WO2022054670A1 - Polyester resin composition, method for manufacturing same, and polyester film using same - Google Patents

Polyester resin composition, method for manufacturing same, and polyester film using same Download PDF

Info

Publication number
WO2022054670A1
WO2022054670A1 PCT/JP2021/032139 JP2021032139W WO2022054670A1 WO 2022054670 A1 WO2022054670 A1 WO 2022054670A1 JP 2021032139 W JP2021032139 W JP 2021032139W WO 2022054670 A1 WO2022054670 A1 WO 2022054670A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
resin composition
aluminum
solution
phosphorus
Prior art date
Application number
PCT/JP2021/032139
Other languages
French (fr)
Japanese (ja)
Inventor
悟 中川
耕輔 魚谷
慎也 金高
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2022506779A priority Critical patent/JPWO2022054670A1/ja
Publication of WO2022054670A1 publication Critical patent/WO2022054670A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/84Boron, aluminium, gallium, indium, thallium, rare-earth metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a polyester resin composition, a method for producing the same, and a polyester film using the same.
  • Polyester resins typified by polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), etc. are excellent in mechanical properties and chemical properties, and depending on the properties of each polyester resin, For example, it is widely used in various fields such as fibers for clothing and industrial materials, various films and sheets for packaging and industrial use, and molded products such as bottles and engineering plastics.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • the polyester resin whose main constituent is a unit derived from aromatic dicarboxylic acid and alkylene glycol, which are typical polyester resins, is terephthalic acid or dimethyl terephthalate and ethylene glycol.
  • Bis (2-hydroxyethyl) terephthalate is produced by esterification or ester exchange, and is industrially produced by a polycondensation method or the like in which the bis (2-hydroxyethyl) terephthalate is polycondensed using a catalyst at high temperature and under vacuum.
  • an antimony compound or a germanium compound has been widely used as a polyester polymerization catalyst used in the polymerization of such a polyester resin.
  • Antimony trioxide which is an example of an antimony compound, is an inexpensive catalyst having excellent catalytic activity, but it is used as a main component, that is, in an amount added so as to exhibit a practical polymerization rate. Then, since metal antimony is precipitated during polymerization, darkening and foreign matter are generated in the polyester resin, which also causes surface defects of the film. Further, when it is used as a raw material for a hollow molded product or the like, it is difficult to obtain a hollow molded product having excellent transparency. For this reason, a polyester resin containing no antimony compound as a catalyst or containing no antimony compound as a main component is desired.
  • Germanium compounds have already been put into practical use as catalysts for giving polyester resins having excellent catalytic activity other than antimony compounds and not having the above-mentioned problems.
  • the germanium compound has a problem that it is very expensive and that it is easy to distill out of the reaction system during polymerization, so that the catalyst concentration of the reaction system changes and it becomes difficult to control the polymerization.
  • a polymerization catalyst that replaces the antimony-based catalyst or the germanium-based catalyst is also being studied. Titanium compounds typified by tetraalkoxy titanates have already been proposed, but polyester resins produced using titanium compounds are susceptible to thermal deterioration during melt molding, and the polyester resin has a problem of being significantly colored.
  • polymerization catalyst that uses metal components other than antimony, germanium, and titanium as the main metal components of the catalyst, and has excellent catalytic activity, excellent color tone and thermal stability, and transparency of molded products.
  • a polymerization catalyst that gives an excellent polyester resin is desired.
  • Patent Documents 1 and 2 disclose a catalyst composed of an aluminum compound and a phosphorus compound as a novel polymerization catalyst.
  • Patent Documents 3 and 4 disclose a polyester film made of a polyester resin produced by using a catalyst composed of an aluminum compound and a phosphorus compound. By using the above polymerization catalyst, it is possible to obtain a polyester resin or a polyester film having good color tone, transparency, and thermal stability.
  • Patent Documents 1 to 4 have a problem that the amount of catalyst added is large in order to obtain high polymerization activity, and the catalyst cost required for polymerization is high.
  • the present invention has been made to solve the problems of the prior art, and an object of the present invention is to reduce the catalyst cost and reduce the catalyst cost even when a polymerization catalyst composed of an aluminum compound and a phosphorus compound is used. It is to provide a polyester resin composition with few foreign substances. Another object of the present invention is to provide a polyester film formed by forming a film of the polyester resin composition.
  • the present inventors have reduced the amount of aluminum element contained in the polyester resin composition and set the molar ratio of phosphorus element to aluminum element to an appropriate range. We have found that the object can be achieved and have reached the present invention.
  • the polymerization activity is generally proportional to the amount of the catalyst added.
  • a polymerization catalyst composed of an aluminum compound and a phosphorus compound
  • the relationship between the polymerization activity and the amount of the catalyst added cannot be simplified because the complex formation reaction between the aluminum compound and the phosphorus compound affects the polymerization activity.
  • the present inventors analyzed the controlling factors of the catalytic activity of the polymerization catalyst composed of the aluminum compound and the phosphorus compound. As a result, by reducing the amount of aluminum element in the polyester resin composition and setting the molar ratio of phosphorus element to aluminum element in an appropriate range, the amount of aluminum-based foreign matter can be increased while suppressing the catalyst cost.
  • the present invention has been completed by finding that it is possible to improve the polymerization activity while suppressing it.
  • the present invention has the following configuration.
  • the polyester resin contains an aluminum compound and a phosphorus compound, and the polyester resin compositions are described in the following (1) to (1) to (1).
  • the content of aluminum element in the polyester resin composition is 9 to 19 mass ppm.
  • the content of phosphorus element in the polyester resin composition is 13 to 31 parts by mass ppm.
  • the molar ratio of phosphorus element to aluminum element in the polyester resin composition is 1.32 or more and 1.80 or less.
  • the content of the insoluble particles in the polyester resin composition is 500 to 2000 mass ppm. 2. 2.
  • the content of the aluminum element corresponding to the aluminum-based foreign substance in the polyester resin is 3000 mass ppm or less.
  • the intrinsic viscosity (IV) is 0.56 dl / g or more. Or 2.
  • the phosphorus compound has a phosphorus element and a phenol structure in the same molecule. ⁇ 3.
  • the volume average particle diameter of the insoluble particles is 0.5 to 3.0 ⁇ m. ⁇ 4.
  • the insoluble particles are silica. ⁇ 5.
  • the polyester resin composition according to any one of. 7. The above 1. ⁇ 6.
  • the first step of synthesizing a polyester which is a polycondensate or an oligomer thereof as an intermediate, and the intermediate are further weighted. It has a second step of condensation, and after the first step and before the second step, a solution A1 in which an aluminum compound is dissolved in the intermediate and a solution B1 in which a phosphorus compound is dissolved are added.
  • the addition amounts of the solution A1 and the solution B1 satisfy the following (5) to (7), the insoluble particles are added during the first step or after the completion of the first step, and the addition amount of the insoluble particles is as follows ( A method for producing a polyester resin composition, which is characterized by satisfying 8).
  • the amount of the aluminum element added to the produced polyester resin is 9 to 19 mass ppm.
  • the amount of phosphorus element added to the produced polyester resin is 18 to 38 mass ppm.
  • the molar ratio of the amount of phosphorus element added in (6) to the amount of aluminum element added in (5) is 1.50 or more and 2.30 or less.
  • the insoluble particles with respect to the polyester resin produced. Addition amount is 500-2000 mass ppm 8.
  • the polyester resin composition is produced by a batch polymerization method. The method for producing a polyester resin composition according to. 9.
  • the polyester resin composition is produced by a continuous polymerization method, and the solution A1 and the solution B1 are added to the final esterification reaction tank or the transfer line between the final esterification reaction tank and the first polymerization reaction tank. ..
  • the method for producing a polyester resin composition according to. 10 The solution A1 is a glycol solution, and the maximum absorption wavelength of the solution A1 is 562.0 to 572.0 nm. ⁇ 9.
  • the solution B1 is a glycol solution, and the solution B1 has a maximum absorption wavelength of 460.0 to 463.0 nm.
  • the glycol solution B1 heat-treats a phosphorus compound at 170 to 196 ° C. for 125 to 240 minutes in the glycol solution.
  • the method for producing a polyester resin composition according to. 13 The solution A1 and the solution B1 are glycol solutions, and the maximum absorption wavelength of the mixed solution of the glycol solution A1 and the glycol solution B1 is 559.5 to 560.8 nm. ⁇ 12.
  • the method for producing a polyester resin composition according to any one of. 14. The above 1. ⁇ 6.
  • the electrostatic adhesion imparting agent is further added to the polyester resin composition.
  • the polyester resin composition of the present invention uses a polymerization catalyst composed of an aluminum compound and a phosphorus compound, the catalyst cost can be kept low and foreign substances derived from the catalyst contained in the polyester resin composition can be reduced. Therefore, the cost required for producing the polyester resin composition can be reduced and the quality can be improved. Further, the acidity and basicity of the solution in which the aluminum compound to be added as a catalyst is dissolved, the solution in which the phosphorus compound to be added as a catalyst is dissolved, and the mixed solution thereof are set within a preferable range (the maximum of the solution and the mixed solution). By setting the absorption wavelength in a preferable range), it is possible to further suppress an increase in the amount of aluminum-based foreign matter.
  • the polyester resin composition of the present invention can be obtained at low cost and has high quality, the production cost of the polyester film obtained by forming the polyester resin composition of the present invention can be reduced, and the polyester film can be produced. The quality can also be improved. Further, since the polyester film is excellent in running performance, abrasion resistance, optical properties and the like, it can be used in a wide range of applications such as packaging films and industrial films.
  • the polyester resin composition of the present invention contains a polyester resin and insoluble particles which are particles insoluble in the polyester resin. Further, the polyester resin contains an aluminum compound and a phosphorus compound.
  • the polyester resin composition of the present invention satisfies the following (1) to (4).
  • the content of aluminum element in the polyester resin composition is 9 to 19 mass ppm.
  • the content of phosphorus element in the polyester resin composition is 13 to 31 parts by mass ppm.
  • the molar ratio of phosphorus element to aluminum element in the polyester resin composition is 1.32 or more and 1.80 or less.
  • the content of the insoluble particles in the polyester resin composition is 500 to 2000 mass ppm. In this specification, mass ppm means 10-4 % by mass.
  • the polyester resin used in the present invention includes a polyester resin composed of at least one selected from a polyvalent carboxylic acid and an ester-forming derivative thereof and at least one selected from a polyhydric alcohol and an ester-forming derivative thereof.
  • the main polyvalent carboxylic acid component is a dicarboxylic acid.
  • the polyester resin in which the main polyvalent carboxylic acid component is a dicarboxylic acid is preferably a polyester resin containing 70 mol% or more of the dicarboxylic acid with respect to the total polyvalent carboxylic acid component, and more preferably 80 mol% or more. It is a polyester resin containing 90 mol% or more, more preferably 90 mol% or more. When two or more kinds of dicarboxylic acids are used, it is preferable that the total of them is within the above range.
  • dicarboxylic acid examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decandicarboxylic acid, dodecanedicarboxylic acid, tetradecanedicarboxylic acid, and hexadecanedicarboxylic acid.
  • 3-Cyclobutanedicarboxylic acid 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 2,5-norbornandicarboxylic acid, dimer acid, etc.
  • the main polyvalent carboxylic acid component is terephthalic acid or an ester-forming derivative thereof or naphthalene dicarboxylic acid or an ester-forming derivative thereof.
  • the naphthalenedicarboxylic acid or an ester-forming derivative thereof include 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 2,7-naphthalenedicarboxylic acid. Acids, or ester-forming derivatives thereof, may be mentioned.
  • a polyester resin containing 70 mol% or more of naphthalenedicarboxylic acid or an ester-forming derivative thereof in total is preferable, and a polyester resin containing 80 mol% or more is more preferable, and 90 mol% or more is more preferably contained. It is a polyester resin.
  • terephthalic acid 2,6-naphthalenedicarboxylic acid or ester-forming derivatives thereof. If necessary, other dicarboxylic acids may be used as constituents.
  • polyvalent carboxylic acid other than these dicarboxylic acids a trivalent or higher polyvalent carboxylic acid or a hydroxycarboxylic acid may be used in combination as long as the amount is small, and a trivalent to tetravalent polyvalent carboxylic acid is preferable.
  • the polyvalent carboxylic acid include ethanetricarboxylic acid, propantricarboxylic acid, butanetetracarboxylic acid, pyromellitic acid, trimellitic acid, trimesic acid, 3,4,3', 4'-biphenyltetracarboxylic acid, and these. Examples thereof include ester-forming derivatives.
  • the amount of trivalent or higher polyvalent carboxylic acid is preferably 20 mol% or less, more preferably 10 mol% or less, still more preferably 5 mol% or less, based on the total polyvalent carboxylic acid component.
  • the total of them is within the above range.
  • hydroxycarboxylic acid examples include lactic acid, citric acid, malic acid, tartrate acid, hydroxyacetic acid, 3-hydroxybutyric acid, p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid, 4-hydroxycyclohexanecarboxylic acid, or these. Examples thereof include ester-forming derivatives of the above.
  • the hydroxycarboxylic acid is preferably 20 mol% or less, more preferably 10 mol% or less, still more preferably 5 mol% or less, based on the total polyvalent carboxylic acid component. When two or more kinds of hydroxycarboxylic acids are used, it is preferable that the total of them is within the above range.
  • ester-forming derivative of polyvalent carboxylic acid or hydroxycarboxylic acid examples include these alkyl esters, acid chlorides, acid anhydrides and the like.
  • the main polyhydric alcohol component is glycol
  • the polyester resin (A) in which the main polyhydric alcohol component is glycol is preferably a polyester resin containing 70 mol% or more of glycol with respect to the total polyvalent alcohol component, and more preferably 80 mol% or more. It is a polyester resin, more preferably a polyester resin containing 90 mol% or more. When two or more kinds of glycols are used, it is preferable that the total of them is within the above range.
  • glycol examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, diethylene glycol, triethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, and 1, 4-butylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanedi Alkylene glycols exemplified for methanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediethanol, 1,10-decamethylene glycol, 1,12-dodecanediol, etc .; polyethylene glycol, Aliphatic glycols exemplified by
  • Ethoxyphenyl) sulfone bis (p-hydroxyphenyl) ether, bis (p-hydroxyphenyl) sulfone, bis (p-hydroxyphenyl) methane, 1,2-bis (p-hydroxyphenyl) ethane, bisphenol A, bisphenol C , 2,5-Naphthalenediol, glycols obtained by adding ethylene oxide to these glycols, and the like, examples of aromatic glycols;
  • alkylene glycol is preferable, and ethylene glycol, 1,3-propylene glycol, 1,4-butylene glycol, or 1,4-cyclohexanedimethanol is more preferable.
  • the alkylene glycol may contain a substituent or an alicyclic structure in the molecular chain, and two or more kinds may be used at the same time.
  • a trihydric or higher polyhydric alcohol may be used in combination as long as it is a small amount, and a trivalent to tetravalent polyhydric alcohol is preferable.
  • examples of the trihydric or higher polyhydric alcohol include trimethylolmethane, trimethylolethane, trimethylolpropane, pentaerythritol, glycerol, and hexanetriol.
  • the amount of trihydric or higher polyhydric alcohol is preferably 20 mol% or less, more preferably 10 mol% or less, and further preferably 5 mol% or less with respect to the total polyhydric alcohol component. When two or more kinds of trihydric or higher polyhydric alcohols are used, it is preferable that the total of them is within the above range.
  • cyclic ester examples include ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -methyl- ⁇ -propiolactone, ⁇ -valerolactone, glycolide, lactide and the like.
  • ester-forming derivative of the polyhydric alcohol examples include esters of the polyhydric alcohol with a lower aliphatic carboxylic acid such as acetic acid.
  • the cyclic ester is preferably 20 mol% or less, more preferably 10 mol% or less, and further preferably 5 mol% or less with respect to the total of the total polyvalent carboxylic acid component and the total polyhydric alcohol component.
  • the cyclic ester is preferably 20 mol% or less, more preferably 10 mol% or less, and further preferably 5 mol% or less with respect to the total of the total polyvalent carboxylic acid component and the total polyhydric alcohol component.
  • it is preferable that the total of them is within the above range.
  • the polyester resin used in the present invention comprises only one monomer selected from ethylene terephthalate, butylene terephthalate, propylene terephthalate, 1,4-cyclohexanedimethylene terephthalate, ethylene naphthalate, butylene naphthalate, or propylene naphthalate. It is preferably a polymer or a copolymer composed of two or more kinds of the above-mentioned monomers, and the polyester resin used in the present invention is polyethylene terephthalate or a copolymer composed of at least one of the above-mentioned monomers other than ethylene terephthalate and ethylene terephthalate.
  • the copolymer composed of ethylene terephthalate and at least one of the above monomers other than ethylene terephthalate preferably contains 70 mol% or more, more preferably 80 mol% or more, and 90 mol of the component derived from the ethylene terephthalate monomer. It is more preferable to contain% or more.
  • the polyester resin of the present invention contains a catalyst amount of an aluminum compound-derived component and a phosphorus compound-derived component. That is, the polyester resin of the present invention is produced by using a polymerization catalyst composed of an aluminum compound and a phosphorus compound.
  • the aluminum compound constituting the polymerization catalyst is not limited as long as it is soluble in a solvent, and known aluminum compounds can be used without limitation.
  • Examples of aluminum compounds include aluminum formate, aluminum acetate, basic aluminum acetate, aluminum propionate, aluminum oxalate, aluminum acrylate, aluminum laurate, aluminum stearate, aluminum benzoate, aluminum trichloroacetate, aluminum lactate, and citric acid.
  • Carboxylates such as aluminum, aluminum tartrate, aluminum salicylate; inorganic acid salts such as aluminum chloride, aluminum hydroxide, aluminum hydroxide, aluminum nitrate, aluminum sulfate, aluminum carbonate, aluminum phosphate, aluminum phosphonate; aluminum methoxide , Aluminum ethoxide, aluminum n-propoxyside, aluminum isopropoxiside, aluminum n-butoxiside, aluminum t-butoxiside, etc.
  • Chelate compounds organic aluminum compounds such as trimethylaluminum and triethylaluminum and their partial hydrolysates, reaction products consisting of aluminum alcoholides and aluminum chelate compounds and hydroxycarboxylic acids, aluminum oxide, ultrafine aluminum oxide, aluminum silicate, aluminum. And composite oxides of titanium, silicon, aluminum, alkali metal, alkaline earth metal, etc. can be mentioned.
  • carboxylates, inorganic acid salts, and chelate compounds is preferable, and among these, aluminum acetate, basic aluminum acetate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride, and aluminum acetylacetate are preferable.
  • At least one selected from nate is more preferred, and at least one selected from aluminum acetate, basic aluminum acetate, aluminum chloride, aluminum hydroxide, aluminum chloride and aluminum acetylacetonate is even more preferred, aluminum acetate and base. At least one selected from the sex aluminum acetate is particularly preferable, and the basic aluminum acetate is the most preferable.
  • the aluminum compound is preferably an aluminum compound that is solubilized in a solvent such as water or glycol.
  • the solvents that can be used in the present invention are water and alkylene glycols.
  • alkylene glycols include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, trimethylene glycol, ditrimethylethylene glycol, tetramethylene glycol, ditetramethylene glycol, neopentyl glycol and the like. .. It is preferably at least one selected from ethylene glycol, trimethylene glycol, and tetramethylene glycol, and more preferably ethylene glycol. It is preferable to use a solution of the aluminum compound in water or ethylene glycol because the effect of the present invention can be remarkably exhibited.
  • the content of the aluminum element in the polyester resin composition needs to be 9 to 19 mass ppm, preferably 10 to 19 mass ppm, more preferably 10 to 17 mass ppm, still more preferably 12 to 17 mass ppm.
  • the mass is ppm. If the amount of aluminum element is less than 9% by mass, the polymerization activity may not be sufficiently exhibited. On the other hand, if it exceeds 19 mass ppm, the amount of aluminum-based foreign matter may increase.
  • the phosphorus compound constituting the polymerization catalyst of the present invention is not particularly limited, but it is preferable to use a phosphonic acid-based compound or a phosphinic acid-based compound because the effect of improving the catalytic activity is large, and among these, a phosphonic acid-based compound is used. It is more preferable because the effect of improving the catalytic activity is particularly large.
  • a phosphorus compound having a phosphorus element and a phenol structure in the same molecule is preferable. It is not particularly limited as long as it is a phosphorus compound having a phosphorus element and a phenol structure in the same molecule, but a phosphonic acid compound having a phosphorus element and a phenol structure in the same molecule, and a phosphine having a phosphorus element and a phenol structure in the same molecule. It is highly preferable to use one or more compounds selected from the group consisting of acid compounds to greatly improve the catalytic activity, and one or more phosphonic compounds having a phosphorus element and a phenol structure in the same molecule can be used. When used, the effect of improving the catalytic activity is very large, which is more preferable.
  • R 1 represents a hydrocarbon group having 1 to 50 carbon atoms including a phenol moiety, a substituent such as a hydroxyl group or a halogen group or an alkoxyl group or an amino group, and a hydrocarbon group having 1 to 50 carbon atoms including a phenol structure.
  • R 4 represents a hydrocarbon group having 1 to 50 carbon atoms including hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or a halogen group or a substituent such as an alkoxyl group or an amino group.
  • R 2 and R 3 independently represent hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, and a hydrocarbon group having 1 to 50 carbon atoms including a substituent such as a hydroxyl group or an alkoxyl group, respectively.
  • the hydrocarbon group may contain a branched structure, an alicyclic structure such as cyclohexyl, or an aromatic ring structure such as phenyl or naphthyl. The ends of R 2 and R 4 may be bonded to each other.
  • Examples of the phosphorus compound having a phosphorus element and a phenol structure in the same molecule include p-hydroxyphenylphosphonic acid, dimethyl p-hydroxyphenylphosphonate, diethyl p-hydroxyphenylphosphonate, diphenyl p-hydroxyphenylphosphonate, and bis.
  • (P-Hydroxyphenyl) Phosphonic Acid Methyl Bis (p-Hydroxyphenyl) Phosphonate, Bis (p-Hydroxyphenyl) Phosphonate Phosphonate, p-Hydroxyphenyl Phosphonate, Methyl p-Hydroxyphenyl Phosphonate, p-Hydroxyphenyl Examples thereof include phenyl phosphinate and dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate represented by the following (formula 1).
  • the phosphorus compound having a phosphorus element and a phenol structure in the same molecule is particularly preferably a phosphorus compound having a hindered phenol structure, and among them, 3,5-di-tert-butyl represented by the following (formulation formula 1). It is preferably dialkyl-4-hydroxybenzylphosphonate.
  • X 1 and X 2 represent hydrogen and an alkyl group having 1 to 4 carbon atoms, respectively.
  • the alkyl groups of X 1 and X 2 have preferably 1 to 4 carbon atoms, more preferably 1 to 2 carbon atoms.
  • an ethyl ester compound having 2 carbon atoms is preferable because Irganox1222 (manufactured by BAS) is commercially available and easily available.
  • the phosphorus compound in the present invention is preferably 3,5-di-tert-butyl-4-hydroxybenzylphosphonate dialkyl represented by the above (formulation formula 1), but other than that, 3,5-di.
  • a modified version of -tert-butyl-4-hydroxybenzylphosphonate dialkyl may also be included. Details of the denatured product will be described later.
  • the content of the phosphorus element in the polyester resin composition is 13 to 31 mass ppm, preferably 15 to 29 ppm. If the phosphorus element is less than 13 mass ppm, the polymerization activity may decrease and the amount of aluminum-based foreign matter may increase. On the other hand, if it exceeds 31 parts by mass, the polymerization activity may decrease and the amount of the phosphorus compound added increases, which is not preferable because the catalyst cost increases.
  • the molar ratio of the phosphorus element to the aluminum element (in order to distinguish it from the "molar ratio of the addition of the phosphorus element to the aluminum element" described later, the following is referred to as "the residual molar ratio of the phosphorus element to the aluminum element”. ) Is also important and needs to be 1.32 to 1.80, preferably 1.38 to 1.68.
  • the aluminum element and the phosphorus element in the polyester resin composition are derived from the aluminum compound and the phosphorus compound used as the polymerization catalyst of the polyester resin composition, respectively.
  • polycondensation catalysts such as antimony compound, germanium compound and titanium compound may cause problems in the product such as characteristics, processability and color tone of the polyester resin composition of the present invention. It may be used in combination as long as it does not occur.
  • the content of the antimonate element in the polyester resin composition is preferably 30 mass ppm or less, and the content of the germanium element in the polyester resin composition is preferably 10 mass ppm or less, and the polyester resin composition.
  • the content of the element titanium in the product is preferably 3% by mass or less.
  • the intrinsic viscosity (IV) of the polyester resin composition of the present invention is preferably 0.56 dl / g or more, preferably 0.56 to 0.65 dl / g, and more preferably 0.58 to 0. It is .64 dl / g. If the intrinsic viscosity of the polyester resin composition is less than the above, the mechanical strength and impact resistance of the molded product may be insufficient. On the other hand, if the intrinsic viscosity of the polyester resin composition exceeds the above range, the economic efficiency is lowered, which is not preferable.
  • a polyester polymerization catalyst composed of an aluminum compound and a phosphorus compound is used as a catalyst, a polymerization catalyst is added so as to satisfy the following (5) to (7), and the catalyst is added. Except for the point of adding the insoluble particles by the method described later, the method can be carried out by a method provided with a known step.
  • the method for producing the polyester resin composition of the present invention includes a first step of synthesizing a polyester or an oligomer thereof, which is a polycondensate (lower-order condensate) as an intermediate, and a second step of further polycondensing the intermediate. It is preferable to have.
  • the solution A1 in which the aluminum compound is dissolved in the intermediate and the solution B1 in which the phosphorus compound is dissolved are satisfied with the following (5) to (7). It is preferable to add to.
  • Polyvalent carboxylic acids and ester-forming derivatives thereof used in the production of polyester resins, hydroxycarboxylic acids and ester-forming derivatives thereof which may be added in a small amount, and cyclic esters which may be added in a small amount are reaction systems during polymerization. Since almost 100% of the amount used initially added to the system as a catalyst remains in the polyester resin produced by polymerization without distilling out of the system, the "polyester resin produced" from these charged amounts The mass can be calculated.
  • the amount of aluminum element added to the produced polyester resin is 9 to 19 mass ppm.
  • the amount of phosphorus element added to the produced polyester resin is 18 to 38 mass ppm.
  • the molar ratio of the amount of phosphorus element added in (6) to the amount of aluminum element added in (5) (hereinafter referred to as "the molar ratio of phosphorus element added to aluminum element") is 1.50 or more. 30 or less
  • the method for producing polyester or an oligomer thereof, which is a low-order condensate (low polymer) used in the present invention is not particularly limited.
  • the method for producing a polyester resin used in the present invention uses a polyester polymerization catalyst composed of an aluminum compound and a phosphorus compound as a catalyst, and the content of aluminum element in the polyester resin, the content of phosphorus element, and the phosphorus element with respect to the aluminum element. Except for adjusting the molar ratio of the above to a specific range, it can be carried out by a method provided with conventionally known steps. For example, in the case of producing polyethylene terephthalate, terephthalic acid, ethylene glycol and, if necessary, other copolymerization components are directly reacted to distill off water for transesterification, and then polycondensation is performed under normal pressure or reduced pressure.
  • Direct esterification method or transesterification by reacting dimethyl terephthalate with ethylene glycol and, if necessary, other copolymerization components to distill off methyl alcohol and transesterify, and then perform polycondensation under normal pressure or reduced pressure. Manufactured by law. Further, if necessary, solid phase polymerization may be performed to increase the intrinsic viscosity.
  • the polymerization may be a batch type polymerization method or a continuous polymerization method.
  • the amount (mass) of the polyester resin produced can be calculated from the amount (mass) of the polyvalent carboxylic acid containing the dicarboxylic acid or the like used as the raw material.
  • the esterification reaction or the transesterification reaction may be carried out in one step or may be carried out in multiple steps.
  • the number and size of the reactors, the production conditions of each step, etc. can be appropriately selected without limitation, and may be carried out in one step or may be carried out in multiple steps in 2 to 5 steps. It is preferably present, more preferably 3 to 4 steps, and even more preferably 3 steps.
  • the melt polymerization reaction is preferably carried out in a continuous reaction apparatus.
  • a continuous reaction device is a fusion polymerization reaction vessel in which a reaction vessel for an esterification reaction or an ester exchange reaction and a melt polymerization reaction vessel are connected by a pipe, and raw materials are continuously charged without emptying each reaction vessel.
  • polyester resin composition is produced by an esterification reaction or an ester exchange reaction in multiple steps and by a continuous polymerization method, a solution A1 in which an aluminum compound is dissolved and a solution B1 in which a phosphorus compound is dissolved are added in multiple steps. It is preferable to add it to the transfer line between the final reaction tank (final esterification reaction tank or final esterification reaction tank) and the first polymerization reaction tank.
  • polyester resin produced by the melt polymerization method may be additionally polymerized by the solid phase polymerization method.
  • the solid phase polymerization reaction can be carried out in a continuous apparatus in the same manner as the melt polycondensation reaction.
  • the first stage is the initial stage
  • the final stage is the late stage
  • the second stage It is preferable that the stage immediately before the final stage is the intermediate stage, and the reaction conditions for the polymerization reaction in the intermediate stage are between the reaction conditions in the initial stage and the reaction conditions in the final stage. It is preferable that the degree of increase in intrinsic viscosity reached in each of these polymerization reaction steps is smoothly distributed.
  • the acid terminal group concentration of the intermediate (low-order condensate) produced by the first step is preferably 400 to 1500 eq / ton. More preferably, it is 500 to 1200 eq / ton.
  • the ratio of the hydroxyl group ends (OH%) to the total terminal group concentration of the intermediate is preferably 45 to 70 mol%, more preferably 55 to 65 mol%. If the ratio of the hydroxyl group ends of the oligomer is less than 45 mol%, the polycondensation activity may become unstable and the amount of aluminum-based foreign matter may increase. On the other hand, if the ratio of the hydroxyl group ends of the oligomer exceeds 70 mol%, the polycondensation activity may decrease.
  • an aluminum compound and a phosphorus compound are used as catalysts, they are preferably added in the form of a slurry or a solution, more preferably a solution dissolved in a solvent such as water or glycol, and even more preferably water and / or glycol. , It is most preferable to use a solution dissolved in ethylene glycol.
  • the content (residual amount) of the aluminum element and the phosphorus element in the polyester resin composition is the solution A1 in which the aluminum compound is dissolved and the solution B1 in which the phosphorus compound is dissolved. It is preferable to add the mixture so as to satisfy the above (1) to (3).
  • the solution A1 in which the aluminum compound is dissolved and the solution B1 in which the phosphorus compound is dissolved are added so that the content (residual amount) of the aluminum element and the phosphorus element in the polyester resin composition satisfies the above (1) to (3).
  • a complex having catalytic activity is functionally formed in the polymerization system, and sufficient polymerization activity can be exhibited.
  • the generation of aluminum-based foreign matter can be suppressed.
  • the aluminum element in the aluminum compound that functions as a catalyst was placed in a reduced pressure environment during the polymerization of the polyester resin, almost 100% of the amount used initially added to the system as a catalyst was produced by the polymerization. It remains in the polyester resin. That is, since the amount of the aluminum compound hardly changes before and after polycondensation, if the amount of the aluminum element added to the intermediate is 9 to 19 parts by mass, the content of the aluminum element in the polyester resin composition also increases. It will be 9 to 19 mass ppm.
  • the phosphorus compound that functions as a catalyst together with the aluminum compound is placed in a reduced pressure environment during the polymerization of the polyester resin, a part (about 10 to 40%) of the amount initially added to the system as a catalyst is out of the system.
  • the removal ratio is the molar ratio of phosphorus element added to aluminum element, the basicity and acidity of the aluminum-containing glycol solution or phosphorus-containing glycol solution to be added, and the method of adding the aluminum-containing solution or phosphorus-containing solution ( It changes depending on whether it is added in a single solution or added separately). Therefore, it is preferable to appropriately set the addition amount of the phosphorus compound so that the content of the phosphorus element in the polyester resin composition to be the final product satisfies the above (2).
  • the solution A1 in which the aluminum compound is dissolved and the solution B1 in which the phosphorus compound is dissolved are previously added to the intermediate. It is a more preferable embodiment to prepare a mixed solution by mixing at a ratio of addition to the above, and to add the liquefied mixed solution to the intermediate. By carrying out in this embodiment, the effect of the present invention can be more stably expressed.
  • the method of pre-condensing each solution include a method of mixing each solution in a tank, a method of merging and mixing pipes to which a catalyst is added in the middle, and the like.
  • the solution A1 in which the aluminum compound is dissolved and the solution B1 in which the phosphorus compound is dissolved are preferably added after the esterification reaction or the ester exchange reaction is completed, and are after the first step and before the second step.
  • the solution A1 in which the aluminum compound is dissolved and the solution B1 in which the phosphorus compound is dissolved it is more preferable to add the solution A1 in which the aluminum compound is dissolved and the solution B1 in which the phosphorus compound is dissolved to the intermediate. If added before the end of the esterification reaction or transesterification reaction, the amount of aluminum-based foreign matter may increase.
  • the polyester resin used in the present invention comprises at least one selected from a polyhydric carboxylic acid and an ester-forming derivative thereof and at least one selected from a polyhydric alcohol and an ester-forming derivative thereof, an aluminum compound.
  • the solution A1 in which the ester is dissolved is preferably a glycol solution in which an aluminum compound is dissolved (hereinafter referred to as an aluminum-containing glycol solution A1)
  • the solution B1 in which a phosphorus compound is dissolved is a glycol solution in which a phosphorus compound is dissolved (hereinafter referred to as a glycol solution).
  • Phosphorus-containing glycol solution B1) is preferable.
  • the maximum absorption wavelengths of the aluminum-containing glycol solution A1 and the phosphorus-containing glycol solution B1 will be described.
  • a polyester resin having stable polymerization activity and stable quality can be obtained.
  • the Lewis acid / base characteristics of the aluminum-containing glycol solution A1 and the phosphorus-containing glycol solution B1 can be controlled in a specific range. It is presumed that the Lewis acid / base property affects the complex formation reaction between the aluminum compound and the phosphorus compound, and the complex formation reaction affects the polymerization activity.
  • the aluminum-containing glycol solution A1 preferably has a maximum absorption wavelength of 562.0 to 572.0 nm, more preferably 567.0 to 572.0 nm.
  • the maximum absorption wavelength of the aluminum-containing glycol solution A1 is obtained by adding the acid dye Modant Blue 13 to the aluminum-containing glycol solution A1 and then measuring the absorption spectrum of the sample solution using an ultraviolet-visible spectrophotometer. The details of the measurement method will be described later.
  • the aluminum compound In order for the aluminum compound to functionally form a complex having catalytic activity with the phosphorus compound and exhibit polymerization activity, it is preferable to set the basicity of the aluminum compound contained in the aluminum-containing glycol solution A1 within a specific range. ..
  • the maximum absorption wavelength of the aluminum-containing glycol solution A1 is affected by the type and amount of the aluminum compound used, the type of glycol, the temperature, pressure, time, etc. at the time of preparing the glycol solution.
  • the maximum absorption wavelength of the aluminum-containing glycol solution A1 is less than the above range, the basicity of the aluminum compound in the solution is low and the complex with the phosphorus compound is not sufficiently formed, so that the polymerization activity is lowered or aluminum is used. The amount of foreign matter may increase. On the other hand, it is technically difficult for the maximum absorption wavelength to exceed the above range.
  • the phosphorus-containing glycol solution B1 preferably has a maximum absorption wavelength of 458.0 to 465.0 nm, more preferably 460.0 to 463.0 nm, and even more preferably 461.0 to 462.0 nm.
  • the maximum absorption wavelength of the phosphorus-containing glycol solution B1 is obtained by adding an aqueous solution of Bismarck Brown, which is a basic dye, to the phosphorus-containing glycol solution B1 and then measuring the absorption spectrum of the sample solution using an ultraviolet-visible spectrophotometer. The details of the measurement method will be described later.
  • the acidity of the phosphorus compound contained in the phosphorus-containing glycol solution B1 is preferable to set the acidity of the phosphorus compound contained in the phosphorus-containing glycol solution B1 within a specific range.
  • the maximum absorption wavelength of the phosphorus-containing glycol solution B1 is affected by the type and amount of the phosphorus compound used, the type of glycol, the temperature, pressure, time, etc. at the time of preparing the glycol solution.
  • the maximum absorption wavelength of the phosphorus-containing glycol solution B1 exceeds the above range, the acidity of the phosphorus compound is low and the complex is not sufficiently formed with the aluminum compound. Therefore, the phosphorus compound is distilled off from the polymerization system to form aluminum. It is not preferable because the amount of foreign matter increases.
  • the maximum absorption wavelength is less than the above range, the acidity of the phosphorus compound is high and the bond with the aluminum compound becomes strong, so that the polymerization activity may be significantly lowered.
  • the phosphorus compound used in the present invention is preferably heat-treated in a solvent.
  • the solvent to be used is not limited as long as it is at least one selected from the group consisting of water and alkylene glycol, but as the alkylene glycol, it is preferable to use a solvent that dissolves a phosphorus compound, and the purpose is ethylene glycol or the like. It is more preferable to use glycol, which is a constituent of the polyester resin.
  • the heat treatment in the solvent is preferably carried out after dissolving the phosphorus compound, but it does not have to be completely dissolved.
  • the heat treatment conditions are preferably such that the heat treatment temperature is 170 to 196 ° C, more preferably 175 to 185 ° C, and even more preferably 175 to 180 ° C.
  • the heat treatment time is preferably 125 to 240 minutes, more preferably 140 to 210 minutes.
  • the concentration of the phosphorus compound during the heat treatment is preferably 3 to 10% by mass.
  • the acidity of the phosphorus compound contained in the glycol solution can be made constant, the polymerization activity is improved when used in combination with the aluminum compound, and the amount of aluminum-based foreign matter caused by the polymerization catalyst is generated. Can be reduced.
  • 3,5-di-tert-butyl-4-hydroxybenzylphosphonate dialkyl which is the phosphorus compound represented by the above (formula 1)
  • the phosphorus compound it is represented by (formula 1) in the above heat treatment.
  • a part of the phosphorus compound 3,5-di-tert-butyl-4-hydroxybenzylphosphonate dialkyl is structurally changed. For example, it changes to desorption of t-butyl group, hydrolysis of ethyl ester group and transesterification structure (ester exchange structure with ethylene glycol).
  • the phosphorus compound includes a phosphorus compound having a structural change in addition to the 3,5-di-tert-butyl-4-hydroxybenzylphosphonate dialkyl represented by (Formula 1). Desorption of the t-butyl group occurs remarkably at a high temperature in the polymerization step.
  • the phosphorus compounds are shown as nine phosphorus compounds having a structural change in a part of diethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate.
  • the amount of each phosphorus compound whose structure has changed in the glycol solution can be quantified by the P-NMR spectrum measurement method of the solution.
  • the phosphorus compound in the present invention in addition to 3,5-di-tert-butyl-4-hydroxybenzylphosphonate dialkyl, nine 3,5-di-tert-butyl-4-hydroxy represented by the above chemical formulas are used. Also included are variants of dialkyl benzyl phosphonate.
  • a mixture of an aluminum-containing glycol solution A1 and a phosphorus-containing glycol solution B1 (hereinafter, simply referred to as “mixture”) preferably has a maximum absorption wavelength of 559.0 to 560.9 nm, and is preferably 559.5 to 560. It is more preferably 8.8 nm, and even more preferably 559.7 to 560.6 nm.
  • the maximum absorption wavelength of the mixed solution is a value obtained by adding the acidic dye Modant Blue 13 to the mixed solution and then measuring the absorption spectrum of the sample solution using an ultraviolet-visible spectrophotometer. The details of the measurement method will be described later.
  • the complex formation reaction of the aluminum compound and the phosphorus compound can be maintained in a preferable state for achieving both the improvement of the polymerization activity and the suppression of aluminum-based foreign substances. preferable.
  • the maximum absorption wavelength exceeds the above range, the basicity of the mixed solution is high and the polymerization system of the polyester resin is acidic. Therefore, when the mixed solution is added to the polymerization system, the aluminum compound becomes the polyester resin. There is a risk that the amount of aluminum-based foreign matter will increase due to neutralization with the carboxyl group terminal of the resin and formation of foreign matter.
  • the maximum absorption wavelength is less than the above range, the basicity of the mixed solution becomes too low, the coordination between the aluminum compound and the phosphorus compound becomes strong, and the polymerization activity may decrease.
  • the content of the insoluble particles in the polyester resin composition of the present invention is 500 to 2000 mass ppm, preferably 700 to 1800 mass ppm.
  • protrusions are formed on the surface of the obtained polyester film by insoluble particles, so that the film has slipperiness, running property, abrasion resistance, winding property, etc. It is possible to develop a function of improving the handling characteristics of the film. If the content of the insoluble particles is less than 500 mass ppm, the effect of improving the handling characteristics such as slipperiness, running property, abrasion resistance, and winding property of the film is insufficient, which is not preferable. On the other hand, if it exceeds 2000 mass ppm, film defects due to coarse particles and the like may increase, and the transparency of the film may decrease. In addition, the polymerization activity may decrease during polymerization.
  • the insoluble particles used in the present invention are not particularly limited as long as they are insoluble in the polyester resin, and may be inorganic particles or organic particles. Further, it may be an inorganic / organic composite particle.
  • the type of the inorganic particles is not particularly limited, and examples thereof include metal oxides such as titanium, aluminum, silicon, calcium, magnesium, and barium, carbonates, silicates, sulfates, and aluminates.
  • the types of the inorganic particles include titanium dioxide, alumina, aluminosilicate, silicon dioxide, calcium oxide, calcium carbonate, barium sulfate, and the like, as well as naturally occurring talc, mica, kaolinite, and zeolite. However, it is not limited to these.
  • the insoluble particles are silica particles because a highly transparent polyester film can be obtained.
  • the volume average particle diameter of the insoluble particles is preferably 0.5 to 3.0 ⁇ m, more preferably 0.8 to 2.5 ⁇ m, and even more preferably 2.0 to 2.5 ⁇ m. If the volume average particle diameter of the insoluble particles is less than 0.5 ⁇ m, the effect of imparting handling characteristics such as slipperiness and runnability to the film may be reduced. On the other hand, when the volume average particle diameter of the insoluble particles exceeds 3.0 ⁇ m, the quality of the film may be impaired due to the formation of coarse protrusions.
  • the volume average particle size of the insoluble particles can be obtained from the particle size distribution measured by the laser light scattering method using water or ethylene glycol as a medium, and the detailed measurement method will be described later.
  • the insoluble particles are preferably added as a slurry dispersed in ethylene glycol.
  • the time of addition is not particularly limited, but it is preferable that the insoluble particles are added during the first step or after the completion of the first step. Specifically, it may be added at any time from the initial stage of the transesterification reaction step or the esterification reaction step to the start of polycondensation in the initial stage. It may be added directly to the reaction vessel, or may be added to the piping between the reaction vessels by an in-line mixer or the like. Moreover, you may add by installing an addition container.
  • the insoluble particles added to the intermediate remain in the polyester resin composition as they are without distilling out of the polymerization system. That is, the addition amount (addition rate) of the insoluble particles to the produced polyester resin is the same as the content rate of the insoluble particles in the polyester resin composition. Therefore, the amount of the insoluble particles added to the intermediate is 500 to 2000 mass ppm, preferably 700 to 1800 mass ppm.
  • the method for quantifying insoluble particles contained in the polyester resin composition is not limited.
  • the polyester resin used in the present invention preferably has an aluminum element content corresponding to an aluminum-based foreign substance in the polyester resin (polyester resin composition excluding insoluble particles) of 3000 mass ppm or less, more preferably 2800.
  • the mass is ppm or less.
  • the aluminum-based foreign matter is caused by the aluminum compound used as the polymerization catalyst, and is a foreign matter insoluble in the polyester resin. If the content of the aluminum-based foreign matter exceeds the above, fine foreign matter insoluble in the polyester resin may be the cause, and the quality of the film may be deteriorated. In addition, it leads to a problem that the filter is often clogged during polyester filtration in the polycondensation process and the film forming process.
  • the preferable lower limit of the content of the aluminum element corresponding to the aluminum-based foreign substance is preferably 0 mass ppm, but it is about 300 mass ppm due to technical difficulty.
  • this index relatively evaluates the amount of aluminum-based foreign matter based on the amount of aluminum element. It does not indicate the absolute value of the amount of aluminum-based foreign matter contained in the polyester resin.
  • the polyester resin can be obtained by producing it by the same method as the polyester resin composition described above, except that it does not contain insoluble particles.
  • the presence or absence of insoluble particles in the polyester resin composition does not affect the amount of aluminum-based foreign matter contained in the polyester resin. Therefore, the polyester resin is substantially the same as the components excluding the insoluble particles which are the constituent components of the polyester resin composition.
  • the insoluble particles are clogged in the membrane filter, so that the insoluble particles cannot be separated from the aluminum-based foreign matter. Therefore, by evaluating the amount of aluminum-based foreign matter in the polyester resin containing no insoluble particles instead of the polyester resin composition, it can be regarded as the amount of aluminum-based foreign matter in the polyester resin composition.
  • the polyester resin composition of the present invention preferably does not contain a resin other than the polyester resin, but may contain a resin other than the polyester resin as long as it does not impair the object of the present invention.
  • the resin other than the polyester resin is not particularly limited, and examples thereof include a polyolefin resin, a polyamide resin, and a polyacetal resin.
  • the resin other than the polyester resin in the polyester resin composition is preferably 20% by mass or less, more preferably 10% by mass or less, further preferably 5% by mass or less, and preferably 3% by mass or less. It is particularly preferable, and most preferably 1% by mass or less.
  • the method of blending the above resin with the polyester resin is not particularly limited, and examples thereof include methods that can be uniformly mixed, such as addition in the polyester resin manufacturing process and dry blending with the polyester resin after production.
  • the polyester film of the present invention is preferably a polyester film formed from a polyester resin composition, and an electrostatic adhesion imparting agent is further added to the polyester resin composition (electrostatic adhesion with the polyester resin composition). It is more preferably a polyester film formed from an imparting agent), and even more preferably a polyester film formed from the polyester resin composition and a master batch containing an electrostatic adhesion imparting agent.
  • a method of adding the electrostatic adhesion imparting agent to the polyester resin composition of the present invention it is preferable to add a masterbatch having the electrostatic adhesion imparting agent to the polyester resin composition.
  • the structure of the polyester resin constituting the masterbatch having the electrostatic adhesion imparting agent is not limited, but it is preferably a polyester resin having the same structure as the polyester resin used in the present invention.
  • a masterbatch having an electrostatic adhesion imparting agent may be referred to as a masterbatch containing an electrostatic adhesion imparting agent or simply a "masterbatch".
  • the melting specific resistance of the masterbatch is preferably 0.005 ⁇ 10 8 to 0.05 ⁇ 10 8 ⁇ ⁇ cm, preferably 0.005 ⁇ 10 8 to 0.025 ⁇ 10 8 ⁇ ⁇ cm. Is more preferable.
  • the melt resistivity of the masterbatch is higher than 0.05 ⁇ 108 ⁇ ⁇ cm, it is necessary to add a large amount of the masterbatch in order to improve the film forming property of the polyester resin composition, and the manufacturing cost. Problems such as an increase in the number of plastics occur. It is technically difficult to make the melt resistivity of the masterbatch less than 0.005 ⁇ 108 ⁇ ⁇ cm.
  • the melt specific resistance of the polyester film formed from the composition obtained by blending the masterbatch with the polyester resin composition is 0.1 ⁇ 10 8 to 0.3. It is preferably ⁇ 10 8 ⁇ ⁇ cm, and more preferably 0.15 ⁇ 10 8 to 0.25 ⁇ 10 8 ⁇ ⁇ cm.
  • the electrostatic adhesion imparting agent is preferably a magnesium compound or an alkali metal compound in order to reduce the melt resistivity. Further, it is preferable to add a phosphorus compound in order to disperse these metal ion components in the polyester resin composition without making them foreign substances and further improve the thermal stability.
  • the magnesium compound preferably has a magnesium element content of 15 to 150 mass ppm in the polyester film, and more preferably 30 to 100 mass ppm. If the content of the magnesium element is less than the above range, the melt resistivity becomes high, the electrostatic adhesion is deteriorated, and the film forming property may be deteriorated.
  • the alkali metal compound preferably has an alkali metal element content of 1.5 to 15 mass ppm in the polyester film, and more preferably 3 to 10 mass ppm. If the content of the alkali metal element is less than the above range, the melt resistivity may be high, the electrostatic adhesion may be deteriorated, and the film forming property may be deteriorated. On the other hand, if the content of the alkali metal element exceeds the above range, the thermal stability may be lowered and the coloring of the film may be severe.
  • the phosphorus compound preferably has a phosphorus element content of 7 to 80 mass ppm in the polyester film, and more preferably 20 to 50 mass ppm. If the content of the phosphorus element is less than the above range, the amount of insoluble foreign matter produced increases, the melt resistivity becomes high, the electrostatic adhesion deteriorates, and the film forming property may deteriorate. Further, the thermal stability may be deteriorated and the coloring of the film may be severe. On the other hand, if the content of the phosphorus element exceeds the above range, the melt resistivity becomes high, the electrostatic adhesion is deteriorated, and the film forming property may be deteriorated.
  • magnesium compound used in the present invention a known magnesium compound can be used.
  • a lower fatty acid salt such as magnesium acetate, an alcokiside such as magnesium methoxide, and the like may be mentioned, and any one of these may be used alone or two or more thereof may be used in combination.
  • magnesium acetate is preferable.
  • magnesium element it is preferable to add magnesium element to the polyester resin constituting the masterbatch so as to be 400 to 2700 mass ppm.
  • the amount of magnesium element is less than 400 mass ppm, the melt specific resistance becomes high, and it is necessary to add a large amount of masterbatch in order to improve the film-forming property of the polyester resin composition, and the effect as a masterbatch is high. It is low and may cause problems such as an increase in manufacturing cost.
  • the amount of the magnesium element exceeds 2700 mass ppm, the effect of improving the melt resistivity is saturated, the heat resistance is lowered, and the coloring of the film may be severe.
  • the amount of the magnesium element is more preferably 600 to 2500 mass ppm, still more preferably 800 to 2000 mass ppm.
  • Examples of the alkali metal of the alkali metal compound included in the master batch include lithium, sodium and potassium.
  • Examples of the alkali metal compound include lower fatty acid salts having 2 to 4 carbon atoms such as lithium acetate and potassium acetate, and alcoholides such as potassium methoxide, and any one of them is used alone. Or two or more of them may be used in combination.
  • As the alkali metal potassium has a large effect of lowering the melt resistivity and is preferable.
  • the alkali metal compound is preferably a lower fatty acid salt having 2 to 4 carbon atoms, more preferably an alkali metal acetate, and even more preferably potassium acetate.
  • the alkali metal element it is preferable to add the alkali metal element to the polyester resin constituting the masterbatch so as to be 40 to 270 mass ppm.
  • the amount of the alkali metal element is less than 40 mass ppm, the melt specific resistance becomes high, and it is necessary to add a large amount of masterbatch in order to improve the film-forming property of the polyester resin composition, and the effect as a masterbatch. There is a risk of problems such as increased manufacturing costs.
  • the amount of the alkali metal element exceeds 270 mass ppm, the effect of improving the melt resistivity is saturated, the heat resistance is lowered, and the coloring of the film may be severe.
  • the amount of the alkali metal element is more preferably 60 to 250 mass ppm, further preferably 80 to 200 mass ppm.
  • Examples of the phosphorus compound to be included in the master batch include phosphoric acid, phosphoric acid, hypophosphorous acid, phosphonic acid, phosphinic acid and ester compounds thereof.
  • phosphoric acid trimethyl phosphate, tributyl phosphate, triphenyl phosphate, monomethyl phosphate, dimethyl phosphate, monobutyl phosphate, dibutyl phosphate, phosphite, trimethyl phosphite, tributyl phosphite, methylphosphonic acid.
  • it is preferably at least one selected from the group consisting of a phosphoric acid trialkyl ester and an ethyl diethylphosphonoacetate, and more preferably a phosphoric acid trialkyl ester.
  • a phosphoric acid trialkyl ester it is more preferable that at least one of the alkyl groups of the alkyl ester is an alkyl group having 2 to 4 carbon atoms, and all the alkyl groups of the alkyl ester are alkyl groups having 2 to 4 carbon atoms. Is particularly preferred.
  • the particularly preferable phosphorus compound include triethyl phosphate, tripropyl phosphate, tributyl phosphate and the like, and any one of these may be used alone or in combination of two or more. good.
  • triethyl phosphate is considered to form a complex having an appropriate strong interaction with magnesium ions, and is most preferable because a masterbatch having a low melt resistivity, a small amount of foreign matter, and an excellent color tone can be obtained.
  • the phosphorus element it is preferable to add the phosphorus element to the polyester resin constituting the masterbatch so as to have a phosphorus element of 200 to 1700 mass ppm.
  • the amount of the phosphorus element is less than 200 mass ppm, the effect of stabilizing magnesium ions and alkali metal ions and dispersing them in the polyester resin is reduced, so that the amount of insoluble magnesium-based foreign substances produced may increase. Further, magnesium that has become a foreign substance loses the effect of lowering the melt resistivity, so that the melt resistivity may increase. In addition, the heat resistance may be lowered and the coloring of the film may be severe.
  • the amount of phosphorus element exceeds 1700 mass ppm, the excess phosphorus compound interacts with magnesium ions, so the charge of magnesium ions does not contribute to the effect of lowering the melt resistivity, and despite the large amount of magnesium added.
  • the melt resistivity may increase.
  • a more preferable amount of phosphorus element is 400 to 1000 mass ppm.
  • the content of magnesium atom, alkali metal atom, and phosphorus atom in the masterbatch can be quantified by the method described in the following examples.
  • the timing of addition of the master batch containing the magnesium compound, the alkali metal compound, and the phosphorus compound to the polyester resin is not particularly limited, but is not particularly limited, but during the polymerization of the polyester, particularly during the esterification (or transesterification) step, or during the esterification (or esterification) step.
  • the addition amounts of magnesium atoms and alkali metal atoms remain in the polyester resin composition as they are, but the phosphorus atoms are distilled off from the polymerization system under a reduced pressure environment. Therefore, it is necessary to determine the addition amount of the phosphorus compound after grasping the relationship between the addition amount and the residual amount in advance.
  • the polyester is a polyester composed of a dicarboxylic acid component and a glycol component
  • the amount of the magnesium element with respect to the dicarboxylic acid component is mmol%
  • the amount of the alkali metal element is kmol%
  • the amount of the phosphorus element is pmol%.
  • magnesium ion is divalent and alkali metal ion is monovalent
  • the sum of the amounts of magnesium ion and alkali metal ion is expressed as (m + k / 2), which is the ratio divided by p.
  • (M + k / 2) / p is the relative amount of magnesium ion and alkali metal ion with respect to the phosphorus atom.
  • the value of (m + k / 2) / p exceeds 3
  • the amount of phosphorus element is relatively small compared to magnesium element and alkali metal element, and magnesium ion and alkali metal ion are stabilized and dispersed in the polyester resin. The effect is reduced and the amount of insoluble foreign substances (magnesium salt, alkali metal salt) produced is increased.
  • the melt resistivity becomes higher with respect to the amount of magnesium added.
  • the heat resistance is lowered and the color tone of the masterbatch containing the electrostatic adhesion imparting agent or the film is deteriorated.
  • the value of "(m + k / 2) / p" is less than 2, the amount of phosphorus element becomes relatively excessive with respect to magnesium element and alkali metal element, and the excess phosphorus compound interacts with magnesium ion. Therefore, the deterioration of the color tone is improved, but the charge of the magnesium ion does not contribute to the effect of lowering the melt specific resistance, and the melt specific resistance becomes high with respect to the amount of magnesium added.
  • (M + k / 2) / p is more preferably 2.3 or more and 3 or less, and further preferably 2.5 or more and 3 or less.
  • the room temperature is 15 to 30 ° C., and a series of operations are performed indoors in this temperature range.
  • Equipment UV-1800 UV-Visible spectrophotometer manufactured by Shimadzu Corporation Spectral bandwidth: 1 nm
  • Sample cell Square cell (Material: Polymethyl methacrylate (PMMA), Optical path length: 10 mm)
  • Control liquid Ethylene glycol Scan range: 400-700 nm
  • the room temperature is 15 to 30 ° C., and a series of operations are performed indoors in this temperature range.
  • Equipment UV-1800 UV-Visible spectrophotometer manufactured by Shimadzu Corporation Spectral bandwidth: 1 nm
  • Sample cell Square cell (Material: PMMA, Optical path length: 10 mm)
  • Control liquid Ethylene glycol Scan range: 400-700 nm
  • the maximum absorption wavelength of the phosphorus-containing ethylene glycol solution b1' was determined by the same evaluation method as above except that the phosphorus-containing ethylene glycol solution b1 was changed to the phosphorus-containing ethylene glycol solution b1'.
  • the mixing ratio of the aluminum-containing ethylene glycol solution a1 and the phosphorus-containing ethylene glycol solution b1 or b1'in the above mixed solution is the mixing ratio of the aluminum-containing ethylene glycol solution a1 and the phosphorus-containing ethylene glycol solution b1 or b1'in each example. Is the same as. In this measurement, the room temperature is 15 to 30 ° C., and a series of operations are performed indoors in this temperature range.
  • volume average particle size of silica particles Using a laser light scattering type particle size distribution meter (Microtrac HRA model: 9320-X100, manufactured by Leeds & Northrup), the ethylene glycol slurry of silica particles is substantially diluted with water. Measured in an aqueous system. The volume cumulative 50% diameter of the measurement result was defined as the volume average particle diameter.
  • polyester resin composition was weighed in a platinum crucible, carbonized on an electric stove, and then incinerated in a muffle furnace at 550 ° C. for 8 hours. The incinerated sample was dissolved in 1.2 M hydrochloric acid to prepare a sample solution. The concentration of the aluminum element in the polyester resin composition was determined by the high frequency inductively coupled plasma emission spectrometry of the prepared sample solution.
  • Nebulizer Cross flow Nebulizer Chamber: Cyclone chamber Measurement wavelength: 167.078 nm
  • polyester resin composition was wet-decomposed with sulfuric acid, nitric acid and perchloric acid, and then neutralized with aqueous ammonia. After adding ammonium molybdate and hydrazine sulfate to the prepared solution, the absorbance at a wavelength of 830 nm was measured using an ultraviolet visible absorbance meter (UV-1700, manufactured by Shimadzu Corporation). The phosphorus element concentration in the polyester resin composition was determined from the calibration curve prepared in advance.
  • UV-1700 ultraviolet visible absorbance meter
  • Amount of aluminum-based foreign matter 30 g of polyester resin and 250 mL of p-chlorophenol / tetrachloroethane (3/1: mass ratio) mixed solution were put into a 500 mL Erlenmeyer flask containing a stirrer, and 100 using a hot stirrer. It was melted by heating at ⁇ 105 ° C. for 1.5 hours. Foreign matter was filtered off from the solution using a membrane filter made of polytetrafluoroethylene having a diameter of 47 mm and a pore size of 1.0 ⁇ m (PTFE membrane filter manufactured by Advantec, product name: T100A047A). The effective filtration diameter was 37.5 mm.
  • the cells were subsequently washed with 50 mL of chloroform and then the filter was dried.
  • the amount of aluminum element was quantified on the filtration surface of the membrane filter with a scanning fluorescent X-ray analyzer (ZSX100e, Rh line sphere 4.0 kW, manufactured by RIGAKU). The quantification was performed on the central portion of the membrane filter having a diameter of 30 mm.
  • the calibration curve of the fluorescent X-ray analysis method was obtained using a polyethylene terephthalate resin having a known aluminum element content, and the apparent aluminum element content was expressed in ppm.
  • the measurement was carried out by measuring the Al-K ⁇ ray intensity under the conditions of PHA (pulse height analyzer) 100-300 using pentaerythritol as a spectroscopic crystal and PC (proportion counter) as a detector at an X-ray output of 50 kV-70 mA. ..
  • PHA pulse height analyzer
  • PC proportion counter
  • the spinning nozzle a nozzle having 12 orifices having a hole diameter of 0.23 mm ⁇ and a length of 0.3 mm was used.
  • the filter a 100-mesh wire mesh, a 10 ⁇ m Naslon filter, a 100-mesh wire mesh, and a 50-mesh wire mesh were used in order from the extruder outlet side.
  • the back pressure increase coefficient k was calculated by the following equation from the back pressure increase amount ⁇ P (MPa / hour) per unit time, the flow rate Q (kg / hour), and the filtration area S (cm 2 ).
  • k ⁇ P / (Q / S)
  • the area S was calculated from the filter diameter, and the flow rate Q was calculated from the discharge amount.
  • melt resistivity was similarly determined for the film-forming composition of Example 12.
  • ⁇ i ( ⁇ ⁇ cm) (A / L) ⁇ (V / io)
  • A Electrode area (cm 2 ), L: Distance between electrodes (cm), V: Voltage (V), io: Current (A)]
  • a (cm 2 ) [width of the composition layer for producing a molten film]
  • ⁇ [thickness] 2 (cm) ⁇ 0.06 (cm)
  • V 120 (V).
  • L is a value measured without including the diameter of the electrode, and is 1.3 cm.
  • Electrostatic Adhesion of Film Fabrication Compositions of Examples 11 and 12 A tungsten wire electrode is provided between the base of the extruder and the cooling drum, and a voltage of 10 to 15 KV is applied between the electrode and the casting drum. Casting was performed by applying the cast material, and the surface of the obtained cast material was observed with the naked eye and evaluated at the casting speed at which the occurrence of pinner bubbles began to occur. The higher the casting speed, the better the electrostatic adhesion.
  • ⁇ Phosphorus-containing ethylene glycol solution b1'> A phosphorus-containing ethylene glycol solution b1'was prepared in the same manner as the phosphorus-containing ethylene glycol solution b1 except that the heat treatment conditions were changed to 80 ° C. for 60 minutes. The maximum absorption wavelength of the phosphorus-containing ethylene glycol solution b1'was 470.8 nm. The phosphorus-containing ethylene glycol solution b1'was used in Comparative Example 8, and the phosphorus-containing ethylene glycol solution b1 was used in all Examples and Comparative Examples other than Comparative Example 8.
  • Example 1 In a 10 L stainless steel autoclave with a stirrer, a polyester oligomer consisting of high-purity terephthalic acid and ethylene glycol prepared in advance and having an esterification rate of about 95%, high-purity terephthalic acid and an ethylene glycol slurry containing silica particles prepared by the above method. It was charged so as to have 1200 mass ppm as silica particles with respect to the mass of the obtained oligomer mixture, and an esterification reaction was carried out at 260 ° C. to obtain an oligomer mixture.
  • the obtained oligomer mixture had an acid terminal group concentration of 750 eq / ton and a hydroxyl group terminal ratio (OH%) of 59 mol%.
  • a mixed solution prepared by mixing the aluminum-containing ethylene glycol solution a1 and the phosphorus-containing ethylene glycol solution b1 prepared by the above method was added to the obtained oligomer mixture.
  • the mixed solution was prepared so as to be 10 mass ppm and 20 mass ppm as the aluminum element and the phosphorus element with respect to the mass of the oligomer mixture, respectively.
  • the amount of the polyester resin produced can be calculated from the amount of terephthalic acid to be added, and in this embodiment, the aluminum element and the phosphorus element are 10 mass ppm and 20 mass ppm with respect to the produced polyester resin.
  • the mixed solution is added so as to be. After that, the temperature of the system was raised to 280 ° C. in 1 hour, and the pressure of the system was gradually reduced to 0.15 kPa during this period, and the polycondensation reaction was carried out under these conditions, and the IV was 0.60 dl / g. A polyester resin composition was obtained.
  • Examples 2 to 5 Comparative Examples 1 to 5
  • An aluminum-containing ethylene glycol solution a1 and a phosphorus-containing ethylene glycol solution b1 were added to the obtained polyester resin composition in the same manner as in Example 1 except that the amount of the catalyst element added was as shown in Table 1.
  • a polyester resin composition was obtained.
  • Example 6 A polyester resin composition was obtained in the same manner as in Example 2 except that the amount of the ethylene glycol slurry containing silica particles was changed.
  • Example 7 A polyester resin was obtained in the same manner as in Example 2 except that the ethylene glycol slurry containing silica particles was not added.
  • Polyester resins were prepared in the same manner as in Examples 1 to 5 and Comparative Examples 1 to 6 and 8 except that the ethylene glycol slurry containing silica particles was not added, and used as a polyester resin for measuring the amount of aluminum-based foreign matter.
  • Comparative Example 7 since the ethylene glycol slurry containing silica particles was not added, the polyester resin of Comparative Example 7 was used as it was as the polyester resin for measuring the amount of aluminum-based foreign matter.
  • Table 1 shows the physical characteristics of the polyester resin compositions obtained in Examples 1 to 5 and Comparative Examples 1 to 6 and 8 and the polyester resin obtained in Comparative Example 7.
  • the addition amount / residual amount of the aluminum element is described as Al
  • the addition amount / residual amount of the phosphorus element is described as P
  • the addition molar ratio / residual molar ratio of the phosphorus element to the aluminum element is described as P / Al. did.
  • the polyester resin compositions of Examples 1 to 5 have a short polymerization time and a small amount of aluminum-based foreign matter, so that the back pressure increase coefficient is small and high quality, even though the addition amounts of the aluminum element and the phosphorus element are small. Is. Moreover, since the amount of catalyst added is small, the cost of the catalyst can be reduced. Comparative Examples 1 and 2 are preferable in that the catalyst cost is high because the amount of the phosphorus compound added is large and the molar ratio of the phosphorus element added to the aluminum element is high, so that aluminum-based foreign substances are suppressed, but the polymerization activity is lowered. Therefore, it is not preferable. In addition, the catalyst cost becomes high.
  • Comparative Example 3 Although the residual molar ratio of the phosphorus element to the aluminum element is within the range of the present invention, the polymerization activity is insufficient due to the addition amount of the aluminum element being too small, and the polymerization time is long.
  • Comparative Examples 4 and 5 since the residual molar ratio of the phosphorus element to the aluminum element is too low, the amount of aluminum-based foreign matter in the polyester resin composition increases and the back pressure increase coefficient increases, so that the quality of the polyester resin composition increases. Is inferior.
  • Comparative Example 6 the residual molar ratio of the phosphorus element to the aluminum element is within the range of the present invention, but the polymerization activity is lowered and the polymerization time is long because the addition amount of the silica particles is too large.
  • Comparative Example 7 will be described later in the section of Comparative Example 12 (a film produced by using the polyester resin of Comparative Example 7).
  • the molar ratio of the phosphorus element added to the aluminum element is within the range of the present invention, the polymerization time is short, and the catalyst cost is low.
  • the maximum absorption wavelength of the phosphorus-containing ethylene glycol solution b1' is too large as compared with Examples 1 to 5, the residual molar ratio of the phosphorus element to the aluminum element becomes low, and the amount of aluminum-based foreign matter in the polyester resin composition increases.
  • the quality of the polyester resin composition is inferior because it increases and the back pressure increase coefficient increases.
  • Example of continuous polymerization method (Example 6) An in-line mixer consisting of three continuous esterification reactors and three continuous polycondensation reactors and equipped with a high-speed stirrer is installed on the transfer line from the third esterification reactor to the first polycondensation reactor. A slurry prepared by mixing 0.75 parts by mass of ethylene glycol with 1 part by mass of high-purity terephthalic acid was continuously supplied to the continuous production apparatus for the polyester resin, and the reaction of the first esterification reactor was performed.
  • the reaction was carried out at a temperature of 255 ° C., a pressure of 203 kPa, a reaction temperature of the second esterification reactor of 261 ° C., a pressure of 102 kPa, a reaction temperature of the third esterification reactor of 261-263 ° C., and a pressure of 126 kPa to obtain an oligomer.
  • the oligomer at the outlet of the third esterification reactor had an acid terminal group concentration of 550 eq / ton and a hydroxyl group terminal ratio (OH%) of 60 mol%.
  • the obtained oligomer is mixed with the aluminum-containing ethylene glycol solution a1 and the phosphorus-containing ethylene glycol solution b1 prepared by the above method to form a one-component mixture, and the silica particle-containing ethylene glycol slurry prepared by the above method is used as a third ester. It was added to the transfer line from the conversion tank to the first polycondensation reactor using an in-line mixer. As a catalyst, the aluminum-containing ethylene glycol solution a1 and the phosphorus-containing ethylene glycol solution b1 prepared by the above method are adjusted to 13 mass ppm and 36 mass ppm as the aluminum element and the phosphorus element with respect to the obtained oligomers, respectively.
  • the mixed solution and the ethylene glycol slurry containing silica particles are added so as to be 1200 mass ppm with respect to the obtained oligomer as silica particles.
  • the amount of the polyester resin produced can be calculated from the amount of terephthalic acid to be added, and in this embodiment, the aluminum element and the phosphorus element are 13 mass ppm and 36 mass ppm with respect to the produced polyester resin.
  • the mixed solution is added so as to be.
  • the above oligomer containing the mixed solution and silica particles was continuously transferred to a continuous polycondensation device consisting of three reactors, and the reaction temperature of the first polycondensation reactor was 268 ° C, the pressure was 5.3 kPa, and the second polycondensation was performed.
  • Polycondensation was performed at a reaction temperature of the reactor of 270 ° C. and a pressure of 0.930 kPa, a reaction temperature of the third polycondensation reactor of 274 ° C. and a pressure of 0.162 kPa to obtain a polyester resin composition having an IV of 0.59 dl / g. rice field.
  • the polyester resin composition was extruded into strands, cooled in water, cut and pelletized.
  • Example 7 and 8 Comparative Examples 9 and 10.
  • the polyester resin composition was the same as in Example 6 except that the aluminum-containing ethylene glycol solution a1 and the phosphorus-containing ethylene glycol solution b1 were added to the obtained oligomer so as to be the amount of the catalyst element added as shown in Table 2. I got something.
  • Table 2 shows the physical characteristics of the polyester resin compositions obtained in Examples 6 to 8 and Comparative Examples 9 and 10.
  • the production amount ratio shown in Table 2 is based on the production amount per hour of Comparative Example 9 (with the production amount per hour of Comparative Example 9 being 1.00), Examples 6 to 8 and Comparative Example.
  • the production amount per hour of 10 is expressed as a ratio. If the production amount ratio is higher than 1, the polymerization activity of the catalyst is high, and conversely, if the production amount ratio is 1 or less, the polymerization activity of the catalyst is low. Is shown. In the polyester resin compositions of Examples 6 to 8, the production amount ratio is larger than that of Comparative Example 9, the addition amount of the aluminum element and the phosphorus element is small, the catalyst cost can be reduced, and the polymerization activity is improved.
  • FIG. 2 shows the relationship between the maximum absorption wavelength of the mixed solution of the ethylene glycol solution a1 containing ethylene glycol and the ethylene glycol solution b1 containing phosphorus, the amount of aluminum-based foreign matter, and the polymerization time.
  • the values of Comparative Example 3 are excluded.
  • Comparative Example 3 the residual molar ratio of the phosphorus element to the aluminum element is within the range of the present invention, but the residual amount of aluminum is too small, so that the catalytic activity is not sufficiently exhibited, and the catalytic activity is not sufficiently exhibited, as compared with other cases. This is because the polymerization activity is insufficient.
  • Example 9 The polyester resin composition obtained in Example 1 was vacuum dried at 135 ° C. for 10 hours. Then, it was quantitatively supplied to a twin-screw extruder, extruded into a sheet at 280 ° C., and rapidly cooled and solidified on a metal roll maintained at a surface temperature of 20 ° C. to obtain a cast film having a thickness of 1400 ⁇ m. When quenching and solidifying on the metal roll, the adhesion to the metal roll was improved by an electrostatic adhesion device composed of saw-shaped electrodes. Next, this cast film was heated to 100 ° C.
  • the relaxation treatment was carried out to obtain a biaxially oriented polyester film having a thickness of 100 ⁇ m.
  • the obtained polyester film has a coefficient of static friction ( ⁇ s) of 0.50, has good slipperiness, and can be said to be a film having excellent handling characteristics such as running performance, wear resistance, and winding property.
  • Example 10 A biaxially oriented polyester film was produced in the same manner as in Example 9 except that the polyester resin composition obtained in Example 6 was used.
  • the obtained polyester film has a coefficient of static friction ( ⁇ s) of 0.50, has good slipperiness, and can be said to be a film having excellent handling characteristics such as running performance, wear resistance, and winding property.
  • Example 11 A biaxially oriented polyester film was produced in the same manner as in Example 9 except that the polyester resin obtained in Comparative Example 6 was used.
  • the obtained polyester film has a coefficient of static friction ( ⁇ s) of 0.45, has good slipperiness, and can be said to have excellent handling characteristics such as running performance, wear resistance, and take-up property. , The transparency was inferior to that of the films of Examples 9 and 10.
  • Example 12 A biaxially oriented polyester film was produced in the same manner as in Example 9 except that the polyester resin composition obtained in Comparative Example 7 was used.
  • the obtained polyester film has a coefficient of static friction ( ⁇ s) of 1 or more, and can be said to be a film having poor slipperiness and poor handling characteristics such as running performance, wear resistance, and winding property.
  • Example 11 The polyester resin composition of Example 6 was vacuum dried at 135 ° C. for 10 hours. Then, it was quantitatively supplied to a twin-screw extruder, extruded into a sheet at 280 ° C., and rapidly cooled and solidified on a metal roll maintained at a surface temperature of 20 ° C. to obtain a cast film having a thickness of 1680 ⁇ m. When quenching and solidifying on the metal roll, the adhesion to the metal roll was improved by an electrostatic contact device made of a wire-shaped electrode which is widely used. Next, this cast film was heated to 100 ° C.
  • the film was stretched 4.0 times in the width direction at 120 ° C. with a tenter, heated with an infrared heater at 260 ° C. for 0.5 seconds with the film width fixed, and further heated at 200 ° C. for 23 seconds at 3%.
  • the relaxation treatment was carried out to obtain a biaxially oriented polyester film having a thickness of 12 ⁇ m.
  • the characteristics of the obtained polyester film are shown in Table 3.
  • Example 12 Same as Example 11 except that the polyester resin composition of Example 6 and the masterbatch containing the electrostatic adhesion imparting agent prepared by the above method were mixed at the ratios shown in Table 3 and then vacuum dried at 135 ° C. for 10 hours. A biaxially oriented polyester film was produced by the above method. The characteristics of the obtained polyester film are shown in Table 3. The polyester film of Example 12 has better electrostatic adhesion than the polyester film of Example 11, and the film can be produced by increasing the film forming speed.
  • the polyester film of Example 11 Since the polyester film of Example 11 has few aluminum-based foreign substances, the quality of the film is high.
  • the polyester film of Example 12 is thin in that the quality of the film is high, the film productivity is excellent, and the obtained film has excellent slipperiness and other characteristics, and there is a strong demand for improvement in film productivity. Suitable for the production of films such as, for example, packaging films.
  • the polyester resin composition of the present invention can improve the productivity of the polyester resin composition while keeping the catalyst cost low, which has been a problem of the polyester resin composition obtained by the polymerization catalyst composed of an aluminum compound and a phosphorus compound. It is possible to reduce foreign substances derived from the catalyst contained in the polyester resin composition. This makes it possible to provide a clean and high-quality polyester resin composition. Further, the polyester film produced by using the polyester resin composition of the present invention has slipperiness. Further, by adding an electrostatic adhesion imparting agent to the polyester resin composition of the present invention to form a film, the melt resistivity can be sufficiently lowered, the film forming property is improved, and the quality is also excellent. Polyester films can be manufactured.
  • the polyester film produced by using the polyester resin composition of the present invention is, for example, an antistatic film, an easily adhesive film, a card, a dummy can, an agricultural film, a building material, a decorative material, and a wallpaper.
  • OHP film for printing, for inkjet recording, for sublimation transfer recording, for laser beam printer recording, for electrophotographic recording, for thermal transfer recording, for thermal transfer recording, for printed board wiring, for membrane switch, for plasma display Infrared absorbing film, transparent conductive film for touch panel and electroluminescence, masking film, photoengraving, roentgen film, photographic negative film, retardation film, polarizing film, polarizing film protection (TAC), deflection Protective film and / or separator film for inspection of plates and retardation plates, photosensitive resin film, field enlargement film, diffusion sheet, reflective film, antireflection film, UV protection, back grind tape, etc. It can be used for a wide range of purposes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a polyester resin composition whereby catalyst cost is reduced even when a polymerization catalyst comprising an aluminum compound and a phosphorus compound is used, and there is little foreign matter in the polyester resin composition. A polyester resin composition including a polyester resin and insoluble particles which are particles that are insoluble in the polyester resin, the polyester resin composition being characterized in that the polyester resin includes an aluminum compound and a phosphorus compound, and the polyester resin composition satisfies (1) through (4). (1): The content ratio of elemental aluminum in the polyester resin composition is 9-19 mass ppm. (2): The content ratio of elemental phosphorus in the polyester resin composition is 13-31 mass ppm. (3): The mole ratio of elemental phosphorus to elemental aluminum in the polyester resin composition is 1.32-1.80. (4): The content ratio of the insoluble particles in the polyester resin composition is 500-2000 mass ppm.

