WO2017183550A1 - Polybutylene terephthalate resin - Google Patents

Polybutylene terephthalate resin Download PDF

Info

Publication number
WO2017183550A1
WO2017183550A1 PCT/JP2017/015096 JP2017015096W WO2017183550A1 WO 2017183550 A1 WO2017183550 A1 WO 2017183550A1 JP 2017015096 W JP2017015096 W JP 2017015096W WO 2017183550 A1 WO2017183550 A1 WO 2017183550A1
Authority
WO
WIPO (PCT)
Prior art keywords
polybutylene terephthalate
terephthalate resin
ppm
acid
compound
Prior art date
Application number
PCT/JP2017/015096
Other languages
French (fr)
Japanese (ja)
Inventor
壮一郎 南
伸行 廣中
大橋 英人
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2017543398A priority Critical patent/JPWO2017183550A1/en
Publication of WO2017183550A1 publication Critical patent/WO2017183550A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/84Boron, aluminium, gallium, indium, thallium, rare-earth metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/87Non-metals or inter-compounds thereof

Definitions

  • the present invention relates to polybutylene terephthalate in which the amount of tetrahydrofuran (hereinafter referred to as THF) and 1,4-butanediol (hereinafter referred to as BD), which are outgas generated during molding, is reduced, thermal stability, color tone,
  • THF tetrahydrofuran
  • BD 1,4-butanediol
  • the present invention relates to a polybutylene terephthalate resin excellent in hydrolysis resistance and transparency, and further relates to a polybutylene terephthalate resin excellent in moldability, which can be suitably used for films, monofilaments, fibers, electrical and electronic parts, automobile parts and the like.
  • Polybutylene terephthalate a typical engineering plastic among thermoplastic polyester resins, has excellent physical and chemical properties such as ease of molding, mechanical properties, heat resistance, chemical resistance, fragrance retention, etc. Therefore, it is widely used for injection molded products such as automobile parts, electrical / electronic parts, precision equipment parts. In recent years, it has come to be widely used in the fields of films, sheets, monofilaments, fibers, etc., taking advantage of its characteristics.
  • Polybutylene terephthalate production methods are roughly classified into, for example, a transesterification method using dimethyl terephthalate as a terephthalic acid component as a raw material and a direct esterification method using terephthalic acid as a raw material.
  • the transesterification method has a drawback that distillation separation after recovery is difficult because the boiling points of methanol and THF generated as by-products of the reaction are close.
  • the direct esterification method methanol is not generated and the raw material basic unit is better than that in the transesterification method. Therefore, the production of polybutylene terephthalate by the direct esterification method has become the mainstream.
  • the titanium catalyst used in the direct esterification method significantly accelerates the decomposition reaction that generates THF and BD at the time of molding, so that THF and BD are mixed into the polybutylene terephthalate to be a product, so that the thermal stability, There is a problem that the quality such as color tone, hydrolysis resistance, and transparency is deteriorated.
  • THF and BD are used to generate oligomers and additives derived from polybutylene terephthalate, metal compounds derived from additives, compounds derived from stabilizers, compounds derived from mold release agents, etc. (Degraded component) is carried to the mold and deposited, which deteriorates the appearance of the molded product, and further increases the frequency of mold cleaning, resulting in decreased productivity. Newly found.
  • Patent Document 1 a method for reducing the amount of titanium compound used as a catalyst
  • Patent Document 2 a method for defining the intrinsic viscosity and carboxy group concentration of polybutylene terephthalate
  • Patent Documents 3 and 4 a method for defining the intrinsic viscosity and carboxy group concentration of polybutylene terephthalate
  • the above method is not sufficient to suppress the generation amount of THF and BD at a temperature (for example, around 265 ° C.) applied during molding.
  • the object of the present invention is to reduce the generation amount of THF and BD, which have an effect of transporting a decomposition component causing mold contamination to the mold during molding, and also has thermal stability, color tone, hydrolysis resistance and transparency. It is an object of the present invention to provide a polybutylene terephthalate which is excellent in moldability and can be suitably used for films, monofilaments, fibers, electrical and electronic parts, automobile parts and the like, which are further excellent in moldability.
  • the polybutylene terephthalate resin is at 265 ° C. for 10 minutes for an inert gas atmosphere.
  • the aluminum compound contains 10-50 ppm as aluminum atoms and 20-150 ppm as phosphorus atoms with respect to the mass of the polybutylene terephthalate resin.
  • the polybutylene terephthalate resin according to [1].
  • the decomposition component is prevented from being deposited in the mold, and the frequency of mold contamination during molding is reduced. I can do things. As a result, the production efficiency can be improved, and the film, monofilament, fiber, electric / electronic component, and automobile component can be provided with excellent thermal stability, color tone, hydrolysis resistance, transparency, and moldability.
  • the “polybutylene terephthalate resin” includes a polymerization catalyst compound described later. Although it can be said to be a kind of “composition” in that it contains a substance other than a chemical substance called “polybutylene terephthalate”, since the amount of the polymerization catalyst compound is very small, in the present invention, “polybutylene terephthalate resin” It expresses. In addition, in order to simplify or to describe a chemical substance called “polybutylene terephthalate”, it may be called “polybutylene terephthalate”.
  • the polybutylene terephthalate according to the present invention has a structure in which terephthalic acid units and 1,4-butanediol units are bonded by esterification or transesterification, and 70 mol% or more of dicarboxylic acid units are terephthalic.
  • the proportion of terephthalic acid units in all dicarboxylic acid units is preferably 80 mol% or more, more preferably 90 mol% or more, still more preferably 95 mol% or more, and the proportion of BD units in all diol units is preferably Is 80 mol% or more, more preferably 90 mol% or more, still more preferably 95 mol% or more.
  • an acid component other than terephthalic acid can be copolymerized within a range that does not impair the physical properties of polybutylene terephthalate.
  • phthalic acid isophthalic acid, 4,4′-diphenyldicarboxylic acid, 4,4′-diphenylether dicarboxylic acid, 4,4′-benzophenone dicarboxylic acid, 4,4′-diphenoxyethanedicarboxylic acid, 4,4 ′ -Arocyclic dicarboxylic acids such as diphenylsulfone dicarboxylic acid, aromatic dicarboxylic acids such as 2,6-naphthalenedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid And aliphatic dicarboxylic acids such as malonic acid, succinic acid, glutaric acid,
  • diol components other than BD can be copolymerized within a range that does not impair the physical properties of polybutylene terephthalate.
  • hydroxycarboxylic acids such as lactic acid, glycolic acid, m-hydroxybenzoic acid, p-hydroxybenzoic acid, 6-hydroxy-2-naphthalenecarboxylic acid, p- ⁇ -hydroxyethoxybenzoic acid, stearyl alcohol
  • Monofunctional components such as benzyl alcohol, stearic acid, benzoic acid, t-butylbenzoic acid, benzoylbenzoic acid, tricarballylic acid, trimellitic acid, trimesic acid, pyromellitic acid, gallic acid, trimethylolethane, trimethylolpropane
  • Trifunctional or higher polyfunctional components such as glycerol and pentaerythritol can be used as the copolymerization component.
  • the polybutylene terephthalate resin of the present invention can be obtained by combining an aluminum compound and a phosphorus compound as a catalyst in the polymerization reaction between terephthalic acid and BD. Compared with the case where a conventional titanium compound is used, the decomposition reaction during molding can be suppressed, so that the amount of THF and BD generated from the hydroxyl group end of polybutylene terephthalate can be greatly reduced.
  • the aluminum compound and phosphorus compound constituting the polymerization catalyst known compounds can be used without limitation.
  • the aluminum compound examples include carboxylates such as aluminum acetate, basic aluminum acetate and aluminum lactate, inorganic acid salts such as aluminum chloride, aluminum hydroxide and aluminum hydroxide chloride, and chelate such as aluminum acetylacetonate.
  • carboxylates such as aluminum acetate, basic aluminum acetate and aluminum lactate
  • inorganic acid salts such as aluminum chloride, aluminum hydroxide and aluminum hydroxide chloride
  • chelate such as aluminum acetylacetonate.
  • organic aluminum compounds such as compounds and aluminum oxalate, and partial hydrolysates thereof.
