头或及感光芯片朝相反的方向移动,相比仅驱动镜头移动的方案,镜头与感光芯片之间具有更大的相对移动的行程(为便于描述,可将这个相对移动的行程简称为防抖行程),可以具有较好的补偿效果。尤其是,由于防抖行程的增加,本实施例对于摄像模组的倾斜抖动也具有较好的补偿效果。进一步地,本实施例的防抖移动的移动方向可以限定在xoy 平面内,不需要使镜头的光轴或者感光芯片倾斜,从而避免了防抖移动所造成的像糊问题。
进一步地,在摄像模组中,感光组件的线路板通常包括刚性的线路板主体和柔性连接带,所述柔性连接带的一端连接所述线路板主体,另一端通过连接器来连接并导通电子设备的主板或其他构件。现有技术中,感光组件的柔性连接带通常从线路板主体的侧面引出,柔性连接带与线路板柱体的表面大致是平行的。这种布置方式下,柔性连接带会对该线路板主体的移动产生较大的阻力,这可能会使驱动线路板主体运动所需的作用力变大,造成防抖补偿的行程不足,响应速度下降。并且,连接带造成的阻力是不规律的,这使得第二驱动部对于该阻力的补偿变得困难,可能造成防抖补偿的精度下降。因此,本实施例中提供了一种悬挂式的线路板以作为与所述第二驱动部适配的感光组件的线路板,这种设计方式将有助于克服连接带所带来的上述缺陷。
图18示出了本申请一个实施例中的第二驱动部和感光组件组装后的立体示意图。图19示出了本申请一个实施例中的第二驱动部和感光组件的分解示意图。图20示出了本申请一个实施例中的感光组件及其所采用的悬挂式线路板的立体示意图。参考图18、图19和图20,实施例的摄像模组中,感光组件20与第二驱动部40的可动部42连接,因此线路板主体71可在可动部42的带动下在xoy平面内移动。本实施例的线路板23被设计成悬挂式结构。具体来说,所述线路板23包括刚性的线路板主体71和柔性的连接带72,所述连接带72可以包括第三连接带72a和第四连接带72b,第三连接带72a和第四连接带72b可以分别从线路板主体71的两个相对的侧面(为便于描述,这两个相对的侧面可称为第一侧面74a和第二侧面74b)引出并向上弯折。弯折后的所述第三连接带72a和所述第四连接带72b可以分别形成悬持部75。所述悬持部75可以与第二驱动部40(或者第一驱动部30)的基础部连接,从而形成悬持结构。该悬持结构可以让所述基础部通过所述柔性连接带72的弯折部73来悬持所述线路板主体71及其表面所述安装的各个部件(即悬持感光组件20)。具体来说,在一个例子中,所述悬持部75可以具有通孔(悬持孔75a),所述第二驱动部40的基础部41可以具有对应的挂钩75b,所述挂钩75b勾住所述悬持部75的通孔以连接所述悬持部75。现有技术中,连接带与线路板主体通常在同一平面,此时连接带相对线路板主体在同一平面上的偏折会产生较大的阻力。而本 实施例中,连接带72与线路板主体71的连接位置设置了向上弯折而形成的弯折部73,此时连接带72相对线路板主体71在xoy平面(可视为水平面)产生的阻力相对较小。
进一步地,在本申请的一个实施例中,所述第三连接带72a和所述第四连接带72b可以沿着所述线路板主体71和所述感光组件20的周沿延伸,从而使得连接带72在至少三个侧面围绕所述感光组件。并且,所述第三连接带72a和所述第四连接带72b互相连接并电导通。其中,所述感光组件20具有与所述线路板主体71位置一致的第一侧面74a和第二侧面74b。第一侧面74a和第二侧面74b相对布置(即二者互不相交),而所述感光组件20的第三侧面74c与第一侧面74a和第二侧面74b均相交。所述连接带72可以环绕在所述感光组件20的第一侧面74a、第二侧面74b和第三侧面74c。所述第三连接带72a自所述线路板主体71的第一侧面74a引出并向上弯折形成所述弯折部73,然后沿着所述感光组件20的第一侧面74a延伸,并在拐角处在水平方向上弯折并继续沿着所述第三侧面74c延伸。所述第四连接带72b自所述线路板主体71的第二侧面74b引出并向上弯折形成另一弯折部73,然后沿着所述感光组件20的第二侧面74b延伸,并在拐角处水平弯折并继续沿着所述第三侧面74c延伸。第三连接带72a和第四连接带72b可在所述第三侧面74c接合并互相导通,从而构成一完整的连接带72。位于所述第一侧面74a、第二侧面74b和第三侧面74c的三个连接带区段可以分别具有至少一个悬持部75,每个所述悬持部75具有至少一个通孔以便与所述第二驱动部40(或所述第一驱动部30)的基础部41连接。本实施例中,所述悬持部75能够通过位于线路板主体71相对两侧的弯折部73悬持线路板主体71,从而使线路板主体71在被第二驱动部40驱动运动时,所述弯折部73及所述连接带72能够进行弯折形变,满足线路板主体71的运动行程。
进一步地,在本申请的一个实施例中,所述位于所述第一侧面74a、第二侧面74b和第三侧面74c的三个连接带区段的所述悬持部73可以均由刚性基板补强。例如可以在柔性连接带的部分区域贴附刚性基板,以形成所述悬持部73。而柔性连接带的其他区域则仍保持柔性状态,以便能够进行弯折形变,满足线路板主体71的运动行程。
进一步地,在本申请的一个实施例中,位于所述第三侧面74c的连接带区段可以具有一刚性的悬持部75c,该悬持部75c可以引出一第五连接带76,该第五连接带76可用于连接电子设备(例如手机)的主板。
进一步地,在本申请的另一个实施例中,所述悬持部也可以与外支架(图中未示出)连接,该外支架与所述第二驱动部的基础部直接或间接地固定在一起。本申请中,悬持部可以通过其他中介物与所述第二驱动部的基础部固定在一起。其中,中介物可以直接或间接地固定于所述第二驱动部的基础部。该中介物上具有挂钩以勾住所述悬持部,或者该中介物与所述悬持部粘合。中介物可以是外支架,也可以是第一驱动部的基础部,也可以是其他中介物。
进一步地,在本申请的另一个实施例中,所述悬持部可以不具有所述通孔。本实施例中,所述悬持部可以通过粘结的方式与所述第二驱动部的基础部(或者与第一驱动部的基础部或所述外支架)固定在一起。进一步地,在本申请的另一个实施例中,所述第三连接带和所述第四连接带可以是软硬结合板,其中形成所述悬持部的部分可以采用硬板,而连接所述悬持部的部分以及所述向上弯折而形成的弯折部均可以采用软板。由于悬持部直接由硬板形成,因此本实施例中悬持部可以不再贴附刚性基板进行补强。
进一步地,本申请的一个实施例中,所述线路板主体、所述第三连接带和所述第四连接带可以由一块完整的软硬结合板构成。
进一步地,仍然参考图18、图19和图20,本申请的一个实施例中,所述线路板还可以具有一用于固定所述第五连接带76的固定部76a,这种设计可以避免所述线路板主体71、所述第三连接带72a和所述第四连接带72b受外部因素影响。
进一步地,图21a示出了本申请一个实施例中的悬挂式线路板展开后的正面示意图;图21b示出了本申请一个实施例中的悬挂式线路板展开后的背面示意图。参考图21a和图21b,本实施例中,所述线路板23可以由软硬结合板构成。其中所述第三连接带72a和所述第四连接带72b的位于所述第三侧面74c的区段可以通过连接器78、79实现相互扣合(可结合参考图20),使所述第三连接带72a和所述第四连接带72b连接固定并进一步实现电连接。所述第三连接带72a和所述第四连接带72b内均设有电路,以将线路板主体71内的线路 向外引出,进而通过第五连接带76及其连接器77连接外部电路。由于第三连接带72a和第四连接带72b可以各自通过对应的所述向上弯折而形成的弯折部73来引出一部分线路,因此每个弯折部73所需引出的线路可以减小,这样每个弯折部73的宽度可以缩小,从而进一步地减小柔性连接带72对线路板主体71移动所形成的阻力,进而降低第二驱动部40所需提供的驱动力。需注意,在本申请的其他实施例中,线路板主体的线路也可以仅通过其中一个弯折部(例如第三连接带的向上弯折的弯折部或者第四连接带的向上弯折的弯折部)引出。
上述实施例中,第二驱动部的基座均位于所述镜头和感光组件之间,但本申请并不限于此。在另一些实施例中,第二驱动部的基座可以位于所述感光组件的下方。下面结合图22-图36和一系列实施例,对第二驱动部的基座位于所述感光组件下方的方案做进一步地描述。
图22示出了本申请一个实施例的具有防抖功能的摄像模组的剖面示意图。参考图22,本实施例中,所述摄像模组包括镜头10、感光组件20、第一驱动部30和第二驱动部40。其中感光组件20包括感光芯片21。第一驱动部30被配置为可驱动镜头10在x、y两个方向上移动,第二驱动部40被配置为可驱动感光芯片21在x、y两个方向上移动。本实施例中,x、y方向互相垂直,且均与感光组件20的感光面平行。z方向则与感光面的法线方向平行。为便于理解,图22中还示出了基于x、y、z方向所构建的三维直角坐标系。本实施例中,通过控制模块同时驱动镜头10与感光芯片21向相反的方向移动,来实现摄像模组的光学防抖。具体来说,镜头1与感光芯片21被配置为同时驱动,且朝向相反的方向移动,例如镜头10被驱动朝x轴正方向移动,则感光芯片21被驱动朝x轴负方向移动;镜头10被驱动朝向y轴正方向移动,则感光芯片21被驱动朝y轴负方向移动;或者镜头10被驱动在x轴及y轴移动,同时感光芯片21被驱动在x轴及y轴朝向与镜头10移动相反的方向移动,换句话说,当需要同时在x轴及y轴移动时,在xoy平面上镜头10的位移矢量和感光芯片21的位移矢量的方向是相反的。摄像模组通常包括位置传感器,该位置传感器用于检测摄像模组或者终端设备(即搭载该摄像模组的电子设备,例如手机)的抖动。在检测出抖动时,位置传感器发出信号至摄像模组,驱动镜头10和感光芯片21作出相应的移动以补偿所述抖动,从而达到光学防抖的目的。本实施例中,将镜头10和感光芯片21配置为同时移动,且镜头10和感光芯片21移 动方向相反,可以实现更快速的响应,具有更好的防抖效果更好。另外,通常摄像模组的防抖角度范围受悬挂***和驱动***的限制,无法做到比较大的补偿角度范围,本实施例中,通过同时驱动镜头10和感光芯片21在相反的方向上移动,实现了大角度的抖动补偿。另外,本实施例中通过同时驱动镜头10或及感光芯片21朝相反的方向移动,相比仅驱动镜头10移动的方案,镜头10与感光芯片21之间具有更大的相对移动的行程(为便于描述,可将这个相对移动的行程简称为防抖行程),可以具有较好的补偿效果。尤其是,由于防抖行程的增加,本实施例对于摄像模组的倾斜抖动也具有较好的补偿效果。进一步地,本实施例的防抖移动的移动方向可以限定在xoy平面内,不需要使镜头10的光轴或者感光芯片21倾斜,从而避免了防抖移动所造成的像糊问题。
进一步地,在本申请的另一实施例中,所述感光芯片21还可以被第二驱动部40驱动在xoy平面内旋转,从而实现对摄像模组旋转方向上抖动的补偿。
进一步地,仍然参考图22,在本申请的一个实施例中,摄像模组包括第一驱动部30、镜头10、第二驱动部40和感光组件20。所述镜头10安装于所述第一驱动部30。该第一驱动部30可以具有一个筒形的第一马达载体,该第一马达载体可以作为第一驱动部的可动部,镜头安装于第一马达载体的内侧面。第一驱动部还具有一静止部,或称为基础部。本实施例中,基础部可以被实施为马达壳体。该马达壳体可以包括一底座和一盖体。底座具有通光孔。所述可动部与所述基础部活动连接。驱动元件可以是线圈磁铁组合,其可以安装于可动部和基础部之间。例如可以安装于第一马达载体和马达壳体之间。实际上,本实施例中的第一驱动部可以直接采用现有技术中的光学防抖马达的常见结构。进一步地,本实施例中,第二驱动部40也可以包括基础部和可动部。其中基础部可包括基板和基础部侧壁,所述基础部侧壁的底部与所述基板连接,顶部与所述第一驱动部的基础部连接。为便于描述,本文中有时将第一驱动部30的基础部称为第一基础部,将第二驱动部40的基础部称为第二基础部,将第一驱动部30的可动部称为第一可动部,将第二驱动部40的可动部称为第二可动部。本实施例中,第二可动部位于所述第二基础部的基板的上方,并与所述第二基础部通过滚珠结构实现活动连接。感光组件20包括线路板23、安装于线路板表面的感光芯片21以及围绕在感光芯片21周围的镜座22。所述镜座22的底部可以安装于所述线路板23表面。所述镜座22的中央具有通光孔,并且 一滤光片24安装于所述镜座22(滤光片24也可以视为所述感光组件20的一个组成部分)。所述线路板的底面可以固定于(例如粘结于)第二可动部的上表面。这样,在所述第二可动部的带动下,所述感光组件20可以相对于所述基础部在x、y方向上平移或者在xoy平面上旋转。另一方面,本实施例中,由于第二可动部可以设置在线路板背面,因此第二可动部和第二基础部的基座均可以不设置通光孔,这样,在相同结构强度的情况下,第二可动部可设计得更加轻薄,有利于摄像模组的小型化。为便于理解,下面结合一个比较例进行说明。