Description

ポリエステル樹脂組成物及びその製造方法並びにそれを用いたポリエステルフィルムA polyester resin composition, a method for producing the same, and a polyester film using the same.
 本発明は、ポリエステル樹脂組成物及びその製造方法並びにそれを用いたポリエステルフィルムに関する。 The present invention relates to a polyester resin composition, a method for producing the same, and a polyester film using the same.
 ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等に代表されるポリエステル樹脂は、機械的特性および化学的特性に優れており、それぞれのポリエステル樹脂の特性に応じて、例えば、衣料用や産業資材用の繊維、包装用や工業用などの各種フィルムやシート、ボトルやエンジニアリングプラスチックなどの成形物など、各種分野において広範囲に使用されている。 Polyester resins typified by polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), etc. are excellent in mechanical properties and chemical properties, and depending on the properties of each polyester resin, For example, it is widely used in various fields such as fibers for clothing and industrial materials, various films and sheets for packaging and industrial use, and molded products such as bottles and engineering plastics.
 代表的なポリエステル樹脂である芳香族ジカルボン酸とアルキレングリコールに由来するユニットを主構成成分とするポリエステル樹脂は、例えばポリエチレンテレフタレート(PET)の場合には、テレフタル酸またはテレフタル酸ジメチルとエチレングリコールとのエステル化またはエステル交換によってビス(2-ヒドロキシエチル)テレフタレートを製造し、これを高温、真空下で触媒を用いて重縮合する重縮合法等により、工業的に製造されている。 In the case of polyethylene terephthalate (PET), for example, the polyester resin whose main constituent is a unit derived from aromatic dicarboxylic acid and alkylene glycol, which are typical polyester resins, is terephthalic acid or dimethyl terephthalate and ethylene glycol. Bis (2-hydroxyethyl) terephthalate is produced by esterification or ester exchange, and is industrially produced by a polycondensation method or the like in which the bis (2-hydroxyethyl) terephthalate is polycondensed using a catalyst at high temperature and under vacuum.
 従来から、このようなポリエステル樹脂の重合時に用いられるポリエステル重合触媒としては、アンチモン化合物あるいはゲルマニウム化合物が広く用いられている。アンチモン化合物の一例である三酸化アンチモンは、安価でかつ優れた触媒活性をもつ触媒であるが、これを主成分にて、即ち、実用的な重合速度が発揮される程度の添加量にて使用すると、重合時に金属アンチモンが析出するため、ポリエステル樹脂に黒ずみや異物が発生し、フィルムの表面欠点の原因にもなる。また、中空の成形品等の原料とした場合には、透明性に優れた中空成形品を得ることが困難である。このような経緯で、触媒としてアンチモン化合物を全く含まないかあるいはアンチモン化合物を主成分として含まないポリエステル樹脂が望まれている。 Conventionally, an antimony compound or a germanium compound has been widely used as a polyester polymerization catalyst used in the polymerization of such a polyester resin. Antimony trioxide, which is an example of an antimony compound, is an inexpensive catalyst having excellent catalytic activity, but it is used as a main component, that is, in an amount added so as to exhibit a practical polymerization rate. Then, since metal antimony is precipitated during polymerization, darkening and foreign matter are generated in the polyester resin, which also causes surface defects of the film. Further, when it is used as a raw material for a hollow molded product or the like, it is difficult to obtain a hollow molded product having excellent transparency. For this reason, a polyester resin containing no antimony compound as a catalyst or containing no antimony compound as a main component is desired.
 アンチモン化合物以外で優れた触媒活性を有し、かつ上記の問題を有しないポリエステル樹脂を与える触媒としては、ゲルマニウム化合物がすでに実用化されている。しかし、ゲルマニウム化合物は非常に高価であるという問題点や、重合中に反応系から系外へ留出しやすいため反応系の触媒濃度が変化し重合の制御が困難になるという課題を有しており、触媒主成分として使用することには問題がある。 Germanium compounds have already been put into practical use as catalysts for giving polyester resins having excellent catalytic activity other than antimony compounds and not having the above-mentioned problems. However, the germanium compound has a problem that it is very expensive and that it is easy to distill out of the reaction system during polymerization, so that the catalyst concentration of the reaction system changes and it becomes difficult to control the polymerization. , There is a problem in using it as the main component of the catalyst.
 アンチモン系触媒あるいはゲルマニウム系触媒に代わる重合触媒の検討も行われている。テトラアルコキシチタネートに代表されるチタン化合物がすでに提案されているが、チタン化合物を用いて製造されたポリエステル樹脂は溶融成形時に熱劣化を受けやすく、またポリエステル樹脂が著しく着色するという問題点を有する。 A polymerization catalyst that replaces the antimony-based catalyst or the germanium-based catalyst is also being studied. Titanium compounds typified by tetraalkoxy titanates have already been proposed, but polyester resins produced using titanium compounds are susceptible to thermal deterioration during melt molding, and the polyester resin has a problem of being significantly colored.
 以上のような経緯で、アンチモン、ゲルマニウム、およびチタン以外の金属成分を触媒の主たる金属成分とする重合触媒であり、触媒活性に優れ、色調や熱安定性に優れ、かつ成形品の透明性に優れたポリエステル樹脂を与える重合触媒が望まれている。 Based on the above circumstances, it is a polymerization catalyst that uses metal components other than antimony, germanium, and titanium as the main metal components of the catalyst, and has excellent catalytic activity, excellent color tone and thermal stability, and transparency of molded products. A polymerization catalyst that gives an excellent polyester resin is desired.
 例えば、特許文献1および2には、新規の重合触媒として、アルミニウム化合物とリン化合物とからなる触媒が開示されている。また、特許文献3および4には、アルミニウム化合物とリン化合物とからなる触媒を用いて作製されたポリエステル樹脂からなるポリエステルフィルムが開示されている。上記の重合触媒を使用することにより、色調、透明性、および熱安定性が良好なポリエステル樹脂やポリエステルフィルムを得ることが出来る。しかし、特許文献1~4では、高い重合活性を得るために触媒添加量が多く、重合で必要な触媒コストが高くなるという問題があった。 For example, Patent Documents 1 and 2 disclose a catalyst composed of an aluminum compound and a phosphorus compound as a novel polymerization catalyst. Further, Patent Documents 3 and 4 disclose a polyester film made of a polyester resin produced by using a catalyst composed of an aluminum compound and a phosphorus compound. By using the above polymerization catalyst, it is possible to obtain a polyester resin or a polyester film having good color tone, transparency, and thermal stability. However, Patent Documents 1 to 4 have a problem that the amount of catalyst added is large in order to obtain high polymerization activity, and the catalyst cost required for polymerization is high.
国際公開第2007/032325号International Publication No. 2007/032325 特開2006-169432号公報Japanese Unexamined Patent Publication No. 2006-169432 特開2002-249565号公報Japanese Patent Application Laid-Open No. 2002-249565 特開2002-249602号公報Japanese Patent Application Laid-Open No. 2002-249602
 本発明は、かかる従来技術の問題を解消するためになされたものであり、その目的は、アルミニウム化合物とリン化合物からなる重合触媒を用いた場合であっても、触媒コストを低減させ、かつ、異物が少ないポリエステル樹脂組成物を提供することである。また、該ポリエステル樹脂組成物を製膜して形成されたポリエステルフィルムを提供することである。 The present invention has been made to solve the problems of the prior art, and an object of the present invention is to reduce the catalyst cost and reduce the catalyst cost even when a polymerization catalyst composed of an aluminum compound and a phosphorus compound is used. It is to provide a polyester resin composition with few foreign substances. Another object of the present invention is to provide a polyester film formed by forming a film of the polyester resin composition.
 本発明者らは上記課題を解決するため鋭意検討した結果、ポリエステル樹脂組成物中に含まれるアルミニウム元素の量を少なくし、かつアルミニウム元素に対するリン元素のモル比を適度な範囲にすることで、目的を達成できることを見出し、本発明に到達した。 As a result of diligent studies to solve the above problems, the present inventors have reduced the amount of aluminum element contained in the polyester resin composition and set the molar ratio of phosphorus element to aluminum element to an appropriate range. We have found that the object can be achieved and have reached the present invention.
 ポリエステル重合においてアンチモン化合物、ゲルマニウム化合物などの重合触媒を使用する場合は、重合活性は一般的に触媒添加量に比例する。しかし、アルミニウム化合物とリン化合物からなる重合触媒では、アルミニウム化合物とリン化合物の錯体形成反応が重合活性に影響しているため、重合活性と触媒添加量との関係を単純化することができない。 When a polymerization catalyst such as an antimony compound or a germanium compound is used in polyester polymerization, the polymerization activity is generally proportional to the amount of the catalyst added. However, in a polymerization catalyst composed of an aluminum compound and a phosphorus compound, the relationship between the polymerization activity and the amount of the catalyst added cannot be simplified because the complex formation reaction between the aluminum compound and the phosphorus compound affects the polymerization activity.
 そこで、本発明者らは、アルミニウム化合物とリン化合物からなる重合触媒について、触媒活性の支配要因について解析を実施した。その結果、ポリエステル樹脂組成物中のアルミニウム元素の量を少なくし、かつアルミニウム元素に対するリン元素のモル比を適度な範囲にすることにより、触媒コストを抑制した形で、アルミニウム系異物量の増加を抑制しつつ、かつ重合活性を向上できることを見出し、本発明を完成した。 Therefore, the present inventors analyzed the controlling factors of the catalytic activity of the polymerization catalyst composed of the aluminum compound and the phosphorus compound. As a result, by reducing the amount of aluminum element in the polyester resin composition and setting the molar ratio of phosphorus element to aluminum element in an appropriate range, the amount of aluminum-based foreign matter can be increased while suppressing the catalyst cost. The present invention has been completed by finding that it is possible to improve the polymerization activity while suppressing it.
 すなわち、本発明は、以下の構成からなる。
 1.ポリエステル樹脂と該ポリエステル樹脂に不溶な粒子である不溶性粒子とを含むポリエステル樹脂組成物であって、前記ポリエステル樹脂は、アルミニウム化合物及びリン化合物を含み、前記ポリエステル樹脂組成物は下記(1)~(4)を満足することを特徴とするポリエステル樹脂組成物。
 (1)前記ポリエステル樹脂組成物中におけるアルミニウム元素の含有率が9~19質量ppm
 (2)前記ポリエステル樹脂組成物中におけるリン元素の含有率が13~31質量ppm
 (3)前記ポリエステル樹脂組成物中のアルミニウム元素に対するリン元素のモル比が1.32以上1.80以下
 (4)前記ポリエステル樹脂組成物中における前記不溶性粒子の含有率は500~2000質量ppm
 2.前記ポリエステル樹脂中におけるアルミニウム系異物に相当するアルミニウム元素の含有率が3000質量ppm以下である前記1.に記載のポリエステル樹脂組成物。
 3.固有粘度(IV)が0.56dl/g以上である前記1.または2.に記載のポリエステル樹脂組成物。
 4.前記リン化合物は同一分子内にリン元素とフェノール構造を有する前記1.~3.のいずれかに記載のポリエステル樹脂組成物。
 5.前記不溶性粒子の体積平均粒子径が0.5~3.0μmである前記1.~4.のいずれかに記載のポリエステル樹脂組成物。
 6.前記不溶性粒子がシリカである前記1.~5.のいずれかに記載のポリエステル樹脂組成物。
 7.前記1.~6.のいずれかに記載のポリエステル樹脂組成物を製造するポリエステル樹脂組成物の製造方法であって、中間体として重縮合物であるポリエステル又はそのオリゴマーを合成する第1ステップと、前記中間体をさらに重縮合する第2ステップとを有し、前記第1ステップ後であって前記第2ステップの前に前記中間体にアルミニウム化合物を溶解した溶液A1とリン化合物を溶解した溶液B1とを添加し、前記溶液A1及び前記溶液B1の添加量は下記(5)~(7)を満足し、前記第1ステップ中又は前記第1ステップ終了後に前記不溶性粒子を添加し、前記不溶性粒子の添加量は下記(8)を満足することを特徴とするポリエステル樹脂組成物の製造方法。
 (5) 生成される前記ポリエステル樹脂に対するアルミニウム元素の添加量が9~19質量ppm
 (6) 生成される前記ポリエステル樹脂に対するリン元素の添加量が18~38質量ppm
 (7)前記(5)におけるアルミニウム元素の添加量に対する前記(6)におけるリン元素の添加量のモル比が1.50以上2.30以下
 (8)生成される前記ポリエステル樹脂に対する前記不溶性粒子の添加量は500~2000質量ppm
 8.前記ポリエステル樹脂組成物はバッチ式重合法により製造される前記7.に記載のポリエステル樹脂組成物の製造方法。
 9.前記ポリエステル樹脂組成物は連続重合法により製造されており、前記溶液A1及び前記溶液B1を、最終エステル化反応槽又は最終エステル化反応槽と最初の重合反応槽との移送ラインに添加する前記7.に記載のポリエステル樹脂組成物の製造方法。
 10.前記溶液A1はグリコール溶液であり、前記溶液A1の極大吸収波長が562.0~572.0nmである前記7.~9.のいずれかに記載のポリエステル樹脂組成物の製造方法。
 11.前記溶液B1はグリコール溶液であり、前記溶液B1は極大吸収波長が460.0~463.0nmである前記10.に記載のポリエステル樹脂組成物の製造方法。
 12.前記グリコール溶液B1は、グリコール溶液中においてリン化合物を170~196℃で125~240分熱処理する前記11.に記載のポリエステル樹脂組成物の製造方法。
 13.前記溶液A1及び前記溶液B1はグリコール溶液であり、前記グリコール溶液A1と前記グリコール溶液B1との混合液の極大吸収波長が559.5~560.8nmである前記7.~12.のいずれかに記載のポリエステル樹脂組成物の製造方法。
 14.前記1.~6.のいずれかに記載のポリエステル樹脂組成物から形成されたポリエステルフィルム。
 15.前記ポリエステル樹脂組成物にさらに静電密着性付与剤が添加されている前記14.に記載のポリエステルフィルム。
That is, the present invention has the following configuration.
1. 1. A polyester resin composition containing a polyester resin and insoluble particles which are particles insoluble in the polyester resin. The polyester resin contains an aluminum compound and a phosphorus compound, and the polyester resin compositions are described in the following (1) to (1) to (1). A polyester resin composition characterized by satisfying 4).
(1) The content of aluminum element in the polyester resin composition is 9 to 19 mass ppm.
(2) The content of phosphorus element in the polyester resin composition is 13 to 31 parts by mass ppm.
(3) The molar ratio of phosphorus element to aluminum element in the polyester resin composition is 1.32 or more and 1.80 or less. (4) The content of the insoluble particles in the polyester resin composition is 500 to 2000 mass ppm.
2. 2. The content of the aluminum element corresponding to the aluminum-based foreign substance in the polyester resin is 3000 mass ppm or less. The polyester resin composition according to.
3. 3. 1. The intrinsic viscosity (IV) is 0.56 dl / g or more. Or 2. The polyester resin composition according to.
4. The phosphorus compound has a phosphorus element and a phenol structure in the same molecule. ~ 3. The polyester resin composition according to any one of.
5. The volume average particle diameter of the insoluble particles is 0.5 to 3.0 μm. ~ 4. The polyester resin composition according to any one of.
6. The insoluble particles are silica. ~ 5. The polyester resin composition according to any one of.
7. The above 1. ~ 6. In the method for producing a polyester resin composition according to any one of the above, the first step of synthesizing a polyester which is a polycondensate or an oligomer thereof as an intermediate, and the intermediate are further weighted. It has a second step of condensation, and after the first step and before the second step, a solution A1 in which an aluminum compound is dissolved in the intermediate and a solution B1 in which a phosphorus compound is dissolved are added. The addition amounts of the solution A1 and the solution B1 satisfy the following (5) to (7), the insoluble particles are added during the first step or after the completion of the first step, and the addition amount of the insoluble particles is as follows ( A method for producing a polyester resin composition, which is characterized by satisfying 8).
(5) The amount of the aluminum element added to the produced polyester resin is 9 to 19 mass ppm.
(6) The amount of phosphorus element added to the produced polyester resin is 18 to 38 mass ppm.
(7) The molar ratio of the amount of phosphorus element added in (6) to the amount of aluminum element added in (5) is 1.50 or more and 2.30 or less. (8) The insoluble particles with respect to the polyester resin produced. Addition amount is 500-2000 mass ppm
8. The polyester resin composition is produced by a batch polymerization method. The method for producing a polyester resin composition according to.
9. The polyester resin composition is produced by a continuous polymerization method, and the solution A1 and the solution B1 are added to the final esterification reaction tank or the transfer line between the final esterification reaction tank and the first polymerization reaction tank. .. The method for producing a polyester resin composition according to.
10. The solution A1 is a glycol solution, and the maximum absorption wavelength of the solution A1 is 562.0 to 572.0 nm. ~ 9. The method for producing a polyester resin composition according to any one of.
11. The solution B1 is a glycol solution, and the solution B1 has a maximum absorption wavelength of 460.0 to 463.0 nm. The method for producing a polyester resin composition according to.
12. The glycol solution B1 heat-treats a phosphorus compound at 170 to 196 ° C. for 125 to 240 minutes in the glycol solution. The method for producing a polyester resin composition according to.
13. The solution A1 and the solution B1 are glycol solutions, and the maximum absorption wavelength of the mixed solution of the glycol solution A1 and the glycol solution B1 is 559.5 to 560.8 nm. ~ 12. The method for producing a polyester resin composition according to any one of.
14. The above 1. ~ 6. A polyester film formed from the polyester resin composition according to any one of the above.
15. 14. The electrostatic adhesion imparting agent is further added to the polyester resin composition. The polyester film described in.
 本発明のポリエステル樹脂組成物は、アルミニウム化合物とリン化合物からなる重合触媒を用いたにもかかわらず、触媒コストを低く抑えつつ、かつポリエステル樹脂組成物中に含まれる触媒由来の異物を低減することができるので、ポリエステル樹脂組成物の作製にかかるコストを低減でき、品質も向上できる。
 また、触媒として添加するアルミニウム化合物を溶解した溶液、触媒として添加するリン化合物を溶解した溶液、及びこれらの混合液の酸性度や塩基性度を好ましい範囲にする(前記溶液や前記混合液の極大吸収波長を好ましい範囲にする)ことにより、アルミニウム系異物量の増加をさらに抑制することができる。
 また、本発明のポリエステル樹脂組成物が低コストで得られ、かつ、高品質であるため、本発明のポリエステル樹脂組成物を製膜して得られるポリエステルフィルムの作製コストも低減でき、ポリエステルフィルムの品質も向上させることができる。さらに該ポリエステルフィルムは走行性、耐摩耗性、光学特性などに優れるため、包装用フィルム、工業用フィルムなど、幅広い用途に使用することができる。
Although the polyester resin composition of the present invention uses a polymerization catalyst composed of an aluminum compound and a phosphorus compound, the catalyst cost can be kept low and foreign substances derived from the catalyst contained in the polyester resin composition can be reduced. Therefore, the cost required for producing the polyester resin composition can be reduced and the quality can be improved.
Further, the acidity and basicity of the solution in which the aluminum compound to be added as a catalyst is dissolved, the solution in which the phosphorus compound to be added as a catalyst is dissolved, and the mixed solution thereof are set within a preferable range (the maximum of the solution and the mixed solution). By setting the absorption wavelength in a preferable range), it is possible to further suppress an increase in the amount of aluminum-based foreign matter.
Further, since the polyester resin composition of the present invention can be obtained at low cost and has high quality, the production cost of the polyester film obtained by forming the polyester resin composition of the present invention can be reduced, and the polyester film can be produced. The quality can also be improved. Further, since the polyester film is excellent in running performance, abrasion resistance, optical properties and the like, it can be used in a wide range of applications such as packaging films and industrial films.
実施例および比較例の結果より求めたアルミニウム元素に対するリン元素の残存モル比とアルミニウム系異物量および重合時間との相関図である。It is a correlation diagram between the residual molar ratio of phosphorus element to aluminum element, the amount of aluminum-based foreign matter, and the polymerization time obtained from the results of Examples and Comparative Examples. 実施例および比較例の結果より求めたリン含有エチレングリコール溶液及びアルミニウム含有エチレングリコール溶液の混合液の極大吸収波長とアルミニウム系異物量および重合時間との相関図である。It is a correlation diagram between the maximum absorption wavelength of the mixed solution of phosphorus-containing ethylene glycol solution and aluminum-containing ethylene glycol solution obtained from the results of Examples and Comparative Examples, the amount of aluminum-based foreign matter, and the polymerization time.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明のポリエステル樹脂組成物は、ポリエステル樹脂と該ポリエステル樹脂に不溶な粒子である不溶性粒子とを含む。また、前記ポリエステル樹脂は、アルミニウム化合物及びリン化合物を含む。 The polyester resin composition of the present invention contains a polyester resin and insoluble particles which are particles insoluble in the polyester resin. Further, the polyester resin contains an aluminum compound and a phosphorus compound.
[ポリエステル樹脂組成物]
 本発明のポリエステル樹脂組成物は下記(1)~(4)を満足する。
(1)前記ポリエステル樹脂組成物中におけるアルミニウム元素の含有率が9~19質量ppm
(2)前記ポリエステル樹脂組成物中におけるリン元素の含有率が13~31質量ppm
(3)前記ポリエステル樹脂組成物中のアルミニウム元素に対するリン元素のモル比が1.32以上1.80以下
(4)前記ポリエステル樹脂組成物中における前記不溶性粒子の含有率が500~2000質量ppm
 なお、本明細書においては、質量ppmとは10-4質量%を意味する。
[Polyester resin composition]
The polyester resin composition of the present invention satisfies the following (1) to (4).
(1) The content of aluminum element in the polyester resin composition is 9 to 19 mass ppm.
(2) The content of phosphorus element in the polyester resin composition is 13 to 31 parts by mass ppm.
(3) The molar ratio of phosphorus element to aluminum element in the polyester resin composition is 1.32 or more and 1.80 or less. (4) The content of the insoluble particles in the polyester resin composition is 500 to 2000 mass ppm.
In this specification, mass ppm means 10-4 % by mass.
[ポリエステル樹脂]
 本発明で用いられるポリエステル樹脂は、多価カルボン酸およびそのエステル形成性誘導体から選ばれる少なくとも一種と多価アルコールおよびそのエステル形成性誘導体から選ばれる少なくとも一種とからなるポリエステル樹脂を含む。
[Polyester resin]
The polyester resin used in the present invention includes a polyester resin composed of at least one selected from a polyvalent carboxylic acid and an ester-forming derivative thereof and at least one selected from a polyhydric alcohol and an ester-forming derivative thereof.
 ポリエステル樹脂としては、主たる多価カルボン酸成分がジカルボン酸であることが好ましい。 As the polyester resin, it is preferable that the main polyvalent carboxylic acid component is a dicarboxylic acid.
 主たる多価カルボン酸成分がジカルボン酸であるポリエステル樹脂とは、全多価カルボン酸成分に対してジカルボン酸を70モル%以上含有するポリエステル樹脂であることが好ましく、より好ましくは80モル%以上含有するポリエステル樹脂であり、さらに好ましくは90モル%以上含有するポリエステル樹脂である。なお、ジカルボン酸を二種以上用いる場合はそれらの合計が上記範囲内であることが好ましい。 The polyester resin in which the main polyvalent carboxylic acid component is a dicarboxylic acid is preferably a polyester resin containing 70 mol% or more of the dicarboxylic acid with respect to the total polyvalent carboxylic acid component, and more preferably 80 mol% or more. It is a polyester resin containing 90 mol% or more, more preferably 90 mol% or more. When two or more kinds of dicarboxylic acids are used, it is preferable that the total of them is within the above range.
 ジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ドデカンジカルボン酸、テトラデカンジカルボン酸、ヘキサデカンジカルボン酸、1,3-シクロブタンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、2,5-ノルボルナンジカルボン酸、ダイマー酸などに例示される飽和脂肪族ジカルボン酸またはこれらのエステル形成性誘導体;フマル酸、マレイン酸、イタコン酸などに例示される不飽和脂肪族ジカルボン酸またはこれらのエステル形成性誘導体;オルソフタル酸、イソフタル酸、テレフタル酸、5-(アルカリ金属)スルホイソフタル酸、ジフェニン酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、4,4’-ビフェニルジカルボン酸、4,4’-ビフェニルスルホンジカルボン酸、4,4’-ビフェニルエーテルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸、パモイン酸、アントラセンジカルボン酸などに例示される芳香族ジカルボン酸、またはこれらのエステル形成性誘導体;が挙げられる。 Examples of the dicarboxylic acid include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decandicarboxylic acid, dodecanedicarboxylic acid, tetradecanedicarboxylic acid, and hexadecanedicarboxylic acid. 3-Cyclobutanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 2,5-norbornandicarboxylic acid, dimer acid, etc. Saturated aliphatic dicarboxylic acids or their ester-forming derivatives exemplified by; unsaturated aliphatic dicarboxylic acids or their ester-forming derivatives exemplified by fumaric acid, maleic acid, itaconic acid and the like; orthophthalic acid, isophthalic acid, Telephthalic acid, 5- (alkali metal) sulfoisophthalic acid, diphenylic acid, 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2, 7-naphthalenedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, 4,4'-biphenylsulfonedicarboxylic acid, 4,4'-biphenyletherdicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p'- Examples thereof include aromatic dicarboxylic acids exemplified by dicarboxylic acids, pamoic acids, anthracene dicarboxylic acids, etc., or ester-forming derivatives thereof.
 より好ましくは、主たる多価カルボン酸成分がテレフタル酸またはそのエステル形成性誘導体もしくはナフタレンジカルボン酸またはそのエステル形成性誘導体である。ナフタレンジカルボン酸またはそのエステル形成性誘導体としては、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、またはこれらのエステル形成性誘導体が挙げられる。 More preferably, the main polyvalent carboxylic acid component is terephthalic acid or an ester-forming derivative thereof or naphthalene dicarboxylic acid or an ester-forming derivative thereof. Examples of the naphthalenedicarboxylic acid or an ester-forming derivative thereof include 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 2,7-naphthalenedicarboxylic acid. Acids, or ester-forming derivatives thereof, may be mentioned.
 主たる多価カルボン酸成分がテレフタル酸またはそのエステル形成性誘導体もしくはナフタレンジカルボン酸またはそのエステル形成性誘導体であるポリエステル樹脂とは、全多価カルボン酸成分に対してテレフタル酸またはそのエステル形成性誘導体とナフタレンジカルボン酸またはそのエステル形成性誘導体とを合計して70モル%以上含有するポリエステル樹脂であることが好ましく、より好ましくは80モル%以上含有するポリエステル樹脂であり、さらに好ましくは90モル%以上含有するポリエステル樹脂である。 A polyester resin in which the main polyvalent carboxylic acid component is terephthalic acid or an ester-forming derivative thereof or naphthalenedicarboxylic acid or an ester-forming derivative thereof is a terephthalic acid or an ester-forming derivative thereof with respect to the total polyvalent carboxylic acid component. A polyester resin containing 70 mol% or more of naphthalenedicarboxylic acid or an ester-forming derivative thereof in total is preferable, and a polyester resin containing 80 mol% or more is more preferable, and 90 mol% or more is more preferably contained. It is a polyester resin.
 特に好ましくは、テレフタル酸、2,6-ナフタレンジカルボン酸またはこれらのエステル形成性誘導体である。必要に応じて、他のジカルボン酸を構成成分としてもよい。 Particularly preferred are terephthalic acid, 2,6-naphthalenedicarboxylic acid or ester-forming derivatives thereof. If necessary, other dicarboxylic acids may be used as constituents.
 これらジカルボン酸以外の多価カルボン酸として、少量であれば3価以上の多価カルボン酸やヒドロキシカルボン酸を併用してもよく、3~4価の多価カルボン酸であることが好ましい。多価カルボン酸として、例えば、エタントリカルボン酸、プロパントリカルボン酸、ブタンテトラカルボン酸、ピロメリット酸、トリメリット酸、トリメシン酸、3,4,3’,4’-ビフェニルテトラカルボン酸、およびこれらのエステル形成性誘導体などが挙げられる。全多価カルボン酸成分に対して3価以上の多価カルボン酸は20モル%以下であることが好ましく、より好ましくは10モル%以下であり、さらに好ましくは5モル%以下である。なお、3価以上の多価カルボン酸を二種以上用いる場合はそれらの合計が上記範囲内であることが好ましい。 As the polyvalent carboxylic acid other than these dicarboxylic acids, a trivalent or higher polyvalent carboxylic acid or a hydroxycarboxylic acid may be used in combination as long as the amount is small, and a trivalent to tetravalent polyvalent carboxylic acid is preferable. Examples of the polyvalent carboxylic acid include ethanetricarboxylic acid, propantricarboxylic acid, butanetetracarboxylic acid, pyromellitic acid, trimellitic acid, trimesic acid, 3,4,3', 4'-biphenyltetracarboxylic acid, and these. Examples thereof include ester-forming derivatives. The amount of trivalent or higher polyvalent carboxylic acid is preferably 20 mol% or less, more preferably 10 mol% or less, still more preferably 5 mol% or less, based on the total polyvalent carboxylic acid component. When two or more kinds of trivalent or higher-valent polyvalent carboxylic acids are used, it is preferable that the total of them is within the above range.
 ヒドロキシカルボン酸としては、乳酸、クエン酸、リンゴ酸、酒石酸、ヒドロキシ酢酸、3-ヒドロキシ酪酸、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸、4-ヒドロキシシクロヘキサンカルボン酸、またはこれらのエステル形成性誘導体などが挙げられる。全多価カルボン酸成分に対してヒドロキシカルボン酸は20モル%以下であることが好ましく、より好ましくは10モル%以下であり、さらに好ましくは5モル%以下である。なお、ヒドロキシカルボン酸を二種以上用いる場合はそれらの合計が上記範囲内であることが好ましい。 Examples of the hydroxycarboxylic acid include lactic acid, citric acid, malic acid, tartrate acid, hydroxyacetic acid, 3-hydroxybutyric acid, p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid, 4-hydroxycyclohexanecarboxylic acid, or these. Examples thereof include ester-forming derivatives of the above. The hydroxycarboxylic acid is preferably 20 mol% or less, more preferably 10 mol% or less, still more preferably 5 mol% or less, based on the total polyvalent carboxylic acid component. When two or more kinds of hydroxycarboxylic acids are used, it is preferable that the total of them is within the above range.
 多価カルボン酸もしくはヒドロキシカルボン酸のエステル形成性誘導体としては、これらのアルキルエステル、酸クロライド、酸無水物などが挙げられる。 Examples of the ester-forming derivative of polyvalent carboxylic acid or hydroxycarboxylic acid include these alkyl esters, acid chlorides, acid anhydrides and the like.
 ポリエステル樹脂としては、主たる多価アルコール成分がグリコールであることが好ましい。 As the polyester resin, it is preferable that the main polyhydric alcohol component is glycol.
 主たる多価アルコール成分がグリコールであるポリエステル樹脂(A)とは、全多価アルコール成分に対してグリコールを70モル%以上含有するポリエステル樹脂であることが好ましく、より好ましくは80モル%以上含有するポリエステル樹脂であり、さらに好ましくは90モル%以上含有するポリエステル樹脂である。なお、グリコールを二種以上用いる場合はそれらの合計が上記範囲内であることが好ましい。 The polyester resin (A) in which the main polyhydric alcohol component is glycol is preferably a polyester resin containing 70 mol% or more of glycol with respect to the total polyvalent alcohol component, and more preferably 80 mol% or more. It is a polyester resin, more preferably a polyester resin containing 90 mol% or more. When two or more kinds of glycols are used, it is preferable that the total of them is within the above range.
 グリコールとしては、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、2,3-ブチレングリコール、1,4-ブチレングリコール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジエタノール、1,10-デカメチレングリコール、1,12-ドデカンジオールなどに例示されるアルキレングリコール;ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコールなどに例示される脂肪族グリコール;ヒドロキノン、4,4’-ジヒドロキシビスフェノール、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン、1,4-ビス(β-ヒドロキシエトキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)エーテル、ビス(p-ヒドロキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)メタン、1,2-ビス(p-ヒドロキシフェニル)エタン、ビスフェノールA、ビスフェノールC、2,5-ナフタレンジオール、これらのグリコールにエチレンオキシドが付加したグリコール、などに例示される芳香族グリコール;が挙げられる。 Examples of the glycol include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, diethylene glycol, triethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, and 1, 4-butylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanedi Alkylene glycols exemplified for methanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediethanol, 1,10-decamethylene glycol, 1,12-dodecanediol, etc .; polyethylene glycol, Aliphatic glycols exemplified by polytrimethylene glycol, polytetramethylene glycol, etc .; hydroquinone, 4,4'-dihydroxybisphenol, 1,4-bis (β-hydroxyethoxy) benzene, 1,4-bis (β-hydroxy). Ethoxyphenyl) sulfone, bis (p-hydroxyphenyl) ether, bis (p-hydroxyphenyl) sulfone, bis (p-hydroxyphenyl) methane, 1,2-bis (p-hydroxyphenyl) ethane, bisphenol A, bisphenol C , 2,5-Naphthalenediol, glycols obtained by adding ethylene oxide to these glycols, and the like, examples of aromatic glycols;
 これらのグリコールのうち、アルキレングリコールが好ましく、より好ましくは、エチレングリコール、1,3-プロピレングリコール、1,4-ブチレングリコール、又は1,4-シクロヘキサンジメタノールである。また、前記アルキレングリコールは、分子鎖中に置換基や脂環構造を含んでいてもよく、同時に2種以上を使用してもよい。 Of these glycols, alkylene glycol is preferable, and ethylene glycol, 1,3-propylene glycol, 1,4-butylene glycol, or 1,4-cyclohexanedimethanol is more preferable. Further, the alkylene glycol may contain a substituent or an alicyclic structure in the molecular chain, and two or more kinds may be used at the same time.
 これらグリコール以外の多価アルコールとして、少量であれば3価以上の多価アルコールを併用してもよく、3~4価の多価アルコールであることが好ましい。3価以上の多価アルコールとしては、トリメチロールメタン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、グリセロール、ヘキサントリオールなどが挙げられる。 As the polyhydric alcohol other than these glycols, a trihydric or higher polyhydric alcohol may be used in combination as long as it is a small amount, and a trivalent to tetravalent polyhydric alcohol is preferable. Examples of the trihydric or higher polyhydric alcohol include trimethylolmethane, trimethylolethane, trimethylolpropane, pentaerythritol, glycerol, and hexanetriol.
 全多価アルコール成分に対して3価以上の多価アルコールは20モル%以下であることが好ましく、より好ましくは10モル%以下であり、さらに好ましくは5モル%以下である。なお、3価以上の多価アルコールを二種以上用いる場合はそれらの合計が上記範囲内であることが好ましい。 The amount of trihydric or higher polyhydric alcohol is preferably 20 mol% or less, more preferably 10 mol% or less, and further preferably 5 mol% or less with respect to the total polyhydric alcohol component. When two or more kinds of trihydric or higher polyhydric alcohols are used, it is preferable that the total of them is within the above range.
 また、環状エステルの併用も許容される。環状エステルとしては、ε-カプロラクトン、β-プロピオラクトン、β-メチル-β-プロピオラクトン、δ-バレロラクトン、グリコリド、ラクチドなどが挙げられる。また、多価アルコールのエステル形成性誘導体としては、多価アルコールの酢酸等の低級脂肪族カルボン酸とのエステルが挙げられる。 Also, the combined use of cyclic ester is permitted. Examples of the cyclic ester include ε-caprolactone, β-propiolactone, β-methyl-β-propiolactone, δ-valerolactone, glycolide, lactide and the like. Examples of the ester-forming derivative of the polyhydric alcohol include esters of the polyhydric alcohol with a lower aliphatic carboxylic acid such as acetic acid.
 全多価カルボン酸成分及び全多価アルコール成分の合計に対して環状エステルは20モル%以下であることが好ましく、より好ましくは10モル%以下であり、さらに好ましくは5モル%以下である。なお、環状エステルを二種以上用いる場合はそれらの合計が上記範囲内であることが好ましい。 The cyclic ester is preferably 20 mol% or less, more preferably 10 mol% or less, and further preferably 5 mol% or less with respect to the total of the total polyvalent carboxylic acid component and the total polyhydric alcohol component. When two or more kinds of cyclic esters are used, it is preferable that the total of them is within the above range.