  • carboxylate, inorganic acid salt and chelate compound are preferable, and among these, aluminum acetate, basic aluminum acetate, aluminum lactate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride and aluminum acetylacetonate are more preferable, Aluminum acetate, basic aluminum acetate, aluminum chloride, aluminum hydroxide and aluminum hydroxide chloride are more preferred, and aluminum acetate and basic aluminum acetate are most preferred.
  • the amount of the aluminum compound used in the polymerization catalyst according to the present invention is preferably 10 to 50 ppm, more preferably 15 to 45 ppm, as aluminum atoms with respect to the total mass of the resulting polybutylene terephthalate resin. More preferably, it is 20 to 40 ppm, and particularly preferably 30 to 40 ppm.
  • the catalytic activity is remarkably inferior, and the polymerization rate may decrease. If it exceeds 50 ppm, aluminum-based foreign matter (foreign matter derived from an aluminum compound) is generated, and in the case of a molded product that requires transparency, the aluminum-based foreign matter may deteriorate transparency. Moreover, since the crystallization speed of the polybutylene terephthalate resin also changes, there is a possibility that the molding process will be affected.
  • the residual amount (content) of aluminum atoms in the polybutylene terephthalate resin of the present invention is preferably 10 to 50 ppm, more preferably 15 to 45 ppm, still more preferably 20 to 40 ppm based on the total mass of the polybutylene terephthalate resin. Particularly preferred is 30 to 40 ppm.
  • the phosphorus compound used for the polymerization catalyst is not particularly limited, but the use of a phosphonic acid compound or a phosphinic acid compound is highly preferable for improving the catalytic activity. Among these, the use of a phosphonic acid compound is effective for improving the catalytic activity. Is particularly large and preferred.
  • phosphorus compounds having a phenol moiety in the same molecule are preferred. It is not particularly limited as long as it is a phosphorus compound having a phenol structure, but it is a catalyst if one or more compounds selected from the group consisting of phosphonic acid compounds and phosphinic acid compounds having a phenol moiety in the same molecule are used.
  • the effect of improving the activity is large and preferable.
  • the use of a phosphonic acid compound having a phenol moiety in one or two or more of the same molecules is particularly preferable because the effect of improving the catalytic activity is particularly large.
  • examples of the phosphorus compound having a phenol moiety in the same molecule include compounds represented by the following general formulas (1) and (2).
  • R 1 is a hydrocarbon group having 1 to 50 carbon atoms including a phenol part, a hydroxyl group, a halogen group, an alkoxyl group, an amino group or the like, and a carbon number 1 including a phenol part.
  • R 4 represents a hydrocarbon group having 1 to 50 carbon atoms, including a substituent such as hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group, a halogen group, an alkoxyl group, or an amino group.
  • R 2 and R 3 each independently represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydrocarbon group having 1 to 50 carbon atoms including a substituent such as a hydroxyl group or an alkoxyl group.
  • the group may contain a branched structure, an alicyclic structure such as cyclohexyl, or an aromatic ring structure such as phenyl or naphthyl, and the ends of R 2 and R 4 may be bonded to each other.
  • Examples of the phosphorus compound having a phenol moiety in the same molecule include p-hydroxyphenylphosphonic acid, dimethyl p-hydroxyphenylphosphonate, diethyl p-hydroxyphenylphosphonate, diphenyl p-hydroxyphenylphosphonate, bis ( p-hydroxyphenyl) phosphinic acid, methyl bis (p-hydroxyphenyl) phosphinate, phenyl bis (p-hydroxyphenyl) phosphinate, p-hydroxyphenylphenylphosphinic acid, methyl p-hydroxyphenylphenylphosphinate, p-hydroxy Examples include phenyl phenylphenylphosphinate, p-hydroxyphenylphosphinic acid, methyl p-hydroxyphenylphosphinate, and phenyl p-hydroxyphenylphosphinate.
  • phosphorus compounds represented by the following general formula (3) can be exemplified.
  • X 1 and X 2 each represent hydrogen, an alkyl group having 1 to 4 carbon atoms, or a monovalent or higher metal. Moreover, X 1 is metal be two or more valences, X 2 may be absent. Furthermore, an anion corresponding to the surplus valence of the metal may be arranged with respect to the phosphorus compound.
  • the metal Li, Na, K, Ca, Mg, and Al are preferable.
  • the catalytic activity of the aluminum compound is improved and the thermal stability of the polymerized polybutylene terephthalate resin is also improved.
  • the heat resistance of resin can be improved by using a phosphorus compound, it becomes possible to suppress the decomposition reaction at the time of shaping
  • the phosphorus compound that is preferably used as the polymerization catalyst is at least one phosphorus compound selected from the compounds represented by chemical formula (4) and chemical formula (5).
  • Irgamod 295 manufactured by BASF
  • Irganox 1425 manufactured by BASF
  • the amount of the phosphorus compound used in the polymerization catalyst according to the present invention is preferably 20 to 150 ppm, more preferably 30 to 120 ppm, remaining as phosphorus atoms with respect to the total mass of the resulting polybutylene terephthalate resin. More preferably, it is 40 to 100 ppm, and particularly preferably 50 to 90 ppm.
  • Residual amounts of phosphorus atoms that deviate from the above upper and lower limits may reduce the polymerization activity.
  • the phosphorus compound When the phosphorus compound is placed under reduced pressure conditions during polymerization of polybutylene terephthalate, about 10 to 60% of the addition amount (use amount) is removed from the system depending on the conditions. Therefore, in practice, it is necessary to determine the amount of addition after conducting trial experiments several times and determining the residual ratio of phosphorus atoms to the polybutylene terephthalate resin.
  • the residual amount (content) of phosphorus atoms in the polybutylene terephthalate resin of the present invention is preferably 20 to 150 ppm, more preferably 30 to 120 ppm, still more preferably 40 to 100 ppm based on the total mass of the polybutylene terephthalate resin. Particularly preferred is 50 to 90 ppm.
  • a metal-containing polymerization catalyst such as an antimony compound, a titanium compound, a tin compound, or a germanium compound may be used in combination in order to further improve the catalytic activity.
  • the antimony compound is preferably 30 ppm or less as an antimony atom with respect to the mass of the resulting polybutylene terephthalate resin
  • the germanium compound is preferably 10 ppm or less as a germanium atom with respect to the mass of the obtained polybutylene terephthalate resin.
  • the titanium compound is preferably 3 ppm or less as a titanium atom with respect to the mass of the resulting polybutylene terephthalate resin, and the tin compound has 3 ppm or less as a tin atom with respect to the mass of the resulting polybutylene terephthalate resin.
  • these metal-containing polymerization catalysts such as antimony compounds, titanium compounds, tin compounds and germanium compounds are not used as much as possible.
  • a small amount of alkali metal, alkaline earth metal and at least one selected from the compound may coexist as the second metal-containing component.
  • the terminal group of polybutylene terephthalate resin can be stabilized, and there is an effect of suppressing the generation amount of THF and BD.
  • the residual amount is preferably 50 ppm or less as an alkali metal atom or an alkaline earth metal atom.
  • the intrinsic viscosity of the polybutylene terephthalate resin of the present invention is required to be 0.5 to 1.3 dL / g.
  • the intrinsic viscosity is preferably 0.6 to 1.2 dL / g, more preferably 0.7 to 1.15 dL / g, and still more preferably 0.8 to 1.1 dL / g.
  • the method for producing the polybutylene terephthalate resin is classified into a continuous type and a batch type from the raw material supply or polymer discharge mode.
  • a continuous system in which raw materials are continuously supplied and an esterification reaction and a polycondensation reaction are continuously performed.
  • Continuous reaction equipment is a reaction vessel for esterification and a melt polycondensation reaction vessel connected by piping, and the raw materials are continuously charged without emptying each reaction vessel. In this method, the resin is removed from the transfer and melt polycondensation reaction vessel.
  • the esterification reaction may be performed in one stage or may be performed in multiple stages.
  • the melt polycondensation reaction may be performed in one stage or may be performed in multiple stages.