图23示出了本申请另一个实施例的具有防抖功能的摄像模组的比较例的剖面示意图。该比较例中,摄像模组包括第一驱动部30、镜头10、第二驱动部40和感光组件20。所述镜头10安装于所述第一驱动部30。第一驱动部30和镜头10的结构和组装方式可以与图22所示的前一实施例一致,不再赘述。该比较例与前一实施例的区别在于:所述第二驱动部40位于镜头10与感光组件20之间。其中,第二基础部41可以直接固定于第一基础部的底面,第二可动部42则位于第二基础部41的下方并与第二基础部41活动连接,使得第二可动部42可在xoy平面上相对于所述第二基础部41移动。感光组件20则安装于所述第二可动部42的下方。其中,感光组件20的镜座22的顶面与所述第二可动部42的底面连接固定,从而所述感光组件20可以在第二可动部42的带动下,相对于所述第二基础部41在x、y方向上平移或者在xoy平面上旋转。其中,感光组件20的线路板23可以承靠于电子设备(例如手机)的主板90。滤光片24可以安装于镜座22。本比较例中,由于第二基础部41和第二可动部42均位于成像光路上,因此,第二基础部41和第二可动部42均需要在中央设置通光孔,以便光线通过。这样,为了保持所需的结构强度,第二基础部41和第二可动部的厚度势必要增加,从而可能导致摄像模组的高度增加。而前文所述的基于图22的实施例中,第二基础部41的基座和第二可动部42均设置在感光组件20的线路板的背面,因此在结构强度相同的前提下,第二基础部41的基座和第二可动部42的厚度均可以减小,从而有助于降低摄像模组的高度,有助于实现摄像模组的小型化。
需要说明,图22中的第二可动部42呈平板状,感光组件20的线路板23的底面可以与第二可动部42的上表面粘结。但这种设计并不是本申请唯一的方案。例如图36示出了本申请另一实施例中的感光组件与第二可动部的连接示意 图。参考图36,该实施例中,所述第二可动部42可以包括可动部底板42a和可动部侧壁42b,所述可动部侧壁42b自可动部底板42a的边缘区域向上延伸而形成。所述感光组件20可以置于所述可动部底板42a和可动部侧壁42b形成的容纳槽中。胶水91可以布置在可动部侧壁42b的内侧面与感光组件20的外侧面之间,即本实施例中通过在侧面布置胶水将所述第二可动部42与所述感光组件20固定在一起。
进一步地,图24示出了本申请一个实施例中的摄像模组的剖面示意图。参考图24,本实施例中,第二驱动部40的第二基础部41与第一驱动部30的第一基础部(该第一基础部可以由外壳33和第一底座34共同构成)固定在一起。镜头10可以安装于第一驱动部30的第一可动部(例如可以安装于第一可动部的第一马达载体31)。感光组件20包括线路板23、感光芯片21、镜座22、滤光片24等。感光组件20可以安装于第二驱动部40的第二可动部42。具体来说,移动部42的底面可以承靠于感光组件20的镜座22的顶面。其中,在第二驱动部40中,第二基础部41与第二可动部42之间可以通过悬挂***弹性连接。本实施例中,悬挂***允许第二可动部42相对于第二基础部41在xoy平面平移。可选地,悬挂***可以为滚珠***,其优势是:在z方向上,第二可动部42和第二基础部41通过滚珠相接触,第二可动部42仅在xoy平面内移动,而在光轴方向(即z轴方向)上的移动可以被第二可动部42和第二基础部41之间的滚珠所阻止,从而避免对摄像模组的对焦产生影响。
可选地,在另一实施例中,所述悬挂***可以包含一弹性元件(如弹簧),固定部与可动部通过该弹性元件进行连接,其允许可动部相对于基础部在xoy平面平移,但阻止可动部相对于基础部在xoy平面以外的移动。相比于滚珠***,设置弹性元件的优点是:该弹性元件可以在基础部和可动部之间提供一初始力,该初始力与驱动元件的驱动力相配合即可控制可动部移动的距离或者保持其位置,无需另外设置驱动元件提供共轭驱动力来控制可动部的位置。如果采用滚珠***,在驱动元件不提供驱动力的情形下,可动部相对于基础部在xoy方向上是自由移动的,因此往往需要提供至少一对互相反向的驱动力才可控制可动部的保持在其初始位置。
进一步地,仍然参考图24,在本申请的一个实施例中,可以通过驱动整个感光组件20移动来实现防抖。同时,线路板23、感光芯片21、镜座22、滤光 片24封装为一体,线路板23、镜座22、滤光片24形成一封闭空间,感光芯片21容纳于该封闭空间,提升了感光组件20的封闭性,保证了在摄像模组制作或者使用过程中感光芯片21成像不受灰尘的影响。
仍然参考图24,在本申请的一个实施例中,第一驱动部30被实施为适于驱动镜头10在光轴方向上移动以实现对焦功能,同时还适于驱动镜头10在xoy平面内移动以实现防抖功能。可选地,第一驱动部30至少包括两个载体,分别是第一载体31与第二载体32,镜头10承靠于第一载体31,第一载体31与第二载体32之间设置有悬挂***,第二载体32与第一驱动部30的外壳33之间设置有悬挂***。本实施例中第一载体31与第二载体32之间的悬挂***(即第一悬挂***)设置为滚珠***,第二载体32与外壳33之间的悬挂***(即第二悬挂***)可以是滚珠结构(该滚珠结构例如可以包括竖直槽和设置于竖直槽中的多个滚珠),也可以是基于弹性元件(如弹片)的悬挂***。外壳33的底面可以安装于第一底座34,该第一底座34和外壳33可以共同构成所述的第一驱动部30的第一基础部。本实施例中,第二悬挂***设置在第一悬挂***外侧,第一悬挂***允许镜头10和第一载体31在xoy平面内平移以实现防抖功能,第二悬挂***允许镜头10、第一载体31和第二载体32整体地在光轴方向上移动以实现对焦功能。可选地,在另一实施例中,第二悬挂***也可以设置在第一悬挂***内侧。在另一变形的实施例中,第二悬挂***还可以设置在第一悬挂***下方。本实施例中,悬挂***是指将两个部件可活动连接,且二者的相对移动的自由度(即移动方向)受到一定限制的***。这两个可活动连接的部件可以分别称为基础部和可动部。通常来说,悬挂***与驱动元件(例如SMA元件或者线圈磁铁组合)配合使用。其中,由驱动元件提供驱动力,在该驱动力的作用下,可动部相对于基础部在悬挂***所限定的移动方向上移动。
进一步地,图25示出了本申请一个实施例中的第二驱动部的立体示意图。图26示出了本申请一个实施例中的第二驱动部的立体分解示意图。进一步地,图27示出了本申请一个实施例的摄像模组的剖面示意图,其中示出了第二驱动部的剖面。参考图27,并结合参考图25和图26,本实施例中,第二驱动部40包括第二基础部41和第二可动部42。为便于描述,本文中在介绍第二驱动部40的段落中,有时将第二基础部41简称为基础部41,将第二可动部42简称为 可动部42,下文中不再赘述。本实施例中,基础部41包括基座41a和盖41b,本实施例中,基座41a可以呈平板状,因此也可以称为底板,所述盖41b包括盖侧壁41b1和自盖侧壁41b1顶部向内延伸而形成的承靠台41b2,所述可动部42位于所述承靠台41b2和所述基座41a之间,所述基座41a的四角区域可以设置凹槽41a1,滚珠置于所述凹槽41a1中。所述可动部42的底面与所述滚珠接触并由所述滚珠46支撑,从而形成基础部41与可动部42之间的活动连接。所述承靠台41b2和所述基座41a可以将所述可动部42夹持,从而对可动部42在z轴方向的移动进行限位。这样可动部42相对于基础部41的移动自由度被限制在xoy平面上,具体来说,可动部42相对于基础部41的移动自由度可以包括x轴平移、y轴平移和绕z轴的旋转(即在xoy平面内的旋转)。本实施例中,在滚珠46对应位置设置凹槽41a1,一方面可以在组装过程中将滚珠46放置于凹槽41a1,从而便于第二驱动部40的组装;另一方面,该凹槽41a1可以限制可动部42相对于基础部41的最大移动距离,避免可动部42与基础部41相对移动过程中发生碰撞。如图26所示,本实施例中,基础部41的基座41a上表面可以设置四个凹槽41a1,滚珠46也为四个,分别设置在第二驱动部40的四角区域(参考图26)。当然在其他实施例中,凹槽和滚珠也可设置在第二驱动部的四边处。
进一步地,在本申请的一个实施例中,所述第二驱动部40中,所述基础部41的侧壁的内侧面与可动部42外侧面具有第一间隙43,第一间隙43大于可动部42防抖移动的最大距离(即单向的最大行程,这里的单向例如可以是x轴正方向、x轴负方向、y轴正方向或y轴负方向),第一间隙43通常情况下可大于200μm。本实施例中,采用滚珠结构实现活动连接,可以降低可动部42的移动阻力,从而减小驱动可动部42移动所需的驱动力,进而可以将可动部42设计为具有较大的行程。因此,在一些实施例中,所述第一间隙43可大于300μm。
进一步地,在本申请的一个实施例中,所述第二驱动部40中,所述承靠台41b2的下表面与所述可动部42之间也可具有一第二间隙44,该第二间隙44可以小于10μm,以减小可动部42与承靠台41b2之间的摩擦。这样可以减小摩擦阻力同时也避免摩擦碎屑的产生。同时,由于第二间隙44较小,因此承靠台41b2仍然可以在z轴方向上对可动部42实现限位,避免可动部42的移动偏离xoy平面。
进一步地,在本申请的一个实施例中,所述第二驱动部40中,可动部42的下表面与基座41a上表面之间具有一第三间隙45。通常来说,滚珠直径大于容纳该滚珠的凹槽的深度。第三间隙45例如可以小于10μm。
进一步地,在本申请的一个实施例中,所述第二驱动部40中,所述盖41b的上表面(即承靠台41b2的上表面)高于感光组件20(镜座)的顶面,以避免感光组件20在水平移动时摩擦到第一驱动部30。
进一步地,图28a示出了本申请一个变形的实施例中的第二驱动部的滚珠结构。参考图28a,本实施例中,第二驱动部40的基础部41与可动部42之间的滚珠46的数目可以是三个,对应的用于容纳滚珠46的凹槽41a1的数目也可以是三个。事实上,滚珠的数目及其所设置的位置只要能够将可动部42承载于基准面(例如水平面)即可。其中,基准面即xoy平面。本实施例中,凹槽41a1底面被设置为平面,滚珠可在凹槽41a1底面自由移动,从而允许可动部42在x轴、y轴平移,同时也允许可动部42在xoy平面内平移和旋转(如图28b所示,图28b示出了可动部在xoy平面内旋转的示意图)。另一方面,结合参考图27,本实施例中,滚珠46设置在感光组件20下方,即滚珠46和感光组件20在基准面上的投影至少有部分重叠,或者说,在俯视角度下看,滚珠46完全位于感光组件20投影范围内或者至少部分位于感光组件20投影范围内。这种设计可以避免滚珠机构在摄像模组的径向方向上(即x轴或y轴方向上)占据额外空间,有助于减小第二驱动部40的横向尺寸(即x轴或y轴方向上的尺寸),有利于模组的小型化。
进一步地,图29示出了本申请一个实施例中第二驱动部的一种典型组装方式的示意图。参考图29,本实施例中,所述第二驱动部40可以由彼此分离的三个主要构件进行组装,这三个构件分别是基座41a、盖41b和可动部42,它们可以在垂直方向上进行组装。例如,可以先将具有滚珠46的基座41a布置于组装台,然后将可动部42置于所述基座41a的上方,使其由基座41a中的滚珠46所支撑,最后再将盖41b移动至基座41a和可动部42的上方,再将盖41b向下移动使其盖侧壁41b1的底面接近所述基座41a的顶面,进而将盖侧壁41b1的底面与基座41a的顶面粘结,从而完成第二驱动部40的组装。图29中,所述基座41a呈平板状,没有基座侧壁,因此也可以称为基板或底板。但需注意,在其他实施例中,所述基座41a也可以由基座侧壁和基板共同构成,基于这种 基座,可以组装成如图13b中所示出的第二驱动部,其组装方法与图29所示的组装方法可以是一致的。即先准备基座、盖和可动部这三个彼此分离的主要构件,然后再在垂直方向上将三者组装在一起。
图30示出了本申请另一个实施例中第二驱动部的组装前的分解状态的示意图。图31示出了本申请另一个实施例中第二驱动部的组装过程中的中间状态的的示意图。本实施例中,可以采用侧向组装方式来组装第二驱动部40。具体来说,可以先准备基础部主体41’、可动部42和侧盖41b”这三个彼此分离的主要构件(参考图30)。其中基础部主体41’可以包括基座41a和与基座41a连接的盖主体41b’(在一些实施例中,基座41a和盖主体41b’可以是一体成型的),所述盖主体41b’是完整的盖41b的一部分,它与所述侧盖41b”共同构成完整的盖41b。本实施例中,盖主体41b’例如可以在三个侧面围绕所述可动部42(或者感光组件),另一侧面则留下用于将可动部42(或者可动部42和感光组件的组合体)从侧面***所述基础部主体41’的缺口。而侧盖41b”则对应于缺口,待可动部42和感光组件的组合体从缺口***后(参考图30和图31),可将侧盖41b”从侧面接近所述基座41a,并将基座41a的外侧面与所述侧盖41b”的内侧面粘结在一起,从而构成完整的第二驱动部40。这种从侧边粘接固定的方式下,基础部41上下端面的平行度仅由基础部41本身制造精度所决定,因此这种从侧边粘接固定的方式可以提高基础部41上下端面的平行度以及基础部41上端面与可动部42之间的平行度。
进一步地,图32示出了本申请一个实施例中的第二驱动部的驱动元件在俯视角度下的安装位置。图33a示出了本申请一个实施例中的第二驱动部的含驱动元件的剖面示意图。结合参考图32和图33a,本申请的一个实施例中,第二驱动部40的驱动元件为线圈磁石组合。其中磁石61可以设置在基础部41的底板(即基座41a)的边缘区域,线圈62可以设置在可动部42的可动部底板的边缘区域。本实施例中,磁石可以设置在基础部41的底板。进一步地,线圈62可通过设置在可动部42上的FPC板(软板)与感光组件20的线路板23焊接导通。将线圈62设置在可动部42的优势在于,可动部42和感光组件20在防抖过程中是同步移动的,线圈62通过FPC板焊接到线路板23能保证移动过程中导线或者焊接部没有相对运动,从而减小焊接处的电失效的风险。需注意,通过FPC板的连接方式并不是本申请唯一的电连接方式,在另一实施例中,所 述线圈还可以通过设置在可动部上表面的触点或触点阵列与线路板的底面实现电连接。图33a所示的驱动元件设置方式有助于减小摄像模组的横向尺寸(即垂直于光轴方向的尺寸)。