 本発明で用いるポリエステル樹脂としては、エチレンテレフタレート、ブチレンテレフタレート、プロピレンテレフタレート、1,4-シクロヘキサンジメチレンテレフタレート、エチレンナフタレート、ブチレンナフタレート、もしくはプロピレンナフタレートから選択される1種のみのモノマーからなる重合体、又は2種類以上の上記モノマーからなる共重合体であることが好ましく、本発明で用いるポリエステル樹脂はポリエチレンテレフタレート又はエチレンテレフタレートとエチレンテレフタレート以外の上記モノマーの少なくとも一種とからなる共重合体であることがより好ましく、ポリエチレンテレフタレートであることが特に好ましい。エチレンテレフタレートとエチレンテレフタレート以外の上記モノマーの少なくとも一種とからなる共重合体は、エチレンテレフタレートモノマー由来の成分が70モル%以上含有することが好ましく、80モル%以上含有することがより好ましく、90モル%以上含有することがさらに好ましい。 The polyester resin used in the present invention comprises only one monomer selected from ethylene terephthalate, butylene terephthalate, propylene terephthalate, 1,4-cyclohexanedimethylene terephthalate, ethylene naphthalate, butylene naphthalate, or propylene naphthalate. It is preferably a polymer or a copolymer composed of two or more kinds of the above-mentioned monomers, and the polyester resin used in the present invention is polyethylene terephthalate or a copolymer composed of at least one of the above-mentioned monomers other than ethylene terephthalate and ethylene terephthalate. It is more preferable to have polyethylene terephthalate, and it is particularly preferable to use polyethylene terephthalate. The copolymer composed of ethylene terephthalate and at least one of the above monomers other than ethylene terephthalate preferably contains 70 mol% or more, more preferably 80 mol% or more, and 90 mol of the component derived from the ethylene terephthalate monomer. It is more preferable to contain% or more.
<重合触媒>
 本発明のポリエステル樹脂は、アルミニウム化合物由来成分とリン化合物由来成分を触媒量含んでいる。すなわち、本発明のポリエステル樹脂は、アルミニウム化合物とリン化合物からなる重合触媒を用いて製造されている。
<Polymerization catalyst>
The polyester resin of the present invention contains a catalyst amount of an aluminum compound-derived component and a phosphorus compound-derived component. That is, the polyester resin of the present invention is produced by using a polymerization catalyst composed of an aluminum compound and a phosphorus compound.
<アルミニウム化合物>
 上記重合触媒を構成するアルミニウム化合物は溶媒に溶解するものであれば限定されず、公知のアルミニウム化合物が限定なく使用できる。アルミニウム化合物として、例えば、ギ酸アルミニウム、酢酸アルミニウム、塩基性酢酸アルミニウム、プロピオン酸アルミニウム、シュウ酸アルミニウム、アクリル酸アルミニウム、ラウリン酸アルミニウム、ステアリン酸アルミニウム、安息香酸アルミニウム、トリクロロ酢酸アルミニウム、乳酸アルミニウム、クエン酸アルミニウム、酒石酸アルミニウム、サリチル酸アルミニウムなどのカルボン酸塩;塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウム、硝酸アルミニウム、硫酸アルミニウム、炭酸アルミニウム、リン酸アルミニウム、ホスホン酸アルミニウムなどの無機酸塩;アルミニウムメトキサイド、アルミニウムエトキサイド、アルミニウムn-プロポキサイド、アルミニウムイソプロポキサイド、アルミニウムn-ブトキサイド、アルミニウムt-ブトキサイドなどアルミニウムアルコキサイド;アルミニウムアセチルアセトネート、アルミニウムエチルアセトアセテート、アルミニウムエチルアセトアセテートジiso-プロポキサイドなどのキレート化合物;トリメチルアルミニウム、トリエチルアルミニウムなどの有機アルミニウム化合物およびこれらの部分加水分解物、アルミニウムのアルコキサイドやアルミニウムキレート化合物とヒドロキシカルボン酸からなる反応生成物、酸化アルミニウム、超微粒子酸化アルミニウム、アルミニウムシリケート、アルミニウムとチタンやケイ素やジルコニウムやアルカリ金属やアルカリ土類金属などとの複合酸化物などが挙げられる。これらのうちカルボン酸塩、無機酸塩、およびキレート化合物から選ばれる少なくとも1種が好ましく、これらの中でも酢酸アルミニウム、塩基性酢酸アルミニウム、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウム、及びアルミニウムアセチルアセトネートから選ばれる少なくとも1種がより好ましく、酢酸アルミニウム、塩基性酢酸アルミニウム、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウム、及びアルミニウムアセチルアセトネートから選ばれる少なくとも1種がさらに好ましく、酢酸アルミニウム及び塩基性酢酸アルミニウムから選ばれる少なくとも1種が特に好ましく、塩基性酢酸アルミニウムが最も好ましい。
<Aluminum compound>
The aluminum compound constituting the polymerization catalyst is not limited as long as it is soluble in a solvent, and known aluminum compounds can be used without limitation. Examples of aluminum compounds include aluminum formate, aluminum acetate, basic aluminum acetate, aluminum propionate, aluminum oxalate, aluminum acrylate, aluminum laurate, aluminum stearate, aluminum benzoate, aluminum trichloroacetate, aluminum lactate, and citric acid. Carboxylates such as aluminum, aluminum tartrate, aluminum salicylate; inorganic acid salts such as aluminum chloride, aluminum hydroxide, aluminum hydroxide, aluminum nitrate, aluminum sulfate, aluminum carbonate, aluminum phosphate, aluminum phosphonate; aluminum methoxide , Aluminum ethoxide, aluminum n-propoxyside, aluminum isopropoxiside, aluminum n-butoxiside, aluminum t-butoxiside, etc. Aluminum alcokiside; aluminum acetylacetonate, aluminum ethylacetacetate, aluminum ethylacetacetate diiso-propoxyside, etc. Chelate compounds; organic aluminum compounds such as trimethylaluminum and triethylaluminum and their partial hydrolysates, reaction products consisting of aluminum alcoholides and aluminum chelate compounds and hydroxycarboxylic acids, aluminum oxide, ultrafine aluminum oxide, aluminum silicate, aluminum. And composite oxides of titanium, silicon, aluminum, alkali metal, alkaline earth metal, etc. can be mentioned. Of these, at least one selected from carboxylates, inorganic acid salts, and chelate compounds is preferable, and among these, aluminum acetate, basic aluminum acetate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride, and aluminum acetylacetate are preferable. At least one selected from nate is more preferred, and at least one selected from aluminum acetate, basic aluminum acetate, aluminum chloride, aluminum hydroxide, aluminum chloride and aluminum acetylacetonate is even more preferred, aluminum acetate and base. At least one selected from the sex aluminum acetate is particularly preferable, and the basic aluminum acetate is the most preferable.
 上記アルミニウム化合物は水やグリコールなどの溶剤に可溶化するアルミニウム化合物であることが好ましい。本発明で使用できる溶媒とは、水およびアルキレングリコール類である。アルキレングリコール類には、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、トリメチレングリコール、ジトリメチレングリコール、テトラメチレングリコール、ジテトラメチレングリコール、ネオペンチルグリコールなどが挙げられる。好ましくは、エチレングリコール、トリメチレングリコール、及びテトラメチレングリコールから選ばれる少なくとも1種であり、さらに好ましくはエチレングリコールである。アルミニウム化合物を水又はエチレングリコールに溶解した溶液を用いることが本発明の効果を顕著に発現することができるので好ましい。 The aluminum compound is preferably an aluminum compound that is solubilized in a solvent such as water or glycol. The solvents that can be used in the present invention are water and alkylene glycols. Examples of alkylene glycols include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, trimethylene glycol, ditrimethylethylene glycol, tetramethylene glycol, ditetramethylene glycol, neopentyl glycol and the like. .. It is preferably at least one selected from ethylene glycol, trimethylene glycol, and tetramethylene glycol, and more preferably ethylene glycol. It is preferable to use a solution of the aluminum compound in water or ethylene glycol because the effect of the present invention can be remarkably exhibited.
 前記ポリエステル樹脂組成物中におけるアルミニウム元素の含有率は、9~19質量ppmであることが必要であり、好ましくは10~19質量ppm、より好ましくは10~17質量ppm、さらに好ましくは12~17質量ppmである。アルミニウム元素が9質量ppm未満では、重合活性が十分に発揮されないおそれがある。一方、19質量ppmを超えるとアルミニウム系異物量が増大するおそれがある。 The content of the aluminum element in the polyester resin composition needs to be 9 to 19 mass ppm, preferably 10 to 19 mass ppm, more preferably 10 to 17 mass ppm, still more preferably 12 to 17 mass ppm. The mass is ppm. If the amount of aluminum element is less than 9% by mass, the polymerization activity may not be sufficiently exhibited. On the other hand, if it exceeds 19 mass ppm, the amount of aluminum-based foreign matter may increase.
<リン化合物>
 本発明の重合触媒を構成するリン化合物としては、特に限定はされないが、ホスホン酸系化合物、ホスフィン酸系化合物を用いると触媒活性の向上効果が大きいため好ましく、これらの中でもホスホン酸系化合物を用いると触媒活性の向上効果が特に大きいためより好ましい。
<Phosphorus compound>
The phosphorus compound constituting the polymerization catalyst of the present invention is not particularly limited, but it is preferable to use a phosphonic acid-based compound or a phosphinic acid-based compound because the effect of improving the catalytic activity is large, and among these, a phosphonic acid-based compound is used. It is more preferable because the effect of improving the catalytic activity is particularly large.
 上記リン化合物のうち、同一分子内にリン元素とフェノール構造を有するリン化合物が好ましい。同一分子内にリン元素とフェノール構造を有するリン化合物であれば特に限定はされないが、同一分子内にリン元素とフェノール構造を有するホスホン酸系化合物、同一分子内にリン元素とフェノール構造を有するホスフィン酸系化合物からなる群より選ばれる一種または二種以上の化合物を用いると触媒活性の向上効果が大きく好ましく、一種または二種以上の同一分子内にリン元素とフェノール構造を有するホスホン酸系化合物を用いると触媒活性の向上効果が非常に大きくより好ましい。 Among the above phosphorus compounds, a phosphorus compound having a phosphorus element and a phenol structure in the same molecule is preferable. It is not particularly limited as long as it is a phosphorus compound having a phosphorus element and a phenol structure in the same molecule, but a phosphonic acid compound having a phosphorus element and a phenol structure in the same molecule, and a phosphine having a phosphorus element and a phenol structure in the same molecule. It is highly preferable to use one or more compounds selected from the group consisting of acid compounds to greatly improve the catalytic activity, and one or more phosphonic compounds having a phosphorus element and a phenol structure in the same molecule can be used. When used, the effect of improving the catalytic activity is very large, which is more preferable.
 また、同一分子内にリン元素とフェノール構造を有するリン化合物としては、P(=O)R1(OR2)(OR3)やP(=O)R14(OR2)で表される化合物などが挙げられる。R1はフェノール部を含む炭素数1~50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基などの置換基およびフェノール構造を含む炭素数1~50の炭化水素基を表す。R4は、水素、炭素数1~50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基などの置換基を含む炭素数1~50の炭化水素基を表す。R2、R3はそれぞれ独立に水素、炭素数1~50の炭化水素基、水酸基またはアルコキシル基などの置換基を含む炭素数1~50の炭化水素基を表す。ただし、炭化水素基は分岐構造やシクロヘキシル等の脂環構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。R2とR4の末端どうしは結合していてもよい。 Further, the phosphorus compound having a phosphorus element and a phenol structure in the same molecule is represented by P (= O) R 1 (OR 2 ) (OR 3 ) or P (= O) R 1 R 4 (OR 2 ). Compounds and the like. R 1 represents a hydrocarbon group having 1 to 50 carbon atoms including a phenol moiety, a substituent such as a hydroxyl group or a halogen group or an alkoxyl group or an amino group, and a hydrocarbon group having 1 to 50 carbon atoms including a phenol structure. R 4 represents a hydrocarbon group having 1 to 50 carbon atoms including hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or a halogen group or a substituent such as an alkoxyl group or an amino group. R 2 and R 3 independently represent hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, and a hydrocarbon group having 1 to 50 carbon atoms including a substituent such as a hydroxyl group or an alkoxyl group, respectively. However, the hydrocarbon group may contain a branched structure, an alicyclic structure such as cyclohexyl, or an aromatic ring structure such as phenyl or naphthyl. The ends of R 2 and R 4 may be bonded to each other.
 同一分子内にリン元素とフェノール構造を有するリン化合物としては、例えば、p-ヒドロキシフェニルホスホン酸、p-ヒドロキシフェニルホスホン酸ジメチル、p-ヒドロキシフェニルホスホン酸ジエチル、p-ヒドロキシフェニルホスホン酸ジフェニル、ビス(p-ヒドロキシフェニル)ホスフィン酸、ビス(p-ヒドロキシフェニル)ホスフィン酸メチル、ビス(p-ヒドロキシフェニル)ホスフィン酸フェニル、p-ヒドロキシフェニルホスフィン酸、p-ヒドロキシフェニルホスフィン酸メチル、p-ヒドロキシフェニルホスフィン酸フェニル、下記(化式1)で表される3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルなどが挙げられる。同一分子内にリン元素とフェノール構造を有するリン化合物としては、特にヒンダードフェノール構造を有するリン化合物であることが好ましく、中でも、下記(化式1)に示す3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルであることが好ましい。 Examples of the phosphorus compound having a phosphorus element and a phenol structure in the same molecule include p-hydroxyphenylphosphonic acid, dimethyl p-hydroxyphenylphosphonate, diethyl p-hydroxyphenylphosphonate, diphenyl p-hydroxyphenylphosphonate, and bis. (P-Hydroxyphenyl) Phosphonic Acid, Methyl Bis (p-Hydroxyphenyl) Phosphonate, Bis (p-Hydroxyphenyl) Phosphonate Phosphonate, p-Hydroxyphenyl Phosphonate, Methyl p-Hydroxyphenyl Phosphonate, p-Hydroxyphenyl Examples thereof include phenyl phosphinate and dialkyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate represented by the following (formula 1). The phosphorus compound having a phosphorus element and a phenol structure in the same molecule is particularly preferably a phosphorus compound having a hindered phenol structure, and among them, 3,5-di-tert-butyl represented by the following (formulation formula 1). It is preferably dialkyl-4-hydroxybenzylphosphonate.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
((化式1)において、X1、X2は、それぞれ、水素、炭素数1~4のアルキル基を表す。) (In (Formula 1), X 1 and X 2 represent hydrogen and an alkyl group having 1 to 4 carbon atoms, respectively.)
 上記X1、X2のアルキル基の炭素数は1~4が好ましく、1~2がより好ましい。特に、炭素数2のエチルエステル体は、Irganox1222(ビーエーエスエフ社製)が市販されており容易に入手できるので好ましい。 The alkyl groups of X 1 and X 2 have preferably 1 to 4 carbon atoms, more preferably 1 to 2 carbon atoms. In particular, an ethyl ester compound having 2 carbon atoms is preferable because Irganox1222 (manufactured by BAS) is commercially available and easily available.
 なお、本発明におけるリン化合物としては、上記(化式1)に示す3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルであることが好ましいが、それ以外に3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルの変性体も含まれていてもよい。変性体の詳細については後述する。 The phosphorus compound in the present invention is preferably 3,5-di-tert-butyl-4-hydroxybenzylphosphonate dialkyl represented by the above (formulation formula 1), but other than that, 3,5-di. A modified version of -tert-butyl-4-hydroxybenzylphosphonate dialkyl may also be included. Details of the denatured product will be described later.
 前記ポリエステル樹脂組成物中におけるリン元素の含有率は13~31質量ppmであり、15~29ppmであることが好ましい。リン元素が13質量ppm未満では、重合活性の低下やアルミニウム系異物量が増大するおそれがある。一方、31質量ppmを超えると逆に重合活性が低下するおそれやリン化合物の添加量が多くなり、触媒コストが増加するため好ましくない。 The content of the phosphorus element in the polyester resin composition is 13 to 31 mass ppm, preferably 15 to 29 ppm. If the phosphorus element is less than 13 mass ppm, the polymerization activity may decrease and the amount of aluminum-based foreign matter may increase. On the other hand, if it exceeds 31 parts by mass, the polymerization activity may decrease and the amount of the phosphorus compound added increases, which is not preferable because the catalyst cost increases.
<ポリエステル樹脂組成物中のアルミニウム元素に対するリン元素のモル比>
 本発明のポリエステル樹脂組成物において、アルミニウム元素に対するリン元素のモル比(後述する「アルミニウム元素に対するリン元素の添加モル比」と区別するため、以下では「アルミニウム元素に対するリン元素の残存モル比」という)を制御することも重要であり、1.32~1.80であることが必要であり、好ましくは1.38~1.68である。上述のように、ポリエステル樹脂組成物中のアルミニウム元素およびリン元素はそれぞれ、ポリエステル樹脂組成物の重合触媒として使用するアルミニウム化合物およびリン化合物に由来する。これらアルミニウム化合物とリン化合物を特定の比率で併用することで、重合系中で触媒活性を有する錯体が機能的に形成され、十分な重合活性を発揮することができる。アルミニウム元素に対するリン元素の残存モル比が1.32未満では、熱安定性および熱酸化安定性が低下するおそれや、アルミニウム系異物量が増大するおそれがある。一方、アルミニウム元素に対するリン元素の残存モル比が1.80を超えると、リン化合物の添加量が多くなりすぎるため、触媒コストが増大する。
<Mole ratio of phosphorus element to aluminum element in polyester resin composition>
In the polyester resin composition of the present invention, the molar ratio of the phosphorus element to the aluminum element (in order to distinguish it from the "molar ratio of the addition of the phosphorus element to the aluminum element" described later, the following is referred to as "the residual molar ratio of the phosphorus element to the aluminum element". ) Is also important and needs to be 1.32 to 1.80, preferably 1.38 to 1.68. As described above, the aluminum element and the phosphorus element in the polyester resin composition are derived from the aluminum compound and the phosphorus compound used as the polymerization catalyst of the polyester resin composition, respectively. By using these aluminum compounds and phosphorus compounds in combination at a specific ratio, a complex having catalytic activity is functionally formed in the polymerization system, and sufficient polymerization activity can be exhibited. If the residual molar ratio of the phosphorus element to the aluminum element is less than 1.32, the thermal stability and the thermal oxidation stability may decrease, and the amount of aluminum-based foreign matter may increase. On the other hand, if the residual molar ratio of the phosphorus element to the aluminum element exceeds 1.80, the amount of the phosphorus compound added becomes too large, so that the catalyst cost increases.
 本発明では、上述のアルミニウム化合物およびリン化合物に加えて、アンチモン化合物、ゲルマニウム化合物、チタン化合物など他の重縮合触媒を、本発明のポリエステル樹脂組成物の特性、加工性、色調等製品に問題を生じない範囲内において併用してもよい。
 前記ポリエステル樹脂組成物中におけるアンチモン元素の含有率は30質量ppm以下であることが好ましく、前記ポリエステル樹脂組成物中におけるゲルマニウム元素の含有率は10質量ppm以下であることが好ましく、前記ポリエステル樹脂組成物中におけるチタン元素の含有率は3質量ppm以下であることが好ましい。ただし、本発明の目的から、上記他の重縮合触媒は、極力使用しないことが好ましい。
In the present invention, in addition to the above-mentioned aluminum compound and phosphorus compound, other polycondensation catalysts such as antimony compound, germanium compound and titanium compound may cause problems in the product such as characteristics, processability and color tone of the polyester resin composition of the present invention. It may be used in combination as long as it does not occur.
The content of the antimonate element in the polyester resin composition is preferably 30 mass ppm or less, and the content of the germanium element in the polyester resin composition is preferably 10 mass ppm or less, and the polyester resin composition. The content of the element titanium in the product is preferably 3% by mass or less. However, for the purpose of the present invention, it is preferable not to use the above other polycondensation catalysts as much as possible.
 本発明のポリエステル樹脂組成物の固有粘度(IV)は、0.56dl/g以上であることが好ましく、0.56~0.65dl/gであることが好ましく、より好ましくは0.58~0.64dl/gである。ポリエステル樹脂組成物の固有粘度が上記未満の場合、成形物の機械的強度や耐衝撃性が不十分になるおそれがある。一方、ポリエステル樹脂組成物の固有粘度が上記範囲を超えた場合は、経済性が低下するため好ましくない。 The intrinsic viscosity (IV) of the polyester resin composition of the present invention is preferably 0.56 dl / g or more, preferably 0.56 to 0.65 dl / g, and more preferably 0.58 to 0. It is .64 dl / g. If the intrinsic viscosity of the polyester resin composition is less than the above, the mechanical strength and impact resistance of the molded product may be insufficient. On the other hand, if the intrinsic viscosity of the polyester resin composition exceeds the above range, the economic efficiency is lowered, which is not preferable.
[ポリエステル樹脂組成物の製造方法]
 本発明のポリエステル樹脂組成物の製造方法としては、触媒としてアルミニウム化合物およびリン化合物からなるポリエステル重合触媒を用いる点、下記(5)~(7)を満足するように重合触媒を添加する点、および不溶性粒子を後述の方法で添加する点以外は、公知の工程を備えた方法で行うことができる。
[Manufacturing method of polyester resin composition]
As a method for producing the polyester resin composition of the present invention, a polyester polymerization catalyst composed of an aluminum compound and a phosphorus compound is used as a catalyst, a polymerization catalyst is added so as to satisfy the following (5) to (7), and the catalyst is added. Except for the point of adding the insoluble particles by the method described later, the method can be carried out by a method provided with a known step.
 本発明のポリエステル樹脂組成物の製造方法としては、中間体として重縮合物(低次縮合物)であるポリエステル又はそのオリゴマーを合成する第1ステップと、前記中間体をさらに重縮合する第2ステップとを有することが好ましい。 The method for producing the polyester resin composition of the present invention includes a first step of synthesizing a polyester or an oligomer thereof, which is a polycondensate (lower-order condensate) as an intermediate, and a second step of further polycondensing the intermediate. It is preferable to have.
 また、前記第1ステップ後であって前記第2ステップの前に前記中間体にアルミニウム化合物を溶解した溶液A1とリン化合物を溶解した溶液B1とを下記(5)~(7)を満足するように添加することが好ましい。ポリエステル樹脂の製造に用いられる多価カルボン酸およびそのエステル形成性誘導体、少量添加してもよいヒドロキシカルボン酸およびこれらのエステル形成性誘導体、少量添加してもよい環状エステルは、重合中に反応系から系外へ留出せず、触媒として系に最初に添加された使用量のほぼ100%が重合によって製造されたポリエステル樹脂中に残留するため、これらの仕込み量から「生成されるポリエステル樹脂」の質量を算出することができる。
 (5) 生成するポリエステル樹脂に対するアルミニウム元素の添加量が9~19質量ppm
 (6) 生成するポリエステル樹脂に対するリン元素の添加量が18~38質量ppm
 (7) 前記(5)におけるアルミニウム元素の添加量に対する前記(6)におけるリン元素の添加量のモル比(以下、「アルミニウム元素に対するリン元素の添加モル比」という)が1.50以上2.30以下
Further, after the first step and before the second step, the solution A1 in which the aluminum compound is dissolved in the intermediate and the solution B1 in which the phosphorus compound is dissolved are satisfied with the following (5) to (7). It is preferable to add to. Polyvalent carboxylic acids and ester-forming derivatives thereof used in the production of polyester resins, hydroxycarboxylic acids and ester-forming derivatives thereof which may be added in a small amount, and cyclic esters which may be added in a small amount are reaction systems during polymerization. Since almost 100% of the amount used initially added to the system as a catalyst remains in the polyester resin produced by polymerization without distilling out of the system, the "polyester resin produced" from these charged amounts The mass can be calculated.
(5) The amount of aluminum element added to the produced polyester resin is 9 to 19 mass ppm.
(6) The amount of phosphorus element added to the produced polyester resin is 18 to 38 mass ppm.
(7) The molar ratio of the amount of phosphorus element added in (6) to the amount of aluminum element added in (5) (hereinafter referred to as "the molar ratio of phosphorus element added to aluminum element") is 1.50 or more. 30 or less
 本発明で用いられる低次縮合物(低重合体)であるポリエステル又はそのオリゴマーの製造方法としては、特に限定されない。 The method for producing polyester or an oligomer thereof, which is a low-order condensate (low polymer) used in the present invention, is not particularly limited.
 本発明で用いられるポリエステル樹脂の製造方法は、触媒としてアルミニウム化合物およびリン化合物からなるポリエステル重合触媒を用いる点並びにポリエステル樹脂中のアルミニウム元素の含有率、リン元素の含有率、及びアルミニウム元素に対するリン元素のモル比を特定範囲になるように調整する点以外は、従来公知の工程を備えた方法で行うことができる。例えば、ポリエチレンテレフタレートを製造する場合は、テレフタル酸とエチレングリコール、および必要により他の共重合成分を直接反応させて、水を留去しエステル化した後、常圧あるいは減圧下で重縮合を行う直接エステル化法、または、テレフタル酸ジメチルとエチレングリコール、および必要により他の共重合成分を反応させてメチルアルコールを留去しエステル交換させた後、常圧あるいは減圧下で重縮合を行うエステル交換法により製造される。さらに必要に応じて、固有粘度を増大させる為に固相重合を行ってもよい。重合は、バッチ式重合法であっても、連続重合法であってもよい。なお、原料として用いたジカルボン酸等を含む多価カルボン酸の量(質量)から、生成するポリエステル樹脂の量(質量)は、算出可能である。 The method for producing a polyester resin used in the present invention uses a polyester polymerization catalyst composed of an aluminum compound and a phosphorus compound as a catalyst, and the content of aluminum element in the polyester resin, the content of phosphorus element, and the phosphorus element with respect to the aluminum element. Except for adjusting the molar ratio of the above to a specific range, it can be carried out by a method provided with conventionally known steps. For example, in the case of producing polyethylene terephthalate, terephthalic acid, ethylene glycol and, if necessary, other copolymerization components are directly reacted to distill off water for transesterification, and then polycondensation is performed under normal pressure or reduced pressure. Direct esterification method or transesterification by reacting dimethyl terephthalate with ethylene glycol and, if necessary, other copolymerization components to distill off methyl alcohol and transesterify, and then perform polycondensation under normal pressure or reduced pressure. Manufactured by law. Further, if necessary, solid phase polymerization may be performed to increase the intrinsic viscosity. The polymerization may be a batch type polymerization method or a continuous polymerization method. The amount (mass) of the polyester resin produced can be calculated from the amount (mass) of the polyvalent carboxylic acid containing the dicarboxylic acid or the like used as the raw material.
 これらいずれの方式においても、エステル化反応あるいはエステル交換反応は、1段階で行ってもよいし、また多段階に分けて行ってもよい。溶融重合反応において、反応器の個数やサイズおよび各工程の製造条件等は限定なく適宜選択でき、1段階で行ってもよいし、また多段階に分けて行ってもよく、2~5段階であることが好ましく、3~4段階であることがより好ましく、3段階であることがさらに好ましい。前記溶融重合反応は、連続式反応装置で行うことが好ましい。連続式反応装置とは、エステル化反応またはエステル交換反応の反応容器と溶融重合反応容器を配管でつなぎ、それぞれの反応容器を空にさせることなく連続的に原料投入、配管での溶融重合反応容器への移送、溶融重合反応容器からの樹脂の抜き出しを行う方法である。なお、この場合、連続とは完全に常時原料投入から抜き出しが行われている必要はなく、少量ずつ、例えば反応容器量の1/10程度の量で、原料投入から抜き出しを行うような間欠的なものであってもよい。多段階に分けてエステル化反応あるいはエステル交換反応、かつ、連続重合法によりポリエステル樹脂組成物を製造される場合、アルミニウム化合物を溶解した溶液A1とリン化合物を溶解した溶液B1とを、多段階の最終の反応槽(最終エステル化反応槽又は最終エステル化反応槽)と最初の重合反応槽との移送ラインに添加することが好ましい。 In any of these methods, the esterification reaction or the transesterification reaction may be carried out in one step or may be carried out in multiple steps. In the melt polymerization reaction, the number and size of the reactors, the production conditions of each step, etc. can be appropriately selected without limitation, and may be carried out in one step or may be carried out in multiple steps in 2 to 5 steps. It is preferably present, more preferably 3 to 4 steps, and even more preferably 3 steps. The melt polymerization reaction is preferably carried out in a continuous reaction apparatus. A continuous reaction device is a fusion polymerization reaction vessel in which a reaction vessel for an esterification reaction or an ester exchange reaction and a melt polymerization reaction vessel are connected by a pipe, and raw materials are continuously charged without emptying each reaction vessel. It is a method of transferring to and extracting the resin from the melt polymerization reaction vessel. In this case, continuous means that the raw material does not have to be taken out from the raw material input at all times, and the raw material is taken out intermittently in small amounts, for example, about 1/10 of the reaction vessel amount. It may be anything. When the polyester resin composition is produced by an esterification reaction or an ester exchange reaction in multiple steps and by a continuous polymerization method, a solution A1 in which an aluminum compound is dissolved and a solution B1 in which a phosphorus compound is dissolved are added in multiple steps. It is preferable to add it to the transfer line between the final reaction tank (final esterification reaction tank or final esterification reaction tank) and the first polymerization reaction tank.
 また、溶融重合法で製造されたポリエステル樹脂を固相重合法で追加重合してもよい。固相重合反応は、溶融重縮合反応と同様に連続式装置で行うことが出来る。 Further, the polyester resin produced by the melt polymerization method may be additionally polymerized by the solid phase polymerization method. The solid phase polymerization reaction can be carried out in a continuous apparatus in the same manner as the melt polycondensation reaction.
 3基以上の反応器よりなる連続重縮合装置(初期段階、中期段階および後期段階の3段階の重合方式)である場合は、1段階目を初期段階、最終段を後期段階、2段階目から最終段の一つ手前の段階までを中間段階とし、中間段階の重合反応の反応条件は、初期段階の反応条件と最終段階の反応条件の間の条件であることが好ましい。これらの重合反応工程の各々において到達される固有粘度の上昇の度合は滑らかに分配されることが好ましい。 In the case of a continuous polycondensation device consisting of three or more reactors (three-stage polymerization method of initial stage, middle stage and late stage), the first stage is the initial stage, the final stage is the late stage, and the second stage. It is preferable that the stage immediately before the final stage is the intermediate stage, and the reaction conditions for the polymerization reaction in the intermediate stage are between the reaction conditions in the initial stage and the reaction conditions in the final stage. It is preferable that the degree of increase in intrinsic viscosity reached in each of these polymerization reaction steps is smoothly distributed.
 本発明においては、前記第1ステップにより作製される中間体(低次縮合物)の酸末端基濃度は400~1500eq/tonであることが好ましい。より好ましくは500~1200eq/tonである。上記オリゴマーの酸末端基濃度の設定値を上記範囲にすることにより、重合触媒の活性を十分に引き出すことが出来る。 In the present invention, the acid terminal group concentration of the intermediate (low-order condensate) produced by the first step is preferably 400 to 1500 eq / ton. More preferably, it is 500 to 1200 eq / ton. By setting the acid terminal group concentration of the oligomer in the above range, the activity of the polymerization catalyst can be sufficiently brought out.
 また、本発明においては、上記中間体の全末端基濃度に対する水酸基末端の割合(OH%)は45~70モル%であることが好ましく、55~65モル%がより好ましい。オリゴマーの水酸基末端の割合が45モル%未満では重縮合活性が不安定になり、かつアルミニウム系異物量が増大するおそれがある。一方、オリゴマーの水酸基末端の割合が70モル%を超えた場合は、重縮合活性が低下するおそれがある。 Further, in the present invention, the ratio of the hydroxyl group ends (OH%) to the total terminal group concentration of the intermediate is preferably 45 to 70 mol%, more preferably 55 to 65 mol%. If the ratio of the hydroxyl group ends of the oligomer is less than 45 mol%, the polycondensation activity may become unstable and the amount of aluminum-based foreign matter may increase. On the other hand, if the ratio of the hydroxyl group ends of the oligomer exceeds 70 mol%, the polycondensation activity may decrease.
 アルミニウム化合物およびリン化合物を触媒として用いる場合には、スラリー状または溶液状で添加するのが好ましく、水やグリコールなどの溶媒に溶解した溶液がより好ましく、水および/またはグリコールにしたものがさらに好ましく、エチレングリコールに溶解した溶液を用いることが最も好ましい。 When an aluminum compound and a phosphorus compound are used as catalysts, they are preferably added in the form of a slurry or a solution, more preferably a solution dissolved in a solvent such as water or glycol, and even more preferably water and / or glycol. , It is most preferable to use a solution dissolved in ethylene glycol.
 本発明では、エステル化反応またはエステル交換反応の終了後、アルミニウム化合物を溶解した溶液A1とリン化合物を溶解した溶液B1をポリエステル樹脂組成物中におけるアルミニウム元素及びリン元素の含有率(残存量)が上記(1)~(3)を満たす範囲になるように添加するのが好ましい。 In the present invention, after the completion of the esterification reaction or the ester exchange reaction, the content (residual amount) of the aluminum element and the phosphorus element in the polyester resin composition is the solution A1 in which the aluminum compound is dissolved and the solution B1 in which the phosphorus compound is dissolved. It is preferable to add the mixture so as to satisfy the above (1) to (3).
 アルミニウム化合物を溶解した溶液A1とリン化合物を溶解した溶液B1とをポリエステル樹脂組成物中におけるアルミニウム元素及びリン元素の含有率(残存量)が上記(1)~(3)を満たすように添加することで、重合系中で触媒活性を有する錯体が機能的に形成され、十分な重合活性を発揮することができる。また、アルミニウム系異物の生成も抑制することができる。 The solution A1 in which the aluminum compound is dissolved and the solution B1 in which the phosphorus compound is dissolved are added so that the content (residual amount) of the aluminum element and the phosphorus element in the polyester resin composition satisfies the above (1) to (3). As a result, a complex having catalytic activity is functionally formed in the polymerization system, and sufficient polymerization activity can be exhibited. In addition, the generation of aluminum-based foreign matter can be suppressed.
 なお、触媒として機能するアルミニウム化合物中のアルミニウム元素は、ポリエステル樹脂の重合時に減圧環境下に置かれても、触媒として系に最初に添加された使用量のほぼ100%が、重合によって製造されたポリエステル樹脂中に残留する。すなわち、アルミニウム化合物の量は重縮合の前後でほぼ変化しないため、前記中間体に対するアルミニウム元素の添加量が9~19質量ppmとなるようにすると、ポリエステル樹脂組成物中におけるアルミニウム元素の含有率も9~19質量ppmとなる。 Although the aluminum element in the aluminum compound that functions as a catalyst was placed in a reduced pressure environment during the polymerization of the polyester resin, almost 100% of the amount used initially added to the system as a catalyst was produced by the polymerization. It remains in the polyester resin. That is, since the amount of the aluminum compound hardly changes before and after polycondensation, if the amount of the aluminum element added to the intermediate is 9 to 19 parts by mass, the content of the aluminum element in the polyester resin composition also increases. It will be 9 to 19 mass ppm.
 また、アルミニウム化合物とともに触媒として機能するリン化合物は、ポリエステル樹脂の重合時に減圧環境下に置かれる際、触媒として系に最初に添加された使用量の一部(10~40%程度)が系外に除去されるが、この除去割合はアルミニウム元素に対するリン元素の添加モル比、添加するアルミニウム含有グリコール溶液やリン含有グリコール溶液の塩基性度や酸性度、アルミニウム含有溶液やリン含有溶液の添加方法(一液化して添加するか、別々に添加するか)等により変化する。したがって、最終生成物となるポリエステル樹脂組成物中のリン元素の含有率が上記(2)を満たすようにリン化合物の添加量を適宜設定するのが好ましい。 In addition, when the phosphorus compound that functions as a catalyst together with the aluminum compound is placed in a reduced pressure environment during the polymerization of the polyester resin, a part (about 10 to 40%) of the amount initially added to the system as a catalyst is out of the system. The removal ratio is the molar ratio of phosphorus element added to aluminum element, the basicity and acidity of the aluminum-containing glycol solution or phosphorus-containing glycol solution to be added, and the method of adding the aluminum-containing solution or phosphorus-containing solution ( It changes depending on whether it is added in a single solution or added separately). Therefore, it is preferable to appropriately set the addition amount of the phosphorus compound so that the content of the phosphorus element in the polyester resin composition to be the final product satisfies the above (2).
 本発明では、アルミニウム化合物を溶解した溶液A1とリン化合物を溶解した溶液B1とを同時に添加することが好ましく、アルミニウム化合物を溶解した溶液A1とリン化合物を溶解した溶液B1とを、あらかじめ前記中間体に添加する比率で混合して混合液を作製しておき、一液化した混合液を前記中間体に添加することがより好ましい実施態様である。該態様で実施することにより、本発明の効果をより安定して発現することが出来る。あらかじめ一液化する方法としては、それぞれの溶液をタンクで混合する方法、触媒を添加する配管を途中で合流して混合させる方法などが挙げられる。
 なお、反応容器に添加する場合には、反応容器の撹拌を高くすることが好ましい。反応容器間の配管に添加する場合には、インラインミキサーなどを設置して、添加された触媒溶液が速やかに均一混合されるようにすることが好ましい。
 アルミニウム化合物を溶解した溶液A1とリン化合物を溶解した溶液B1とを別々に添加した場合、アルミニウム化合物に起因する異物が多く発生しやすく、昇温結晶化温度が低くなったり、降温結晶化温度が高くなったり、十分な触媒活性が得られなくなる場合がある。アルミニウム化合物とリン化合物を同時に添加することで、重合活性をもたらすアルミニウム化合物とリン化合物の複合体が速やかに無駄なく生成できるが、別々に添加した場合には、アルミニウム化合物とリン化合物の複合体の生成が不十分であり、また、リン化合物との複合体を生成できなかったアルミニウム化合物が異物として析出するおそれがある。
 また、アルミニウム化合物を溶解した溶液A1とリン化合物を溶解した溶液B1とは、エステル化反応またはエステル交換反応終了後に添加することが好ましく、前記第1ステップ後であって前記第2ステップの前に前記中間体にアルミニウム化合物を溶解した溶液A1とリン化合物を溶解した溶液B1を添加することがより好ましい。エステル化反応またはエステル交換反応終了前に添加すると、アルミニウム系異物量が増大するおそれがある。