  • An example of the polymerization method according to the polybutylene terephthalate resin of the present invention is as follows. That is, the dicarboxylic acid component containing terephthalic acid as a main component and the diol component containing BD as a main component are mixed in a raw material mixing tank to form a slurry to suppress intramolecular dehydration cyclization reaction of BD to THF. Therefore, preferably at a temperature of 210 to 235 ° C.
  • the esterification is continuously carried out for 2.5 to 8 hours, more preferably 3 to 6 hours.
  • the obtained esterification reaction product (hereinafter sometimes referred to as an oligomer) is transferred to a polycondensation reaction tank, and is usually 210 to 280 ° C., preferably 220 to 270 ° C., more preferably 230 to 260 ° C.
  • the polycondensation reaction is usually performed for 1 to 15 hours, preferably 2 to 10 hours, more preferably 3 to 6 hours under stirring under a reduced pressure of 10 kPa or less, preferably 5 kPa or less, more preferably 1 kPa or less.
  • the polymer obtained by the polymerization reaction is usually transferred from the bottom of the polycondensation reaction tank to a polymer extraction die and extracted in the form of a strand, while being cooled with water or after being cooled with water, cut with a cutter, pellets, chips, etc. It is made of granular material.
  • the polymerization catalyst for polybutylene terephthalate used in the present invention can be added to the reaction system at any stage of the polymerization reaction.
  • it can be added to the reaction system at any stage before the start of the esterification reaction and during the reaction, immediately before the start of the polycondensation reaction, or at any stage during the polycondensation reaction.
  • it is preferable to add the aluminum compound and the phosphorus compound immediately before the start of the polycondensation reaction.
  • the polycondensation reaction rate and the amount of THF and BD generated from the polybutylene terephthalate resin can be adjusted by adjusting the terminal composition of the oligomer before the polycondensation reaction. it can.
  • the polycondensation reaction can be efficiently carried out by setting the proportion of hydroxyl groups to 50 to 90% of the total number of terminals of the oligomer before the polycondensation reaction.
  • the proportion of hydroxyl groups in the oligomer before the polycondensation reaction is preferably in the range of 55 to 85%, more preferably 60 to 80%.
  • the polybutylene terephthalate resin of the present invention satisfies the following (1) and (2).
  • Tetrahydrofuran (THF) generated when the polybutylene terephthalate resin is heated at 265 ° C. for 10 minutes in an inert gas atmosphere is 50 ppm or less.
  • the polybutylene terephthalate resin is heated at 265 ° C. for 10 minutes.
  • 1,4-butanediol (BD) generated when heated in an active gas atmosphere is 10 ppm or less
  • the above (1) and (2) can be measured by the method described in detail in (Methods for measuring THF and BD generation) described in the Examples section below. Specifically, a thermal desorption apparatus (TD-20) / gas chromatograph mass spectrometer (QP-2010UItra) manufactured by Shimadzu Corporation, column Rxi-1 ms (length 60 m, inner diameter 0.32 mm, film thickness 0) .25 ⁇ m), a polybutylene terephthalate resin sample is heat-treated at 265 ° C. for 10 minutes, and the collected components are analyzed. As the inert gas, helium gas is preferably used.
  • the polybutylene terephthalate resin satisfying the above (1) and (2) employs a direct esterification method using an aluminum compound and a phosphorus compound as a polymerization catalyst, and before the polycondensation reaction. It can obtain by making the ratio which a hydroxyl group occupies among the terminal total number of an oligomer into a specific range.
  • the amount of THF generated is preferably 40 ppm or less, more preferably 30 ppm or less, and still more preferably 20 ppm or less.
  • the amount of BD generated is preferably 5 ppm or less.
  • the polybutylene terephthalate resin of the present invention includes 2,6-di-tert-butyl-4-octylphenol, pentaerythrityl-tetrakis [3- (3 ′, 5′-tert-butyl-4′-hydroxyphenyl) propionate ], Phenol compounds such as dilauryl-3,3′-thiodipropionate, thioether compounds such as pentaerythrityl-tetrakis (3-laurylthiodipropionate), triphenyl phosphite, tris (nonylphenyl) phosphite, Antioxidants such as phosphorus compounds such as tris (2,4-di-t-butylphenyl) phosphite, paraffin wax, microcrystalline wax, polyethylene wax, long chain fatty acids represented by montanic acid and montanic acid ester, and the like Release of esters, silicone oil, etc. Or the like may be added
  • the average fiber diameter is not particularly limited, but is usually 1 to 100 ⁇ m, preferably 2 to 50 ⁇ m, more preferably 3 to 30 ⁇ m, and particularly preferably 5 to 20 ⁇ m.
  • the average fiber length is not particularly limited, but is usually 0.1 to 20 mm, preferably 1 to 10 mm.
  • other fillers can be blended together with the reinforcing filler.
  • Other fillers to be blended include, for example, plate-like inorganic fillers, ceramic beads, asbestos, wollastonite, talc, clay, mica, zeolite, kaolin, potassium titanate, barium sulfate, titanium oxide, silicon oxide, oxidation Aluminum, magnesium hydroxide, etc. are mentioned.
  • the plate-like inorganic filler By blending the plate-like inorganic filler, the anisotropy and warpage of the molded product can be reduced.
  • the plate-like inorganic filler include glass flakes, mica, and metal foil. Among these, glass flakes are preferably used.
  • a flame retardant can be blended to impart flame retardancy.
  • the flame retardant is not particularly limited, and examples thereof include organic halogen compounds, antimony compounds, phosphorus compounds, other organic flame retardants, and inorganic flame retardants.
  • organic halogen compound include brominated polycarbonate, brominated epoxy resin, brominated phenoxy resin, brominated polyphenylene ether resin, brominated polystyrene resin, brominated bisphenol A, polypentabromobenzyl acrylate and the like.
  • the antimony compound include antimony trioxide, antimony pentoxide, sodium antimonate, and the like.
  • phosphorus compound phosphate ester, polyphosphoric acid, ammonium polyphosphate, red phosphorus etc. are mentioned, for example.
  • organic flame retardants include nitrogen compounds such as melamine and cyanuric acid.
  • inorganic flame retardants include aluminum hydroxide, magnesium hydroxide, silicon compound, and boron compound.
  • the polybutylene terephthalate resin of the present invention can be blended with conventional additives as required.
  • additives are not particularly limited and include, for example, stabilizers such as antioxidants and heat stabilizers, lubricants, mold release agents, catalyst deactivators, crystal nucleating agents, crystallization accelerators, and the like. It is done. These additives can be added during the polymerization or after the polymerization.
  • stabilizers such as UV absorbers and weathering stabilizers, colorants such as dyes and pigments, antistatic agents, foaming agents, plasticizers, impact modifiers. Etc. can be blended.
  • the polybutylene terephthalate resin of the present invention includes polyethylene, polypropylene, polystyrene, polyacrylonitrile, polymethacrylic acid ester, ABS resin, polycarbonate, polyamide, polyphenylene sulfide, polyethylene terephthalate, liquid crystal polyester, polyacetal, polyphenylene oxide, etc.
  • Thermosetting resins such as thermoplastic resins, phenol resins, melamine resins, silicone resins, and epoxy resins can be blended. These thermoplastic resins and thermosetting resins can be used in combination of two or more.
  • the method of blending the various additives and resins is not particularly limited, but a method of using a single or twin screw extruder having equipment capable of devolatilization from the vent port as a kneader is preferable.
  • Each component including an additional component can be supplied to the kneader in a lump or can be supplied sequentially.
  • two or more kinds of components selected from each component including an additional component can be mixed in advance.
  • the method for molding the polybutylene terephthalate resin of the present invention is not particularly limited, and molding methods generally used for thermoplastic resins, that is, molding methods such as injection molding, hollow molding, extrusion molding, and press molding are applied. I can do things.
  • the polybutylene terephthalate resin of the present invention can reduce THF and BD generated during the molding process, the frequency of mold contamination during the molding process can be reduced. As a result, the production efficiency can be improved, and the film, monofilament, fiber, electric / electronic component, and automobile component can be provided with excellent thermal stability, color tone, hydrolysis resistance, transparency, and moldability.
  • the secondary trap tube was reheated at 280 ° C., the collected components were introduced into a gas chromatograph mass spectrometer (hereinafter referred to as GC-MS), and THF and BD were quantified from the obtained chromatogram.