进一步地,图33b示出了本申请另一实施例中的第二驱动部的含驱动元件的剖面示意图。本实施例中,线圈62和磁石61可设置在可动部42和基础部41的侧壁。这种设计有利于减小第二驱动部40的厚度,从而降低摄像模组的高度。具体来说,本实施例中,将磁石61设置在基础部41的基座41a而不是盖41b,这种设计可以留出基础部41与第一驱动部30的连接(可以是粘接)区域。
仍然参考图32,在本申请的一个实施例中,优选地,设置三个线圈磁石对(一个线圈磁石对即一个线圈磁石组合),分别称为第一线圈磁石对63、第二线圈磁石对64和第三线圈磁石对65。其中,第一线圈磁石对63与第二线圈磁石64对用于驱动可动部42在x轴方向上的平移,即提供x轴方向上的驱动力。第三线圈磁石对65用于驱动可动部42在y轴方向上的平移,即提供y轴方向上的驱动力。在俯视角度(或仰视角度)下,第一线圈磁石对63与第二线圈磁石对64可以分别沿着第二驱动部的两条相对的边布置,这两条相对的边可称为第一边48和第二边49,第一边48和第二边49不相交。而第二线圈磁石对64可以沿着第二驱动部的第三边47布置,第三边47与第一边48和第二边49均相交。本实施例中,三个线圈磁石对既可以实现x轴平移和y轴平移,也可以实现xoy平面上的旋转。例如第一线圈磁石对63与第二线圈磁石对64提供方向相反的驱动力时,可以产生使可动部在xoy平面上的旋转的组合驱动力。需注意,这种xoy平面上的旋转的驱动力提供方式并不是唯一的,例如第一线圈磁石对63与第三线圈磁石对65工作,也可以产生使可动部在xoy平面上的旋转的组合驱动力。可选的,第一线圈磁石对与第二线圈磁石的位置可以错开(即第一线圈磁石对和第二线圈磁石对的设置位置关于第二驱动部的中轴线可以是不对称的),以提供驱动力实现可动部在xoy平面内的旋转(即Rz方向的移动)。
进一步地,图34示出了本申请一个实施例中的摄像模组的组装方式的示意图。本实施例中,可选地,先将镜头10安装于第一驱动部30,将感光组件20安装于第二驱动部40,然后通过主动校准工艺调整感光组件20和镜头10之间 的相对位置,再通过胶水92将第一驱动部30和第二驱动部40粘接固定,使得粘结后的感光组件20和镜头10的相对位置保持在主动校准所确定的相对位置。本实施例中,用于胶水92例如可以设置在第一驱动部30的基础部和第二驱动部40的基础部之间。
进一步地,图35a示出了本申请一个实施例中的摄像模组及其连接带的布置方式。本实施例中,摄像模组可以包括第一连接带26a和第二连接带26b,第一连接带26a设置于第一驱动部30的顶部区域,并电连接第一驱动部30,第二连接带26b与感光组件20的线路板23连通。其中第二连接带26b可以设置多个弯折,形成弯曲层叠状,以缓冲感光组件20移动所带来的应力。第二连接带26b的末端可以设置连接器,连接器可选地通过按压的方式固定并电连接于中转柱26c,再通过中转柱26c导通终端设备的主板(或其他构件)。同样地,第一连接带26a的末端也可以连接一连接器,该连接器通过可通过按压的方式固定并电连接于中转柱26c,再通过中转柱26c导通终端设备的主板(或其他构件)。本实施例的方案中,第一驱动部30的导通电路可以与感光组件20分开,不受感光组件20的移动所影响。第二连接带26b和中转柱26c可以容纳在第二壳体70(第二壳体70可以是一个连接带收纳壳体)中,第一连接带26a位于第二壳体70外部,第二壳体70的顶部可以具有第三通孔70a,以便第一连接带26a的连接器伸入并与第二连接带26b或者中转柱26c电导通。进一步地,图35b示出了本申请一个实施例中的第二驱动部的立体示意图。结合参考图35a和图35b,可以看出本实施例中,可动部42和基础部41的一个侧面均具有开槽或开窗,以便第一连接带穿过所述可动部42的侧壁和所述基础部41的侧壁。
上述实施例中,所述的第一驱动部和第二驱动部可以构成双光学防抖驱动结构(也可以称为双OIS驱动结构)。该驱动结构中,第一驱动部适于安装镜头,第二驱动部适于安装感光组件,镜头与感光芯片被配置为同时驱动,且朝向相反的方向移动。例如镜头被驱动朝x轴正方向移动,则感光芯片被驱动朝x轴负方向移动;镜头被驱动朝向y轴正方向移动,则感光芯片被驱动朝y轴负方向移动;或者镜头被驱动在x轴及y轴移动,同时感光芯片被驱动在x轴及y轴朝向与镜头移动相反的方向移动,换句话说,当需要同时在x轴及y轴移动时,在xoy平面上镜头的位移矢量和感光芯片的位移矢量的方向是相反 的。在本申请一些实施例中,将镜头和感光芯片配置为同时移动,且镜头和感光芯片移动方向相反,可以实现更快速的响应,具有更好的防抖效果更好。另外,通常现有的摄像模组的防抖角度范围受悬挂***和驱动***的限制,无法做到比较大的补偿角度范围,而在本申请一些实施例中,通过同时驱动镜头和感光芯片在相反的方向上移动,实现了大角度的抖动补偿。另外,相比某些现有技术中的仅驱动镜头移动的防抖方案,本申请的一些实施例中通过同时驱动镜头或及感光芯片朝相反的方向移动,镜头与感光芯片之间具有更大的相对移动的行程(为便于描述,可将这个相对移动的行程简称为防抖行程),可以具有较好的补偿效果。尤其是,由于防抖行程的增加,本申请对于摄像模组的倾斜抖动也具有较好的补偿效果。进一步地,本申请的一些实施例中,防抖移动的移动方向可以限定在xoy平面内,不需要使镜头的光轴或者感光芯片倾斜,从而避免了防抖移动所造成的像糊问题。
以上描述仅为本申请的较佳实施方式以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (259)

  1. 一种用于光学致动器的驱动结构,其特征在于,包括:
    第一驱动部,其适于安装镜头并驱动所述镜头在在x轴和y轴方向平移;以及
    第二驱动部,其适于驱动感光芯片在x轴和y轴方向平移;
    其中,所述镜头与所述感光芯片被配置为同时驱动,且朝向相反的方向移动。
  2. 根据权利要求1所述的用于光学致动器的驱动结构,其特征在于,所述第二驱动部适于安装感光组件,所述感光组件包括所述感光芯片,所述第二驱动部通过带动所述感光组件移动来实现所述感光芯片在x轴和y轴方向的平移。
  3. 根据权利要求1所述的用于光学致动器的驱动结构,其特征在于,所述第二驱动部还用于驱动所述感光芯片在xoy平面上旋转。
  4. 根据权利要求1所述的用于光学致动器的驱动结构,其特征在于,根据所检测到的摄像模组的倾斜抖动角度a,确定所述第一驱动模块驱动所述镜头移动的镜头移动距离b,以及所述第二驱动模块驱动所述感光芯片移动的感光芯片移动距离c;其中,所述镜头移动距离b、所述感光芯片移动距离c以及所述摄像模组的像方焦距f之间满足:a=arctan(b/f)+arctan(c/f)。
  5. 根据权利要求4所述的用于光学致动器的驱动结构,其特征在于,所述驱动结构还包括驱动逻辑模块,其用于使所述镜头移动距离b和所述感光芯片移动距离c的比例保持在预设的固定比例。
  6. 根据权利要求4所述的用于光学致动器的驱动结构,其特征在于,所述驱动结构还包括驱动逻辑模块,其具有一防抖阈值K,所述驱动逻辑模块用于在所述倾斜抖动角度a小于等于所述防抖阈值K时,使所述镜头移动距离b和所述感光芯片移动距离c的比例保持在预设的固定比例,在所述倾斜抖动角度 a大于所述防抖阈值K时,使所述感光芯片移动距离c到达其移动行程的最大值c max,所述镜头移动距离b根据关系式b=tan(a/f)-c max计算获得。
  7. 根据权利要求5或6所述的用于光学致动器的驱动结构,其特征在于,所述镜头移动距离和所述感光芯片移动距离的预设的固定比例根据所述镜头的重量、所述第一驱动部的驱动力、所述感光芯片或感光组件的重量以及所述第二驱动部的驱动力进行设定,以使得所述镜头和所述感光芯片移动到各自防抖目标位置的时间一致。
  8. 根据权利要求2或3所述的用于光学致动器的驱动结构,其特征在于,所述第一驱动部包括第一基础部和第一可动部,所述第二驱动部包括第二基础部和第二可动部;其中所述第二基础部与所述第一基础部固定在一起,所述第二可动部位于所述第二基础部下方并与所述第二基础部活动连接,所述感光组件位于与所述第二可动部下方并固定于所述第二可动部。
  9. 根据权利要求8所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部通过滚珠与所述第二基础部活动连接,并且通过基于所述滚珠的悬挂***将所述第二可动部相对于所述第二基础部的移动自由度限制在xoy平面以内。
  10. 根据权利要求9所述的用于光学致动器的驱动结构,其特征在于,在俯视角度下所述滚珠布置在所述第二驱动部的四角区域。
  11. 根据权利要求9所述的用于光学致动器的驱动结构,其特征在于,所述驱动结构还包括一位于所述第二驱动部下方的后壳,所述后壳与所述第二基础部连接,并形成一容纳腔,所述第二可动部和所述感光组件均位于所述容纳腔中;并且所述感光组件与所述后壳的底部之间具有间隙。
  12. 根据权利要求9所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部具有向下延伸的延伸臂,所述延伸臂与所述感光组件的线路板粘接;所述延伸臂设置有FPC,所述FPC直接焊接于所述线路板。
  13. 根据权利要求9所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部和所述第二基础部的中央均具有通光孔。
  14. 根据权利要求9所述的用于光学致动器的驱动结构,其特征在于,所述第二基础部包括基底和盖,所述盖包括自基底向下延伸而形成的环绕所述第二可动部的侧壁和自所述侧壁水平向内延伸而形成的承靠台。
  15. 根据权利要求14所述的用于光学致动器的驱动结构,其特征在于,所述滚珠及所述第二可动部的边缘区域被夹持于所述基底和所述承靠台之间。
  16. 根据权利要求14所述的用于光学致动器的驱动结构,其特征在于,所述第二基础部的上表面具有台阶结构,所述台阶结构包括位于外侧的第一台阶面和位于内侧的第二台阶面,所述第二台阶面的高度低于所述第一台阶面的高度。
  17. 根据权利要求15所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部的边缘区的上表面具有凹槽,所述滚珠置于所述凹槽中。
  18. 根据权利要求15所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部的边缘区的上表面具有凹陷台阶,所述凹陷台阶的外侧台阶面低于其内侧台阶面,并且所述凹陷台阶与所述盖的所述侧壁以及所述基底共同形成用于容纳所述滚珠的容纳腔。
  19. 根据权利要求14所述的用于光学致动器的驱动结构,其特征在于,所述滚珠位于所述承靠台和所述第二可动部之间。
  20. 根据权利要求14所述的用于光学致动器的驱动结构,其特征在于,所述基底与所述第二可动部之间、所述第二可动部与所述承靠台之间分别设置一层滚珠。
  21. 根据权利要求14所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部的外侧面设置向内凹陷的卡槽,所述承靠台嵌合进所述卡槽内。
  22. 根据权利要求14所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部的下端面与所述感光组件的镜座的上端面之间布置胶水,所述胶水避开所述第二可动部的四角区域。
  23. 根据权利要求14所述的用于光学致动器的驱动结构,其特征在于,所述第二驱动部的驱动元件为线圈磁石组合;其中磁石设置在所述第二基础部的边缘区域,线圈设置在所述第二可动部的边缘区域;或者所述线圈和所述磁石分别设置在所述第二可动部和所述第二基础部的侧壁。
  24. 根据权利要求23所述的用于光学致动器的驱动结构,其特征在于,所述线圈磁石组合包括第一线圈磁石对、第二线圈磁石对和第三线圈磁石对;其中,所述第一线圈磁石对与所述第二线圈磁石对用于提供x轴方向上的驱动力;所述第三线圈磁石对用于提供y轴方向上的驱动力;并且在俯视角度下,所述第一线圈磁石对与所述第二线圈磁石对可以分别沿着所述第二驱动部的第一边和第二边布置,所述第一边和所述第二边不相交,而所述第二线圈磁石对沿着所述第二驱动部的第三边布置,所述第三边与所述第一边和所述第二边均相交。
  25. 一种摄像模组,其特征在于,包括:
    镜头;
    感光组件;以及
    权利要求1-24中任一项所述的用于光学致动器的驱动结构;
    其中,所述镜头安装于所述第一驱动部,所述感光组件安装于所述第二驱动部。
  26. 根据权利要求25所述的摄像模组,其特征在于,所述感光组件包括线路板,所述摄像模组还包括第一连接带和第二连接带,所述第一连接带设置于所述第一驱动部的顶部区域并电连接所述第一驱动部,所述第二连接带与感光组件的线路板连接并导通;其中所述第二连接带设置多个弯折形成弯曲层叠状。
  27. 根据权利要求25所述的摄像模组,其特征在于,所述第一驱动部包括第一基础部和第一可动部,所述第二驱动部包括第二基础部和第二可动部;其中所述第二基础部与所述第一基础部固定在一起,所述第二可动部位于所述第二基础部下方并与所述第二基础部活动连接,所述感光组件位于与所述第二可动部下方并固定于所述第二可动部;