In the present invention, it is preferable to add the solution A1 in which the aluminum compound is dissolved and the solution B1 in which the phosphorus compound is dissolved at the same time, and the solution A1 in which the aluminum compound is dissolved and the solution B1 in which the phosphorus compound is dissolved are previously added to the intermediate. It is a more preferable embodiment to prepare a mixed solution by mixing at a ratio of addition to the above, and to add the liquefied mixed solution to the intermediate. By carrying out in this embodiment, the effect of the present invention can be more stably expressed. Examples of the method of pre-condensing each solution include a method of mixing each solution in a tank, a method of merging and mixing pipes to which a catalyst is added in the middle, and the like.
When it is added to the reaction vessel, it is preferable to increase the stirring of the reaction vessel. When adding to the piping between the reaction vessels, it is preferable to install an in-line mixer or the like so that the added catalyst solution can be mixed quickly and uniformly.
When the solution A1 in which the aluminum compound is dissolved and the solution B1 in which the phosphorus compound is dissolved are added separately, a large amount of foreign matter due to the aluminum compound is likely to be generated, the temperature-increasing crystallization temperature becomes low, or the temperature-decreasing crystallization temperature becomes high. It may become high or it may not be possible to obtain sufficient catalytic activity. By adding the aluminum compound and the phosphorus compound at the same time, a complex of the aluminum compound and the phosphorus compound that brings about polymerization activity can be quickly and efficiently produced, but when they are added separately, the composite of the aluminum compound and the phosphorus compound can be produced. The formation is insufficient, and the aluminum compound that could not form a complex with the phosphorus compound may precipitate as a foreign substance.
Further, the solution A1 in which the aluminum compound is dissolved and the solution B1 in which the phosphorus compound is dissolved are preferably added after the esterification reaction or the ester exchange reaction is completed, and are after the first step and before the second step. It is more preferable to add the solution A1 in which the aluminum compound is dissolved and the solution B1 in which the phosphorus compound is dissolved to the intermediate. If added before the end of the esterification reaction or transesterification reaction, the amount of aluminum-based foreign matter may increase.
 本発明で用いられるポリエステル樹脂が、多価カルボン酸およびそのエステル形成性誘導体から選ばれる少なくとも一種と多価アルコールおよびそのエステル形成性誘導体から選ばれる少なくとも一種とからなるものであるときは、アルミニウム化合物を溶解した溶液A1は、アルミニウム化合物を溶解したグリコール溶液である(以下、アルミニウム含有グリコール溶液A1という)ことが好ましく、リン化合物を溶解した溶液B1は、リン化合物を溶解したグリコール溶液である(以下、リン含有グリコール溶液B1という)ことが好ましい。 When the polyester resin used in the present invention comprises at least one selected from a polyhydric carboxylic acid and an ester-forming derivative thereof and at least one selected from a polyhydric alcohol and an ester-forming derivative thereof, an aluminum compound. The solution A1 in which the ester is dissolved is preferably a glycol solution in which an aluminum compound is dissolved (hereinafter referred to as an aluminum-containing glycol solution A1), and the solution B1 in which a phosphorus compound is dissolved is a glycol solution in which a phosphorus compound is dissolved (hereinafter referred to as a glycol solution). , Phosphorus-containing glycol solution B1) is preferable.
 以下、アルミニウム含有グリコール溶液A1及びリン含有グリコール溶液B1の極大吸収波長について述べる。アルミニウム含有グリコール溶液A1及びリン含有グリコール溶液B1の極大吸収波長を特定範囲に制御することで、重合活性を安定させ、かつ安定した品質のポリエステル樹脂を得ることができる。アルミニウム含有グリコール溶液A1及びリン含有グリコール溶液B1の極大吸収波長を特定範囲に制御することにより、アルミニウム含有グリコール溶液A1及びリン含有グリコール溶液B1のルイス酸/塩基特性を特定範囲に制御することができ、該ルイス酸/塩基特性は、アルミニウム化合物とリン化合物との錯体形成反応に影響を及ぼし、該錯体形成反応は重合活性に影響を及ぼすと推測される。 Hereinafter, the maximum absorption wavelengths of the aluminum-containing glycol solution A1 and the phosphorus-containing glycol solution B1 will be described. By controlling the maximum absorption wavelength of the aluminum-containing glycol solution A1 and the phosphorus-containing glycol solution B1 within a specific range, a polyester resin having stable polymerization activity and stable quality can be obtained. By controlling the maximum absorption wavelengths of the aluminum-containing glycol solution A1 and the phosphorus-containing glycol solution B1 in a specific range, the Lewis acid / base characteristics of the aluminum-containing glycol solution A1 and the phosphorus-containing glycol solution B1 can be controlled in a specific range. It is presumed that the Lewis acid / base property affects the complex formation reaction between the aluminum compound and the phosphorus compound, and the complex formation reaction affects the polymerization activity.
<アルミニウム含有グリコール溶液A1の極大吸収波長>
 アルミニウム含有グリコール溶液A1は極大吸収波長が562.0~572.0nmであることが好ましく、567.0~572.0nmがより好ましい。アルミニウム含有グリコール溶液A1の極大吸収波長は、アルミニウム含有グリコール溶液A1に酸性染料であるモーダントブルー13を添加した後、紫外可視分光光度計を用いて試料溶液の吸収スペクトルを測定することにより得られた値であり、測定方法の詳細については後述する。
<Maximum absorption wavelength of aluminum-containing glycol solution A1>
The aluminum-containing glycol solution A1 preferably has a maximum absorption wavelength of 562.0 to 572.0 nm, more preferably 567.0 to 572.0 nm. The maximum absorption wavelength of the aluminum-containing glycol solution A1 is obtained by adding the acid dye Modant Blue 13 to the aluminum-containing glycol solution A1 and then measuring the absorption spectrum of the sample solution using an ultraviolet-visible spectrophotometer. The details of the measurement method will be described later.
 アルミニウム化合物が、リン化合物と触媒活性を持つ錯体を機能的に形成して、重合活性を発揮するには、アルミニウム含有グリコール溶液A1に含まれるアルミニウム化合物の塩基性度を特定範囲にすることが好ましい。 In order for the aluminum compound to functionally form a complex having catalytic activity with the phosphorus compound and exhibit polymerization activity, it is preferable to set the basicity of the aluminum compound contained in the aluminum-containing glycol solution A1 within a specific range. ..
 アルミニウム含有グリコール溶液A1の極大吸収波長は、使用するアルミニウム化合物の種類や添加量、またはグリコールの種類、グリコール溶液調合時の温度、圧力、時間等によって影響を受ける。例えば、アルミニウム化合物中のアルミニウム含有率が特定範囲のものを用いることや、アルミニウム含有グリコール溶液A1の調製において水溶液をグリコール溶液化する際に減圧下又は真空下で処理することが好ましい実施態様である。 The maximum absorption wavelength of the aluminum-containing glycol solution A1 is affected by the type and amount of the aluminum compound used, the type of glycol, the temperature, pressure, time, etc. at the time of preparing the glycol solution. For example, it is a preferable embodiment to use a compound having an aluminum content in a specific range, or to treat the aqueous solution under reduced pressure or vacuum when converting the aqueous solution into a glycol solution in the preparation of the aluminum-containing glycol solution A1. ..
 アルミニウム含有グリコール溶液A1の極大吸収波長が上記範囲未満の場合、溶液中でのアルミニウム化合物の塩基性度が低く、リン化合物との錯体が十分に形成されないため、重合活性が低下する場合や、アルミニウム系異物量が増える可能性がある。一方、極大吸収波長が上記範囲を超えることは、技術的に困難である。 When the maximum absorption wavelength of the aluminum-containing glycol solution A1 is less than the above range, the basicity of the aluminum compound in the solution is low and the complex with the phosphorus compound is not sufficiently formed, so that the polymerization activity is lowered or aluminum is used. The amount of foreign matter may increase. On the other hand, it is technically difficult for the maximum absorption wavelength to exceed the above range.
<リン含有グリコール溶液B1の極大吸収波長>
 リン含有グリコール溶液B1は極大吸収波長が458.0~465.0nmであることが好ましく、460.0~463.0nmであることがより好ましく、461.0~462.0nmがさらに好ましい。リン含有グリコール溶液B1の極大吸収波長は、リン含有グリコール溶液B1に塩基性染料であるビスマルクブラウン水溶液を添加した後、紫外可視分光光度計を用いて試料溶液の吸収スペクトルを測定することにより得られた値であり、測定方法の詳細については後述する。
<Maximum absorption wavelength of phosphorus-containing glycol solution B1>
The phosphorus-containing glycol solution B1 preferably has a maximum absorption wavelength of 458.0 to 465.0 nm, more preferably 460.0 to 463.0 nm, and even more preferably 461.0 to 462.0 nm. The maximum absorption wavelength of the phosphorus-containing glycol solution B1 is obtained by adding an aqueous solution of Bismarck Brown, which is a basic dye, to the phosphorus-containing glycol solution B1 and then measuring the absorption spectrum of the sample solution using an ultraviolet-visible spectrophotometer. The details of the measurement method will be described later.
 リン化合物が、アルミニウム化合物と触媒活性を持つ錯体を機能的に形成して、重合活性を発揮するには、リン含有グリコール溶液B1に含まれるリン化合物の酸性度を特定範囲にすることが好ましい。 In order for the phosphorus compound to functionally form a complex having catalytic activity with the aluminum compound and exhibit polymerization activity, it is preferable to set the acidity of the phosphorus compound contained in the phosphorus-containing glycol solution B1 within a specific range.
 リン含有グリコール溶液B1の極大吸収波長は、使用するリン化合物の種類や添加量、またはグリコールの種類、グリコール溶液調合時の温度、圧力、時間等によって影響を受ける。リン含有グリコール溶液B1の極大吸収波長が上記範囲を超える場合は、リン化合物の酸性度が低く、アルミニウム化合物と錯体が十分に形成されないため、リン化合物が重合系外に留去されることによりアルミニウム系異物が増えるので好ましくない。逆に、極大吸収波長が上記範囲未満の場合、リン化合物の酸性度が高く、アルミニウム化合物との結合が強くなるため、重合活性が大幅に低下するおそれがある。 The maximum absorption wavelength of the phosphorus-containing glycol solution B1 is affected by the type and amount of the phosphorus compound used, the type of glycol, the temperature, pressure, time, etc. at the time of preparing the glycol solution. When the maximum absorption wavelength of the phosphorus-containing glycol solution B1 exceeds the above range, the acidity of the phosphorus compound is low and the complex is not sufficiently formed with the aluminum compound. Therefore, the phosphorus compound is distilled off from the polymerization system to form aluminum. It is not preferable because the amount of foreign matter increases. On the contrary, when the maximum absorption wavelength is less than the above range, the acidity of the phosphorus compound is high and the bond with the aluminum compound becomes strong, so that the polymerization activity may be significantly lowered.
<リン化合物の熱処理>
 また、本発明で使用するリン化合物は溶媒中で熱処理されたものであることが好ましい。使用する溶媒としては、水およびアルキレングリコールからなる群から選ばれる少なくとも1種であれば限定されないが、アルキレングリコールとしては、リン化合物を溶解する溶媒を用いることが好ましく、エチレングリコール等の目的とするポリエステル樹脂の構成成分であるグリコールを用いることがより好ましい。溶媒中での加熱処理は、リン化合物を溶解してから行うのが好ましいが、完全に溶解していなくてもよい。
<Heat treatment of phosphorus compounds>
Further, the phosphorus compound used in the present invention is preferably heat-treated in a solvent. The solvent to be used is not limited as long as it is at least one selected from the group consisting of water and alkylene glycol, but as the alkylene glycol, it is preferable to use a solvent that dissolves a phosphorus compound, and the purpose is ethylene glycol or the like. It is more preferable to use glycol, which is a constituent of the polyester resin. The heat treatment in the solvent is preferably carried out after dissolving the phosphorus compound, but it does not have to be completely dissolved.
 上記熱処理の条件は、熱処理温度が170~196℃であることが好ましく、より好ましくは175~185℃、さらに好ましくは175~180℃である。熱処理時間は125~240分が好ましく、より好ましくは140~210分である。 The heat treatment conditions are preferably such that the heat treatment temperature is 170 to 196 ° C, more preferably 175 to 185 ° C, and even more preferably 175 to 180 ° C. The heat treatment time is preferably 125 to 240 minutes, more preferably 140 to 210 minutes.
 上記熱処理時のリン化合物の濃度は3~10質量%が好ましい。 The concentration of the phosphorus compound during the heat treatment is preferably 3 to 10% by mass.
 上記の熱処理により、グリコール溶液中に含まれるリン化合物の酸性度を一定にすることができ、アルミニウム化合物と併用することによる重合活性が向上するとともに、重合触媒に起因するアルミニウム系異物量の生成を低下させることができる。 By the above heat treatment, the acidity of the phosphorus compound contained in the glycol solution can be made constant, the polymerization activity is improved when used in combination with the aluminum compound, and the amount of aluminum-based foreign matter caused by the polymerization catalyst is generated. Can be reduced.
 リン化合物として、上記(化式1)で示したリン化合物である3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルを用いた場合、上記熱処理において、(化式1)で示したリン化合物である3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルの一部が構造変化する。例えば、t-ブチル基の脱離、エチルエステル基の加水分解およびヒドロキシエチルエステル交換構造(エチレングリコールとのエステル交換構造)などに変化する。従って、本発明においては、リン化合物としては、(化式1)で示した3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキル以外にも構造変化したリン化合物も含まれる。なお、t-ブチル基の脱離は、重合工程の高温下で顕著に起こる。
 以下では、リン化合物を3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジエチルの一部が構造変化した9つのリン化合物を示している。グリコール溶液中での構造変化した各リン化合物の成分量は、該溶液のP-NMRスペクトル測定法により定量できる。
When 3,5-di-tert-butyl-4-hydroxybenzylphosphonate dialkyl, which is the phosphorus compound represented by the above (formula 1), is used as the phosphorus compound, it is represented by (formula 1) in the above heat treatment. A part of the phosphorus compound 3,5-di-tert-butyl-4-hydroxybenzylphosphonate dialkyl is structurally changed. For example, it changes to desorption of t-butyl group, hydrolysis of ethyl ester group and transesterification structure (ester exchange structure with ethylene glycol). Therefore, in the present invention, the phosphorus compound includes a phosphorus compound having a structural change in addition to the 3,5-di-tert-butyl-4-hydroxybenzylphosphonate dialkyl represented by (Formula 1). Desorption of the t-butyl group occurs remarkably at a high temperature in the polymerization step.
In the following, the phosphorus compounds are shown as nine phosphorus compounds having a structural change in a part of diethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate. The amount of each phosphorus compound whose structure has changed in the glycol solution can be quantified by the P-NMR spectrum measurement method of the solution.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 従って、本発明におけるリン化合物としては、3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキル以外にも9つの上記化学式で示される3,5-ジ-tert-ブチル-4-ヒドロキシベンジルホスホン酸ジアルキルの変性体も含まれる。 Therefore, as the phosphorus compound in the present invention, in addition to 3,5-di-tert-butyl-4-hydroxybenzylphosphonate dialkyl, nine 3,5-di-tert-butyl-4-hydroxy represented by the above chemical formulas are used. Also included are variants of dialkyl benzyl phosphonate.
<アルミニウム含有グリコール溶液A1とリン含有グリコール溶液B1とを混合した混合液の極大吸収波長>
 アルミニウム含有グリコール溶液A1とリン含有グリコール溶液B1とを混合した混合液(以下、単に「混合液」という)は極大吸収波長が559.0~560.9nmであることが好ましく、559.5~560.8nmであることがより好ましく、559.7~560.6nmがさらに好ましい。混合液の極大吸収波長は、前記混合液に酸性染料であるモーダントブルー13を添加した後、紫外可視分光光度計を用いて試料溶液の吸収スペクトルを測定することにより得られた値であり、測定方法の詳細については後述する。
<Maximum absorption wavelength of a mixture of aluminum-containing glycol solution A1 and phosphorus-containing glycol solution B1>
A mixture of an aluminum-containing glycol solution A1 and a phosphorus-containing glycol solution B1 (hereinafter, simply referred to as “mixture”) preferably has a maximum absorption wavelength of 559.0 to 560.9 nm, and is preferably 559.5 to 560. It is more preferably 8.8 nm, and even more preferably 559.7 to 560.6 nm. The maximum absorption wavelength of the mixed solution is a value obtained by adding the acidic dye Modant Blue 13 to the mixed solution and then measuring the absorption spectrum of the sample solution using an ultraviolet-visible spectrophotometer. The details of the measurement method will be described later.
 前記混合液の極大吸収波長を上記範囲にすることにより、アルミニウム化合物とリン化合物の錯体形成反応が、重合活性の向上とアルミニウム系異物の抑制とを両立させるのに好ましい状態に保つことが出来るので好ましい。一方、極大吸収波長が上記範囲を超える場合は、前記混合液の塩基性度が高く、ポリエステル樹脂の重合系は酸性であることから、前記混合液を重合系中に添加するとアルミニウム化合物がポリエステル樹脂のカルボキシル基末端と中和して異物化し、アルミニウム系異物量が増加するおそれがある。逆に、極大吸収波長が上記範囲未満の場合、前記混合液の塩基性度が低くなりすぎ、アルミニウム化合物とリン化合物の配位が強固になってしまい、重合活性が低下するおそれがある。 By setting the maximum absorption wavelength of the mixed solution in the above range, the complex formation reaction of the aluminum compound and the phosphorus compound can be maintained in a preferable state for achieving both the improvement of the polymerization activity and the suppression of aluminum-based foreign substances. preferable. On the other hand, when the maximum absorption wavelength exceeds the above range, the basicity of the mixed solution is high and the polymerization system of the polyester resin is acidic. Therefore, when the mixed solution is added to the polymerization system, the aluminum compound becomes the polyester resin. There is a risk that the amount of aluminum-based foreign matter will increase due to neutralization with the carboxyl group terminal of the resin and formation of foreign matter. On the contrary, when the maximum absorption wavelength is less than the above range, the basicity of the mixed solution becomes too low, the coordination between the aluminum compound and the phosphorus compound becomes strong, and the polymerization activity may decrease.
[不溶性粒子]
 本発明のポリエステル樹脂組成物中における不溶性粒子の含有率は500~2000質量ppmであり、700~1800質量ppmであることが好ましい。本発明のポリエステル樹脂組成物からフィルムを製造したときに、得られるポリエステルフィルムの表面に、不溶性粒子によって突起が形成されることで、フィルムの滑り性、走行性、耐摩耗性、巻き取り性などのハンドリング特性を向上させる機能を発現させることができる。
 不溶性粒子の含有率が500質量ppm未満では、フィルムの滑り性、走行性、耐摩耗性、巻き取り性などのハンドリング特性を向上させる効果が不足するため好ましくない。一方、2000質量ppmを超えた場合は、粗大粒子等によるフィルム欠点が増大し、かつフィルムの透明性が低くなるおそれがある。また、重合時に重合活性が低下するおそれがある。
[Insoluble particles]
The content of the insoluble particles in the polyester resin composition of the present invention is 500 to 2000 mass ppm, preferably 700 to 1800 mass ppm. When a film is produced from the polyester resin composition of the present invention, protrusions are formed on the surface of the obtained polyester film by insoluble particles, so that the film has slipperiness, running property, abrasion resistance, winding property, etc. It is possible to develop a function of improving the handling characteristics of the film.
If the content of the insoluble particles is less than 500 mass ppm, the effect of improving the handling characteristics such as slipperiness, running property, abrasion resistance, and winding property of the film is insufficient, which is not preferable. On the other hand, if it exceeds 2000 mass ppm, film defects due to coarse particles and the like may increase, and the transparency of the film may decrease. In addition, the polymerization activity may decrease during polymerization.
 本発明で用いられる不溶性粒子は、ポリエステル樹脂に不溶な粒子であれば特に限定されず、無機粒子であってもよく、有機粒子であってもよい。また、無機と有機の複合粒子であってもよい。 The insoluble particles used in the present invention are not particularly limited as long as they are insoluble in the polyester resin, and may be inorganic particles or organic particles. Further, it may be an inorganic / organic composite particle.
 前記無機粒子の種類は特に限定されず、例えば、チタン、アルミニウム、ケイ素、カルシウム、マグネシウム、バリウムなどの金属の酸化物、炭酸塩、ケイ酸塩、硫酸塩、アルミン酸塩などが挙げられる。 The type of the inorganic particles is not particularly limited, and examples thereof include metal oxides such as titanium, aluminum, silicon, calcium, magnesium, and barium, carbonates, silicates, sulfates, and aluminates.
 前記無機粒子の種類として、具体的には、二酸化チタン、アルミナ、アルミノシリケート、二酸化ケイ素、酸化カルシウム、炭酸カルシウム、硫酸バリウムなどのほか、天然由来のタルク、マイカ、カオリナイト、ゼオライトなどが挙げられるが、これらに限定されない。 Specific examples of the types of the inorganic particles include titanium dioxide, alumina, aluminosilicate, silicon dioxide, calcium oxide, calcium carbonate, barium sulfate, and the like, as well as naturally occurring talc, mica, kaolinite, and zeolite. However, it is not limited to these.
 前記有機粒子の種類は特に限定されず、シリコーン系、架橋ポリアクリル酸系、ベンゾグアナミン樹脂系などが挙げられる。 The type of the organic particles is not particularly limited, and examples thereof include silicone type, crosslinked polyacrylic acid type, and benzoguanamine resin type.
 不溶性粒子はシリカ粒子であることが、高透明のポリエステルフィルムを得ることができるので好ましい。 It is preferable that the insoluble particles are silica particles because a highly transparent polyester film can be obtained.
 不溶性粒子の体積平均粒子径は0.5~3.0μmであることが好ましく、より好ましくは0.8~2.5μmであり、さらに好ましくは2.0~2.5μmである。不溶性粒子の体積平均粒子径が0.5μm未満であると、滑り性、走行性などのハンドリング特性をフィルムに付与する効果が低下するおそれがある。一方、不溶性粒子の体積平均粒子径が3.0μmを超えた場合は、粗大突起の形成によりフィルムの品質を損なうおそれがある。なお、不溶性粒子の体積平均粒子径は、水あるいはエチレングリコールを媒質とし、レーザー光散乱法で測定した粒度分布から求めることができ、詳細な測定方法は後述する。 The volume average particle diameter of the insoluble particles is preferably 0.5 to 3.0 μm, more preferably 0.8 to 2.5 μm, and even more preferably 2.0 to 2.5 μm. If the volume average particle diameter of the insoluble particles is less than 0.5 μm, the effect of imparting handling characteristics such as slipperiness and runnability to the film may be reduced. On the other hand, when the volume average particle diameter of the insoluble particles exceeds 3.0 μm, the quality of the film may be impaired due to the formation of coarse protrusions. The volume average particle size of the insoluble particles can be obtained from the particle size distribution measured by the laser light scattering method using water or ethylene glycol as a medium, and the detailed measurement method will be described later.
<不溶性粒子の添加方法>
 不溶性粒子は、エチレングリコールに分散させたスラリーとして添加するのが好ましい。添加時期は特に限定されないが、前記不溶性粒子は前記第1ステップ中又は前記第1ステップ終了後に添加することが好ましい。具体的には、エステル交換反応工程あるいはエステル化反応工程の初期から初期段階の重縮合が開始されるまでの任意の時期に添加すればよい。反応容器に直接添加してもよいし、例えば、各反応容器間の配管にインラインミキサーなどで添加してもよい。また、添加容器を設置して添加してもよい。
 また、不溶性粒子の凝集防止のため、エチレングリコールでスラリー化した後、サンドグラインダー、アトライター、超音波などの媒体撹拌型分散機による機械的分散およびアルカリ金属化合物、アンモニウム化合物、リン化合物を添加して分散効率を向上させた後、添加するのがより好ましい。
 中間体に対して添加した不溶性粒子は、重合系外へ留去することなく、ポリエステル樹脂組成物中にそのまま残る。すなわち、生成されるポリエステル樹脂に対する前記不溶性粒子の添加量(添加率)はポリエステル樹脂組成物中における不溶性粒子の含有率と同じである。よって、前記中間体に対する前記不溶性粒子の添加量は500~2000質量ppmであり、700~1800質量ppmであることが好ましい。
<Method of adding insoluble particles>
The insoluble particles are preferably added as a slurry dispersed in ethylene glycol. The time of addition is not particularly limited, but it is preferable that the insoluble particles are added during the first step or after the completion of the first step. Specifically, it may be added at any time from the initial stage of the transesterification reaction step or the esterification reaction step to the start of polycondensation in the initial stage. It may be added directly to the reaction vessel, or may be added to the piping between the reaction vessels by an in-line mixer or the like. Moreover, you may add by installing an addition container.
In addition, in order to prevent aggregation of insoluble particles, after slurrying with ethylene glycol, mechanical dispersion using a medium stirring type disperser such as a sand grinder, attritor, or ultrasonic wave, and addition of an alkali metal compound, an ammonium compound, and a phosphorus compound are added. It is more preferable to add the mixture after improving the dispersion efficiency.
The insoluble particles added to the intermediate remain in the polyester resin composition as they are without distilling out of the polymerization system. That is, the addition amount (addition rate) of the insoluble particles to the produced polyester resin is the same as the content rate of the insoluble particles in the polyester resin composition. Therefore, the amount of the insoluble particles added to the intermediate is 500 to 2000 mass ppm, preferably 700 to 1800 mass ppm.
 本発明において、ポリエステル樹脂組成物に含まれる不溶性粒子の定量方法は限定されない。例えば、不溶性粒子固有の特性吸収の値を用いて定量する方法を用いるのが好ましい実施対応である。 In the present invention, the method for quantifying insoluble particles contained in the polyester resin composition is not limited. For example, it is preferable to use a method of quantifying using the characteristic absorption value peculiar to insoluble particles.
 本発明で用いられるポリエステル樹脂は、ポリエステル樹脂(不溶性粒子を除いたポリエステル樹脂組成物)中におけるアルミニウム系異物に相当するアルミニウム元素の含有率が3000質量ppm以下であることが好ましく、より好ましくは2800質量ppm以下である。アルミニウム系異物とは重合触媒として用いたアルミニウム化合物に起因するものであり、ポリエステル樹脂に不溶の異物である。アルミニウム系異物の含有率が上記を超えると、ポリエステル樹脂に不溶性の微細な異物が原因となり、フィルムの品位が悪化するおそれがある。また、重縮合工程や製膜工程でのポリエステルろ過時のフィルター詰まりが多くなるという課題にも繋がる。アルミニウム系異物に相当するアルミニウム元素の含有率の好ましい下限は0質量ppmであることが好ましいが、技術的な困難性より300質量ppm程度である。
 なお、本明細書では、実施例に後述した測定方法でアルミニウム元素量を測定していることからも分かるように、この指標は、アルミニウム元素量に基づき、アルミニウム系異物量を相対的に評価するものであり、ポリエステル樹脂中に含まれるアルミニウム系異物量の絶対値を示すものではない。
The polyester resin used in the present invention preferably has an aluminum element content corresponding to an aluminum-based foreign substance in the polyester resin (polyester resin composition excluding insoluble particles) of 3000 mass ppm or less, more preferably 2800. The mass is ppm or less. The aluminum-based foreign matter is caused by the aluminum compound used as the polymerization catalyst, and is a foreign matter insoluble in the polyester resin. If the content of the aluminum-based foreign matter exceeds the above, fine foreign matter insoluble in the polyester resin may be the cause, and the quality of the film may be deteriorated. In addition, it leads to a problem that the filter is often clogged during polyester filtration in the polycondensation process and the film forming process. The preferable lower limit of the content of the aluminum element corresponding to the aluminum-based foreign substance is preferably 0 mass ppm, but it is about 300 mass ppm due to technical difficulty.
In this specification, as can be seen from the fact that the amount of aluminum element is measured by the measuring method described later in the examples, this index relatively evaluates the amount of aluminum-based foreign matter based on the amount of aluminum element. It does not indicate the absolute value of the amount of aluminum-based foreign matter contained in the polyester resin.
 なお、ポリエステル樹脂は、不溶性粒子を含まないこと以外は、上記で説明したポリエステル樹脂組成物と同じ方法で製造して得られる。ポリエステル樹脂組成物における不溶性粒子の有無は、ポリエステル樹脂中に含まれるアルミニウム系異物量には影響しない。よって、ポリエステル樹脂は、ポリエステル樹脂組成物の構成成分である不溶性粒子を除いた成分と実質的に同じである。
 実施例において後述する評価方法では、ポリエステル樹脂組成物を用いると不溶性粒子がメンブレンフィルターに詰まるため、不溶性粒子とアルミニウム系異物との濾別が出来ない。そのため、ポリエステル樹脂組成物ではなく、不溶性粒子を含まないポリエステル樹脂のアルミニウム系異物量を評価することで、ポリエステル樹脂組成物中のアルミニウム系異物量と見なすことができる。
The polyester resin can be obtained by producing it by the same method as the polyester resin composition described above, except that it does not contain insoluble particles. The presence or absence of insoluble particles in the polyester resin composition does not affect the amount of aluminum-based foreign matter contained in the polyester resin. Therefore, the polyester resin is substantially the same as the components excluding the insoluble particles which are the constituent components of the polyester resin composition.
In the evaluation method described later in the examples, when the polyester resin composition is used, the insoluble particles are clogged in the membrane filter, so that the insoluble particles cannot be separated from the aluminum-based foreign matter. Therefore, by evaluating the amount of aluminum-based foreign matter in the polyester resin containing no insoluble particles instead of the polyester resin composition, it can be regarded as the amount of aluminum-based foreign matter in the polyester resin composition.
[ポリエステル樹脂以外の樹脂]
 本発明のポリエステル樹脂組成物において、ポリエステル樹脂以外の樹脂が含まれていないことが好ましいが、本発明の目的を阻害しない範囲であれば、ポリエステル樹脂以外の樹脂を含んでもよい。ポリエステル樹脂以外の樹脂は、特に限定されないが、例えば、ポリオレフィン樹脂、ポリアミド樹脂、ポリアセタ-ル樹脂などが挙げられる。ポリエステル樹脂組成物におけるポリエステル樹脂以外の樹脂は好ましくは20質量%以下であり、10質量%以下であることがより好ましく、5質量%以下であることがさらに好ましく、3質量%以下であることが特に好ましく、1質量%以下であることが最も好ましい。ポリエステル樹脂に上記の樹脂を配合する方法は、特に限定されず、例えば、ポリエステル樹脂製造工程中での添加、製造後のポリエステル樹脂とのドライブレンド等、均一に混合し得る方法などが挙げられる。
[Resin other than polyester resin]
The polyester resin composition of the present invention preferably does not contain a resin other than the polyester resin, but may contain a resin other than the polyester resin as long as it does not impair the object of the present invention. The resin other than the polyester resin is not particularly limited, and examples thereof include a polyolefin resin, a polyamide resin, and a polyacetal resin. The resin other than the polyester resin in the polyester resin composition is preferably 20% by mass or less, more preferably 10% by mass or less, further preferably 5% by mass or less, and preferably 3% by mass or less. It is particularly preferable, and most preferably 1% by mass or less. The method of blending the above resin with the polyester resin is not particularly limited, and examples thereof include methods that can be uniformly mixed, such as addition in the polyester resin manufacturing process and dry blending with the polyester resin after production.
[ポリエステルフィルム]
 本発明のポリエステルフィルムは、ポリエステル樹脂組成物から形成されたポリエステルフィルムであることが好ましく、ポリエステル樹脂組成物にさらに静電密着性付与剤が添加されている(ポリエステル樹脂組成物と静電密着性付与剤とから形成されたポリエステルフィルムである)ことがより好ましく、前記ポリエステル樹脂組成物と静電密着性付与剤を含むマスターバッチとから形成されたポリエステルフィルムであることがさらに好ましい。
[Polyester film]
The polyester film of the present invention is preferably a polyester film formed from a polyester resin composition, and an electrostatic adhesion imparting agent is further added to the polyester resin composition (electrostatic adhesion with the polyester resin composition). It is more preferably a polyester film formed from an imparting agent), and even more preferably a polyester film formed from the polyester resin composition and a master batch containing an electrostatic adhesion imparting agent.
[静電密着性付与剤]
 本発明のポリエステル樹脂組成物にマスターバッチを配合した組成物をフィルム化すると、静電密着キャスト法において、シート状物の冷却ドラムへの静電密着性を向上させることができるので、フィルム生産性の向上や、フィルムの厚み斑低減などの効果が発現できる。これにより、ポリエステルフィルムの生産性および品質を向上させることが出来る。
[Electrostatic adhesion imparting agent]
When the composition obtained by blending the masterbatch with the polyester resin composition of the present invention is made into a film, the electrostatic adhesion to the cooling drum of the sheet-like material can be improved in the electrostatic adhesion casting method, so that the film productivity can be improved. The effect of improving the film and reducing the thickness unevenness of the film can be exhibited. This can improve the productivity and quality of the polyester film.
 本発明のポリエステル樹脂組成物に静電密着性付与剤を添加する方法としては、ポリエステル樹脂組成物に静電密着性付与剤を有するマスターバッチを加えることが好ましい。静電密着性付与剤を有するマスターバッチを構成するポリエステル樹脂の構造は限定されないが、本発明で用いられるポリエステル樹脂と同じ構造のポリエステル樹脂であることが好ましい。なお、静電密着性付与剤を有するマスターバッチのことを、以下では静電密着性付与剤含有マスターバッチ又は単に「マスターバッチ」ということがある。 As a method of adding the electrostatic adhesion imparting agent to the polyester resin composition of the present invention, it is preferable to add a masterbatch having the electrostatic adhesion imparting agent to the polyester resin composition. The structure of the polyester resin constituting the masterbatch having the electrostatic adhesion imparting agent is not limited, but it is preferably a polyester resin having the same structure as the polyester resin used in the present invention. In the following, a masterbatch having an electrostatic adhesion imparting agent may be referred to as a masterbatch containing an electrostatic adhesion imparting agent or simply a "masterbatch".
 前記マスターバッチの溶融比抵抗は、0.005×108~0.05×108Ω・cmであることが好ましく、0.005×108~0.025×108Ω・cmであることがより好ましい。前記マスターバッチの溶融比抵抗が0.05×108Ω・cmよりも高い場合は、ポリエステル樹脂組成物の製膜性を改善するために前記マスターバッチを多量に添加する必要があり、製造コストの増大などの問題が生じる。前記マスターバッチの溶融比抵抗を0.005×108Ω・cm未満とすることは技術的に困難である。
 また、ポリエステルフィルムの製膜性を改善するためには、ポリエステル樹脂組成物に前記マスターバッチを配合した組成物から製膜されたポリエステルフィルムの溶融比抵抗が0.1×108~0.3×108Ω・cmであることが好ましく、0.15×108~0.25×108Ω・cmであることがより好ましい。
The melting specific resistance of the masterbatch is preferably 0.005 × 10 8 to 0.05 × 10 8 Ω · cm, preferably 0.005 × 10 8 to 0.025 × 10 8 Ω · cm. Is more preferable. When the melt resistivity of the masterbatch is higher than 0.05 × 108 Ω · cm, it is necessary to add a large amount of the masterbatch in order to improve the film forming property of the polyester resin composition, and the manufacturing cost. Problems such as an increase in the number of plastics occur. It is technically difficult to make the melt resistivity of the masterbatch less than 0.005 × 108 Ω · cm.
Further, in order to improve the film-forming property of the polyester film, the melt specific resistance of the polyester film formed from the composition obtained by blending the masterbatch with the polyester resin composition is 0.1 × 10 8 to 0.3. It is preferably × 10 8 Ω · cm, and more preferably 0.15 × 10 8 to 0.25 × 10 8 Ω · cm.