  • GC-MS gas chromatograph mass spectrometer
  • quantitative_assay was performed in toluene mass conversion using the standard solution with a known density
  • a continuous molding evaluation mold (having a cavity with an outer diameter of 30 mm, an inner diameter of 20 mm and a thickness of 3 mm, the flow end is a concave portion and no gas venting) is used.
  • the mold was continuously molded by a short shot method so that inclusions such as polybutylene terephthalate decomposition products were likely to accumulate in the concave portion on the opposite side of the gate portion, and mold contamination was observed.
  • the cylinder temperature at the time of molding was 260 ° C.
  • the mold temperature was 60 ° C.
  • the cycle time was 40 seconds
  • the mold contamination after 20 shots was evaluated.
  • the evaluation was performed visually according to the following criteria. ⁇ : Dirt is hardly recognized. ⁇ : Dirt is gently recognized in the center near the concave portion on the opposite side of the gate portion. X: Dirt in the center near the recess on the opposite side of the gate portion is conspicuous in black with a clear outline.
  • the esterification reaction was performed for 2 hours.
  • the esterification reaction was completed, and 70% of the total number of oligomer ends before the polycondensation reaction was a hydroxyl group.
  • the BD solution of the aluminum compound prepared by the above method and the BD solution of the phosphorus compound 1, respectively, were added so that 40 ppm and 70 ppm remain as aluminum atoms and phosphorus atoms, The temperature of the system was raised to 250 ° C.
  • Example 2 A polybutylene terephthalate resin having an intrinsic viscosity of 0.81 dL / g was obtained in the same manner as in Example 1 except that the polycondensation reaction was changed to 2.5 hours.
  • Example 3 A polybutylene terephthalate resin having an intrinsic viscosity of 1.20 dL / g was obtained in the same manner as in Example 1 except that the polycondensation reaction was changed to 4 hours.
  • Example 4 The polybutylene terephthalate resin obtained in Example 1 was subjected to solid-phase polymerization for 24 hours under reduced pressure at 200 ° C. using a batch type solid-phase polymerization apparatus, and polybutylene terephthalate having an intrinsic viscosity of 0.83 dL / g. A resin was obtained.
  • Example 5 The polybutylene terephthalate resin obtained in Example 2 was subjected to solid phase polymerization at 200 ° C. under reduced pressure for 24 hours using a batch type solid phase polymerization apparatus, and polybutylene terephthalate having an intrinsic viscosity of 1.01 dL / g. A resin was obtained.
  • Comparative Example 2 In Comparative Example 1, a polybutylene terephthalate resin having an intrinsic viscosity of 1.07 dL / g was obtained in the same manner as in Comparative Example 1 except that the polycondensation reaction was changed to 2 hours.
  • Comparative Example 3 In Comparative Example 2, the same procedure as in Comparative Example 2 was carried out except that the amount of tetrabutyl titanate was changed so that 40 ppm of titanium atoms remained with respect to the mass of the resulting polybutylene terephthalate resin, and the intrinsic viscosity was 0.83 dL / g. A polybutylene terephthalate resin was obtained.
  • Comparative Example 4 Comparative Example 3 was the same as Comparative Example 3 except that magnesium acetate tetrahydrate was added so that 40 ppm of magnesium atoms remained with respect to the mass of the resulting polybutylene terephthalate resin at the same timing as the addition of tetrabutyl titanate. And a polybutylene terephthalate resin having an intrinsic viscosity of 0.84 dL / g was obtained.
  • Comparative Example 6 The polybutylene terephthalate resin obtained in Comparative Example 1 was subjected to solid-phase polymerization at 200 ° C. under reduced pressure for 6 hours using a batch type solid-phase polymerization apparatus, and an intrinsic viscosity of 1.04 dL / g was obtained. A resin was obtained.
  • the transesterification reaction was completed, and 98% of the total number of terminals of the oligomer before the polycondensation reaction was a hydroxyl group. Subsequently, the temperature of the system is raised to 250 ° C. in 1 hour, and the pressure of the system is gradually reduced to 0.15 kPa during this time, and a polycondensation reaction is carried out for 1.5 hours under these conditions. A pellet of polybutylene terephthalate resin of .80 dL / g was obtained.
  • the transesterification reaction was completed, and 96% of the total number of oligomer ends before the polycondensation reaction was a hydroxyl group. Subsequently, the temperature of the system is raised to 250 ° C. in 1 hour, and the pressure of the system is gradually reduced to 0.15 kPa during this time, and a polycondensation reaction is performed for 2 hours under these conditions, and an intrinsic viscosity of 1.09 dL. / G of polybutylene terephthalate resin pellets were obtained.
  • the temperature of the system was raised to 250 ° C. in 1 hour, and the pressure of the system was gradually reduced to 0.15 kPa during this time, and a polycondensation reaction was performed for 4 hours under these conditions.
  • g or more of polybutylene terephthalate resin was not obtained.
  • the resulting polybutylene terephthalate resin had an intrinsic viscosity of 0.46 dL / g, but since pelletization was difficult, various evaluations were not performed.
  • Table 2 shows the results of evaluating the physical properties of the polybutylene terephthalate resin obtained in the comparative example. In Comparative Examples 10 and 11, the physical properties could not be evaluated.
  • the polybutylene terephthalate resin of the example is compared with the comparative example (a system using a titanium catalyst, a system using dimethyl terephthalate as a raw material, a system where the terminal composition of the oligomer before the polycondensation reaction is not in a specific range). It was confirmed that the generation amount of THF and BD can be reduced. This is because, as described above, the titanium catalyst that significantly accelerates the decomposition reaction that generates THF and BD is not used, and the thermal decomposition of polybutylene terephthalate is suppressed by the hindered phenol part in the phosphorus compound.
  • the proportion of the hydroxyl group of the oligomer before the polycondensation reaction is less than the system using a titanium catalyst, the system using dimethyl terephthalate as a raw material, and the ratio is in a specific range, THF, It is considered that the amount of BD generated can be reduced.
  • the polybutylene terephthalate resin of the present invention is not particularly limited, and molding methods generally used for thermoplastic resins, that is, injection molding, hollow molding, extrusion molding, press molding, and other molding methods can be applied, Since THF and BD generated at that time can be reduced, the frequency of mold contamination during molding can be reduced. As a result, the production efficiency can be improved, and the film, monofilament, fiber, electric / electronic component, and automobile component can be provided with excellent thermal stability, color tone, hydrolysis resistance, transparency, and moldability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention is a polybutylene terephthalate resin which contains, as polymerization catalyst components, an aluminum compound and a phosphorus compound and has an intrinsic viscosity of 0.5-1.3 dL/g, and which generates 50 ppm or less of tetrahydrofuran and 10 ppm or less of 1, 4-butanediol when heated at 265°C for 10 minutes in an inert gas atmosphere. This polybutylene terephthalate resin is able to reduce the amounts of tetrahydrofuran and 1, 4-butanediol to be generated during molding, while having excellent thermal stability, color tone, hydrolysis resistance and transparency.

Description

ポリブチレンテレフタレート樹脂Polybutylene terephthalate resin
 本発明は、成形時に発生するアウトガスであるテトラヒドロフラン(以下、THFと示す)、1,4-ブタンジオール(以下、BDと示す)発生量を低減したポリブチレンテレフタレートに関し、また熱安定性、色調、耐加水分解性、透明性に優れたポリブチレンテレフタレート樹脂に関し、さらに成形性に優れた、フィルム、モノフィラメント、繊維、電気電子部品、自動車部品などに好適に使用する事ができるポリブチレンテレフタレート樹脂に関する。 The present invention relates to polybutylene terephthalate in which the amount of tetrahydrofuran (hereinafter referred to as THF) and 1,4-butanediol (hereinafter referred to as BD), which are outgas generated during molding, is reduced, thermal stability, color tone, The present invention relates to a polybutylene terephthalate resin excellent in hydrolysis resistance and transparency, and further relates to a polybutylene terephthalate resin excellent in moldability, which can be suitably used for films, monofilaments, fibers, electrical and electronic parts, automobile parts and the like.