    所述感光组件包括悬挂式线路板,所述悬挂式线路板包括刚性的线路板主体和柔性的连接带,所述连接带从所述线路板主体的第一侧面和第二侧面引出并向上弯折形成弯折部,所述弯折部的顶部在水平方向上沿着所述感光组件的周沿延伸,使得所述连接带围绕在所述感光组件的第一侧面、第二侧面和第三侧面***,并且位于所述第一侧面、所述第二侧面和所述第三侧面的连接带各自具有至少一个悬持部,所述悬持部固定于所述第二驱动部的所述第二基础部或者通过中介物与所述第二基础部固定;其中,所述所述感光组件具有与所述线路板主***置一致的第一侧面和第二侧面,所述第一侧面和所述第二侧面相对布置,所述第三侧面与所述第一侧面和所述第二侧面均相交。
  28. 根据权利要求27所述的摄像模组,其特征在于,所述悬持部具有悬持孔,所述第二基础部或者所述中介物具有挂钩,所述挂钩勾住所述悬持孔。
  29. 根据权利要求27所述的摄像模组,其特征在于,连接带的部分区段贴附刚性基板进行补强,以形成所述悬持部。
  30. 根据权利要求27所述的摄像模组,其特征在于,所述悬挂式线路板采用软硬结合板制作,其中所述线路板主体和所述悬持部由所述软硬结合板的硬板部分形成,所述弯折部和连接在多个所述悬持部之间的连接带区段由所述软硬结合板的软板部分形成。
  31. 根据权利要求30所述的摄像模组,其特征在于,所述连接带包括第三连接带和第四连接带,所述第三连接带自所述线路板主体的所述第一侧面引出并向上弯折形成一个所述弯折部,然后沿着所述感光组件的第一侧面延伸,并在拐角处在水平方向上弯折并继续沿着所述第三侧面延伸;所述第四连接带自 所述线路板主体的第二侧面引出并向上弯折形成另一个所述弯折部,然后沿着所述感光组件的所述第二侧面延伸,并在拐角处水平弯折并继续沿着所述第三侧面延伸;所述第三连接带和所述第四连接带在所述第三侧面接合并互相导通。
  32. 根据权利要求31所述的摄像模组,其特征在于,位于所述第三侧面的所述连接带的所述悬持部还连接一第五连接带,所述第五连接带具有用于外接的连接器;所述悬挂式线路板还具有用于固定所述第五连接带的固定部。
  33. 一种光学防抖摄像模组,其特征在于,包括:
    镜头;
    感光组件,其具有感光芯片;
    第一驱动部,其适于安装所述镜头并驱动所述镜头在在x轴和y轴方向平移;以及
    第二驱动部,其适于驱动所述感光芯片在x轴和y轴方向平移,所述第二驱动部包括基座和盖,所述基座位于所述感光组件下方,所述盖的顶部连接所述基座,所述该的顶部连接所述第一驱动部;
    其中,所述镜头与所述感光芯片被配置为同时驱动,且朝向相反的方向移动。
  34. 根据权利要求33所述的光学防抖摄像模组,其特征在于,所述第二驱动部还用于驱动所述感光芯片在xoy平面上旋转。
  35. 根据权利要求33所述的光学防抖摄像模组,其特征在于,根据所检测到的摄像模组的倾斜抖动角度a,确定所述第一驱动模块驱动所述镜头移动的镜头移动距离b,以及所述第二驱动模块驱动所述感光芯片移动的感光芯片移动距离c;其中,所述镜头移动距离b、所述感光芯片移动距离c以及所述摄像模组的像方焦距f之间满足:a=arctan(b/f)+arctan(c/f)。
  36. 根据权利要求35所述的光学防抖摄像模组,其特征在于,所述驱动结构还包括驱动逻辑模块,其用于使所述镜头移动距离b和所述感光芯片移动距离c的比例保持在预设的固定比例。
  37. 根据权利要求35所述的光学防抖摄像模组,其特征在于,所述驱动结构还包括驱动逻辑模块,其具有一防抖阈值K,所述驱动逻辑模块用于在所述倾斜抖动角度a小于等于所述防抖阈值K时,使所述镜头移动距离b和所述感光芯片移动距离c的比例保持在预设的固定比例,在所述倾斜抖动角度a大于所述防抖阈值K时,使所述感光芯片移动距离c到达其移动行程的最大值c max,所述镜头移动距离b根据关系式b=tan(a/f)-c max计算获得。
  38. 根据权利要求36或37所述的光学防抖摄像模组,其特征在于,所述镜头移动距离和所述感光芯片移动距离的预设的固定比例根据所述镜头的重量、所述第一驱动部的驱动力、所述感光芯片或感光组件的重量以及所述第二驱动部的驱动力进行设定,以使得所述镜头和所述感光芯片移动到各自防抖目标位置的时间一致。
  39. 根据权利要求33或34所述的光学防抖摄像模组,其特征在于,所述第一驱动部包括第一基础部和第一可动部,所述第二驱动部包括第二基础部和第二可动部,所述第二基础部包括所述基座和所述盖;其中所述盖的顶部与所述第一基础部固定在一起,所述第二可动部位于所述基座上方并与所述第二基础部活动连接,所述感光组件固定于所述第二可动部的上表面。
  40. 根据权利要求39所述的光学防抖摄像模组,其特征在于,所述第二可动部通过滚珠与所述第二基础部活动连接,其中所述第二基础部的上表面、所述滚珠和所述第二可动部的下表面在z轴方向上依次承靠,使得所述第二可动部相对于所述第二基础部的移动自由度限制在xoy平面以内,其中所述z轴垂直于所述xoy平面。
  41. 根据权利要求40所述的光学防抖摄像模组,其特征在于,在俯视角度下所述滚珠布置在所述第二驱动部的四角区域。
  42. 根据权利要求40所述的光学防抖摄像模组,其特征在于,所述第二基础部设置至少三个凹槽,至少三个滚珠设置于所述至少三个凹槽,以在所述xoy平面上承载所述第二可动部。
  43. 根据权利要求40所述的光学防抖摄像模组,其特征在于,所述基座包括基板,所述滚珠布置于所述基板的边缘区域。
  44. 根据权利要求40所述的光学防抖摄像模组,其特征在于,所述第二可动部包括可动部底板和可动部侧壁,所述可动部侧壁自所述可动部底板的边缘区域向上延伸而形成;所述感光组件置于所述可动部底板和所述可动部侧壁形成的容纳槽中。
  45. 根据权利要求44所述的光学防抖摄像模组,其特征在于,所述可动部侧壁的内侧面与所述感光组件的外侧面之间具有胶水,以将所述第二可动部与所述感光组件固定在一起。
  46. 根据权利要求40所述的光学防抖摄像模组,其特征在于,所述盖包括盖侧壁和自所述盖侧壁的顶部向内延伸而形成的承靠台;所述滚珠及所述第二可动部的边缘区域被夹持于所述基座和所述承靠台之间。
  47. 根据权利要求46所述的光学防抖摄像模组,其特征在于,所述承靠台的下表面与所述第二可动部之间具有第二间隙,所述第二间隙小于10μm。
  48. 根据权利要求47所述的光学防抖摄像模组,其特征在于,所述基座包括基板,所述第二驱动部的驱动元件为线圈磁石组合;其中磁石设置在所述基板的边缘区域,线圈设置在所述可动部底板的边缘区域;或者所述线圈和所述磁石分别设置在所述第二可动部和所述第二基础部的侧壁。
  49. 根据权利要求48所述的光学防抖摄像模组,其特征在于,所述线圈磁石组合包括第一线圈磁石对、第二线圈磁石对和第三线圈磁石对;其中,所述第一线圈磁石对与所述第二线圈磁石对用于提供x轴方向上的驱动力;所述第 三线圈磁石对用于提供y轴方向上的驱动力;并且在俯视角度下,所述第一线圈磁石对与所述第二线圈磁石对可以分别沿着所述第二驱动部的第一边和第二边布置,所述第一边和所述第二边不相交,而所述第二线圈磁石对沿着所述第二驱动部的第三边布置,所述第三边与所述第一边和所述第二边均相交。
  50. 根据权利要求44所述的光学防抖摄像模组,其特征在于,所述基座包括基板和基座侧壁;所述可动部侧壁与所述基座之间具有第一间隙,所述第一间隙大于200μm。
  51. 根据权利要求50所述的光学防抖摄像模组,其特征在于,所述可动部底板的下表面与所述基板之间具有第三间隙,所述第三间隙小于10μm。
  52. 根据权利要求33所述的光学防抖摄像模组,其特征在于,所述感光组件包括线路板,所述摄像模组还包括第一连接带和第二连接带,所述第一连接带设置于所述第一驱动部的顶部区域并电连接所述第一驱动部,所述第二连接带与感光组件的线路板连接并导通;其中所述第二连接带设置多个弯折形成弯曲层叠状。
  53. 一种用于光学致动器的驱动结构,其特征在于,包括第二驱动部,所述第二驱动部包括:
    第二基础部;以及
    第二可动部,其适于安装感光组件,所述感光组件包括所述感光芯片,所述第二可动部与所述第二基础部通过悬挂***活动连接,并适于带动所述感光芯片相对于所述第二基础部在x轴和y轴方向平移,所述x轴和所述y轴互相垂直,且均与所述感光组件的感光面平行;
    其中所述第二可动部适于布置在镜头和所述感光组件之间。
  54. 根据权利要求53所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部的底面承靠于所述感光组件的顶面。
  55. 根据权利要求54所述的用于光学致动器的驱动结构,其特征在于,所述感光组件包括线路板、安装于所述线路板表面的所述感光芯片、以及围绕在所述感光芯片周围的镜座,所述镜座的底部安装于所述线路板的表面,所述镜座的顶面固定于所述第二可动部。
  56. 根据权利要求53所述的用于光学致动器的驱动结构,其特征在于,所述悬挂***为滚珠***。
  57. 根据权利要求56所述的用于光学致动器的驱动结构,其特征在于,在z轴方向上,所述第二基础部和所述第二可动部通过滚珠相接触,以将所述第二可动部相对于所述第二基础部的移动限制在xoy平面内,所述z轴与所述感光面的法线方向平行。
  58. 根据权利要求53所述的用于光学致动器的驱动结构,其特征在于,所述悬挂***包含一弹性元件,所述第二基础部与所述第二可动部通过所述弹性元件连接,所述弹性元件允许所述第二可动部相对于所述第二基础部在xoy平面平移,并阻止所述第二可动部相对于所述第二基础部在xoy平面以外的移动。
  59. 根据权利要求55所述的用于光学致动器的驱动结构,其特征在于,所述感光组件还包括滤光片,所述线路板、所述感光芯片、所述镜座和所述滤光片封装为一体,并且所述线路板、所述镜座和所述滤光片形成一封闭空间。
  60. 根据权利要求55所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部具有一向下延伸的延伸臂,所述延伸臂与所述线路板粘结。
  61. 根据权利要求55所述的用于光学致动器的驱动结构,其特征在于,所述第二基础部包括基底和盖,所述盖包括自所述基底向下延伸而形成的环绕所述第二可动部的侧壁和自所述侧壁水平向内延伸而形成的承靠台。
  62. 根据权利要求61所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部的边缘区域的下表面承靠于所述承靠台的上表面。
  63. 根据权利要求61所述的用于光学致动器的驱动结构,其特征在于,滚珠和所述第二可动部被夹持于所述基底和所述承靠台之间。
  64. 根据权利要求60所述的用于光学致动器的驱动结构,其特征在于,所述延伸部上设置FPC板,所述FPC板电连接于所述线路板。
  65. 根据权利要求53所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部还适于带动所述感光芯片相对于所述第二基础部在xoy平面上旋转。
  66. 根据权利要求53-65中任意一项所述的用于光学致动器的驱动结构,其特征在于,所述驱动结构还包括第一驱动部,其适于安装镜头并驱动所述镜头在在x轴和y轴方向平移;
    其中,所述第二基础部的上表面连接所述第一驱动部。
  67. 根据权利要求66所述的用于光学致动器的驱动结构,其特征在于,所述第一驱动部包括第一基础部和第一可动部,所述第二基础部与所述第一基础部固定在一起。
  68. 根据权利要求53所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部和所述第二基础部的中央均具有通光孔。
  69. 一种摄像模组,其特征在于,包括:
    镜头;
    感光组件;以及
    权利要求66或67的用于光学致动器的驱动结构;
    其中,所述镜头安装于所述第一驱动部,所述感光组件安装于所述第二驱动部。
  70. 一种用于光学致动器的驱动结构,其特征在于,包括:
    第一驱动部,其适于安装镜头并驱动所述镜头在在x轴和y轴方向平移;以及
    第二驱动部,其适于驱动感光芯片在x轴和y轴方向平移;
    所述驱动结构被配置为:根据所检测到的摄像模组的倾斜抖动角度a,确定所述第一驱动模块驱动所述镜头移动的镜头移动距离b,以及所述第二驱动模块驱动所述感光芯片移动的感光芯片移动距离c;其中,所述镜头移动距离b、所述感光芯片移动距离c以及所述摄像模组的像方焦距f之间满足:
    a=arctan(b/f)+arctan(c/f)。
  71. 根据权利要求70所述的用于光学致动器的驱动结构,其特征在于,所述镜头移动距离b等于所述感光芯片移动距离c。
  72. 根据权利要求70所述的用于光学致动器的驱动结构,其特征在于,所述镜头移动距离b大于所述感光芯片移动距离c。
  73. 根据权利要求72所述的用于光学致动器的驱动结构,其特征在于,所述驱动结构还包括驱动逻辑模块,其用于使所述镜头移动距离b和所述感光芯片移动距离c的比例保持在预设的固定比例。