 静電密着性付与剤は、溶融比抵抗を下げるため、マグネシウム化合物又はアルカリ金属化合物であることが好ましい。また、これらの金属イオン成分を異物化させることなくポリエステル樹脂組成物中で分散させ、さらに熱安定性を向上させるために、リン化合物を添加することが好ましい。
 マグネシウム化合物は、ポリエステルフィルム中にマグネシウム元素の含有率が15~150質量ppmとなることが好ましく、30~100質量ppmとなることがより好ましい。マグネシウム元素の含有率が上記範囲未満では、溶融比抵抗が高くなり、静電密着性が悪化して、製膜性が低下するおそれがある。一方、マグネシウム元素の含有率が上記範囲を超えると、不溶性のマグネシウム系異物の生成量が多くなり、また熱安定性の低下を招きフィルムの着色が酷くなるおそれがある。
 アルカリ金属化合物は、ポリエステルフィルム中にアルカリ金属元素の含有率が1.5~15質量ppmとなることが好ましく、3~10質量ppmとなることがより好ましい。アルカリ金属元素の含有率が上記範囲未満では、溶融比抵抗が高くなり、静電密着性が悪化して、製膜性が低下するおそれがある。一方、アルカリ金属元素の含有率が上記範囲を超えると、熱安定性の低下を招きフィルムの着色が酷くなるおそれがある。
 リン化合物は、ポリエステルフィルム中にリン元素の含有率が7~80質量ppmとなることが好ましく、20~50質量ppmとなることがより好ましい。リン元素の含有率が上記範囲未満では、不溶性の異物の生成量が多くなり、また溶融比抵抗が高くなり、静電密着性が悪化して、製膜性が低下するおそれがある。更に、熱安定性の低下を招きフィルムの着色が酷くなるおそれがある。一方、リン元素の含有率が上記範囲を超えると、溶融比抵抗が高くなり、静電密着性が悪化して、製膜性が低下するおそれがある。
The electrostatic adhesion imparting agent is preferably a magnesium compound or an alkali metal compound in order to reduce the melt resistivity. Further, it is preferable to add a phosphorus compound in order to disperse these metal ion components in the polyester resin composition without making them foreign substances and further improve the thermal stability.
The magnesium compound preferably has a magnesium element content of 15 to 150 mass ppm in the polyester film, and more preferably 30 to 100 mass ppm. If the content of the magnesium element is less than the above range, the melt resistivity becomes high, the electrostatic adhesion is deteriorated, and the film forming property may be deteriorated. On the other hand, if the content of the magnesium element exceeds the above range, the amount of insoluble magnesium-based foreign matter produced increases, the thermal stability is lowered, and the coloring of the film may be severe.
The alkali metal compound preferably has an alkali metal element content of 1.5 to 15 mass ppm in the polyester film, and more preferably 3 to 10 mass ppm. If the content of the alkali metal element is less than the above range, the melt resistivity may be high, the electrostatic adhesion may be deteriorated, and the film forming property may be deteriorated. On the other hand, if the content of the alkali metal element exceeds the above range, the thermal stability may be lowered and the coloring of the film may be severe.
The phosphorus compound preferably has a phosphorus element content of 7 to 80 mass ppm in the polyester film, and more preferably 20 to 50 mass ppm. If the content of the phosphorus element is less than the above range, the amount of insoluble foreign matter produced increases, the melt resistivity becomes high, the electrostatic adhesion deteriorates, and the film forming property may deteriorate. Further, the thermal stability may be deteriorated and the coloring of the film may be severe. On the other hand, if the content of the phosphorus element exceeds the above range, the melt resistivity becomes high, the electrostatic adhesion is deteriorated, and the film forming property may be deteriorated.
 本発明で使用するマグネシウム化合物としては、公知のマグネシウム化合物を使用することができる。例えば、酢酸マグネシウムのような低級脂肪酸塩や、マグネシウムメトキサイドのようなアルコキサイド等が挙げられ、これらはいずれか1種を単独で使用してもよいし、2種以上を併用してもよい。特に、酢酸マグネシウムが好ましい。 As the magnesium compound used in the present invention, a known magnesium compound can be used. For example, a lower fatty acid salt such as magnesium acetate, an alcokiside such as magnesium methoxide, and the like may be mentioned, and any one of these may be used alone or two or more thereof may be used in combination. In particular, magnesium acetate is preferable.
 マスターバッチを構成するポリエステル樹脂に対して、マグネシウム元素が400~2700質量ppmとなるように添加することが好ましい。マグネシウム元素の量が400質量ppm未満の場合は、溶融比抵抗が高くなり、ポリエステル樹脂組成物の製膜性を改善するためにマスターバッチを多量に添加する必要があり、マスターバッチとしての効能が低く製造コストの増大などの問題が生じるおそれがある。マグネシウム元素の量が2700質量ppmを超える場合には、溶融比抵抗の向上効果が飽和し、また耐熱性の低下を招きフィルムの着色が酷くなるおそれがある。マグネシウム元素の量は600~2500質量ppmであることがより好ましく、800~2000質量ppmであることがさらに好ましい。 It is preferable to add magnesium element to the polyester resin constituting the masterbatch so as to be 400 to 2700 mass ppm. When the amount of magnesium element is less than 400 mass ppm, the melt specific resistance becomes high, and it is necessary to add a large amount of masterbatch in order to improve the film-forming property of the polyester resin composition, and the effect as a masterbatch is high. It is low and may cause problems such as an increase in manufacturing cost. When the amount of the magnesium element exceeds 2700 mass ppm, the effect of improving the melt resistivity is saturated, the heat resistance is lowered, and the coloring of the film may be severe. The amount of the magnesium element is more preferably 600 to 2500 mass ppm, still more preferably 800 to 2000 mass ppm.
 前記マスターバッチに含めるアルカリ金属化合物のアルカリ金属は、例えば、リチウム、ナトリウム、カリウムが挙げられる。また、アルカリ金属化合物としては、例えば、酢酸リチウムや酢酸カリウムのような炭素数が2~4の低級脂肪酸塩や、カリウムメトキサイドのようなアルコキサイド等が挙げられ、これらはいずれか1種を単独で使用しても、2種以上を併用してもよい。アルカリ金属としては、カリウムが溶融比抵抗を下げる効果が大きく、好ましい。アルカリ金属化合物としては、炭素数が2~4の低級脂肪酸塩であることが好ましく、アルカリ金属酢酸塩がより好ましく、酢酸カリウムがさらに好ましい。 Examples of the alkali metal of the alkali metal compound included in the master batch include lithium, sodium and potassium. Examples of the alkali metal compound include lower fatty acid salts having 2 to 4 carbon atoms such as lithium acetate and potassium acetate, and alcoholides such as potassium methoxide, and any one of them is used alone. Or two or more of them may be used in combination. As the alkali metal, potassium has a large effect of lowering the melt resistivity and is preferable. The alkali metal compound is preferably a lower fatty acid salt having 2 to 4 carbon atoms, more preferably an alkali metal acetate, and even more preferably potassium acetate.
 マスターバッチを構成するポリエステル樹脂に対して、アルカリ金属元素が40~270質量ppmとなるように添加することが好ましい。アルカリ金属元素の量が40質量ppm未満の場合は、溶融比抵抗が高くなり、ポリエステル樹脂組成物の製膜性を改善するためにマスターバッチを多量に添加する必要があり、マスターバッチとしての効能が低く製造コストの増大などの問題が生じるおそれがある。アルカリ金属元素の量が270質量ppmを超える場合には、溶融比抵抗の向上効果が飽和し、また耐熱性の低下を招きフィルムの着色が酷くなるおそれがある。アルカリ金属元素の量は60~250質量ppmであることがより好ましく、80~200質量ppmであることがさらに好ましい。 It is preferable to add the alkali metal element to the polyester resin constituting the masterbatch so as to be 40 to 270 mass ppm. When the amount of the alkali metal element is less than 40 mass ppm, the melt specific resistance becomes high, and it is necessary to add a large amount of masterbatch in order to improve the film-forming property of the polyester resin composition, and the effect as a masterbatch. There is a risk of problems such as increased manufacturing costs. When the amount of the alkali metal element exceeds 270 mass ppm, the effect of improving the melt resistivity is saturated, the heat resistance is lowered, and the coloring of the film may be severe. The amount of the alkali metal element is more preferably 60 to 250 mass ppm, further preferably 80 to 200 mass ppm.
 前記マスターバッチに含めるリン化合物としては、リン酸、亜リン酸、次亜リン酸、ホスホン酸、ホスフィン酸およびこれらのエステル化合物が例示される。例えば、リン酸、リン酸トリメチル、リン酸トリブチル、リン酸トリフェニル、リン酸モノメチル、リン酸ジメチル、リン酸モノブチル、リン酸ジブチル、亜リン酸、亜リン酸トリメチル、亜リン酸トリブチル、メチルホスホン酸、メチルホスホン酸ジメチル、エチルホスホン酸ジメチル、フェニルホスホン酸ジメチル、フェニルホスホン酸ジエチル、フェニルホスホン酸ジフェニル、エチルジエチルホスホノアセテート、ホスフィン酸、メチルホスフィン酸、ジメチルホスフィン酸、フェニルホスフィン酸、ジフェニルホスフィン酸、ジメチルホスフィン酸メチル、ジフェニルホスフィン酸メチルなどが挙げられる。本発明の効果を顕著に発現するためには、中でも、リン酸トリアルキルエステルおよびエチルジエチルホスホノアセテートからなる群より選ばれる少なくとも一種であることが好ましく、リン酸トリアルキルエステルであることがより好ましい。リン酸トリアルキルエステルの中でも、アルキルエステルのアルキル基の少なくとも一つが炭素数2~4のアルキル基であることがさらに好ましく、アルキルエステルのアルキル基は全て炭素数が2~4のアルキル基であることが特に好ましい。特に好ましいリン化合物として、具体的には、リン酸トリエチル、リン酸トリプロピル、リン酸トリブチル等が挙げられ、これらはいずれか1種を単独で使用しても、2種以上を併用してもよい。特にリン酸トリエチルは、マグネシウムイオンと適度な強さの相互作用を有する錯体を形成すると考えられ、溶融比抵抗が低く、異物が少なく色調に優れたマスターバッチが得られるため最も好ましい。 Examples of the phosphorus compound to be included in the master batch include phosphoric acid, phosphoric acid, hypophosphorous acid, phosphonic acid, phosphinic acid and ester compounds thereof. For example, phosphoric acid, trimethyl phosphate, tributyl phosphate, triphenyl phosphate, monomethyl phosphate, dimethyl phosphate, monobutyl phosphate, dibutyl phosphate, phosphite, trimethyl phosphite, tributyl phosphite, methylphosphonic acid. , Methylphosphonate dimethyl, ethylphosphonate dimethyl, phenylphosphonate dimethyl, phenylphosphonate diethyl, phenylphosphonate diphenyl, ethyldiethylphosphonoacetate, phosphinic acid, methylphosphoric acid, dimethylphosphoric acid, phenylphosphinic acid, diphenylphosphinic acid, Examples thereof include methyl dimethylphosphite and methyl diphenylphosphinate. In order to significantly exhibit the effects of the present invention, it is preferably at least one selected from the group consisting of a phosphoric acid trialkyl ester and an ethyl diethylphosphonoacetate, and more preferably a phosphoric acid trialkyl ester. preferable. Among the phosphoric acid trialkyl esters, it is more preferable that at least one of the alkyl groups of the alkyl ester is an alkyl group having 2 to 4 carbon atoms, and all the alkyl groups of the alkyl ester are alkyl groups having 2 to 4 carbon atoms. Is particularly preferred. Specific examples of the particularly preferable phosphorus compound include triethyl phosphate, tripropyl phosphate, tributyl phosphate and the like, and any one of these may be used alone or in combination of two or more. good. In particular, triethyl phosphate is considered to form a complex having an appropriate strong interaction with magnesium ions, and is most preferable because a masterbatch having a low melt resistivity, a small amount of foreign matter, and an excellent color tone can be obtained.
 マスターバッチを構成するポリエステル樹脂に対して、リン元素が200~1700質量ppmとなるように添加することが好ましい。リン元素の量が200質量ppm未満の場合には、マグネシウムイオンとアルカリ金属イオンを安定化し、ポリエステル樹脂中に分散させる効果が低くなるため不溶性のマグネシウム系異物の生成量が多くなるおそれがある。さらに異物化したマグネシウムは溶融比抵抗を下げる効果がなくなるため、溶融比抵抗が高くなるおそれがある。また、耐熱性の低下を招きフィルムの着色が酷くなるおそれがある。リン元素の量が1700質量ppmを超えると、過剰なリン化合物がマグネシウムイオンと相互作用するため、マグネシウムイオンの電荷が溶融比抵抗を下げる効果に寄与せず、マグネシウム添加量が多いにもかかわらず溶融比抵抗が高くなるおそれがある。より好ましいリン元素の量は400~1000質量ppmである。 It is preferable to add the phosphorus element to the polyester resin constituting the masterbatch so as to have a phosphorus element of 200 to 1700 mass ppm. When the amount of the phosphorus element is less than 200 mass ppm, the effect of stabilizing magnesium ions and alkali metal ions and dispersing them in the polyester resin is reduced, so that the amount of insoluble magnesium-based foreign substances produced may increase. Further, magnesium that has become a foreign substance loses the effect of lowering the melt resistivity, so that the melt resistivity may increase. In addition, the heat resistance may be lowered and the coloring of the film may be severe. When the amount of phosphorus element exceeds 1700 mass ppm, the excess phosphorus compound interacts with magnesium ions, so the charge of magnesium ions does not contribute to the effect of lowering the melt resistivity, and despite the large amount of magnesium added. The melt resistivity may increase. A more preferable amount of phosphorus element is 400 to 1000 mass ppm.
 マスターバッチ中のマグネシウム原子、アルカリ金属原子、およびリン原子の含有率は、下記の実施例で記載の方法で定量することが可能である。マグネシウム化合物、アルカリ金属化合物、およびリン化合物を含むマスターバッチのポリエステル樹脂への添加時期は、特に限定されないが、ポリエステルの重合時、特にエステル化(もしくはエステル交換)工程の途中、またはエステル化(もしくはエステル交換)工程が終了した時点から重縮合工程が始まるまでの間に添加することで、ポリエステルの酸成分とマグネシウムイオンやアルカリ金属イオンが塩を形成して異物化することを抑制でき、またオリゴマー中に均一に分散できるため好ましい。
 ポリエステル樹脂の重合時にこれら化合物を添加した場合、マグネシウム原子、アルカリ金属原子は、ほぼ添加量がそのままポリエステル樹脂組成物中に残存するが、リン原子は減圧環境下で重合系外へ留去することがあるため、添加量と残存量との関係を予め把握した上で、リン化合物の添加量を決める必要がある。
The content of magnesium atom, alkali metal atom, and phosphorus atom in the masterbatch can be quantified by the method described in the following examples. The timing of addition of the master batch containing the magnesium compound, the alkali metal compound, and the phosphorus compound to the polyester resin is not particularly limited, but is not particularly limited, but during the polymerization of the polyester, particularly during the esterification (or transesterification) step, or during the esterification (or esterification) step. By adding it between the time when the transesterification process is completed and the time when the polycondensation process is started, it is possible to suppress the acid component of polyester and magnesium ions and alkali metal ions from forming salts and turning them into foreign substances, and oligomers. It is preferable because it can be uniformly dispersed therein.
When these compounds are added during the polymerization of the polyester resin, the addition amounts of magnesium atoms and alkali metal atoms remain in the polyester resin composition as they are, but the phosphorus atoms are distilled off from the polymerization system under a reduced pressure environment. Therefore, it is necessary to determine the addition amount of the phosphorus compound after grasping the relationship between the addition amount and the residual amount in advance.
 ポリエステルが、ジカルボン酸成分とグリコール成分を構成成分とするポリエステルであるとき、ジカルボン酸成分に対するマグネシウム元素の量をmモル%、アルカリ金属元素の量をkモル%、リン元素の量をpモル%としたとき、下記の式を満たすことで、本発明の効果が得られる。
  2≦(m+k/2)/p≦3
 リン原子がマグネシウムイオンとアルカリ金属イオンを異物化させることなく、安定化させていると考えられる。マグネシウムイオンが2価であるのに対してアルカリ金属イオンが1価であることから、マグネシウムイオンとアルカリ金属イオンの量の和を(m+k/2)と表し、これをpで除した比である(m+k/2)/pをリン原子に対するマグネシウムイオンとアルカリ金属イオンの相対的な量としている。
 (m+k/2)/pの値が3を超える場合、リン元素の量がマグネシウム元素とアルカリ金属元素に対して相対的に少なく、マグネシウムイオンとアルカリ金属イオンを安定化し、ポリエステル樹脂中に分散させる効果が低くなり不溶性の異物(マグネシウム塩、アルカリ金属塩)の生成量が多くなる。さらに異物化したマグネシウムは溶融比抵抗を下げる効果がなくなるため、マグネシウム添加量に対して溶融比抵抗が高くなる。また、耐熱性の低下を招き静電密着性付与剤含有マスターバッチやフィルムの色調が悪化する。
 「(m+k/2)/p」の値が2未満の場合には、リン元素の量がマグネシウム元素とアルカリ金属元素に対して相対的に過剰になり、過剰なリン化合物がマグネシウムイオンと相互作用するため、色調低下は改善されるが、マグネシウムイオンの電荷が溶融比抵抗を下げる効果に寄与せず、マグネシウム添加量に対して溶融比抵抗が高くなる。(m+k/2)/pは、2.3以上、3以下であることがより好ましく、2.5以上、3以下であることがさらに好ましい。
When the polyester is a polyester composed of a dicarboxylic acid component and a glycol component, the amount of the magnesium element with respect to the dicarboxylic acid component is mmol%, the amount of the alkali metal element is kmol%, and the amount of the phosphorus element is pmol%. Then, the effect of the present invention can be obtained by satisfying the following formula.
2 ≦ (m + k / 2) / p ≦ 3
It is considered that the phosphorus atom stabilizes the magnesium ion and the alkali metal ion without making them foreign substances. Since magnesium ion is divalent and alkali metal ion is monovalent, the sum of the amounts of magnesium ion and alkali metal ion is expressed as (m + k / 2), which is the ratio divided by p. (M + k / 2) / p is the relative amount of magnesium ion and alkali metal ion with respect to the phosphorus atom.
When the value of (m + k / 2) / p exceeds 3, the amount of phosphorus element is relatively small compared to magnesium element and alkali metal element, and magnesium ion and alkali metal ion are stabilized and dispersed in the polyester resin. The effect is reduced and the amount of insoluble foreign substances (magnesium salt, alkali metal salt) produced is increased. Further, since the magnesium that has become a foreign substance has no effect of lowering the melt resistivity, the melt resistivity becomes higher with respect to the amount of magnesium added. In addition, the heat resistance is lowered and the color tone of the masterbatch containing the electrostatic adhesion imparting agent or the film is deteriorated.
When the value of "(m + k / 2) / p" is less than 2, the amount of phosphorus element becomes relatively excessive with respect to magnesium element and alkali metal element, and the excess phosphorus compound interacts with magnesium ion. Therefore, the deterioration of the color tone is improved, but the charge of the magnesium ion does not contribute to the effect of lowering the melt specific resistance, and the melt specific resistance becomes high with respect to the amount of magnesium added. (M + k / 2) / p is more preferably 2.3 or more and 3 or less, and further preferably 2.5 or more and 3 or less.
 本願は、2020年9月11日に出願された日本国特許出願第2020-153076号に基づく優先権の利益を主張するものである。2020年9月11日に出願された日本国特許出願第2020-153076号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2020-153076 filed on September 11, 2020. The entire contents of the specification of Japanese Patent Application No. 2020-153076 filed on September 11, 2020 are incorporated herein by reference.
 以下、本発明を実施例により説明するが、本発明はもとよりこれらの実施例に限定されるものではない。なお、各実施例および比較例において用いた評価方法は以下の通りである。 Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to these Examples. The evaluation methods used in each Example and Comparative Example are as follows.
〔評価方法〕
(1)アルミニウム含有エチレングリコール溶液a1の極大吸収波長
 6mLサンプル瓶にエチレングリコール4mLと1mmol/Lモーダントブルー13水溶液0.3mLを加えた後、後述するアルミニウム含有エチレングリコール溶液a1を0.1mL加えて、サンプル瓶に蓋をして溶液が均一になるまで10秒間振り混ぜた。これを室温(23℃)で10分間静置した後、紫外可視分光光度計を用いて下記の条件で試料溶液の吸収スペクトルを測定し、アルミニウム含有エチレングリコール溶液a1の極大吸収波長を求めた。なお、本測定において、室温とは15~30℃とし、一連の操作はこの温度範囲の室内で行う。
  装置:島津製作所社製 紫外可視分光光度計 UV-1800
  スペクトルバンド幅:1nm
  試料セル:角形セル(材質:ポリメタクリル酸メチル(PMMA)、光路長:10mm)
  対照液:エチレングリコール
  スキャン範囲:400~700nm
  スキャン速度設定:0.05sec
  スキャンピッチ:0.2nm
  スキャン回数:1回
〔Evaluation methods〕
(1) Maximum Absorption Wavelength of Aluminum-Containing Ethylene Glycol Solution a1 Add 4 mL of ethylene glycol and 0.3 mL of 1 mmol / L Modant Blue 13 aqueous solution to a 6 mL sample bottle, and then add 0.1 mL of aluminum-containing ethylene glycol solution a1 described later. Then, the sample bottle was covered and shaken for 10 seconds until the solution became uniform. After allowing this to stand at room temperature (23 ° C.) for 10 minutes, the absorption spectrum of the sample solution was measured using an ultraviolet-visible spectrophotometer under the following conditions to determine the maximum absorption wavelength of the aluminum-containing ethylene glycol solution a1. In this measurement, the room temperature is 15 to 30 ° C., and a series of operations are performed indoors in this temperature range.
Equipment: UV-1800 UV-Visible spectrophotometer manufactured by Shimadzu Corporation
Spectral bandwidth: 1 nm
Sample cell: Square cell (Material: Polymethyl methacrylate (PMMA), Optical path length: 10 mm)
Control liquid: Ethylene glycol Scan range: 400-700 nm
Scan speed setting: 0.05 sec
Scan pitch: 0.2nm
Number of scans: 1
(2)リン含有エチレングリコール溶液b1及びb1’の極大吸収波長
 6mLサンプル瓶にエチレングリコール4mLと1mmol/Lビスマルクブラウン水溶液0.3mLを加えた後、リン含有エチレングリコール溶液b1を0.1mL加えて、サンプル瓶に蓋をして溶液が均一になるまで10秒間振り混ぜた。これを室温(23℃)で10分間静置した後、紫外可視分光光度計を用いて下記の条件で試料溶液の吸収スペクトルを測定し、リン含有エチレングリコール溶液b1の極大吸収波長を求めた。なお、本測定において、室温とは15~30℃とし、一連の操作はこの温度範囲の室内で行う。
  装置:島津製作所社製 紫外可視分光光度計 UV-1800
  スペクトルバンド幅:1nm
  試料セル:角形セル(材質:PMMA、光路長:10mm)
  対照液:エチレングリコール
  スキャン範囲:400~700nm
  スキャン速度設定:0.05sec
  スキャンピッチ:0.2nm
  スキャン回数:1回
 また、リン含有エチレングリコール溶液b1をリン含有エチレングリコール溶液b1’に変更する以外は上記と同様の評価方法でリン含有エチレングリコール溶液b1’の極大吸収波長を求めた。
(2) Maximum absorption wavelength of phosphorus-containing ethylene glycol solutions b1 and b1'Add 4 mL of ethylene glycol and 0.3 mL of 1 mmol / L Bismarck-Brown aqueous solution to a 6 mL sample bottle, and then add 0.1 mL of phosphorus-containing ethylene glycol solution b1. , The sample bottle was covered and shaken for 10 seconds until the solution became uniform. After allowing this to stand at room temperature (23 ° C.) for 10 minutes, the absorption spectrum of the sample solution was measured using an ultraviolet-visible spectrophotometer under the following conditions to determine the maximum absorption wavelength of the phosphorus-containing ethylene glycol solution b1. In this measurement, the room temperature is 15 to 30 ° C., and a series of operations are performed indoors in this temperature range.
Equipment: UV-1800 UV-Visible spectrophotometer manufactured by Shimadzu Corporation
Spectral bandwidth: 1 nm
Sample cell: Square cell (Material: PMMA, Optical path length: 10 mm)
Control liquid: Ethylene glycol Scan range: 400-700 nm
Scan speed setting: 0.05 sec
Scan pitch: 0.2nm
Number of scans: 1 time Further, the maximum absorption wavelength of the phosphorus-containing ethylene glycol solution b1'was determined by the same evaluation method as above except that the phosphorus-containing ethylene glycol solution b1 was changed to the phosphorus-containing ethylene glycol solution b1'.
(3)アルミニウム含有エチレングリコール溶液a1とリン含有エチレングリコール溶液b1又はb1’との混合液の極大吸収波長
 6mLサンプル瓶にエチレングリコール4mLと1mmol/Lモーダントブルー13水溶液0.3mLを加えた後、アルミニウム含有エチレングリコール溶液a1とリン含有エチレングリコール溶液b1又はb1’との混合液0.1mLを加えて、サンプル瓶に蓋をして溶液が均一になるまで10秒間振り混ぜた。これを室温(23℃)で10分間静置した後、紫外可視分光光度計を用いて下記の条件で試料溶液の吸収スペクトルを測定し、極大吸収波長を求めた。上記混合液におけるアルミニウム含有エチレングリコール溶液a1とリン含有エチレングリコール溶液b1又はb1’との混合比率は、各実施例におけるアルミニウム含有エチレングリコール溶液a1とリン含有エチレングリコール溶液b1又はb1’との混合比率と同じである。なお、本測定において、室温とは15~30℃とし、一連の操作はこの温度範囲の室内で行う。
  装置:島津製作所社製 紫外可視分光光度計 UV-1800
  スペクトルバンド幅:1nm
  試料セル:角形セル(材質:PMMA、光路長:10mm)
  対照液:エチレングリコール
  スキャン範囲:400~700nm
  スキャン速度設定:0.05sec
  スキャンピッチ:0.2nm
  スキャン回数:1回
(3) Maximum absorption wavelength of a mixture of aluminum-containing ethylene glycol solution a1 and phosphorus-containing ethylene glycol solution b1 or b1'After adding 4 mL of ethylene glycol and 0.3 mL of 1 mmol / L modern blue 13 aqueous solution to a 6 mL sample bottle. , 0.1 mL of a mixed solution of aluminum-containing ethylene glycol solution a1 and phosphorus-containing ethylene glycol solution b1 or b1'was added, the sample bottle was covered, and the mixture was shaken for 10 seconds until the solution became uniform. After allowing this to stand at room temperature (23 ° C.) for 10 minutes, the absorption spectrum of the sample solution was measured using an ultraviolet-visible spectrophotometer under the following conditions to determine the maximum absorption wavelength. The mixing ratio of the aluminum-containing ethylene glycol solution a1 and the phosphorus-containing ethylene glycol solution b1 or b1'in the above mixed solution is the mixing ratio of the aluminum-containing ethylene glycol solution a1 and the phosphorus-containing ethylene glycol solution b1 or b1'in each example. Is the same as. In this measurement, the room temperature is 15 to 30 ° C., and a series of operations are performed indoors in this temperature range.
Equipment: UV-1800 UV-Visible spectrophotometer manufactured by Shimadzu Corporation
Spectral bandwidth: 1 nm
Sample cell: Square cell (Material: PMMA, Optical path length: 10 mm)
Control liquid: Ethylene glycol Scan range: 400-700 nm
Scan speed setting: 0.05 sec
Scan pitch: 0.2nm
Number of scans: 1
(4)シリカ粒子の体積平均粒子径
 レーザー光散乱方式の粒度分布計(Leeds&Northrup社製、Microtrac HRA model:9320-X100)を用いて、シリカ粒子のエチレングリコールスラリーを水で希釈して実質的に水系で測定した。測定結果の体積累計50%径を体積平均粒子径とした。
(4) Volume average particle size of silica particles Using a laser light scattering type particle size distribution meter (Microtrac HRA model: 9320-X100, manufactured by Leeds & Northrup), the ethylene glycol slurry of silica particles is substantially diluted with water. Measured in an aqueous system. The volume cumulative 50% diameter of the measurement result was defined as the volume average particle diameter.
(5)ポリエステル樹脂組成物の固有粘度(IV)
 ポリエステル樹脂組成物をフェノール/1,1,2,2-テトラクロロエタン(=3/2;質量比)の混合溶媒に溶解し、温度30℃にて測定した。
(5) Intrinsic viscosity of polyester resin composition (IV)
The polyester resin composition was dissolved in a mixed solvent of phenol / 1,1,2,2-tetrachloroethane (= 3/2; mass ratio) and measured at a temperature of 30 ° C.
(6)ポリエステル樹脂組成物中におけるアルミニウム元素の含有率
 白金製るつぼにポリエステル樹脂組成物を秤量し、電気コンロでの炭化の後、マッフル炉で550℃、8時間の条件で灰化した。灰化後のサンプルを1.2M塩酸に溶解し、試料溶液とした。調製した試料溶液を高周波誘導結合プラズマ発光分析法によりポリエステル樹脂組成物中のアルミニウム元素の濃度を求めた。
  装置:SPECTRO社製 CIROS-120
  プラズマ出力:1400W
  プラズマガス:13.0L/min
  補助ガス:2.0L/min
  ネブライザー:クロスフローネブライザー
  チャンバー:サイクロンチャンバー
  測定波長:167.078nm
(6) Content of Aluminum Element in Polyester Resin Composition The polyester resin composition was weighed in a platinum crucible, carbonized on an electric stove, and then incinerated in a muffle furnace at 550 ° C. for 8 hours. The incinerated sample was dissolved in 1.2 M hydrochloric acid to prepare a sample solution. The concentration of the aluminum element in the polyester resin composition was determined by the high frequency inductively coupled plasma emission spectrometry of the prepared sample solution.
Equipment: CIROS-120 manufactured by SPECTRO
Plasma output: 1400W
Plasma gas: 13.0L / min
Auxiliary gas: 2.0 L / min
Nebulizer: Cross flow Nebulizer Chamber: Cyclone chamber Measurement wavelength: 167.078 nm
(7)ポリエステル樹脂組成物中におけるリン元素の含有率
 ポリエステル樹脂組成物を硫酸、硝酸、過塩素酸で湿式分解を行った後、アンモニア水で中和した。調整した溶液にモリブデン酸アンモニウムおよび硫酸ヒドラジンを加えた後、紫外可視吸光光度計(島津製作所社製、UV-1700)を用いて、波長830nmでの吸光度を測定した。あらかじめ作製した検量線から、ポリエステル樹脂組成物中のリン元素濃度を求めた。
(7) Content of phosphorus element in polyester resin composition The polyester resin composition was wet-decomposed with sulfuric acid, nitric acid and perchloric acid, and then neutralized with aqueous ammonia. After adding ammonium molybdate and hydrazine sulfate to the prepared solution, the absorbance at a wavelength of 830 nm was measured using an ultraviolet visible absorbance meter (UV-1700, manufactured by Shimadzu Corporation). The phosphorus element concentration in the polyester resin composition was determined from the calibration curve prepared in advance.
(8)アルミニウム系異物量
 ポリエステル樹脂30gおよびp-クロロフェノール/テトラクロロエタン(3/1:質量比)混合溶液250mLを、撹拌子を入れた500mL三角フラスコに投入し、ホットスターラーを使用して100~105℃、1.5時間で加熱溶解した。該溶液を、直径47mm/孔径1.0μmのポリテトラフルオロエチレン製のメンブレンフィルター(Advantec社製PTFEメンブレンフィルター、品名:T100A047A)を用いて、異物を濾別した。有効濾過直径は37.5mmとした。濾過終了後、引き続きクロロホルム50mLを用いて洗浄し、次いでフィルターを乾燥させた。
 該メンブレンフィルターの濾過面を、走査型蛍光X線分析装置(RIGAKU社製、ZSX100e、Rhライン球4.0kW)でアルミニウム元素量を定量した。定量はメンブレンフィルターの中心部直径30mmの部分について行った。なお、該蛍光X線分析法の検量線はアルミニウム元素含有率が既知のポリエチレンテレフタレート樹脂を用いて求め、見掛けのアルミニウム元素量をppmで表示した。測定はX線出力50kV-70mAで分光結晶としてペンタエリスリトール、検出器としてPC(プロポーショナルカウンター)を用い、PHA(波高分析器)100-300の条件でAl-Kα線強度を測定することにより実施した。検量線用ポリエチレンテレフタレート樹脂中のアルミニウム元素量は、高周波誘導結合プラズマ発光分析法で定量した。
(8) Amount of aluminum-based foreign matter 30 g of polyester resin and 250 mL of p-chlorophenol / tetrachloroethane (3/1: mass ratio) mixed solution were put into a 500 mL Erlenmeyer flask containing a stirrer, and 100 using a hot stirrer. It was melted by heating at ~ 105 ° C. for 1.5 hours. Foreign matter was filtered off from the solution using a membrane filter made of polytetrafluoroethylene having a diameter of 47 mm and a pore size of 1.0 μm (PTFE membrane filter manufactured by Advantec, product name: T100A047A). The effective filtration diameter was 37.5 mm. After completion of filtration, the cells were subsequently washed with 50 mL of chloroform and then the filter was dried.
The amount of aluminum element was quantified on the filtration surface of the membrane filter with a scanning fluorescent X-ray analyzer (ZSX100e, Rh line sphere 4.0 kW, manufactured by RIGAKU). The quantification was performed on the central portion of the membrane filter having a diameter of 30 mm. The calibration curve of the fluorescent X-ray analysis method was obtained using a polyethylene terephthalate resin having a known aluminum element content, and the apparent aluminum element content was expressed in ppm. The measurement was carried out by measuring the Al-Kα ray intensity under the conditions of PHA (pulse height analyzer) 100-300 using pentaerythritol as a spectroscopic crystal and PC (proportion counter) as a detector at an X-ray output of 50 kV-70 mA. .. The amount of aluminum element in the polyethylene terephthalate resin for the calibration curve was quantified by high frequency inductively coupled plasma emission spectrometry.
(9)背圧上昇係数(k)
 ポリエステル樹脂組成物を140℃で16時間真空乾燥した後、溶融押出機に供給し、押出機出口圧を1.96MPaにコントロールして、フィルター径14mmφのフィルターを用いて紡糸温度295℃にて吐出量6g/分で4時間紡糸テストを行った。紡糸テスト中、30分ごとにフィルター圧力を記録し、紡糸開始から4時間経過後の圧力(MPa)の値と紡糸開始時の圧力(MPa)の値とを用いて単位時間あたりの背圧上昇分ΔP(MPa/時間)を算出した。
 紡糸ノズルには、孔径0.23mmφ、長さ0.3mmのオリフィスを12個有するノズルを使用した。フィルターは、押出機出口側から順に、100メッシュ金網、10μmナスロンフィルター、100メッシュ金網、50メッシュ金網の構成のものを用いた。
 背圧上昇係数kは、単位時間あたりの背圧上昇分ΔP(MPa/時間)と流量Q(kg/時間)およびろ過面積S(cm2)から次式により算出した。
  k=ΔP/(Q/S)
 面積Sはフィルター径より算出、流量Qは吐出量から算出した。
(9) Back pressure increase coefficient (k)
The polyester resin composition is vacuum dried at 140 ° C. for 16 hours, then supplied to a melt extruder, the extruder outlet pressure is controlled to 1.96 MPa, and the polyester resin composition is discharged at a spinning temperature of 295 ° C. using a filter having a filter diameter of 14 mmφ. A spinning test was performed at a volume of 6 g / min for 4 hours. During the spinning test, the filter pressure is recorded every 30 minutes, and the back pressure increase per unit time is used using the pressure (MPa) value 4 hours after the start of spinning and the pressure (MPa) value at the start of spinning. Minutes ΔP (MPa / hour) were calculated.
As the spinning nozzle, a nozzle having 12 orifices having a hole diameter of 0.23 mmφ and a length of 0.3 mm was used. As the filter, a 100-mesh wire mesh, a 10 μm Naslon filter, a 100-mesh wire mesh, and a 50-mesh wire mesh were used in order from the extruder outlet side.
The back pressure increase coefficient k was calculated by the following equation from the back pressure increase amount ΔP (MPa / hour) per unit time, the flow rate Q (kg / hour), and the filtration area S (cm 2 ).
k = ΔP / (Q / S)
The area S was calculated from the filter diameter, and the flow rate Q was calculated from the discharge amount.
(10)ポリエステルフィルムの静摩擦係数(μs)
 同じポリエステルフィルムを2つ用意し、JIS K-7125に準拠し、引張試験機(A&D社製テンシロンRTG-1210)を用い、23℃・65%RH環境下で一方のポリエステルフィルムと他方のポリエステルフィルムとを接合させた場合の静摩擦係数(μs)を求めた。
(10) Coefficient of static friction (μs) of polyester film
Prepare two of the same polyester films, comply with JIS K-7125, and use a tensile tester (Tencilon RTG-1210 manufactured by A & D) to create one polyester film and the other polyester film under a 23 ° C.65% RH environment. The static friction coefficient (μs) was obtained when the two were joined.
(11)溶融比抵抗(ρi)
 275℃で溶融させた実施例11のフィルム作製に用いた組成物(以下、フィルム作製用組成物という)の両端部に2本の電極(直径0.6mmのステンレス針金)が置かれ、幅2cmの2枚の石英板で上述の組成物及び2本の電極を挟む形で、幅2cm、厚さ0.6mmの均一なフィルム作製用組成物の層を形成し、280℃の温度条件下、120Vの直流電圧を印加した時の電流(io)を測定し、これを次式に当てはめて溶融比抵抗値ρi(Ω・cm)を求めた。また、実施例12のフィルム作製用組成物についても同様に溶融比抵抗を求めた。
  ρi(Ω・cm)=(A/L)×(V/io)
 [A:電極面積(cm2)、L:電極間距離(cm)、V:電圧(V)、io:電流(A)]
 A(cm2)=[溶融したフィルム作製用組成物層の幅]×[厚み]=2(cm)×0.06(cm)であり、V=120(V)である。Lは電極の直径を含めずに測定した値で、1.3cmである。
(11) Melt resistivity (ρi)
Two electrodes (stainless wire having a diameter of 0.6 mm) are placed at both ends of the composition used for producing the film of Example 11 melted at 275 ° C. (hereinafter referred to as a film-forming composition), and the width is 2 cm. A layer of a uniform film-making composition having a width of 2 cm and a thickness of 0.6 mm was formed by sandwiching the above-mentioned composition and two electrodes between the two quartz plates of the above, and under a temperature condition of 280 ° C. The current (io) when a DC voltage of 120 V was applied was measured, and this was applied to the following equation to obtain the melt ratio resistance value ρi (Ω · cm). Further, the melt resistivity was similarly determined for the film-forming composition of Example 12.
ρi (Ω ・ cm) = (A / L) × (V / io)
[A: Electrode area (cm 2 ), L: Distance between electrodes (cm), V: Voltage (V), io: Current (A)]
A (cm 2 ) = [width of the composition layer for producing a molten film] × [thickness] = 2 (cm) × 0.06 (cm), and V = 120 (V). L is a value measured without including the diameter of the electrode, and is 1.3 cm.
(12)実施例11及び12のフィルム作製用組成物の静電密着性
 押出機の口金部と冷却ドラムの間にタングステンワイヤー製の電極を設け、電極とキャスティングドラム間に10~15KVの電圧を印加してキャスティングを行い、得られたキャスティング原反の表面を肉眼で観察して、ピンナーバブルの発生が起こり始めるキャスティング速度で評価した。キャスティング速度が大きいポリマーほど、静電密着性が良好である。
(12) Electrostatic Adhesion of Film Fabrication Compositions of Examples 11 and 12 A tungsten wire electrode is provided between the base of the extruder and the cooling drum, and a voltage of 10 to 15 KV is applied between the electrode and the casting drum. Casting was performed by applying the cast material, and the surface of the obtained cast material was observed with the naked eye and evaluated at the casting speed at which the occurrence of pinner bubbles began to occur. The higher the casting speed, the better the electrostatic adhesion.