 熱可塑性ポリエステル樹脂中で代表的なエンジニアリングプラスティックであるポリブチレンテレフタレートは、成形加工の容易性、機械的物性、耐熱性、耐薬品性、保香性、その他の物理的・化学的特性に優れている事から、自動車部品、電気・電子部品、精密機器部品などの射出成形品に広く用いられている。近年では、その特性を活かして、フィルムやシート、モノフィラメント、繊維などの分野でも幅広く使用される様になってきた。 Polybutylene terephthalate, a typical engineering plastic among thermoplastic polyester resins, has excellent physical and chemical properties such as ease of molding, mechanical properties, heat resistance, chemical resistance, fragrance retention, etc. Therefore, it is widely used for injection molded products such as automobile parts, electrical / electronic parts, precision equipment parts. In recent years, it has come to be widely used in the fields of films, sheets, monofilaments, fibers, etc., taking advantage of its characteristics.
 ポリブチレンテレフタレートの製造方法は、例えばテレフタル酸成分としてジメチルテレフタレートを原料とするエステル交換法と、テレフタル酸を原料とする直接エステル化法とに大別される。ところが、エステル交換法は、反応の副生物として発生するメタノールとTHFの沸点が近い事から、回収後の蒸留分離が困難であるという欠点を有している。一方、直接エステル化法では、メタノールが発生する事は無く、かつ原料原単位もエステル交換法に比べて良好である。そのため、直接エステル化法によるポリブチレンテレフタレート製造が主流となっている。 Polybutylene terephthalate production methods are roughly classified into, for example, a transesterification method using dimethyl terephthalate as a terephthalic acid component as a raw material and a direct esterification method using terephthalic acid as a raw material. However, the transesterification method has a drawback that distillation separation after recovery is difficult because the boiling points of methanol and THF generated as by-products of the reaction are close. On the other hand, in the direct esterification method, methanol is not generated and the raw material basic unit is better than that in the transesterification method. Therefore, the production of polybutylene terephthalate by the direct esterification method has become the mainstream.
 しかし、直接エステル化法で使用するチタン触媒は、成形時にTHFやBDを発生させる分解反応を著しく促進してしまい、製品となるポリブチレンテレフタレートにTHFやBDが混入する事で、熱安定性、色調、耐加水分解性、透明性などの品質を低下させてしまう問題がある。また、成形加工時には、THFやBDによって、ポリブチレンテレフタレートから発生したオリゴマーや添加剤に由来する金属化合物、安定剤に由来する化合物、離型剤に由来する化合物など(以下、これらを総称して分解成分と記す)が金型に運ばれて堆積する事で、製品となる成形品の外観を悪化させ、更には金型の掃除頻度増加によって生産性が低下する問題も発生していることが新たに判明した。 However, the titanium catalyst used in the direct esterification method significantly accelerates the decomposition reaction that generates THF and BD at the time of molding, so that THF and BD are mixed into the polybutylene terephthalate to be a product, so that the thermal stability, There is a problem that the quality such as color tone, hydrolysis resistance, and transparency is deteriorated. Further, during molding processing, THF and BD are used to generate oligomers and additives derived from polybutylene terephthalate, metal compounds derived from additives, compounds derived from stabilizers, compounds derived from mold release agents, etc. (Degraded component) is carried to the mold and deposited, which deteriorates the appearance of the molded product, and further increases the frequency of mold cleaning, resulting in decreased productivity. Newly found.
 上記の問題を解決するために、例えば触媒として使用するチタン化合物の添加量を低減する方法(特許文献1)、またポリブチレンテレフタレートの固有粘度、カルボキシ基濃度を規定する方法(特許文献2)、もしくはチタン化合物と共にアルカリ金属、アルカリ土類金属並びにその化合物から選択される少なくとも1種の金属を併用する方法(特許文献3、4)により、成形時の分解反応を抑制し、THF、BDの発生量を低減する方法が提案されている。 In order to solve the above problems, for example, a method for reducing the amount of titanium compound used as a catalyst (Patent Document 1), a method for defining the intrinsic viscosity and carboxy group concentration of polybutylene terephthalate (Patent Document 2), Alternatively, by using a titanium compound together with an alkali metal, an alkaline earth metal and at least one metal selected from the compounds (Patent Documents 3 and 4), the decomposition reaction during molding is suppressed and generation of THF and BD occurs. A method of reducing the amount has been proposed.
 しかしながら、上記の方法では、成形時にかかる温度(例えば265℃前後)でのTHF、BDの発生量を抑制するには十分ではない。 However, the above method is not sufficient to suppress the generation amount of THF and BD at a temperature (for example, around 265 ° C.) applied during molding.
 また、固有粘度を大幅に高めて末端基数を少なくする方法(例えば1.2~2.0dL/g)により、ポリブチレンテレフタレートの分解を抑制して、THF、BDの発生量を低減する方法も提案されている(特許文献5)。しかしながら、固有粘度を高め過ぎると成形性が悪くなり、流動性が要求される成形加工には適用できない問題が発生する。 There is also a method of reducing the generation of THF and BD by suppressing the decomposition of polybutylene terephthalate by a method of significantly increasing the intrinsic viscosity and reducing the number of terminal groups (for example, 1.2 to 2.0 dL / g). It has been proposed (Patent Document 5). However, if the intrinsic viscosity is increased too much, the moldability deteriorates, and a problem that cannot be applied to a molding process requiring fluidity occurs.
特開2013-7058号公報JP 2013-7058 A 特開2004-277719号公報JP 2004-277719 A 特開2005-314674号公報JP 2005-314673 A 特開2006-152252号公報JP 2006-152252 A 特開2004-323836号公報JP 2004-323836 A
 本発明の目的は、成形時に、金型汚れの原因となる分解成分を金型に運ぶ作用を持つTHF、BDの発生量を低減し、また熱安定性、色調、耐加水分解性、透明性に優れたポリブチレンテレフタレートであって、さらに成形性に優れた、フィルム、モノフィラメント、繊維、電気電子部品、自動車部品などに好適に使用する事ができるポリブチレンテレフタレートを提供する事にある。 The object of the present invention is to reduce the generation amount of THF and BD, which have an effect of transporting a decomposition component causing mold contamination to the mold during molding, and also has thermal stability, color tone, hydrolysis resistance and transparency. It is an object of the present invention to provide a polybutylene terephthalate which is excellent in moldability and can be suitably used for films, monofilaments, fibers, electrical and electronic parts, automobile parts and the like, which are further excellent in moldability.
 本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、従来触媒として一般的に使用されるチタン化合物の代わりに、アルミニウム化合物を触媒として使用し、且つリン化合物と組み合わる事で、著しくTHF、BDの発生量を抑制できるポリブチレンテレフタレートを得る事が可能となり、上記の課題を容易に解決し得る事を見出し、本発明の解決に至った。 As a result of intensive studies to solve the above problems, the present inventors have used an aluminum compound as a catalyst instead of a titanium compound generally used as a conventional catalyst and combined it with a phosphorus compound. Thus, it has become possible to obtain polybutylene terephthalate capable of remarkably suppressing the generation amount of THF and BD, and found that the above-mentioned problems can be easily solved, thereby leading to the solution of the present invention.
 本発明は、以下の通りである。
[1] 重合触媒成分としてアルミニウム化合物及びリン化合物を含有するポリブチレンテレフタレート樹脂であって、固有粘度が0.5~1.3dL/gであり、下記(1)、(2)を満足する事を特徴とするポリブチレンテレフタレート樹脂。
(1)該ポリブチレンテレフタレート樹脂を265℃、10分、不活性ガス雰囲気下で加熱した際に発生するテトラヒドロフランが50ppm以下
(2)該ポリブチレンテレフタレート樹脂を265℃、10分、不活性ガス雰囲気下で加熱した際に発生する1,4-ブタンジオールが10ppm以下
[2] ポリブチレンテレフタレート樹脂の質量に対してアルミニウム化合物をアルミニウム原子として10~50ppm、リン化合物をリン原子として20~150ppm含有する[1]に記載のポリブチレンテレフタレート樹脂。
The present invention is as follows.