  74. 根据权利要求70所述的用于光学致动器的驱动结构,其特征在于,所述驱动结构还包括驱动逻辑模块,其具有一防抖阈值K,所述驱动逻辑模块用于在所述倾斜抖动角度a小于等于所述防抖阈值K时,使所述镜头移动距离b和所述感光芯片移动距离c的比例保持在预设的固定比例,在所述倾斜抖动角度a大于所述防抖阈值K时,使所述感光芯片移动距离c到达其移动行程的最大值c max,所述镜头移动距离b根据关系式b=tan(a/f)-c max计算获得。
  75. 根据权利要求74所述的用于光学致动器的驱动结构,其特征在于,所述驱动逻辑模块还用于在所述倾斜抖动角度a小于等于所述防抖阈值K时,控制所述感光芯片和所述镜头同时超相反方向移动;其中控制所述感光芯片移动,使所述感光芯片移动距离c到达其移动行程的最大值c max,然后使所述感 光芯片停止移动,同时控制所述镜头继续移动,直至使所述镜头移动距离b=tan(a/f)-c max
  76. 根据权利要求70所述的用于光学致动器的驱动结构,其特征在于,在xoy平面内,所述镜头移动的最大行程b max所对应的防抖角度小于所述感光芯片最大行程c max所对应的防抖角度。
  77. 根据权利要求70所述的用于光学致动器的驱动结构,其特征在于,所述第一驱动器驱动镜头的移动速度小于所述第二驱动器驱动感光芯片的移动速度。
  78. 根据权利要求73或74所述的用于光学致动器的驱动结构,其特征在于,所述镜头移动距离b和所述感光芯片移动距离c的预设的固定比例根据所述镜头的重量、所述第一驱动部的驱动力、所述感光芯片或感光组件的重量以及所述第二驱动部的驱动力进行设定,以使得所述镜头和所述感光芯片移动到各自防抖目标位置的时间一致。
  79. 根据权利要求70所述的用于光学致动器的驱动结构,其特征在于,所述第二驱动部适于安装感光组件,所述感光组件包括所述感光芯片,所述第二驱动部通过带动所述感光组件移动来实现所述感光芯片在x轴和y轴方向的平移。
  80. 根据权利要求70所述的用于光学致动器的驱动结构,其特征在于,所述第二驱动部还用于驱动所述感光芯片在xoy平面上旋转。
  81. 根据权利要求79或80所述的用于光学致动器的驱动结构,其特征在于,所述第一驱动部包括第一基础部和第一可动部,所述第二驱动部包括第二基础部和第二可动部;其中所述第二基础部与所述第一基础部固定在一起,所述第二可动部位于所述第二基础部下方并与所述第二基础部活动连接,所述感光组件位于与所述第二可动部下方并固定于所述第二可动部。
  82. 根据权利要求81所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部通过滚珠与所述第二基础部活动连接,并且通过基于所述滚珠的悬挂***将所述第二可动部相对于所述第二基础部的移动自由度限制在xoy平面以内。
  83. 根据权利要求82所述的用于光学致动器的驱动结构,其特征在于,所述第二驱动部的驱动元件包括线圈和磁石;其中所述磁石设置在所述第二基础部的边缘区域,所述线圈设置在所述第二可动部的边缘区域;或者所述线圈和所述磁石分别设置在所述第二可动部和所述第二基础部的侧壁。
  84. 一种摄像模组,其特征在于,包括:
    镜头;
    感光组件;以及
    权利要求70-83中任一项所述的用于光学致动器的驱动结构;
    其中,所述镜头安装于所述第一驱动部,所述感光组件安装于所述第二驱动部。
  85. 一种用于光学致动器的驱动结构,其特征在于,包括第二驱动部,所述第二驱动部包括:
    第二基础部;以及
    第二可动部,其适于安装感光组件,所述感光组件包括所述感光芯片,所述第二可动部与所述第二基础部通过悬挂***活动连接,并适于带动所述感光芯片相对于所述第二基础部在x轴和y轴方向平移,所述x轴和所述y轴互相垂直,且均与所述感光组件的感光面平行;
    其中,所述感光组件位于所述第二可动部的下方,且所述第二可动部的下端面低于所述第二基础部的下端面。
  86. 根据权利要求85所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部与所述第二基础部通过滚珠活动连接。
  87. 根据权利要求86所述的用于光学致动器的驱动结构,其特征在于,通过基于所述滚珠的悬挂***将所述第二可动部相对于所述第二基础部的移动自由度限制在xoy平面以内。
  88. 根据权利要求86所述的用于光学致动器的驱动结构,其特征在于,在俯视角度下所述滚珠布置在所述第二驱动部的四角区域。
  89. 根据权利要求86所述的用于光学致动器的驱动结构,其特征在于,所述第二基础部包括基底和盖,所述盖包括自基底向下延伸而形成的环绕所述第二可动部的侧壁和自所述侧壁水平向内延伸而形成的承靠台。
  90. 根据权利要求89所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部的边缘区域位于所述基底和所述承靠台的上表面之间。
  91. 根据权利要求90所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部的边缘区域和/或所述承靠台设置凹槽,所述滚珠容纳于所述凹槽内。
  92. 根据权利要求91所述的用于光学致动器的驱动结构,其特征在于,所述滚珠及所述第二可动部的边缘区域被夹持于所述基底和所述承靠台之间。
  93. 根据权利要求91所述的用于光学致动器的驱动结构,其特征在于,所述凹槽的槽底面设置为平面。
  94. 根据权利要求91所述的用于光学致动器的驱动结构,其特征在于,所述基底与所述第二可动部之间设置一层滚珠,所述第二可动部与所述承靠台之间设置另一层滚珠。
  95. 根据权利要求91所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部设置一向下延伸的延伸臂,所述延伸臂与所述感光组件的线路板粘接。
  96. 根据权利要求95所述的用于光学致动器的驱动结构,其特征在于,所述延伸臂上设置FPC板,所述FPC板直接焊接于所述线路板,从而使安装于所述第二可动部的驱动元件与所述线路板电导通。
  97. 根据权利要求95所述的用于光学致动器的驱动结构,其特征在于,所述感光组件的上端面与所述第二驱动部具有一间隙。
  98. 根据权利要求95所述的用于光学致动器的驱动结构,其特征在于,所述感光组件还包括安装于所述线路板的镜座和安装于所述镜座的滤光片,所述延伸臂位于所述镜座的外侧。
  99. 根据权利要求98所述的用于光学致动器的驱动结构,其特征在于,至少部分电子元件设置在所述镜座外侧。
  100. 根据权利要求85所述的用于光学致动器的驱动结构,其特征在于,所述第二驱动部的驱动元件为线圈和磁石的组合;其中所述磁石设置在所述第二基础部的边缘区域,所述线圈设置在所述第二可动部的边缘区域。
  101. 根据权利要求85所述的用于光学致动器的驱动结构,其特征在于,所述第二驱动部的驱动元件为线圈和磁石的组合;其中所述线圈和所述磁石分别设置在所述第二可动部和所述第二基础部的侧壁。
  102. 根据权利要求85-101中任意一项所述的用于光学致动器的驱动结构,其特征在于,所述驱动结构还包括第一驱动部,其适于安装镜头并驱动所述镜头在在x轴和y轴方向平移;
    其中,所述第二基础部的上表面连接所述第一驱动部。
  103. 根据权利要求102所述的用于光学致动器的驱动结构,其特征在于,所述第一驱动部包括第一基础部和第一可动部,所述第二基础部与所述第一基础部固定在一起。
  104. 一种摄像模组,其特征在于,包括:
    镜头;
    感光组件;以及
    权利要求102或103的用于光学致动器的驱动结构;
    其中,所述镜头安装于所述第一驱动部,所述感光组件安装于所述第二驱动部。
  105. 一种用于光学致动器的驱动结构,其特征在于,包括第二驱动部,所述第二驱动部包括:
    第二基础部;以及
    第二可动部,所述第二可动部与所述第二基础部通过悬挂***活动连接,并且所述第二可动部适于相对于所述第二基础部在x轴和y轴方向平移,所述x轴和所述y轴互相垂直,且均与感光组件的感光面平行;
    其中,所述第二可动部包括可动部第一构件和可动部第二构件,所述可动部第二构件附接于所述可动部第一构件的下端面,所述感光组件的上端面与所述可动部第二构件的下端面连接。
  106. 根据权利要求105所述的用于光学致动器的驱动结构,其特征在于,所述可动部第一构件和所述第二基础部通过滚珠活动连接。
  107. 根据权利要求105所述的用于光学致动器的驱动结构,其特征在于,所述悬挂***基于滚珠将所述第二可动部相对于所述第二基础部的移动自由度限制在xoy平面以内。
  108. 根据权利要求107所述的用于光学致动器的驱动结构,其特征在于,所述可动部第一构件和所述第二基础部通过所述滚珠组装在一起。
  109. 根据权利要求107所述的用于光学致动器的驱动结构,其特征在于,在俯视角度下所述滚珠布置在所述第二驱动部的四角区域。
  110. 根据权利要求106所述的用于光学致动器的驱动结构,其特征在于,所述第二基础部包括基底和盖,所述盖包括自基底向下延伸而形成的环绕所述第二可动部的侧壁和自所述侧壁水平向内延伸而形成的承靠台。
  111. 根据权利要求110所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部的所述第一构件的边缘区域位于所述基底和所述承靠台的上表面之间。
  112. 根据权利要求111所述的用于光学致动器的驱动结构,其特征在于,所述可动部第一构件的边缘区域和/或所述承靠台设置凹槽,所述滚珠容纳于所述凹槽内。
  113. 根据权利要求112所述的用于光学致动器的驱动结构,其特征在于,所述滚珠及所述可动部第一构件的边缘区域被夹持于所述基底和所述承靠台之间。
  114. 根据权利要求112所述的用于光学致动器的驱动结构,其特征在于,所述凹槽的槽底面设置为平面。
  115. 根据权利要求110所述的用于光学致动器的驱动结构,其特征在于,所述基底与所述第二可动部之间设置一层滚珠,所述第二可动部与所述承靠台之间设置另一层滚珠。
  116. 根据权利要求110所述的用于光学致动器的驱动结构,其特征在于,所述可动部第二构件附接于所述可动部第一构件的下端面,使得所述第二可动部的外侧面形成一向内凹陷的卡槽,所述承靠台嵌合进所述卡槽内。
  117. 根据权利要求105所述的用于光学致动器的驱动结构,其特征在于,在剖面图中,所述可动部第二构件的外侧面位于所述可动部第一构件的外侧面的外侧。
  118. 根据权利要求105所述的用于光学致动器的驱动结构,其特征在于,在俯视角度下,所述可动部第二构件的面积大于所述可动部第一构件的面积。
  119. 根据权利要求111所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部的所述可动部第一构件和/或所述承靠台具有凹槽。
  120. 根据权利要求105所述的用于光学致动器的驱动结构,其特征在于,所述感光组件包括线路板、安装于所述线路板表面的感光芯片、围绕在所述感光芯片周围的镜座、以及安装于所述镜座的滤光片;其中,所述镜座的底部安装于所述线路板的表面,所述镜座的上端面粘结于所述可动部第二构件的下端面。
  121. 根据权利要求105-120中任意一项所述的用于光学致动器的驱动结构,其特征在于,所述驱动结构还包括第一驱动部,其适于安装镜头并驱动所述镜头在在x轴和y轴方向平移;
    其中,所述第二基础部的上表面连接所述第一驱动部。
  122. 根据权利要求121所述的用于光学致动器的驱动结构,其特征在于,所述第一驱动部包括第一基础部和第一可动部,所述第二基础部与所述第一基础部固定在一起。
  123. 一种摄像模组,其特征在于,包括:
    镜头;
    感光组件;以及
    权利要求121或122的用于光学致动器的驱动结构;
    其中,所述镜头安装于所述第一驱动部,所述感光组件安装于所述第二驱动部。
  124. 一种用于光学致动器的驱动结构,其特征在于,包括第二驱动部,所述第二驱动部包括:
    第二基础部;以及
    第二可动部,所述第二可动部与所述第二基础部通过悬挂***活动连接,并且所述第二可动部适于相对于所述第二基础部在x轴和y轴方向平移,所述x轴和所述y轴互相垂直,且均与感光组件的感光面平行;
    其中,所述第二基础部包括基底和盖,所述盖包括自基底向下延伸而形成的环绕所述第二可动部的侧壁和自所述侧壁水平向内延伸而形成的承靠台,所述第二可动部的外侧面设置向内凹陷的卡槽,所述承靠台嵌合进所述卡槽内。
  125. 根据权利要求124所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部是一体成型的。
  126. 根据权利要求125所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部和所述第二基础部通过滚珠活动连接。
  127. 根据权利要求125所述的用于光学致动器的驱动结构,其特征在于,所述悬挂***基于滚珠将所述第二可动部相对于所述第二基础部的移动自由度限制在xoy平面以内。
  128. 根据权利要求126所述的用于光学致动器的驱动结构,其特征在于,在俯视角度下所述滚珠布置在所述第二驱动部的四角区域。