 以下、アルミニウム含有エチレングリコール溶液、リン含有エチレングリコール溶液、シリカ粒子含有エチレングリコールスラリーの調製、及び、静電密着性付与剤含有マスターバッチの調製について説明する。
(1)アルミニウム含有エチレングリコール溶液a1の調製
 塩基性酢酸アルミニウムの20g/L水溶液に対して、等量(容量比)のエチレングリコールをともに調合タンクに仕込み、室温(23℃)で数時間撹拌した後、減圧(3kPa)下、50~90℃で数時間撹拌しながら系から水を留去し、アルミニウム化合物が20g/L含まれたアルミニウム含有エチレングリコール溶液a1を調製した。アルミニウム含有エチレングリコール溶液a1の極大吸収波長は571.6nmであった。
Hereinafter, preparation of an aluminum-containing ethylene glycol solution, a phosphorus-containing ethylene glycol solution, and a silica particle-containing ethylene glycol slurry, and preparation of an electrostatic adhesion-imparting agent-containing masterbatch will be described.
(1) Preparation of Aluminum-Containing Ethylene Glycol Solution a1 To a 20 g / L aqueous solution of basic aluminum acetate, an equal amount (volume ratio) of ethylene glycol was charged into a compounding tank, and the mixture was stirred at room temperature (23 ° C.) for several hours. Then, water was distilled off from the system under reduced pressure (3 kPa) at 50 to 90 ° C. for several hours to prepare an aluminum-containing ethylene glycol solution a1 containing 20 g / L of the aluminum compound. The maximum absorption wavelength of the aluminum-containing ethylene glycol solution a1 was 571.6 nm.
(2)リン含有エチレングリコール溶液b1及びb1’の調製
<リン含有エチレングリコール溶液b1>
 リン化合物として、Irganox1222(ビーエーエスエフ社製)を、エチレングリコールとともに調合タンクに仕込み、窒素置換下撹拌しながら175℃で150分熱処理し、リン化合物が50g/L含まれたリン含有エチレングリコール溶液b1を調製した。リン含有エチレングリコール溶液b1の極大吸収波長は461.2nmであった。
<リン含有エチレングリコール溶液b1’>
 熱処理条件を80℃で60分に変更した以外はリン含有エチレングリコール溶液b1と同様の方法でリン含有エチレングリコール溶液b1’を調製した。リン含有エチレングリコール溶液b1’の極大吸収波長は470.8nmであった。
 リン含有エチレングリコール溶液b1’は比較例8で使用し、全ての実施例及び比較例8以外の比較例ではリン含有エチレングリコール溶液b1を使用した。
(2) Preparation of Phosphorus-Containing Ethylene Glycol Solutions b1 and b1'<Phosphorus-Containing Ethylene Glycol Solution b1>
As a phosphorus compound, Irganox1222 (manufactured by BAS) was charged into a compounding tank together with ethylene glycol and heat-treated at 175 ° C. for 150 minutes while stirring under nitrogen substitution. A phosphorus-containing ethylene glycol solution b1 containing 50 g / L of the phosphorus compound. Was prepared. The maximum absorption wavelength of the phosphorus-containing ethylene glycol solution b1 was 461.2 nm.
<Phosphorus-containing ethylene glycol solution b1'>
A phosphorus-containing ethylene glycol solution b1'was prepared in the same manner as the phosphorus-containing ethylene glycol solution b1 except that the heat treatment conditions were changed to 80 ° C. for 60 minutes. The maximum absorption wavelength of the phosphorus-containing ethylene glycol solution b1'was 470.8 nm.
The phosphorus-containing ethylene glycol solution b1'was used in Comparative Example 8, and the phosphorus-containing ethylene glycol solution b1 was used in all Examples and Comparative Examples other than Comparative Example 8.
(3)シリカ粒子含有エチレングリコールスラリーの調製
 ホモジナイザー付きの分散槽にエチレングリコール5リットルと、平均粒子径2.4μmのシリカ粒子(富士シリシア化学製、サイリシア310)600gを入れて、8000rpmで2時間分散撹拌し、120g/Lのスラリーとした。
(3) Preparation of Silica Particle-Containing Ethylene Glycol Slurry Put 5 liters of ethylene glycol and 600 g of silica particles (Fuji Silysia Chemical Ltd., Silicia 310) having an average particle diameter of 2.4 μm in a dispersion tank equipped with a homogenizer for 2 hours at 8000 rpm. The mixture was dispersed and stirred to obtain a slurry of 120 g / L.
(4)静電密着性付与剤を含むマスターバッチの調製
 撹拌機、蒸留塔、圧力調整器を備えた重合設備にテレフタル酸、エチレングリコール、およびトリエチルアミンを仕込み、常法に従ってエステル化反応を行い、中間生成体であるポリエステルオリゴマーを作製した。続いて、該ポリエステルオリゴマーに塩基性酢酸アルミニウム、酢酸マグネシウム二水和物、酢酸カリウム、リン酸トリエチルを生成されるポリエステル樹脂(生成されるポリエステル樹脂の理論量)に対してそれぞれアルミニウム元素として60質量ppm、マグネシウム元素として1000質量ppm、カリウム元素として100質量ppm、リン元素として660質量ppmとなるように添加した。
 その後、1時間で系の温度を280℃まで昇温して、この間に系の圧力を徐々に減じて150Paとし、この条件下で80分間重縮合反応を行い、静電密着性付与剤を含むマスターバッチを得た。得られたマスターバッチのIVは0.5dl/g、ρi値は0.011×108Ω・cmであった。
(4) Preparation of masterbatch containing electrostatic adhesion imparting agent Terephthalic acid, ethylene glycol, and triethylamine were charged into a polymerization facility equipped with a stirrer, a distillation column, and a pressure regulator, and an esterification reaction was carried out according to a conventional method. A polyester oligomer as an intermediate product was prepared. Subsequently, 60 mass as an aluminum element with respect to the polyester resin (theoretical amount of the produced polyester resin) in which basic aluminum acetate, magnesium acetate dihydrate, potassium acetate, and triethyl phosphate are produced in the polyester oligomer. It was added so as to be ppm, 1000 mass ppm as a magnesium element, 100 mass ppm as a potassium element, and 660 mass ppm as a phosphorus element.
After that, the temperature of the system was raised to 280 ° C. in 1 hour, and the pressure of the system was gradually reduced to 150 Pa during this period, and the polycondensation reaction was carried out for 80 minutes under these conditions to contain an electrostatic adhesion imparting agent. Obtained a masterbatch. The IV of the obtained masterbatch was 0.5 dl / g, and the ρi value was 0.011 × 108 Ω · cm.
[バッチ式重合法の例]
(実施例1)
 撹拌機付き10Lステンレス製オートクレーブに、事前に調合した高純度テレフタル酸とエチレングリコールからなるエステル化率が約95%のポリエステルオリゴマーと、高純度テレフタル酸および上記方法で調製したシリカ粒子含有エチレングリコールスラリーを得られるオリゴマー混合物の質量に対してシリカ粒子として1200質量ppmとなるように仕込み、260℃でエステル化反応を行って、オリゴマー混合物を得た。得られたオリゴマー混合物は酸末端基の濃度が750eq/tonであり、水酸基末端の割合(OH%)は59モル%であった。
 得られたオリゴマー混合物に、上記方法で調製したアルミニウム含有エチレングリコール溶液a1およびリン含有エチレングリコール溶液b1を混合し一液化した混合液を添加した。該混合液は、それぞれオリゴマー混合物の質量に対して、アルミニウム元素およびリン元素として10質量ppmおよび20質量ppmとなるように作製した。なお、生成されるポリエステル樹脂の量は、添加するテレフタル酸の量より算出可能であり、本実施例では、生成されるポリエステル樹脂に対してアルミニウム元素およびリン元素として10質量ppmおよび20質量ppmとなるように混合液が添加されている。
 その後、1時間で系の温度を280℃まで昇温して、この間に系の圧力を徐々に減じて0.15kPaとし、この条件下で重縮合反応を行い、IVが0.60dl/gのポリエステル樹脂組成物を得た。
[Example of batch polymerization method]
(Example 1)
In a 10 L stainless steel autoclave with a stirrer, a polyester oligomer consisting of high-purity terephthalic acid and ethylene glycol prepared in advance and having an esterification rate of about 95%, high-purity terephthalic acid and an ethylene glycol slurry containing silica particles prepared by the above method. It was charged so as to have 1200 mass ppm as silica particles with respect to the mass of the obtained oligomer mixture, and an esterification reaction was carried out at 260 ° C. to obtain an oligomer mixture. The obtained oligomer mixture had an acid terminal group concentration of 750 eq / ton and a hydroxyl group terminal ratio (OH%) of 59 mol%.
To the obtained oligomer mixture, a mixed solution prepared by mixing the aluminum-containing ethylene glycol solution a1 and the phosphorus-containing ethylene glycol solution b1 prepared by the above method was added. The mixed solution was prepared so as to be 10 mass ppm and 20 mass ppm as the aluminum element and the phosphorus element with respect to the mass of the oligomer mixture, respectively. The amount of the polyester resin produced can be calculated from the amount of terephthalic acid to be added, and in this embodiment, the aluminum element and the phosphorus element are 10 mass ppm and 20 mass ppm with respect to the produced polyester resin. The mixed solution is added so as to be.
After that, the temperature of the system was raised to 280 ° C. in 1 hour, and the pressure of the system was gradually reduced to 0.15 kPa during this period, and the polycondensation reaction was carried out under these conditions, and the IV was 0.60 dl / g. A polyester resin composition was obtained.
(実施例2~5、比較例1~5)
 アルミニウム含有エチレングリコール溶液a1とリン含有エチレングリコール溶液b1とを、得られるポリエステル樹脂組成物に対して表1に記載の触媒元素添加量となるように添加した以外は実施例1と同様の方法でポリエステル樹脂組成物を得た。
(Examples 2 to 5, Comparative Examples 1 to 5)
An aluminum-containing ethylene glycol solution a1 and a phosphorus-containing ethylene glycol solution b1 were added to the obtained polyester resin composition in the same manner as in Example 1 except that the amount of the catalyst element added was as shown in Table 1. A polyester resin composition was obtained.
(比較例6)
 シリカ粒子含有エチレングリコールスラリーの添加量を変更した以外は実施例2と同様の方法でポリエステル樹脂組成物を得た。
(Comparative Example 6)
A polyester resin composition was obtained in the same manner as in Example 2 except that the amount of the ethylene glycol slurry containing silica particles was changed.
(比較例7)
 シリカ粒子含有エチレングリコールスラリーを添加しない以外は実施例2と同様の方法でポリエステル樹脂を得た。
(Comparative Example 7)
A polyester resin was obtained in the same manner as in Example 2 except that the ethylene glycol slurry containing silica particles was not added.
(比較例8)
 リン含有エチレングリコール溶液として前記溶液b1に代えて前記溶液b1’を用いた以外は実施例2と同様の方法でポリエステル樹脂組成物を得た。
(Comparative Example 8)
A polyester resin composition was obtained in the same manner as in Example 2 except that the solution b1'was used instead of the solution b1 as the phosphorus-containing ethylene glycol solution.
(アルミニウム系異物量測定用ポリエステル樹脂の製造方法)
 シリカ粒子含有エチレングリコールスラリーを添加しない以外は、実施例1~5及び比較例1~6、8と同様の方法でポリエステル樹脂を作製し、アルミニウム系異物量測定用ポリエステル樹脂とした。なお、比較例7では、シリカ粒子含有エチレングリコールスラリーを添加していないので、比較例7のポリエステル樹脂をそのままアルミニウム系異物量測定用ポリエステル樹脂として用いた。
(Manufacturing method of polyester resin for measuring the amount of aluminum-based foreign matter)
Polyester resins were prepared in the same manner as in Examples 1 to 5 and Comparative Examples 1 to 6 and 8 except that the ethylene glycol slurry containing silica particles was not added, and used as a polyester resin for measuring the amount of aluminum-based foreign matter. In Comparative Example 7, since the ethylene glycol slurry containing silica particles was not added, the polyester resin of Comparative Example 7 was used as it was as the polyester resin for measuring the amount of aluminum-based foreign matter.
 実施例1~5及び比較例1~6、8で得られたポリエステル樹脂組成物、並びに比較例7で得られたポリエステル樹脂の物性を表1に示した。表1及び後述の表2では、アルミニウム元素の添加量・残存量をAl、リン元素の添加量・残存量をP、アルミニウム元素に対するリン元素の添加モル比・残存モル比をP/Alと記載した。 Table 1 shows the physical characteristics of the polyester resin compositions obtained in Examples 1 to 5 and Comparative Examples 1 to 6 and 8 and the polyester resin obtained in Comparative Example 7. In Table 1 and Table 2 described later, the addition amount / residual amount of the aluminum element is described as Al, the addition amount / residual amount of the phosphorus element is described as P, and the addition molar ratio / residual molar ratio of the phosphorus element to the aluminum element is described as P / Al. did.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例1~5のポリエステル樹脂組成物は、アルミニウム元素及びリン元素の添加量が少ないにもかかわらず、重合時間が短くなっており、アルミニウム系異物量も少ないため背圧上昇係数も小さく高品質である。また、触媒添加量も少ないことから、触媒のコストを低減できる。
 比較例1及び2は、リン化合物の添加量が多いので触媒コストが高く、かつアルミニウム元素に対するリン元素の添加モル比が高いのでアルミニウム系異物が抑制される点では好ましいが、重合活性が低下するので好ましくない。また、触媒コストが高くなる。
 比較例3では、アルミニウム元素に対するリン元素の残存モル比は本発明の範囲内であるものの、アルミニウム元素の添加量が少なすぎるために重合活性が不足し、重合時間が長くなっている。
 比較例4及び5は、アルミニウム元素に対するリン元素の残存モル比が低すぎるため、ポリエステル樹脂組成物中のアルミニウム系異物量が増大して背圧上昇係数が大きくなるため、ポリエステル樹脂組成物の品位が劣っている。
 比較例6では、アルミニウム元素に対するリン元素の残存モル比は本発明の範囲内であるが、シリカ粒子の添加量が多すぎるために重合活性が低下し、重合時間が長くなっている。
 比較例7については、比較例12(比較例7のポリエステル樹脂を用いて製造したフィルム)の箇所にて後述する。
 比較例8では、アルミニウム元素に対するリン元素の添加モル比は本発明の範囲内であり、重合時間が短く、触媒コストも低い。しかし、リン含有エチレングリコール溶液b1’の極大吸収波長が実施例1~5と比べると大きすぎるため、アルミニウム元素に対するリン元素の残存モル比が低くなり、ポリエステル樹脂組成物中のアルミニウム系異物量が増大して背圧上昇係数が大きくなるため、ポリエステル樹脂組成物の品位が劣っている。
The polyester resin compositions of Examples 1 to 5 have a short polymerization time and a small amount of aluminum-based foreign matter, so that the back pressure increase coefficient is small and high quality, even though the addition amounts of the aluminum element and the phosphorus element are small. Is. Moreover, since the amount of catalyst added is small, the cost of the catalyst can be reduced.
Comparative Examples 1 and 2 are preferable in that the catalyst cost is high because the amount of the phosphorus compound added is large and the molar ratio of the phosphorus element added to the aluminum element is high, so that aluminum-based foreign substances are suppressed, but the polymerization activity is lowered. Therefore, it is not preferable. In addition, the catalyst cost becomes high.
In Comparative Example 3, although the residual molar ratio of the phosphorus element to the aluminum element is within the range of the present invention, the polymerization activity is insufficient due to the addition amount of the aluminum element being too small, and the polymerization time is long.
In Comparative Examples 4 and 5, since the residual molar ratio of the phosphorus element to the aluminum element is too low, the amount of aluminum-based foreign matter in the polyester resin composition increases and the back pressure increase coefficient increases, so that the quality of the polyester resin composition increases. Is inferior.
In Comparative Example 6, the residual molar ratio of the phosphorus element to the aluminum element is within the range of the present invention, but the polymerization activity is lowered and the polymerization time is long because the addition amount of the silica particles is too large.
Comparative Example 7 will be described later in the section of Comparative Example 12 (a film produced by using the polyester resin of Comparative Example 7).
In Comparative Example 8, the molar ratio of the phosphorus element added to the aluminum element is within the range of the present invention, the polymerization time is short, and the catalyst cost is low. However, since the maximum absorption wavelength of the phosphorus-containing ethylene glycol solution b1'is too large as compared with Examples 1 to 5, the residual molar ratio of the phosphorus element to the aluminum element becomes low, and the amount of aluminum-based foreign matter in the polyester resin composition increases. The quality of the polyester resin composition is inferior because it increases and the back pressure increase coefficient increases.
[連続重合法の例]
(実施例6)
 3基の連続エステル化反応器および3基の連続重縮合反応器よりなり、かつ第3エステル化反応器から第1重縮合反応器への移送ラインに高速撹拌器を有したインラインミキサーが設置されたポリエステル樹脂の連続式製造装置に、高純度テレフタル酸1質量部に対してエチレングリコール0.75質量部を混合して調整されたスラリーを連続的に供給し、第1エステル化反応器の反応温度255℃、圧力203kPa、第2エステル化反応器の反応温度261℃、圧力102kPa、第3エステル化反応器の反応温度261-263℃、圧力126kPaにて反応させて、オリゴマーを得た。第3エステル化反応器出口のオリゴマーは酸末端基の濃度が550eq/tonであり、水酸基末端の割合(OH%)は60モル%であった。
 得られたオリゴマーに、上記方法で調製したアルミニウム含有エチレングリコール溶液a1およびリン含有エチレングリコール溶液b1を混合し一液化した混合液及び上記方法にて調製したシリカ粒子含有エチレングリコールスラリーを、第3エステル化槽から第1重縮合反応器への移送ラインにインラインミキサーを用いて添加した。なお、触媒として、上記方法で調製したアルミニウム含有エチレングリコール溶液a1およびリン含有エチレングリコール溶液b1を、それぞれ得られたオリゴマーに対して、アルミニウム元素およびリン元素として13質量ppmおよび36質量ppmとなるように混合し、シリカ粒子として、得られたオリゴマーに対して1200質量ppmとなるように、上記混合液及び上記シリカ粒子含有エチレングリコールスラリーを添加している。なお、生成されるポリエステル樹脂の量は、添加するテレフタル酸の量より算出可能であり、本実施例では、生成されるポリエステル樹脂に対してアルミニウム元素およびリン元素として13質量ppmおよび36質量ppmとなるように混合液が添加されている。
 混合液及びシリカ粒子を含む上記オリゴマーを、3基の反応器よりなる連続重縮合装置に連続して移送し、第1重縮合反応器の反応温度268℃、圧力5.3kPa、第2重縮合反応器の反応温度270℃、圧力0.930kPa、第3重縮合反応器の反応温度274℃、圧力0.162kPaにて重縮合を行い、IVが0.59dl/gのポリエステル樹脂組成物を得た。ポリエステル樹脂組成物は、ストランド状に押し出し、水中で冷却した後カットし、ペレット化した。
[Example of continuous polymerization method]
(Example 6)
An in-line mixer consisting of three continuous esterification reactors and three continuous polycondensation reactors and equipped with a high-speed stirrer is installed on the transfer line from the third esterification reactor to the first polycondensation reactor. A slurry prepared by mixing 0.75 parts by mass of ethylene glycol with 1 part by mass of high-purity terephthalic acid was continuously supplied to the continuous production apparatus for the polyester resin, and the reaction of the first esterification reactor was performed. The reaction was carried out at a temperature of 255 ° C., a pressure of 203 kPa, a reaction temperature of the second esterification reactor of 261 ° C., a pressure of 102 kPa, a reaction temperature of the third esterification reactor of 261-263 ° C., and a pressure of 126 kPa to obtain an oligomer. The oligomer at the outlet of the third esterification reactor had an acid terminal group concentration of 550 eq / ton and a hydroxyl group terminal ratio (OH%) of 60 mol%.
The obtained oligomer is mixed with the aluminum-containing ethylene glycol solution a1 and the phosphorus-containing ethylene glycol solution b1 prepared by the above method to form a one-component mixture, and the silica particle-containing ethylene glycol slurry prepared by the above method is used as a third ester. It was added to the transfer line from the conversion tank to the first polycondensation reactor using an in-line mixer. As a catalyst, the aluminum-containing ethylene glycol solution a1 and the phosphorus-containing ethylene glycol solution b1 prepared by the above method are adjusted to 13 mass ppm and 36 mass ppm as the aluminum element and the phosphorus element with respect to the obtained oligomers, respectively. The mixed solution and the ethylene glycol slurry containing silica particles are added so as to be 1200 mass ppm with respect to the obtained oligomer as silica particles. The amount of the polyester resin produced can be calculated from the amount of terephthalic acid to be added, and in this embodiment, the aluminum element and the phosphorus element are 13 mass ppm and 36 mass ppm with respect to the produced polyester resin. The mixed solution is added so as to be.
The above oligomer containing the mixed solution and silica particles was continuously transferred to a continuous polycondensation device consisting of three reactors, and the reaction temperature of the first polycondensation reactor was 268 ° C, the pressure was 5.3 kPa, and the second polycondensation was performed. Polycondensation was performed at a reaction temperature of the reactor of 270 ° C. and a pressure of 0.930 kPa, a reaction temperature of the third polycondensation reactor of 274 ° C. and a pressure of 0.162 kPa to obtain a polyester resin composition having an IV of 0.59 dl / g. rice field. The polyester resin composition was extruded into strands, cooled in water, cut and pelletized.
(実施例7,8、比較例9,10)
 アルミニウム含有エチレングリコール溶液a1およびリン含有エチレングリコール溶液b1を、得られたオリゴマーに対して表2に記載の触媒元素添加量となるように添加した以外は実施例6と同様の方法でポリエステル樹脂組成物を得た。
(Examples 7 and 8, Comparative Examples 9 and 10)
The polyester resin composition was the same as in Example 6 except that the aluminum-containing ethylene glycol solution a1 and the phosphorus-containing ethylene glycol solution b1 were added to the obtained oligomer so as to be the amount of the catalyst element added as shown in Table 2. I got something.
 実施例6~8および比較例9、10で得られたポリエステル樹脂組成物の物性等を表2に示した。 Table 2 shows the physical characteristics of the polyester resin compositions obtained in Examples 6 to 8 and Comparative Examples 9 and 10.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2に記載の生産量比とは、比較例9の1時間当たりの生産量を基準として(比較例9の1時間当たりの生産量を1.00として)、実施例6~8および比較例10の1時間当たりの生産量を比率で表したものであり、生産量比が1より高ければ触媒の重合活性が高く、逆に生産量比が1以下であれば触媒の重合活性が低いことを示している。
 実施例6~8のポリエステル樹脂組成物は、生産量比が比較例9よりも大きく、アルミニウム元素及びリン元素の添加量が少なく、触媒コストが低減でき、かつ重合活性が向上している。また、ポリエステル樹脂組成物中のアルミニウム系異物量も少ないため、背圧上昇係数も小さく、高品質なポリエステル樹脂組成物が得られている。
 比較例10は、アルミニウム元素に対するリン元素の残存モル比が低すぎるため、ポリエステル樹脂組成物中のアルミニウム系異物量が増大して背圧上昇係数が大きくなり、ポリエステル樹脂組成物の品位が劣っている。また、生産量比も低い。
The production amount ratio shown in Table 2 is based on the production amount per hour of Comparative Example 9 (with the production amount per hour of Comparative Example 9 being 1.00), Examples 6 to 8 and Comparative Example. The production amount per hour of 10 is expressed as a ratio. If the production amount ratio is higher than 1, the polymerization activity of the catalyst is high, and conversely, if the production amount ratio is 1 or less, the polymerization activity of the catalyst is low. Is shown.
In the polyester resin compositions of Examples 6 to 8, the production amount ratio is larger than that of Comparative Example 9, the addition amount of the aluminum element and the phosphorus element is small, the catalyst cost can be reduced, and the polymerization activity is improved. Further, since the amount of aluminum-based foreign matter in the polyester resin composition is small, the back pressure increase coefficient is small, and a high-quality polyester resin composition is obtained.
In Comparative Example 10, since the residual molar ratio of the phosphorus element to the aluminum element is too low, the amount of aluminum-based foreign matter in the polyester resin composition increases, the back pressure increase coefficient increases, and the quality of the polyester resin composition is inferior. There is. In addition, the production volume ratio is low.
 表1の実施例1~5および比較例1、2、4、5の結果を用いて、アルミニウム元素に対するリン元素の残存モル比とアルミニウム系異物量および重合時間との関係を図1に、アルミニウム含有エチレングリコール溶液a1とリン含有エチレングリコール溶液b1との混合液の極大吸収波長とアルミニウム系異物量および重合時間との関係を図2に示した。
 これらの図において、比較例3の値は除いている。その理由は、比較例3ではアルミニウム元素に対するリン元素の残存モル比は本発明の範囲内であるものの、アルミニウム残存量が少なすぎるために触媒活性が充分に発揮されておらず、他の場合よりも重合活性が不足しているためである。
Using the results of Examples 1 to 5 and Comparative Examples 1, 2, 4, and 5 in Table 1, the relationship between the residual molar ratio of the phosphorus element to the aluminum element, the amount of aluminum-based foreign matter, and the polymerization time is shown in FIG. FIG. 2 shows the relationship between the maximum absorption wavelength of the mixed solution of the ethylene glycol solution a1 containing ethylene glycol and the ethylene glycol solution b1 containing phosphorus, the amount of aluminum-based foreign matter, and the polymerization time.
In these figures, the values of Comparative Example 3 are excluded. The reason is that in Comparative Example 3, the residual molar ratio of the phosphorus element to the aluminum element is within the range of the present invention, but the residual amount of aluminum is too small, so that the catalytic activity is not sufficiently exhibited, and the catalytic activity is not sufficiently exhibited, as compared with other cases. This is because the polymerization activity is insufficient.
 これらの図より、本発明の範囲が臨界的であることが明確である。また、アルミニウム系異物量と重合時間が二律背反事象であることが明確である。 From these figures, it is clear that the scope of the present invention is critical. In addition, it is clear that the amount of aluminum-based foreign matter and the polymerization time are antinomy events.
[ポリエステルフィルムの製造]
(実施例9)
 実施例1で得られたポリエステル樹脂組成物を、135℃で10時間真空乾燥した。次いで、二軸押出機に定量供給して、280℃でシート状に押出し、表面温度を20℃に保った金属ロール上で急冷固化し、厚さ1400μmのキャストフィルムを得た。該金属ロール上で急冷固化する際に、ノコギリ状の電極よりなる静電密着装置で金属ロールへの密着性を向上させた。
 次に、このキャストフィルムを加熱されたロール群および赤外線ヒーターで100℃に加熱し、その後周速差のあるロール群で長手方向に3.5倍に延伸して一軸配向フィルムを得た。引き続いて、テンターで120℃で幅方向に4.0倍に延伸し、フィルム幅長を固定した状態で、260℃で0.5秒間赤外線ヒーターで加熱し、さらに200℃で23秒間3%の弛緩処理を行い、厚さ100μmの二軸配向ポリエステルフィルムを得た。
 得られたポリエステルフィルムの静摩擦係数(μs)は0.50であり、滑り性が良好で、走行性、耐摩耗性、巻き取り性などのハンドリング特性に優れたフィルムと言える。
[Manufacturing of polyester film]
(Example 9)
The polyester resin composition obtained in Example 1 was vacuum dried at 135 ° C. for 10 hours. Then, it was quantitatively supplied to a twin-screw extruder, extruded into a sheet at 280 ° C., and rapidly cooled and solidified on a metal roll maintained at a surface temperature of 20 ° C. to obtain a cast film having a thickness of 1400 μm. When quenching and solidifying on the metal roll, the adhesion to the metal roll was improved by an electrostatic adhesion device composed of saw-shaped electrodes.
Next, this cast film was heated to 100 ° C. with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group having a peripheral speed difference to obtain a uniaxially oriented film. Subsequently, the film was stretched 4.0 times in the width direction at 120 ° C. with a tenter, heated with an infrared heater at 260 ° C. for 0.5 seconds with the film width fixed, and further heated at 200 ° C. for 23 seconds at 3%. The relaxation treatment was carried out to obtain a biaxially oriented polyester film having a thickness of 100 μm.
The obtained polyester film has a coefficient of static friction (μs) of 0.50, has good slipperiness, and can be said to be a film having excellent handling characteristics such as running performance, wear resistance, and winding property.
(実施例10)
 実施例6で得られたポリエステル樹脂組成物を用いた以外は実施例9と同様の方法で二軸配向ポリエステルフィルムを作製した。得られたポリエステルフィルムの静摩擦係数(μs)は0.50であり、滑り性が良好で、走行性、耐摩耗性、巻き取り性などのハンドリング特性に優れたフィルムと言える。
(Example 10)
A biaxially oriented polyester film was produced in the same manner as in Example 9 except that the polyester resin composition obtained in Example 6 was used. The obtained polyester film has a coefficient of static friction (μs) of 0.50, has good slipperiness, and can be said to be a film having excellent handling characteristics such as running performance, wear resistance, and winding property.
(比較例11)
 比較例6で得られたポリエステル樹脂を用いた以外は実施例9と同様の方法で二軸配向ポリエステルフィルムを作製した。得られたポリエステルフィルムの静摩擦係数(μs)は0.45であり、滑り性が良好で、走行性、耐摩耗性、巻き取り性などのハンドリング特性に優れたフィルムと言えるが、目視による評価で、実施例9、10のフィルムに比べて透明性が劣っていた。
(Comparative Example 11)
A biaxially oriented polyester film was produced in the same manner as in Example 9 except that the polyester resin obtained in Comparative Example 6 was used. The obtained polyester film has a coefficient of static friction (μs) of 0.45, has good slipperiness, and can be said to have excellent handling characteristics such as running performance, wear resistance, and take-up property. , The transparency was inferior to that of the films of Examples 9 and 10.
(比較例12)
 比較例7で得られたポリエステル樹脂組成物を用いた以外は実施例9と同様の方法で二軸配向ポリエステルフィルムを作製した。得られたポリエステルフィルムの静摩擦係数(μs)は1以上であり、滑り性が劣り、走行性、耐摩耗性、巻き取り性などのハンドリング特性に劣るフィルムと言える。
(Comparative Example 12)
A biaxially oriented polyester film was produced in the same manner as in Example 9 except that the polyester resin composition obtained in Comparative Example 7 was used. The obtained polyester film has a coefficient of static friction (μs) of 1 or more, and can be said to be a film having poor slipperiness and poor handling characteristics such as running performance, wear resistance, and winding property.
(実施例11)
 実施例6のポリエステル樹脂組成物を135℃で10時間真空乾燥した。次いで、二軸押出機に定量供給し、280℃でシート状に押出し、表面温度を20℃に保った金属ロール上で急冷固化し、厚さ1680μmのキャストフィルムを得た。該金属ロール上で急冷固化する際に、汎用されているワイヤー状の電極よりなる静電密着装置で金属ロールへの密着性を向上させた。
 次に、このキャストフィルムを加熱されたロール群および赤外線ヒーターで100℃に加熱し、その後周速差のあるロール群で長手方向に3.5倍に延伸して一軸配向フィルムを得た。引き続いて、テンターで120℃で幅方向に4.0倍に延伸し、フィルム幅長を固定した状態で、260℃で0.5秒間赤外線ヒーターで加熱し、さらに200℃で23秒間3%の弛緩処理を行い、厚さ12μmの二軸配向ポリエステルフィルムを得た。得られたポリエステルフィルムの特性を表3に示す。
(Example 11)
The polyester resin composition of Example 6 was vacuum dried at 135 ° C. for 10 hours. Then, it was quantitatively supplied to a twin-screw extruder, extruded into a sheet at 280 ° C., and rapidly cooled and solidified on a metal roll maintained at a surface temperature of 20 ° C. to obtain a cast film having a thickness of 1680 μm. When quenching and solidifying on the metal roll, the adhesion to the metal roll was improved by an electrostatic contact device made of a wire-shaped electrode which is widely used.
Next, this cast film was heated to 100 ° C. with a heated roll group and an infrared heater, and then stretched 3.5 times in the longitudinal direction with a roll group having a peripheral speed difference to obtain a uniaxially oriented film. Subsequently, the film was stretched 4.0 times in the width direction at 120 ° C. with a tenter, heated with an infrared heater at 260 ° C. for 0.5 seconds with the film width fixed, and further heated at 200 ° C. for 23 seconds at 3%. The relaxation treatment was carried out to obtain a biaxially oriented polyester film having a thickness of 12 μm. The characteristics of the obtained polyester film are shown in Table 3.
(実施例12)
 実施例6のポリエステル樹脂組成物および上記方法で調製した静電密着性付与剤含有マスターバッチを表3に示した割合で混合した後に135℃で10時間真空乾燥した以外は、実施例11と同様の方法で二軸配向ポリエステルフィルムを作製した。得られたポリエステルフィルムの特性を表3に示す。実施例12のポリエステルフィルムは実施例11のポリエステルフィルムより静電密着性が優れており、製膜速度を上げてフィルムを製造することが出来る。
(Example 12)
Same as Example 11 except that the polyester resin composition of Example 6 and the masterbatch containing the electrostatic adhesion imparting agent prepared by the above method were mixed at the ratios shown in Table 3 and then vacuum dried at 135 ° C. for 10 hours. A biaxially oriented polyester film was produced by the above method. The characteristics of the obtained polyester film are shown in Table 3. The polyester film of Example 12 has better electrostatic adhesion than the polyester film of Example 11, and the film can be produced by increasing the film forming speed.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例11のポリエステルフィルムは、アルミニウム系異物が少ないため、フィルムの品質としては高品質である。実施例12のポリエステルフィルムは、フィルムの品質としては高品質である上にフィルム生産性に優れ、かつ得られたフィルムの滑り性等の特性が優れており、フィルム生産性向上の要求が強い薄手のフィルム、例えば、包装用フィルム等の生産に好適である。 Since the polyester film of Example 11 has few aluminum-based foreign substances, the quality of the film is high. The polyester film of Example 12 is thin in that the quality of the film is high, the film productivity is excellent, and the obtained film has excellent slipperiness and other characteristics, and there is a strong demand for improvement in film productivity. Suitable for the production of films such as, for example, packaging films.
 本発明のポリエステル樹脂組成物は、アルミニウム化合物とリン化合物からなる重合触媒によって得られるポリエステル樹脂組成物の課題であった触媒コストを低く抑えつつも、ポリエステル樹脂組成物の生産性を向上させることができ、かつポリエステル樹脂組成物中に含まれる触媒由来の異物を低減できる。これより、クリーンで高品位のポリエステル樹脂組成物を提供することができる。また、本発明のポリエステル樹脂組成物を用いて製造されたポリエステルフィルムは滑り性を有する。
 さらに、本発明のポリエステル樹脂組成物に静電密着性付与剤を添加して製膜することにより、溶融比抵抗を十分に低くすることができ、製膜性を改善し、品位にも優れたポリエステルフィルムを製造することができる。
 したがって、本発明のポリエステル樹脂組成物を用いて製造されたポリエステルフィルムは、例えば、帯電防止性フィルム、易接着性フィルム、カード用、ダミー缶用、農業用、建材用、化粧材用、壁紙用、OHPフィルム用、印刷用、インクジェット記録用、昇華転写記録用、レーザービームプリンタ記録用、電子写真記録用、熱転写記録用、感熱転写記録用、プリント基板配線用、メンブレンスイッチ用、プラズマディスプレイ用近赤外線吸収フィルム、タッチパネルやエレクトロルミネッセンス用の透明導電性フィルム、マスキングフィルム用、写真製版用、レントゲンフィルム用、写真ネガフィルム用、位相差フィルム用、偏光フィルム用、偏光膜保護(TAC)用、偏向板や位相差板の検査用プロテクトフィルムおよび/又はセパレータフィルム、感光性樹脂フィルム用、視野拡大フィルム用、拡散シート用、反射フィルム用、反射防止フィルム用、紫外線防止用、バックグラインドテープ用など、幅広い用途に使用することができる。
The polyester resin composition of the present invention can improve the productivity of the polyester resin composition while keeping the catalyst cost low, which has been a problem of the polyester resin composition obtained by the polymerization catalyst composed of an aluminum compound and a phosphorus compound. It is possible to reduce foreign substances derived from the catalyst contained in the polyester resin composition. This makes it possible to provide a clean and high-quality polyester resin composition. Further, the polyester film produced by using the polyester resin composition of the present invention has slipperiness.
Further, by adding an electrostatic adhesion imparting agent to the polyester resin composition of the present invention to form a film, the melt resistivity can be sufficiently lowered, the film forming property is improved, and the quality is also excellent. Polyester films can be manufactured.
Therefore, the polyester film produced by using the polyester resin composition of the present invention is, for example, an antistatic film, an easily adhesive film, a card, a dummy can, an agricultural film, a building material, a decorative material, and a wallpaper. , For OHP film, for printing, for inkjet recording, for sublimation transfer recording, for laser beam printer recording, for electrophotographic recording, for thermal transfer recording, for thermal transfer recording, for printed board wiring, for membrane switch, for plasma display Infrared absorbing film, transparent conductive film for touch panel and electroluminescence, masking film, photoengraving, roentgen film, photographic negative film, retardation film, polarizing film, polarizing film protection (TAC), deflection Protective film and / or separator film for inspection of plates and retardation plates, photosensitive resin film, field enlargement film, diffusion sheet, reflective film, antireflection film, UV protection, back grind tape, etc. It can be used for a wide range of purposes.