[1] A polybutylene terephthalate resin containing an aluminum compound and a phosphorus compound as polymerization catalyst components, and has an intrinsic viscosity of 0.5 to 1.3 dL / g and satisfies the following (1) and (2). Polybutylene terephthalate resin characterized by
(1) Tetrahydrofuran generated when the polybutylene terephthalate resin is heated at 265 ° C. for 10 minutes in an inert gas atmosphere is 50 ppm or less. (2) The polybutylene terephthalate resin is at 265 ° C. for 10 minutes for an inert gas atmosphere. 1,4-butanediol generated when heated under 10 ppm or less [2] The aluminum compound contains 10-50 ppm as aluminum atoms and 20-150 ppm as phosphorus atoms with respect to the mass of the polybutylene terephthalate resin. The polybutylene terephthalate resin according to [1].
 本発明によれば、成形時にポリブチレンテレフタレートから発生するTHF、BDを低減する事ができるため、分解成分を金型に堆積することを抑制し、成形加工時の金型汚染の頻度を低減する事ができる。その結果、生産効率も向上し、且つ熱安定性、色調、耐加水分解性、透明性、成形性に優れたフィルム、モノフィラメント、繊維、電気電子部品、自動車部品として提供する事ができる。 According to the present invention, since THF and BD generated from polybutylene terephthalate during molding can be reduced, the decomposition component is prevented from being deposited in the mold, and the frequency of mold contamination during molding is reduced. I can do things. As a result, the production efficiency can be improved, and the film, monofilament, fiber, electric / electronic component, and automobile component can be provided with excellent thermal stability, color tone, hydrolysis resistance, transparency, and moldability.
 以下、本発明を詳細に説明するが、以下に記載されている構成要件の説明は、本発明の実施態様の代表例であり、これらの内容に本発明は限定されるものではない。 Hereinafter, the present invention will be described in detail. However, the description of the constituent elements described below is a representative example of embodiments of the present invention, and the present invention is not limited to these contents.
 本発明において、「ポリブチレンテレフタレート樹脂」とは、後記する重合触媒化合物を含むものである。「ポリブチレンテレフタレート」と言う化学物質以外のものを含む点では、一種の「組成物」とも言えるが、重合触媒化合物の量は微量であることから、本発明においては、「ポリブチレンテレフタレート樹脂」と表す。なお、簡略化、または「ポリブチレンテレフタレート」と言う化学物質を説明するため、「ポリブチレンテレフタレート」と称する場合もある。 In the present invention, the “polybutylene terephthalate resin” includes a polymerization catalyst compound described later. Although it can be said to be a kind of “composition” in that it contains a substance other than a chemical substance called “polybutylene terephthalate”, since the amount of the polymerization catalyst compound is very small, in the present invention, “polybutylene terephthalate resin” It expresses. In addition, in order to simplify or to describe a chemical substance called “polybutylene terephthalate”, it may be called “polybutylene terephthalate”.
 本発明に係るポリブチレンテレフタレートとは、テレフタル酸単位、および1,4-ブタンジオール単位がエステル化反応、もしくはエステル交換反応して結合した構造を有し、ジカルボン酸単位の70モル%以上がテレフタル酸単位から成り、ジオール成分の70モル%以上がBD単位からなる高分子を言う。全ジカルボン酸単位中のテレフタル酸単位の割合は、好ましくは80モル%以上、より好ましくは90モル%以上、更に好ましくは95モル%以上であり、全ジオール単位中のBD単位の割合は、好ましくは80モル%以上、より好ましくは90モル%以上、更に好ましくは95モル%以上である。 The polybutylene terephthalate according to the present invention has a structure in which terephthalic acid units and 1,4-butanediol units are bonded by esterification or transesterification, and 70 mol% or more of dicarboxylic acid units are terephthalic. A polymer composed of acid units, wherein 70 mol% or more of the diol component is composed of BD units. The proportion of terephthalic acid units in all dicarboxylic acid units is preferably 80 mol% or more, more preferably 90 mol% or more, still more preferably 95 mol% or more, and the proportion of BD units in all diol units is preferably Is 80 mol% or more, more preferably 90 mol% or more, still more preferably 95 mol% or more.
 要求される品質によっては、ポリブチレンテレフタレートの物性を損なわない範囲でテレフタル酸以外の酸成分を共重合する事もできる。例えば、フタル酸、イソフタル酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ベンゾフェノンジカルボン酸、4,4’-ジフェノキシエタンジカルボン酸、4,4’-ジフェニルスルホンジカルボン酸、2,6-ナフタレンジカルボン酸などの芳香族ジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸などの脂環式ジカルボン酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸などの脂肪族ジカルボン酸などを挙げる事ができる。 Depending on the quality required, an acid component other than terephthalic acid can be copolymerized within a range that does not impair the physical properties of polybutylene terephthalate. For example, phthalic acid, isophthalic acid, 4,4′-diphenyldicarboxylic acid, 4,4′-diphenylether dicarboxylic acid, 4,4′-benzophenone dicarboxylic acid, 4,4′-diphenoxyethanedicarboxylic acid, 4,4 ′ -Arocyclic dicarboxylic acids such as diphenylsulfone dicarboxylic acid, aromatic dicarboxylic acids such as 2,6-naphthalenedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid And aliphatic dicarboxylic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid and sebacic acid.
 要求される品質によっては、ポリブチレンテレフタレートの物性を損なわない範囲でBD以外のジオール成分を共重合する事もできる。例えば、エチレングリコール、ジエチレングリコール、ポリエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ポリプロピレングリコール、ポリテトラメチレングリコール、ジブチレングリコール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,8-オクタンジオール等の脂肪族ジオール、1,2-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメチロール等の脂環式ジオール、キシリレングリコール、4,4’-ジヒドロキシビフェニル、2,2-ビス(4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン等の芳香族ジオール等を挙げる事ができる。 Depending on the required quality, diol components other than BD can be copolymerized within a range that does not impair the physical properties of polybutylene terephthalate. For example, ethylene glycol, diethylene glycol, polyethylene glycol, 1,2-propanediol, 1,3-propanediol, polypropylene glycol, polytetramethylene glycol, dibutylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6 -Aliphatic diols such as hexanediol, 1,8-octanediol, alicyclic diols such as 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethylol, xylylene glycol, 4, Examples thereof include aromatic diols such as 4′-dihydroxybiphenyl, 2,2-bis (4-hydroxyphenyl) propane, and bis (4-hydroxyphenyl) sulfone.
 本発明においては、更に、乳酸、グリコール酸、m-ヒドロキシ安息香酸、p-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフタレンカルボン酸、p-β-ヒドロキシエトキシ安息香酸などのヒドロキシカルボン酸、ステアリルアルコール、ベンジルアルコール、ステアリン酸、安息香酸、t-ブチル安息香酸、ベンゾイル安息香酸などの単官能成分、トリカルバリル酸、トリメリット酸、トリメシン酸、ピロメリット酸、没食子酸、トリメチロールエタン、トリメチロールプロパン、グリセロール、ペンタエリスリトール等の三官能以上の多官能成分などを共重合成分として使用する事ができる。 In the present invention, further, hydroxycarboxylic acids such as lactic acid, glycolic acid, m-hydroxybenzoic acid, p-hydroxybenzoic acid, 6-hydroxy-2-naphthalenecarboxylic acid, p-β-hydroxyethoxybenzoic acid, stearyl alcohol Monofunctional components such as benzyl alcohol, stearic acid, benzoic acid, t-butylbenzoic acid, benzoylbenzoic acid, tricarballylic acid, trimellitic acid, trimesic acid, pyromellitic acid, gallic acid, trimethylolethane, trimethylolpropane Trifunctional or higher polyfunctional components such as glycerol and pentaerythritol can be used as the copolymerization component.
 本発明のポリブチレンテレフタレート樹脂は、テレフタル酸とBDとの重合反応の際に、触媒としてアルミニウム化合物、及びリン化合物を組み合わせる事で得られる。従来のチタン化合物を使用する場合と比べて、成形時の分解反応を抑制する事ができるため、ポリブチレンテレフタレートのヒドロキシル基末端から発生するTHF、BD発生量を大きく低減する事が可能である。重合触媒を構成するアルミニウム化合物、リン化合物としては、公知の化合物が限定なく使用できる。 The polybutylene terephthalate resin of the present invention can be obtained by combining an aluminum compound and a phosphorus compound as a catalyst in the polymerization reaction between terephthalic acid and BD. Compared with the case where a conventional titanium compound is used, the decomposition reaction during molding can be suppressed, so that the amount of THF and BD generated from the hydroxyl group end of polybutylene terephthalate can be greatly reduced. As the aluminum compound and phosphorus compound constituting the polymerization catalyst, known compounds can be used without limitation.