  129. 根据权利要求126所述的用于光学致动器的驱动结构,其特征在于,所述第二可动的边缘区域和/或所述承靠台设置凹槽,所述滚珠容纳于所述凹槽内。
  130. 根据权利要求129所述的用于光学致动器的驱动结构,其特征在于,所述凹槽的槽底面设置为平面。
  131. 根据权利要求129所述的用于光学致动器的驱动结构,其特征在于,所述基底与所述第二可动部之间设置一层滚珠,所述第二可动部与所述承靠台之间设置另一层滚珠。
  132. 根据权利要求129所述的用于光学致动器的驱动结构,其特征在于,所述承靠台和所述滚珠均设置于所述卡槽内。
  133. 根据权利要求129所述的用于光学致动器的驱动结构,其特征在于,所述盖包括分体的两个盖构件和所述基底,两个所述盖构件分别从横向***所述卡槽并连接所述基底,以固定所述第二可动部和所述第二基础部的轴向位置。
  134. 根据权利要求129所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部具有一向下延伸的延伸臂,所述延伸臂粘接所述感光组件的线路板。
  135. 根据权利要求134所述的用于光学致动器的驱动结构,其特征在于,所述感光组件包括线路板、安装于所述线路板表面的感光芯片、围绕在所述感光芯片周围的镜座、以及安装于所述镜座的滤光片;其中,所述镜座的底部安装于所述线路板的表面,所述延伸臂位于所述镜座的外侧。
  136. 根据权利要求134所述的用于光学致动器的驱动结构,其特征在于,所述延伸臂上设置FPC板,所述FPC板电连接于所述线路板。
  137. 根据权利要求134所述的用于光学致动器的驱动结构,其特征在于,所述感光组件的上端面与所述第二驱动部具有一间隙。
  138. 根据权利要求124所述的用于光学致动器的驱动结构,其特征在于,所述第二驱动部的驱动元件为线圈和磁石的组合;其中所述磁石设置在所述第二基础部的边缘区域,所述线圈设置在所述第二可动部的边缘区域。
  139. 根据权利要求124所述的用于光学致动器的驱动结构,其特征在于,所述第二驱动部的驱动元件为线圈和磁石的组合;其中所述线圈和所述磁石分别设置在所述第二可动部和所述第二基础部的侧壁。
  140. 根据权利要求124-139中任意一项所述的用于光学致动器的驱动结构,其特征在于,所述驱动结构还包括第一驱动部,其适于安装镜头并驱动所述镜头在在x轴和y轴方向平移;
    其中,所述第二基础部的上表面连接所述第一驱动部。
  141. 根据权利要求140所述的用于光学致动器的驱动结构,其特征在于,所述第一驱动部包括第一基础部和第一可动部,所述第二基础部与所述第一基础部固定在一起。
  142. 一种摄像模组,其特征在于,包括:
    镜头;
    感光组件;以及
    权利要求140或141的用于光学致动器的驱动结构;
    其中,所述镜头安装于所述第一驱动部,所述感光组件安装于所述第二驱动部。
  143. 一种用于光学致动器的驱动结构,其特征在于,包括第二驱动部和感光组件,所述第二驱动部包括:
    第二基础部;以及
    第二可动部,所述第二可动部的下端面通过胶水粘结所述感光组件的上端面,所述第二可动部与所述第二基础部通过悬挂***活动连接,并适于带动所述感光组件相对于所述第二基础部在x轴和y轴方向平移,所述x轴和所述y轴互相垂直,且均与所述感光组件的感光面平行。
  144. 根据权利要求143所述的用于光学致动器的驱动结构,其特征在于,所述感光组件包括线路板、安装于所述线路板表面的感光芯片以及安装于所述线路板的镜座,所述镜座围绕在所述感光芯片的周围;其中所述第二可动部的下端面通过胶水粘结所述镜座的顶面。
  145. 根据权利要求144所述的用于光学致动器的驱动结构,其特征在于,所述感光组件还包括安装于所述镜座的滤光片。
  146. 根据权利要求143所述的用于光学致动器的驱动结构,其特征在于,在z方向上,所述第二可动部和所述第二基础部通过滚珠相接触。
  147. 根据权利要求146所述的用于光学致动器的驱动结构,其特征在于,在俯视角度下所述滚珠布置在所述第二驱动部的四角区域。
  148. 根据权利要求147所述的用于光学致动器的驱动结构,其特征在于,所述胶水的布设避开所述第二可动部的四角区域。
  149. 根据权利要求146所述的用于光学致动器的驱动结构,其特征在于,所述胶水沿着所述第二可动部的下端面的边缘区域布置成封闭的圈。
  150. 根据权利要求146所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部在驱动元件的作用下,相对于所述第二基础部在所述悬挂***所限定的移动方向上移动。
  151. 根据权利要求150所述的用于光学致动器的驱动结构,其特征在于,所述驱动元件为线圈和磁石的组合。
  152. 根据权利要求150所述的用于光学致动器的驱动结构,其特征在于,所述驱动元件为SMA元件。
  153. 根据权利要求146所述的用于光学致动器的驱动结构,其特征在于,通过互相反向的驱动力来控制所述第二可动部保持在其初始位置。
  154. 根据权利要求146所述的用于光学致动器的驱动结构,其特征在于,所述第二基础部包括基底和盖,所述盖包括自基底向下延伸而形成的环绕所述第二可动部的侧壁和自所述侧壁水平向内延伸而形成的承靠台。
  155. 根据权利要求154所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部的边缘区域位于所述基底和所述承靠台的上表面之间。
  156. 根据权利要求154所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部的边缘区域和/或所述承靠台设置凹槽,所述滚珠容纳于所述凹槽内。
  157. 根据权利要求154所述的用于光学致动器的驱动结构,其特征在于,所述滚珠及所述第二可动部的边缘区域被夹持于所述基底和所述承靠台之间。
  158. 根据权利要求150所述的用于光学致动器的驱动结构,其特征在于,所述第二驱动部的驱动元件为线圈和磁石的组合;其中所述磁石设置在所述第二基础部的边缘区域,所述线圈设置在所述第二可动部的边缘区域。
  159. 根据权利要求150所述的用于光学致动器的驱动结构,其特征在于,所述第二驱动部的驱动元件为线圈和磁石的组合;其中所述线圈和所述磁石分别设置在所述第二可动部和所述第二基础部的侧壁。
  160. 根据权利要求146所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部和所述第二基础部的中央均具有通光孔。
  161. 根据权利要求146所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部包括主体部和边缘区域,所述边缘区域的厚度小于所述主体部的厚度。
  162. 根据权利要求154所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部的边缘区的上表面具有凹陷台阶,所述凹陷台阶的外侧台阶面低于其内侧台阶面,并且所述凹陷台阶与所述盖的所述侧壁以及所述基底共同形成用于容纳所述滚珠的容纳腔。
  163. 根据权利要求146所述的用于光学致动器的驱动结构,其特征在于,所述胶水的布设位置避开所述滚珠的容纳结构。
  164. 根据权利要求143-163中任意一项所述的用于光学防抖摄像模组的驱动结构,其特征在于,所述驱动结构还包括第一驱动部,其适于安装镜头并驱动所述镜头在在x轴和y轴方向平移;
    其中,所述第二基础部的上表面连接所述第一驱动部。
  165. 根据权利要求164所述的用于光学致动器的驱动结构,其特征在于,所述第一驱动部包括第一基础部和第一可动部,所述第二基础部与所述第一基础部固定在一起。
  166. 一种摄像模组,其特征在于,包括:
    镜头;以及
    权利要求164或165的用于光学致动器的驱动结构;
    其中,所述镜头安装于所述第一驱动部,所述感光组件安装于所述第二驱动部。
  167. 一种用于光学致动器的驱动结构,其特征在于,包括第二驱动部,所述第二驱动部包括:
    第二基础部;以及
    第二可动部,其适于安装感光组件,所述第二可动部与所述第二基础部通过悬挂***活动连接,并适于带动所述感光组件相对于所述第二基础部在x轴和y轴方向平移,所述x轴和所述y轴互相垂直,且均与所述感光组件的感光面平行;
    其中,所述第二驱动部的驱动元件为磁石和线圈的组合。
  168. 根据权利要求167所述的用于光学致动器的驱动结构,其特征在于,所述悬挂***包括弹性元件,所述第二基础部与所述第二可动部通过所述弹性元件连接,所述弹性元件允许所述第二可动部相对于所述第二基础部在xoy平 面平移;并且所述弹性元件与所述驱动元件的驱动力相配合,来控制所述第二可动部的移动距离或者保持所述第二可动部的位置。
  169. 根据权利要求168所述的用于光学致动器的驱动结构,其特征在于,在z方向上,所述第二可动部和所述第二基础部通过滚珠相接触。
  170. 根据权利要求169所述的用于光学致动器的驱动结构,其特征在于,所述磁石设置在所述第二基础部的边缘区域,所述线圈设置在所述第二可动部的边缘区域。
  171. 根据权利要求169所述的用于光学致动器的驱动结构,其特征在于,其中所述线圈和所述磁石分别设置在所述第二可动部和所述第二基础部的侧壁。
  172. 根据权利要求170或171所述的用于光学致动器的驱动结构,其特征在于,所述线圈通过设置在所述第二可动部的FPC板与所述感光组件的线路板导通。
  173. 根据权利要求169所述的用于光学致动器的驱动结构,其特征在于,所述第二基础部包括基底和盖,所述盖包括自基底向下延伸而形成的环绕所述第二可动部的侧壁和自所述侧壁水平向内延伸而形成的承靠台。
  174. 根据权利要求173所述的用于光学致动器的驱动结构,其特征在于,所述磁石设置于所述基底。
  175. 根据权利要求173所述的用于光学致动器的驱动结构,其特征在于,所述磁石设置于所述承靠台。
  176. 根据权利要求173所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部的边缘区域位于所述基底和所述承靠台的上表面之间。
  177. 根据权利要求173所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部的边缘区域和/或所述承靠台设置凹槽,所述滚珠容纳于所述凹槽内。
  178. 根据权利要求173所述的用于光学致动器的驱动结构,其特征在于,所述滚珠及所述第二可动部的边缘区域被夹持于所述基底和所述承靠台之间。
  179. 根据权利要求167所述的用于光学致动器的驱动结构,其特征在于,所述感光组件包括线路板、安装于所述线路板表面的感光芯片、安装于所述线路板的镜座以及安装于所述镜座的滤光片,所述镜座围绕在所述感光芯片的周围;其中所述第二可动部的下端面通过胶水粘结所述镜座的顶面。
  180. 根据权利要求167所述的用于光学致动器的驱动结构,其特征在于,所述磁石和线圈的组合包括第一线圈磁石对、第二线圈磁石对和第三线圈磁石对,所述第一线圈磁石对与所述第二线圈磁石对用于驱动所述第二可动部在所述x轴方向上的平移,所述第三线圈磁石对用于驱动所述第二可动部在所述y轴方向上的平移。
  181. 根据权利要求180所述的用于光学致动器的驱动结构,其特征在于,在俯视角度下,所述第一线圈磁石对与所述第二线圈磁石对分别沿着所述第二驱动部的两条相对的边布置,所述第三线圈磁石对沿着所述第二驱动部的第三边布置,所述第三边与所述两条相对的边均相交。
  182. 根据权利要求181所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部还适于带动所述感光组件相对于所述第二基础部在xoy平面上旋转;其中,所述第一线圈磁石对与所述第二线圈磁石对提供方向相反的驱动力,以产生使所述第二可动部在xoy平面上的旋转的组合驱动力。
  183. 根据权利要求181所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部还适于带动所述感光组件相对于所述第二基础部在xoy平面上 旋转;其中,所述第一线圈磁石对与所述第二线圈磁石对组合工作,以产生使所述第二可动部在xoy平面上的旋转的组合驱动力。
  184. 根据权利要求181所述的用于光学致动器的驱动结构,其特征在于,所述第一线圈磁石对和所述第二线圈磁石对的设置位置关于所述第二驱动部的中轴线不对称。
  185. 根据权利要求167-184中任意一项所述的用于光学防抖摄像模组的驱动结构,其特征在于,所述驱动结构还包括第一驱动部,其适于安装镜头并驱动所述镜头在在x轴和y轴方向平移;
    其中,所述第二基础部的上表面连接所述第一驱动部。
  186. 根据权利要求185所述的用于光学致动器的驱动结构,其特征在于,所述第一驱动部包括第一基础部和第一可动部,所述第二基础部与所述第一基础部固定在一起。
  187. 一种摄像模组,其特征在于,包括:
    镜头;
    感光组件;以及
    权利要求185或186的用于光学致动器的驱动结构;