Claims (15)

  1.  ポリエステル樹脂と該ポリエステル樹脂に不溶な粒子である不溶性粒子とを含むポリエステル樹脂組成物であって、
     前記ポリエステル樹脂は、アルミニウム化合物及びリン化合物を含み、前記ポリエステル樹脂組成物は下記(1)~(4)を満足することを特徴とするポリエステル樹脂組成物。
     (1) 前記ポリエステル樹脂組成物中におけるアルミニウム元素の含有率が9~19質量ppm
     (2) 前記ポリエステル樹脂組成物中におけるリン元素の含有率が13~31質量ppm
     (3) 前記ポリエステル樹脂組成物中のアルミニウム元素に対するリン元素のモル比が1.32以上1.80以下
     (4) 前記ポリエステル樹脂組成物中における前記不溶性粒子の含有率が500~2000質量ppm
    A polyester resin composition containing a polyester resin and insoluble particles which are particles insoluble in the polyester resin.
    The polyester resin contains an aluminum compound and a phosphorus compound, and the polyester resin composition satisfies the following (1) to (4).
    (1) The content of aluminum element in the polyester resin composition is 9 to 19 mass ppm.
    (2) The content of phosphorus element in the polyester resin composition is 13 to 31 parts by mass ppm.
    (3) The molar ratio of phosphorus element to aluminum element in the polyester resin composition is 1.32 or more and 1.80 or less. (4) The content of the insoluble particles in the polyester resin composition is 500 to 2000 mass ppm.
  2.  前記ポリエステル樹脂中におけるアルミニウム系異物に相当するアルミニウム元素の含有率が3000質量ppm以下である請求項1に記載のポリエステル樹脂組成物。 The polyester resin composition according to claim 1, wherein the content of the aluminum element corresponding to the aluminum-based foreign substance in the polyester resin is 3000 mass ppm or less.
  3.  固有粘度(IV)が0.56dl/g以上である請求項1または2に記載のポリエステル樹脂組成物。 The polyester resin composition according to claim 1 or 2, wherein the intrinsic viscosity (IV) is 0.56 dl / g or more.
  4.  前記リン化合物は同一分子内にリン元素とフェノール構造を有する請求項1~3のいずれかに記載のポリエステル樹脂組成物。 The polyester resin composition according to any one of claims 1 to 3, wherein the phosphorus compound has a phosphorus element and a phenol structure in the same molecule.
  5.  前記不溶性粒子の体積平均粒子径が0.5~3.0μmである請求項1~4のいずれかに記載のポリエステル樹脂組成物。 The polyester resin composition according to any one of claims 1 to 4, wherein the insoluble particles have a volume average particle diameter of 0.5 to 3.0 μm.
  6.  前記不溶性粒子がシリカである請求項1~5のいずれかに記載のポリエステル樹脂組成物。 The polyester resin composition according to any one of claims 1 to 5, wherein the insoluble particles are silica.
  7.  請求項1~6のいずれかに記載のポリエステル樹脂組成物を製造するポリエステル樹脂組成物の製造方法であって、
     中間体として重縮合物であるポリエステル又はそのオリゴマーを合成する第1ステップと、
     前記中間体をさらに重縮合する第2ステップとを有し、
     前記第1ステップ後であって前記第2ステップの前に前記中間体にアルミニウム化合物を溶解した溶液A1とリン化合物を溶解した溶液B1とを添加し、前記溶液A1及び前記溶液B1の添加量は下記(5)~(7)を満足し、
     前記第1ステップ中又は前記第1ステップ終了後に前記不溶性粒子を添加し、前記不溶性粒子の添加量は下記(8)を満足することを特徴とするポリエステル樹脂組成物の製造方法。
     (5) 生成される前記ポリエステル樹脂に対するアルミニウム元素の添加量が9~19質量ppm
     (6) 生成される前記ポリエステル樹脂に対するリン元素の添加量が18~38質量ppm
     (7) 前記(5)におけるアルミニウム元素の添加量に対する前記(6)におけるリン元素の添加量のモル比が1.50以上2.30以下
     (8) 生成される前記ポリエステル樹脂に対する前記不溶性粒子の添加量が500~2000質量ppm
    A method for producing a polyester resin composition according to any one of claims 1 to 6.
    The first step of synthesizing polyester, which is a polycondensate, or an oligomer thereof as an intermediate,
    It has a second step of further polycondensing the intermediate.
    After the first step and before the second step, the solution A1 in which the aluminum compound is dissolved in the intermediate and the solution B1 in which the phosphorus compound is dissolved are added, and the addition amounts of the solution A1 and the solution B1 are adjusted. Satisfy the following (5) to (7),
    A method for producing a polyester resin composition, wherein the insoluble particles are added during or after the first step, and the amount of the insoluble particles added satisfies the following (8).
    (5) The amount of the aluminum element added to the produced polyester resin is 9 to 19 mass ppm.
    (6) The amount of phosphorus element added to the produced polyester resin is 18 to 38 mass ppm.
    (7) The molar ratio of the amount of the phosphorus element added in the above (6) to the amount of the aluminum element added in the above (5) is 1.50 or more and 2.30 or less. Addition amount is 500-2000 mass ppm
  8.  前記ポリエステル樹脂組成物はバッチ式重合法により製造される請求項7に記載のポリエステル樹脂組成物の製造方法。 The method for producing a polyester resin composition according to claim 7, wherein the polyester resin composition is produced by a batch type polymerization method.
  9.  前記ポリエステル樹脂組成物は連続重合法により製造されており、前記溶液A1及び前記溶液B1を、最終エステル化反応槽又は最終エステル化反応槽と最初の重合反応槽との移送ラインに添加する請求項7に記載のポリエステル樹脂組成物の製造方法。 The polyester resin composition is produced by a continuous polymerization method, and the solution A1 and the solution B1 are added to the final esterification reaction tank or the transfer line between the final esterification reaction tank and the first polymerization reaction tank. 7. The method for producing a polyester resin composition according to 7.
  10.  前記溶液A1はグリコール溶液であり、前記溶液A1の極大吸収波長が562.0~572.0nmである請求項7~9のいずれかに記載のポリエステル樹脂組成物の製造方法。 The method for producing a polyester resin composition according to any one of claims 7 to 9, wherein the solution A1 is a glycol solution and the maximum absorption wavelength of the solution A1 is 562.0 to 572.0 nm.
  11.  前記溶液B1はグリコール溶液であり、前記溶液B1は極大吸収波長が460.0~463.0nmである請求項10に記載のポリエステル樹脂組成物の製造方法。 The method for producing a polyester resin composition according to claim 10, wherein the solution B1 is a glycol solution, and the solution B1 has a maximum absorption wavelength of 460.0 to 463.0 nm.
  12.  前記グリコール溶液B1は、グリコール溶液中においてリン化合物を170~196℃で125~240分熱処理する請求項11に記載のポリエステル樹脂組成物の製造方法。 The method for producing a polyester resin composition according to claim 11, wherein the glycol solution B1 is a heat treatment of a phosphorus compound at 170 to 196 ° C. for 125 to 240 minutes in the glycol solution.
  13.  前記溶液A1及び前記溶液B1はグリコール溶液であり、前記グリコール溶液A1と前記グリコール溶液B1との混合液の極大吸収波長が559.5~560.8nmである請求項7~12のいずれかに記載のポリエステル樹脂組成物の製造方法。 The invention according to any one of claims 7 to 12, wherein the solution A1 and the solution B1 are glycol solutions, and the maximum absorption wavelength of the mixed solution of the glycol solution A1 and the glycol solution B1 is 559.5 to 560.8 nm. Method for producing a polyester resin composition.
  14.  請求項1~6のいずれかに記載のポリエステル樹脂組成物から形成されたポリエステルフィルム。 A polyester film formed from the polyester resin composition according to any one of claims 1 to 6.
  15.  前記ポリエステル樹脂組成物にさらに静電密着性付与剤が添加されている請求項14に記載のポリエステルフィルム。 The polyester film according to claim 14, wherein an electrostatic adhesion imparting agent is further added to the polyester resin composition.
PCT/JP2021/032139 2020-09-11 2021-09-01 Polyester resin composition, method for manufacturing same, and polyester film using same WO2022054670A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022506779A JPWO2022054670A1 (en) 2020-09-11 2021-09-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-153076 2020-09-11
JP2020153076 2020-09-11