 アルミニウム化合物としては、具体的には、酢酸アルミニウム、塩基性酢酸アルミニウム、乳酸アルミニウムなどのカルボン酸塩、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウムなどの無機酸塩、アルミニウムアセチルアセトネートなどのキレート化合物、シュウ酸アルミニウムなどの有機アルミニウム化合物及びこれらの部分加水分解物などが挙げられる。これらのうちカルボン酸塩、無機酸塩及びキレート化合物が好ましく、これらの中でも酢酸アルミニウム、塩基性酢酸アルミニウム、乳酸アルミニウム、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウム及びアルミニウムアセチルアセトネートがより好ましく、酢酸アルミニウム、塩基性酢酸アルミニウム、塩化アルミニウム、水酸化アルミニウム及び水酸化塩化アルミニウムがさらに好ましく、酢酸アルミニウム、塩基性酢酸アルミニウムが最も好ましい。 Specific examples of the aluminum compound include carboxylates such as aluminum acetate, basic aluminum acetate and aluminum lactate, inorganic acid salts such as aluminum chloride, aluminum hydroxide and aluminum hydroxide chloride, and chelate such as aluminum acetylacetonate. Examples thereof include organic aluminum compounds such as compounds and aluminum oxalate, and partial hydrolysates thereof. Among these, carboxylate, inorganic acid salt and chelate compound are preferable, and among these, aluminum acetate, basic aluminum acetate, aluminum lactate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride and aluminum acetylacetonate are more preferable, Aluminum acetate, basic aluminum acetate, aluminum chloride, aluminum hydroxide and aluminum hydroxide chloride are more preferred, and aluminum acetate and basic aluminum acetate are most preferred.
 本発明にかかる重合触媒に用いられるアルミニウム化合物の使用量は、アルミニウム原子として、得られるポリブチレンテレフタレート樹脂の全質量に対して10~50ppm残存するようにする事が好ましく、より好ましくは15~45ppm、更に好ましくは20~40ppm、特に好ましくは30~40ppmである。 The amount of the aluminum compound used in the polymerization catalyst according to the present invention is preferably 10 to 50 ppm, more preferably 15 to 45 ppm, as aluminum atoms with respect to the total mass of the resulting polybutylene terephthalate resin. More preferably, it is 20 to 40 ppm, and particularly preferably 30 to 40 ppm.
 アルミニウム原子が10ppm未満の場合、触媒活性が著しく劣り、重合速度が低下する可能性がある。50ppmを超えるとアルミニウム系異物(アルミニウム化合物由来の異物)を生成させ、透明性が要求される成形品の場合、アルミニウム系異物が透明性を悪化させてしまう場合がある。また、ポリブチレンテレフタレート樹脂の結晶化速度も変化してしまうため、成形加工に影響を及ぼす可能性もある。 When the aluminum atom is less than 10 ppm, the catalytic activity is remarkably inferior, and the polymerization rate may decrease. If it exceeds 50 ppm, aluminum-based foreign matter (foreign matter derived from an aluminum compound) is generated, and in the case of a molded product that requires transparency, the aluminum-based foreign matter may deteriorate transparency. Moreover, since the crystallization speed of the polybutylene terephthalate resin also changes, there is a possibility that the molding process will be affected.
 アルミニウム化合物は、ポリブチレンテレフタレート重合時に減圧環境下に置かれても、添加量(使用量)のほぼ100%が残留するので、添加量が残存量になると考えてよい。
 本発明のポリブチレンテレフタレート樹脂中のアルミニウム原子の残存量(含有量)は、ポリブチレンテレフタレート樹脂の全質量に対して、好ましくは10~50ppm、より好ましくは15~45ppm、更に好ましくは20~40ppm、特に好ましくは30~40ppmである。
Even if the aluminum compound is placed in a reduced pressure environment during the polymerization of polybutylene terephthalate, almost 100% of the addition amount (use amount) remains, so it may be considered that the addition amount becomes the remaining amount.
The residual amount (content) of aluminum atoms in the polybutylene terephthalate resin of the present invention is preferably 10 to 50 ppm, more preferably 15 to 45 ppm, still more preferably 20 to 40 ppm based on the total mass of the polybutylene terephthalate resin. Particularly preferred is 30 to 40 ppm.
 重合触媒に用いられるリン化合物は、特に限定されないが、ホスホン酸系化合物、ホスフィン酸系化合物を用いると触媒活性の向上効果が大きく好ましく、これらの中でもホスホン酸系化合物を用いると触媒活性の向上効果が特に大きく好ましい。 The phosphorus compound used for the polymerization catalyst is not particularly limited, but the use of a phosphonic acid compound or a phosphinic acid compound is highly preferable for improving the catalytic activity. Among these, the use of a phosphonic acid compound is effective for improving the catalytic activity. Is particularly large and preferred.
 これらのリン化合物のうち、同一分子内にフェノール部を有するリン化合物が好ましい。フェノール構造を有するリン化合物であれば特に限定はされないが、同一分子内にフェノール部を有する、ホスホン酸系化合物、ホスフィン酸系化合物からなる群より選ばれる一種または二種以上の化合物を用いると触媒活性の向上効果が大きく好ましい。これらの中でも、一種または二種以上の同一分子内にフェノール部を有するホスホン酸系化合物を用いると触媒活性の向上効果が特に大きく好ましい。 Of these phosphorus compounds, phosphorus compounds having a phenol moiety in the same molecule are preferred. It is not particularly limited as long as it is a phosphorus compound having a phenol structure, but it is a catalyst if one or more compounds selected from the group consisting of phosphonic acid compounds and phosphinic acid compounds having a phenol moiety in the same molecule are used. The effect of improving the activity is large and preferable. Among these, the use of a phosphonic acid compound having a phenol moiety in one or two or more of the same molecules is particularly preferable because the effect of improving the catalytic activity is particularly large.
 また、同一分子内にフェノール部を有するリン化合物としては、下記一般式(1)、(2)で表される化合物などが挙げられる。 Further, examples of the phosphorus compound having a phenol moiety in the same molecule include compounds represented by the following general formulas (1) and (2).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 (式(1)~(2)中、Rはフェノール部を含む炭素数1~50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基などの置換基およびフェノール部を含む炭素数1~50の炭化水素基を表す。Rは、水素、炭素数1~50の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基などの置換基を含む炭素数1~50の炭化水素基を表す。R、Rはそれぞれ独立に水素、炭素数1~50の炭化水素基、水酸基またはアルコキシル基などの置換基を含む炭素数1~50の炭化水素基を表す。ただし、炭化水素基は分岐構造やシクロヘキシル等の脂環構造やフェニルやナフチル等の芳香環構造を含んでいてもよい。RとRの末端どうしは結合していてもよい。) (In the formulas (1) to (2), R 1 is a hydrocarbon group having 1 to 50 carbon atoms including a phenol part, a hydroxyl group, a halogen group, an alkoxyl group, an amino group or the like, and a carbon number 1 including a phenol part. R 4 represents a hydrocarbon group having 1 to 50 carbon atoms, including a substituent such as hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group, a halogen group, an alkoxyl group, or an amino group. R 2 and R 3 each independently represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydrocarbon group having 1 to 50 carbon atoms including a substituent such as a hydroxyl group or an alkoxyl group. The group may contain a branched structure, an alicyclic structure such as cyclohexyl, or an aromatic ring structure such as phenyl or naphthyl, and the ends of R 2 and R 4 may be bonded to each other.)