    其中,所述镜头安装于所述第一驱动部,所述感光组件安装于所述第二驱动部。
  188. 一种光学防抖摄像模组,其特征在于,包括:
    镜头;
    感光组件;
    第一驱动部,其安装所述镜头并驱动所述镜头在x轴和y轴方向平移;以及
    第二驱动部,所述第二驱动部包括第二基础部和第二可动部,所述第二可动部位于所述第二基础部下方并与所述第二基础部通过悬挂***活动连接,所述感光组件安装于所述第二可动部,并在所述第二可动部的带动下在所述x轴 和所述y轴方向平移,所述x轴和所述y轴互相垂直,且均与所述感光组件的感光面平行;
    其中,所述感光组件位于与所述第二可动部下方并固定于所述第二可动部,所述感光组件包括悬挂式线路板,所述悬挂式线路板包括刚性的线路板主体和柔性的连接带,所述线路板主体在所述第二可动部的带动下在xoy平面内移动,所述连接带设置悬持部,所述悬持部固定于所述第二基础部或者通过中介物与所述第二基础部固定。
  189. 根据权利要求188所述的光学防抖摄像模组,其特征在于,所述连接带包括第三连接带和第四连接带,所述第三连接带和所述第四连接带分别从所述线路板主体的第一侧面和第二侧面引出并向上弯折形成弯折部,所述弯折部的顶部在水平方向上沿着所述感光组件的周沿延伸,使得所述连接带围绕在所述感光组件的第一侧面、第二侧面和第三侧面***;其中,所述感光组件具有与所述线路板主***置一致的第一侧面和第二侧面,所述第一侧面和所述第二侧面相对布置,所述第三侧面与所述第一侧面和所述第二侧面均相交。
  190. 根据权利要求189所述的光学防抖摄像模组,其特征在于,所述第三连接带和所述第四连接带在所述第三侧面接合并互相导通。
  191. 根据权利要求190所述的光学防抖摄像模组,其特征在于,位于所述第一侧面、所述第二侧面和所述第三侧面的三个所述连接带的区段分别具有至少一个悬持部。
  192. 根据权利要求188所述的摄像模组,其特征在于,所述第一驱动部包括第一基础部和第一可动部,所述第二基础部与所述第一基础部固定在一起。
  193. 根据权利要求188所述的摄像模组,其特征在于,所述悬持部具有悬持孔,所述第二基础部或者所述中介物具有挂钩,所述挂钩勾住所述悬持孔。
  194. 根据权利要求188所述的摄像模组,其特征在于,所述连接带的部分区段贴附刚性基板进行补强,以形成所述悬持部。
  195. 根据权利要求188所述的摄像模组,其特征在于,所述悬挂式线路板采用软硬结合板制作,其中所述线路板主体和所述悬持部由所述软硬结合板的硬板部分形成,所述弯折部和连接在多个所述悬持部之间的连接带区段由所述软硬结合板的软板部分形成。
  196. 根据权利要求188所述的摄像模组,其特征在于,所述连接带包括第三连接带和第四连接带,所述第三连接带自所述线路板主体的所述第一侧面引出并向上弯折形成一个所述弯折部,然后沿着所述感光组件的第一侧面延伸,并在拐角处在水平方向上弯折并继续沿着所述第三侧面延伸;所述第四连接带自所述线路板主体的第二侧面引出并向上弯折形成另一个所述弯折部,然后沿着所述感光组件的所述第二侧面延伸,并在拐角处水平弯折并继续沿着所述第三侧面延伸;所述第三连接带和所述第四连接带在所述第三侧面接合并互相导通。
  197. 根据权利要求196所述的摄像模组,其特征在于,位于所述第三侧面的所述连接带的所述悬持部还连接一第五连接带,所述第五连接带具有用于外接的连接器。
  198. 根据权利要求197所述的摄像模组,其特征在于,所述悬挂式线路板还具有用于固定所述第五连接带的固定部。
  199. 根据权利要求188所述的摄像模组,其特征在于,所述悬持部与外支架连接,该外支架与所述第二基础部直接或间接地固定在一起。
  200. 根据权利要求188所述的摄像模组,其特征在于,所述悬持部粘合于所述第二基础部或者粘合于所述中介物。
  201. 根据权利要求188所述的摄像模组,其特征在于,所述第二驱动部的驱动元件是线圈和磁石的组合。
  202. 根据权利要求188所述的摄像模组,其特征在于,在z轴方向上,所述第二可动部和所述第二基础部通过滚珠相接触。
  203. 一种光学防抖摄像模组,其特征在于,包括:
    镜头;
    感光组件;
    第一驱动部,其安装所述镜头并驱动所述镜头在x轴和y轴方向平移;
    第二驱动部,所述第二驱动部包括第二基础部和第二可动部;所述感光组件位于所述第二可动部下方并安装于所述第二可动部,所述第二可动部适于带动所述感光组件相对于所述第二基础部在x轴和y轴方向平移,所述x轴和所述y轴互相垂直,且均与所述感光组件的感光面平行;以及
    后壳,其位于所述第二驱动部下方,所述后壳与所述第二基础部连接并形成一容纳腔,所述第二可动部和所述感光组件均位于所述容纳腔中。
  204. 根据权利要求203所述的光学防抖摄像模组,其特征在于,所述后壳具有一底板,所述底板的中央具有第二通孔。
  205. 根据权利要求203所述的光学防抖摄像模组,其特征在于,所述后壳底部为完整的底板,所述感光组件与所述底板之间具有间隙。
  206. 根据权利要求203、204或205所述的光学防抖摄像模组,其特征在于,所述后壳的侧壁具有第一通孔,所述感光组件的线路板包括一FPC板,所述FPC板穿过所述第一通孔。
  207. 根据权利要求203所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部的底面承靠于所述感光组件的顶面。
  208. 根据权利要求207所述的用于光学致动器的驱动结构,其特征在于,所述感光组件包括线路板、安装于所述线路板表面的所述感光芯片、以及围绕在所述感光芯片周围的镜座,所述镜座的底部安装于所述线路板的表面,所述镜座的顶面固定于所述第二可动部。
  209. 根据权利要求203所述的用于光学致动器的驱动结构,其特征在于,在z轴方向上,所述第二基础部和所述第二可动部通过滚珠相接触,以将所述第二可动部相对于所述第二基础部的移动限制在xoy平面内,所述z轴与所述感光面的法线方向平行。
  210. 根据权利要求203所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部通过悬挂***与所述第二基础部活动连接,所述悬挂***包含一弹性元件,所述第二基础部与所述第二可动部通过所述弹性元件连接,所述弹性元件允许所述第二可动部相对于所述第二基础部在xoy平面平移,并阻止所述第二可动部相对于所述第二基础部在xoy平面以外的移动。
  211. 根据权利要求208所述的用于光学致动器的驱动结构,其特征在于,所述感光组件还包括滤光片,所述线路板、所述感光芯片、所述镜座和所述滤光片封装为一体,并且所述线路板、所述镜座和所述滤光片形成一封闭空间。
  212. 根据权利要求203所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部具有一向下延伸的延伸臂,所述延伸臂与所述线路板粘结;所述延伸部上设置FPC板,所述FPC板电连接于所述线路板。
  213. 根据权利要求203所述的用于光学致动器的驱动结构,其特征在于,所述第二基础部包括基底和盖,所述盖包括自所述基底向下延伸而形成的环绕所述第二可动部的侧壁和自所述侧壁水平向内延伸而形成的承靠台。
  214. 根据权利要求213所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部的边缘区域的下表面承靠于所述承靠台的上表面。
  215. 根据权利要求213所述的用于光学致动器的驱动结构,其特征在于,滚珠和所述第二可动部被夹持于所述基底和所述承靠台之间。
  216. 根据权利要求203所述的用于光学致动器的驱动结构,其特征在于,所述第二可动部还适于带动所述感光组件相对于所述第二基础部在xoy平面上旋转。
  217. 一种权利要求204所述的光学防抖摄像模组的组装方法,其特征在于,包括:将所述镜头安装于所述第一驱动部,将所述第二驱动部贴附于所述第一驱动部的底部;以及
    最后将所述感光组件通过所述后壳的所述第二通孔向上贴附于所述第二可动部。
  218. 根据权利要求217所述的组装方法,其特征在于,将所述感光组件贴附于所述第二可动部的步骤还包括:将感光组件放置在调整设备上,调整设备通过后壳底部的第二通孔调整所述感光组件,并基于主动校准工艺来确定所述感光组件的位置和姿态,然后再将所述感光组件与所述第二可动部通过胶水粘结。
  219. 一种权利要求205所述的光学防抖摄像模组的组装方法,其特征在于,先将所述第二驱动部与所述感光组件贴附在一起形成第一组合体,将所述第一驱动部和所述镜头组立在一起形成第二组合体;
    然后再通过主动校准工艺确定所述第一组合体和所述第二组合体的相对位置;以及
    最后再根据主动校准所确定的相对位置将所述第一驱动部和所述第二驱动部粘贴,其中用于粘结所述第一组合体和所述第二组合体的胶水布置在所述第一驱动部的底面和所述第二驱动部的顶面之间。
  220. 一种光学防抖摄像模组,其特征在于,包括:
    镜头;
    感光组件,其具有感光芯片;
    第一驱动部,其适于安装所述镜头并驱动所述镜头在x轴和y轴方向平移;以及
    第二驱动部,其适于驱动所述感光芯片在x轴和y轴方向平移,所述第二驱动部包括第二基础部和第二可动部,所述第二基础部包括基座和盖,所述感光组件固定于所述第二可动部,所述第二可动部的下表面和所述基座的上表面通过滚珠活动连接。
  221. 根据权利要求220所述的光学防抖摄像模组,其特征在于,所述基座的上表面、所述滚珠和所述第二可动部的下表面在z轴方向上依次承靠,使得所述第二可动部相对于所述第二基础部的移动自由度限制在xoy平面以内,其中所述z轴垂直于所述xoy平面,所述z轴为所述摄像模组的光轴方向的坐标轴。
  222. 根据权利要求220所述的光学防抖摄像模组,其特征在于,所述滚珠设置于凹槽中。
  223. 根据权利要求220所述的光学防抖摄像模组,其特征在于,所述滚珠设置于所述基座的上表面的凹槽中。
  224. 根据权利要求220所述的光学防抖摄像模组,其特征在于,所述盖的底部连接所述基座,所述盖的顶部连接所述第一驱动部。
  225. 根据权利要求224所述的光学防抖摄像模组,其特征在于,所述第一驱动部包括第一基础部和第一可动部,所述盖的顶部与所述第一基础部固定在一起。
  226. 根据权利要求222所述的光学防抖摄像模组,其特征在于,所述第二驱动部还用于驱动所述感光芯片在xoy平面上旋转。
  227. 根据权利要求222所述的光学防抖摄像模组,其特征在于,在俯视角度下看,所述滚珠完全位于所述感光组件的投影范围内或者部分位于所述感光组件的投影范围内。
  228. 根据权利要求222所述的光学防抖摄像模组,其特征在于,所述基座包括基板,所述滚珠布置于所述基板的边缘区域。
  229. 根据权利要求222所述的光学防抖摄像模组,其特征在于,在俯视角度下所述滚珠布置在所述第二驱动部的四角区域。
  230. 根据权利要求222所述的光学防抖摄像模组,其特征在于,所述第二基础部设置至少三个所述凹槽,至少三个所述滚珠设置于至少三个所述凹槽,以在所述xoy平面上承载所述第二可动部。
  231. 根据权利要求220所述的光学防抖摄像模组,其特征在于,所述第二可动部包括可动部底板和可动部侧壁,所述可动部侧壁自所述可动部底板的边缘区域向上延伸而形成;所述感光组件置于所述可动部底板和所述可动部侧壁形成的容纳槽中。
  232. 根据权利要求231所述的光学防抖摄像模组,其特征在于,所述可动部侧壁的内侧面与所述感光组件的外侧面之间具有胶水,以将所述第二可动部与所述感光组件固定在一起。
  233. 根据权利要求222所述的光学防抖摄像模组,其特征在于,所述盖包括盖侧壁和自所述盖侧壁的顶部向内延伸而形成的承靠台;所述滚珠及所述第二可动部的边缘区域被夹持于所述基座和所述承靠台之间。
  234. 根据权利要求233所述的光学防抖摄像模组,其特征在于,所述承靠台的下表面与所述第二可动部之间具有第二间隙,所述第二间隙小于10μm。
  235. 根据权利要求220所述的光学防抖摄像模组,其特征在于,所述第二驱动部的驱动元件为线圈磁石组合。
  236. 根据权利要求220所述的光学防抖摄像模组,其特征在于,所述基座包括基板,所述第二驱动部的驱动元件为线圈磁石组合;所述线圈磁石组合包 括线圈和磁石,其中所述磁石设置在所述基板的边缘区域,所述线圈设置在所述可动部底板的边缘区域;或者所述线圈和所述磁石分别设置在所述第二可动部和所述第二基础部的侧壁。
  237. 根据权利要求220所述的光学防抖摄像模组,其特征在于,所述线圈磁石组合包括第一线圈磁石对、第二线圈磁石对和第三线圈磁石对;其中,所述第一线圈磁石对与所述第二线圈磁石对用于提供x轴方向上的驱动力;所述第三线圈磁石对用于提供y轴方向上的驱动力;并且在俯视角度下,所述第一线圈磁石对与所述第二线圈磁石对可以分别沿着所述第二驱动部的第一边和第二边布置,所述第一边和所述第二边不相交,而所述第二线圈磁石对沿着所述第二驱动部的第三边布置,所述第三边与所述第一边和所述第二边均相交。
  238. 根据权利要求231所述的光学防抖摄像模组,其特征在于,所述基座包括基板和基座侧壁;所述可动部侧壁与所述基座之间具有第一间隙,所述第一间隙大于200μm。