Publications (1)

Publication Number Publication Date
WO2022054670A1 true WO2022054670A1 (en) 2022-03-17

Family

ID=80632299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032139 WO2022054670A1 (en) 2020-09-11 2021-09-01 Polyester resin composition, method for manufacturing same, and polyester film using same

Country Status (3)

Country Link
JP (1) JPWO2022054670A1 (en)
TW (1) TW202222902A (en)
WO (1) WO2022054670A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002057335A1 (en) * 2001-01-18 2002-07-25 Toyo Boseki Kabushiki Kaisha Polymerization catalyst for polyester, polyester, and process for producing the same
JP2003212982A (en) * 2002-01-24 2003-07-30 Toyobo Co Ltd Method for producing polyester
CN101029126A (en) * 2001-02-23 2007-09-05 东洋纺织株式会社 Polyester catalyst for polymerization, polyester and method thereby
JP2009503177A (en) * 2005-07-25 2009-01-29 テルガル フィブレ Catalyst system for producing polyester by polycondensation and method for producing polyester
JP2012076457A (en) * 2010-09-08 2012-04-19 Toyobo Co Ltd Method of molding hollow container by blow molding
WO2017183550A1 (en) * 2016-04-20 2017-10-26 東洋紡株式会社 Polybutylene terephthalate resin
WO2021125137A1 (en) * 2019-12-18 2021-06-24 東洋紡株式会社 Polyester resin and method for producing polyester resin

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002057335A1 (en) * 2001-01-18 2002-07-25 Toyo Boseki Kabushiki Kaisha Polymerization catalyst for polyester, polyester, and process for producing the same
CN101029126A (en) * 2001-02-23 2007-09-05 东洋纺织株式会社 Polyester catalyst for polymerization, polyester and method thereby
JP2003212982A (en) * 2002-01-24 2003-07-30 Toyobo Co Ltd Method for producing polyester
JP2009503177A (en) * 2005-07-25 2009-01-29 テルガル フィブレ Catalyst system for producing polyester by polycondensation and method for producing polyester
JP2012076457A (en) * 2010-09-08 2012-04-19 Toyobo Co Ltd Method of molding hollow container by blow molding
WO2017183550A1 (en) * 2016-04-20 2017-10-26 東洋紡株式会社 Polybutylene terephthalate resin
WO2021125137A1 (en) * 2019-12-18 2021-06-24 東洋紡株式会社 Polyester resin and method for producing polyester resin

Also Published As

Publication number Publication date
TW202222902A (en) 2022-06-16
JPWO2022054670A1 (en) 2022-03-17

Similar Documents

Publication Publication Date Title
EP2832793B1 (en) Polyester composition and polyester film
WO2006064773A1 (en) Polyester resin composition, process for producing the same and molding thereof
TW202128828A (en) Polyester resin and method for producing polyester resin
WO2022054669A1 (en) Method for producing polyester resin composition
JP6465022B2 (en) Polyester composition for masterbatch
JP2007161958A (en) Polyester
JP2005187556A (en) Polyester and manufacturing method of polyester
WO2022054670A1 (en) Polyester resin composition, method for manufacturing same, and polyester film using same
JP5181409B2 (en) Polyester polymerization catalyst, polyester produced using the same, and method for producing polyester
JP4552107B2 (en) Polyester and method for producing polyester
JP5082350B2 (en) Method for producing polyester and polyester obtained therefrom
JP6822144B2 (en) Polyester composition for masterbatch, polyester composition for film, and polyester film
JP2007023271A (en) Polyester polymerization catalyst, polyester produced by using the same, and method for producing the polyester
WO2023182131A1 (en) Method for producing polyester film using recycled polyester resin, and polyester film
JP4524572B2 (en) Polyester and method for producing polyester
WO2022059511A1 (en) Polyester resin, blow-molded object therefrom, and production methods therefor
WO2024038867A1 (en) Method for producing polyester film using recycled polyester resin, and polyester film
JP4984764B2 (en) Method for producing polyester and polyester obtained therefrom
JP2006096791A (en) Polyester and method for producing polyester
WO2024070038A1 (en) Co-polyester resin
WO2024070037A1 (en) Co-polyester resin
JP2006225585A (en) Polyester polymerization catalyst, polyester produced by using the same, and method for producing the polyester
JP2005112876A (en) Polyester and method for producing polyester
JP2005325205A (en) Manufacturing method of polyester, polyester, and molded product
JP2005320432A (en) Polyester polymerization catalyst, polyester produced by using the same, and method for producing polyester

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022506779

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/06/2023).

122 Ep: pct application non-entry in european phase

Ref document number: 21866629

Country of ref document: EP

Kind code of ref document: A1