  239. 根据权利要求238所述的光学防抖摄像模组,其特征在于,所述可动部底板的下表面与所述基板之间具有第三间隙,所述第三间隙小于10μm。
  240. 根据权利要求220所述的摄像模组,其特征在于,所述感光组件包括线路板,所述摄像模组还包括第一连接带和第二连接带,所述第一连接带电连接所述第一驱动部,所述第二连接带与感光组件的线路板连接并导通;其中所述第二连接带设置多个弯折形成弯曲层叠状。
  241. 一种光学防抖摄像模组组装方法,其特征在于,包括:
    步骤1:先将镜头安装于第一驱动部,将感光组件安装于第二驱动部,其中所述第一驱动部适于驱动所述镜头在在x轴和y轴方向平移,所述第二驱动部适于驱动所述感光组件在x轴和y轴方向平移,所述第二驱动部包括第二可动部和第二基础部,所述第二基础部包括基座和盖,所述盖的底部连接所述基座,所述感光组件固定于所述第二可动部,所述第二可动部的下表面和所述基座的上表面通过滚珠活动连接;以及
    步骤2:通过胶水将第一驱动部和第二驱动部粘结固定。
  242. 根据权利要求241所述的光学防抖摄像模组组装方法,其特征在于,所述步骤1,所述第一驱动部包括第一可动部和第一基础部;
    所述步骤2还包括,在所述第一基础部和所述第二驱动部之间设置所述胶水。
  243. 根据权利要求241所述的光学防抖摄像模组组装方法,其特征在于,所述步骤1中,所述第二驱动部的组装方法包括以下子步骤:
    步骤11:准备彼此分离的所述盖、所述第二可动部和所述基座;以及
    步骤12:在垂直方向上将所述盖、所述第二可动部和所述基座组装在一起,所述垂直方向是垂直于xoy平面的方向。
  244. 根据权利要求243所述的光学防抖摄像模组组装方法,其特征在于,所述子步骤12包括以下子步骤:
    步骤121:先将具有滚珠的所述基座布置于组装台;
    步骤122:然后将所述第二可动部置于所述基座的上方,使其由所述基座中的所述滚珠所支撑;以及
    步骤123:最后再将所述盖移动至所述基座和所述第二可动部的上方,再将所述盖向下移动使其盖侧壁的底面接近所述基座的顶面,进而将所述盖侧壁的底面与所述基座的顶面粘结。
  245. 根据权利要求244所述的光学防抖摄像模组组装方法,其特征在于,所述步骤11中,所述基座的上表面具有凹槽;
    所述步骤121中,所述滚珠被置于所述基座的所述凹槽中。
  246. 根据权利要求241所述的光学防抖摄像模组组装方法,其特征在于,所述步骤1中,所述第二驱动部的组装方法包括以下子步骤:
    步骤1a:准备彼此分离的基础部主体、所述第二可动部和侧盖,其中所述基础部主体包括所述基座和与所述基座连接的盖主体,所述步骤1中的完整的所述盖由所述盖主体和所述侧盖构成;
    步骤1b:将所述第二可动部从侧面***所述基础部主体的缺口;以及
    步骤1c:待所述第二可动部***后,将所述侧盖与所述基座粘结。
  247. 根据权利要求246所述的光学防抖摄像模组组装方法,其特征在于,所述步骤1b还包括:将所述第二可动部和所述感光组件组装成组合体,然后将所述组合体从侧面***所述基础部主体的缺口。
  248. 根据权利要求246或247所述的光学防抖摄像模组组装方法,其特征在于,所述步骤1c还包括:将所述侧盖从侧面接近所述基座,并将所述基座的外侧面与所述侧盖的内侧面粘结在一起。
  249. 根据权利要求246或247所述的光学防抖摄像模组组装方法,其特征在于,所述步骤1a中,所述盖主体的形状被构造为可在三个侧面围绕所述第二可动部,而另一侧面则留下用于将所述第二可动部从侧面***所述基础部主体的所述缺口。
  250. 根据权利要求246或247所述的光学防抖摄像模组组装方法,其特征在于,所述基座的上表面具有凹槽,所述滚珠被置于所述基座的所述凹槽中。
  251. 根据权利要求241所述的光学防抖摄像模组组装方法,其特征在于,所述步骤2还包括:通过主动校准工艺调整所述感光组件和所述镜头之间的相对位置,再通过所述胶水将所述第一驱动部和所述第二驱动部粘接固定,使得粘结后的所述感光组件和所述镜头的相对位置保持在主动校准所确定的相对位置。
  252. 根据权利要求241所述的光学防抖摄像模组组装方法,其特征在于,所述步骤1中,所述第二驱动部具有驱动元件,所述驱动元件包括线圈和磁石,所述磁石设置在所述基座的边缘区域,所述第二可动部包括可动部底板和可动部侧壁,所述可动部侧壁自所述可动部底板的边缘区域向上延伸而形成;所述线圈设置在所述可动部底板的边缘区域。
  253. 根据权利要求252所述的光学防抖摄像模组组装方法,其特征在于,所述步骤1中,所述线圈通过设置在所述第二可动部的FPC板与所述感光组件的线路板焊接导通。
  254. 根据权利要求252所述的光学防抖摄像模组组装方法,其特征在于,所述步骤1中,所述线圈通过设置在所述第二可动部上表面的触点或触点阵列与所述感光组件的线路板的底面实现电连接。
  255. 根据权利要求241所述的光学防抖摄像模组组装方法,其特征在于,所述步骤1还包括:将第一连接带设置并电连接于所述第一驱动部,将第二连接带与所述感光组件的线路板连接并导通。
  256. 根据权利要求255所述的光学防抖摄像模组组装方法,其特征在于,所述光学防抖摄像模组组装方法还包括:
    步骤3:将所述第二连接带进行多个弯折形成弯曲层叠状。
  257. 根据权利要求255所述的光学防抖摄像模组组装方法,其特征在于,所述步骤1中,所述第二连接带的末端设置连接器;
    所述步骤3中,将所述连接器通过按压的方式固定并电连接于中转柱,所述中转柱适于导通终端设备。
  258. 根据权利要求255所述的光学防抖摄像模组组装方法,其特征在于,所述步骤1中,所述第一连接带设置于所述第一驱动部的顶部区域;
    所述步骤3还包括:在所述第一驱动部和所述第二驱动部的侧面设置一第二壳体,将所述第二连接带和所述中转柱容纳在所述第二壳体中;将所述第一连接带布置在所述第二壳体外部,所述第二壳体的顶部具有第三通孔,所述第一连接带的末端伸入所述第三通孔并与所述第二连接带或者所述中转柱电导通。
  259. 根据权利要求255所述的光学防抖摄像模组组装方法,其特征在于,所述步骤1中,所述第二可动部和所述第二基础部的侧面具有开槽或通孔,所述第二连接带从所述开槽或通孔穿过。
PCT/CN2021/123532 2020-10-14 2021-10-13 用于光学致动器的驱动结构及相应的摄像模组和组装方法 WO2022078386A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180055159.1A CN116134369A (zh) 2020-10-14 2021-10-13 用于光学致动器的驱动结构及相应的摄像模组和组装方法
EP21879429.5A EP4231091A4 (en) 2020-10-14 2021-10-13 DRIVE STRUCTURE FOR USE IN AN OPTICAL ACTUATOR, ASSOCIATED PHOTOGRAPHY MODULE AND ASSEMBLY METHOD

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011097162.3 2020-10-14
CN202011097162.3A CN114428430B (zh) 2020-10-14 2020-10-14 用于光学致动器的驱动结构及相应的摄像模组
CN202011191352.1A CN114531523B (zh) 2020-10-30 2020-10-30 光学防抖摄像模组
CN202011191352.1 2020-10-30

Publications (1)

Publication Number Publication Date
WO2022078386A1 true WO2022078386A1 (zh) 2022-04-21

Family

ID=81207730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123532 WO2022078386A1 (zh) 2020-10-14 2021-10-13 用于光学致动器的驱动结构及相应的摄像模组和组装方法

Country Status (3)

Country Link
EP (1) EP4231091A4 (zh)
CN (1) CN116134369A (zh)
WO (1) WO2022078386A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108174079A (zh) * 2018-03-15 2018-06-15 成都鼎信精控科技有限公司 一种双轴防抖摄像头模组及其控制方法
CN209402560U (zh) * 2019-03-14 2019-09-17 南昌欧菲光电技术有限公司 摄像头模组及电子设备
CN110673297A (zh) * 2019-11-12 2020-01-10 东莞市亚登电子有限公司 微型光学镜头自动对焦及防抖的驱动装置
CN110784650A (zh) * 2019-11-12 2020-02-11 Oppo广东移动通信有限公司 防抖摄像模组及电子设备
CN112616001A (zh) * 2020-12-31 2021-04-06 南昌欧菲光电技术有限公司 光学防抖驱动器、摄像模组及电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100871566B1 (ko) * 2006-12-04 2008-12-02 삼성전자주식회사 이미지 촬상 장치의 손떨림 보상을 위한 장치 및 방법
US7920780B2 (en) * 2008-04-16 2011-04-05 Canon Kabushiki Kaisha Image stabilization apparatus, imaging apparatus, and optical apparatus
JP2009258389A (ja) * 2008-04-16 2009-11-05 Canon Inc 像振れ補正装置、撮像装置および光学装置
WO2020179832A1 (ja) * 2019-03-05 2020-09-10 パナソニックIpマネジメント株式会社 撮像装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108174079A (zh) * 2018-03-15 2018-06-15 成都鼎信精控科技有限公司 一种双轴防抖摄像头模组及其控制方法
CN209402560U (zh) * 2019-03-14 2019-09-17 南昌欧菲光电技术有限公司 摄像头模组及电子设备
CN110673297A (zh) * 2019-11-12 2020-01-10 东莞市亚登电子有限公司 微型光学镜头自动对焦及防抖的驱动装置
CN110784650A (zh) * 2019-11-12 2020-02-11 Oppo广东移动通信有限公司 防抖摄像模组及电子设备
CN112616001A (zh) * 2020-12-31 2021-04-06 南昌欧菲光电技术有限公司 光学防抖驱动器、摄像模组及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4231091A4 *

Also Published As

Publication number Publication date
EP4231091A1 (en) 2023-08-23
EP4231091A4 (en) 2024-05-15
CN116134369A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
WO2022007182A1 (zh) 镜头模组
WO2022111263A1 (zh) 用于光学致动器的驱动结构及相应的摄像模组
CN114520858B (zh) 光学防抖摄像模组
WO2021232948A1 (zh) 具有防抖功能的感光组件、摄像模组及其组装方法
CN114554071A (zh) 用于光学致动器的驱动结构及相应的摄像模组
CN114531523B (zh) 光学防抖摄像模组
CN114554068B (zh) 光学防抖摄像模组
WO2022095751A1 (zh) 光学防抖摄像模组
WO2022078386A1 (zh) 用于光学致动器的驱动结构及相应的摄像模组和组装方法
CN114428432B (zh) 用于光学致动器的驱动结构及相应的摄像模组
CN114554070A (zh) 光学防抖摄像模组
CN116349235B (zh) 光学防抖摄像模组
WO2022105572A1 (zh) 光学防抖摄像模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021879429

Country of ref document: EP

Effective date: 20230515