 前記の同一分子内にフェノール部を有するリン化合物としては、例えば、p-ヒドロキシフェニルホスホン酸、p-ヒドロキシフェニルホスホン酸ジメチル、p-ヒドロキシフェニルホスホン酸ジエチル、p-ヒドロキシフェニルホスホン酸ジフェニル、ビス(p-ヒドロキシフェニル)ホスフィン酸、ビス(p-ヒドロキシフェニル)ホスフィン酸メチル、ビス(p-ヒドロキシフェニル)ホスフィン酸フェニル、p-ヒドロキシフェニルフェニルホスフィン酸、p-ヒドロキシフェニルフェニルホスフィン酸メチル、p-ヒドロキシフェニルフェニルホスフィン酸フェニル、p-ヒドロキシフェニルホスフィン酸、p-ヒドロキシフェニルホスフィン酸メチル、p-ヒドロキシフェニルホスフィン酸フェニルなどが挙げられる。その他、下記一般式(3)で表されるリン化合物を挙げる事ができる。 Examples of the phosphorus compound having a phenol moiety in the same molecule include p-hydroxyphenylphosphonic acid, dimethyl p-hydroxyphenylphosphonate, diethyl p-hydroxyphenylphosphonate, diphenyl p-hydroxyphenylphosphonate, bis ( p-hydroxyphenyl) phosphinic acid, methyl bis (p-hydroxyphenyl) phosphinate, phenyl bis (p-hydroxyphenyl) phosphinate, p-hydroxyphenylphenylphosphinic acid, methyl p-hydroxyphenylphenylphosphinate, p-hydroxy Examples include phenyl phenylphenylphosphinate, p-hydroxyphenylphosphinic acid, methyl p-hydroxyphenylphosphinate, and phenyl p-hydroxyphenylphosphinate. In addition, phosphorus compounds represented by the following general formula (3) can be exemplified.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(3)中、X、Xは、それぞれ、水素、炭素数1~4のアルキル基、または1価以上の金属を表す。また、Xは、金属が2価以上であって、Xが存在しなくても良い。さらには、リン化合物に対して金属の余剰の価数に相当するアニオンが配置されていても良い。金属としては、Li、Na、K、Ca、Mg、Alが好ましい。 In formula (3), X 1 and X 2 each represent hydrogen, an alkyl group having 1 to 4 carbon atoms, or a monovalent or higher metal. Moreover, X 1 is metal be two or more valences, X 2 may be absent. Furthermore, an anion corresponding to the surplus valence of the metal may be arranged with respect to the phosphorus compound. As the metal, Li, Na, K, Ca, Mg, and Al are preferable.
 これらの同一分子内にフェノール部を有するリン化合物をポリブチレンテレフタレート樹脂の重合時に添加することによって、アルミニウム化合物の触媒活性が向上するとともに、重合したポリブチレンテレフタレート樹脂の熱安定性も向上する。また、リン化合物を使用することで、樹脂の耐熱性を向上させることができるため、成形時の分解反応を抑制する事が可能となり、THFとBDの発生量を大きく低減する事ができる。原因は定かではないが、リン化合物中のヒンダードフェノール部分によりポリブチレンテレフタレート樹脂の耐熱性を向上させていると考えられる。 By adding these phosphorus compounds having a phenol moiety in the same molecule during the polymerization of the polybutylene terephthalate resin, the catalytic activity of the aluminum compound is improved and the thermal stability of the polymerized polybutylene terephthalate resin is also improved. Moreover, since the heat resistance of resin can be improved by using a phosphorus compound, it becomes possible to suppress the decomposition reaction at the time of shaping | molding, and the generation amount of THF and BD can be reduced greatly. Although the cause is not clear, it is thought that the heat resistance of the polybutylene terephthalate resin is improved by the hindered phenol part in the phosphorus compound.
 上記の中でも、重合触媒として使用する事が好ましいリン化合物は、化学式(4)、化学式(5)で表される化合物から選ばれる少なくとも一種のリン化合物である。 Among the above, the phosphorus compound that is preferably used as the polymerization catalyst is at least one phosphorus compound selected from the compounds represented by chemical formula (4) and chemical formula (5).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記の化学式(4)で示される化合物としては、Irgamod295(ビーエーエスエフ社製)が市販されている。また、化学式(5)にて示される化合物としては、Irganox1425(ビーエーエスエフ社製)が市販されており、使用可能である。 As the compound represented by the above chemical formula (4), Irgamod 295 (manufactured by BASF) is commercially available. As the compound represented by the chemical formula (5), Irganox 1425 (manufactured by BASF) is commercially available and can be used.
 本発明にかかる重合触媒に用いられるリン化合物の使用量は、リン原子として、得られるポリブチレンテレフタレート樹脂の全質量に対して20~150ppm残存するようにする事が好ましく、より好ましくは30~120ppmであり、更に好ましくは40~100ppmであり、特に好ましくは50~90ppmである。 The amount of the phosphorus compound used in the polymerization catalyst according to the present invention is preferably 20 to 150 ppm, more preferably 30 to 120 ppm, remaining as phosphorus atoms with respect to the total mass of the resulting polybutylene terephthalate resin. More preferably, it is 40 to 100 ppm, and particularly preferably 50 to 90 ppm.
 上記の上下限から外れる量のリン原子が残存する事で、重合活性を低下させる可能性がある。リン化合物は、ポリブチレンテレフタレート重合時に減圧条件下に置かれる際、その条件により添加量(使用量)の約10~60%が系外に除去される。そこで、実際は、数回の試行実験を行い、リン原子のポリブチレンテレフタレート樹脂への残留率を見極めた上で、添加量を決定する必要がある。
 本発明のポリブチレンテレフタレート樹脂中のリン原子の残存量(含有量)は、ポリブチレンテレフタレート樹脂の全質量に対して、好ましくは20~150ppm、より好ましくは30~120ppm、更に好ましくは40~100ppmであり、特に好ましくは50~90ppmである。
Residual amounts of phosphorus atoms that deviate from the above upper and lower limits may reduce the polymerization activity. When the phosphorus compound is placed under reduced pressure conditions during polymerization of polybutylene terephthalate, about 10 to 60% of the addition amount (use amount) is removed from the system depending on the conditions. Therefore, in practice, it is necessary to determine the amount of addition after conducting trial experiments several times and determining the residual ratio of phosphorus atoms to the polybutylene terephthalate resin.
The residual amount (content) of phosphorus atoms in the polybutylene terephthalate resin of the present invention is preferably 20 to 150 ppm, more preferably 30 to 120 ppm, still more preferably 40 to 100 ppm based on the total mass of the polybutylene terephthalate resin. Particularly preferred is 50 to 90 ppm.
 本発明の効果を損なわない範囲で、触媒活性をさらに向上させるために、アンチモン化合物、チタン化合物、スズ化合物、ゲルマニウム化合物等の金属含有重合触媒を併用しても良い。その場合、アンチモン化合物は、得られるポリブチレンテレフタレート樹脂の質量に対して、アンチモン原子として30ppm以下が好ましく、ゲルマニウム化合物は、得られるポリブチレンテレフタレート樹脂の質量に対して、ゲルマニウム原子として10ppm以下が好ましく、チタン化合物は、得られるポリブチレンテレフタレート樹脂の質量に対して、チタン原子として3ppm以下である事が好ましく、スズ化合物は、得られるポリブチレンテレフタレート樹脂の質量に対して、スズ原子として3ppm以下が好ましい。本発明の目的からは、これらアンチモン化合物、チタン化合物、スズ化合物、ゲルマニウム化合物等の金属含有重合触媒は、極力使用しない事が好ましい。 In order not to impair the effects of the present invention, a metal-containing polymerization catalyst such as an antimony compound, a titanium compound, a tin compound, or a germanium compound may be used in combination in order to further improve the catalytic activity. In that case, the antimony compound is preferably 30 ppm or less as an antimony atom with respect to the mass of the resulting polybutylene terephthalate resin, and the germanium compound is preferably 10 ppm or less as a germanium atom with respect to the mass of the obtained polybutylene terephthalate resin. The titanium compound is preferably 3 ppm or less as a titanium atom with respect to the mass of the resulting polybutylene terephthalate resin, and the tin compound has 3 ppm or less as a tin atom with respect to the mass of the resulting polybutylene terephthalate resin. preferable. For the purposes of the present invention, it is preferable that these metal-containing polymerization catalysts such as antimony compounds, titanium compounds, tin compounds and germanium compounds are not used as much as possible.
 本発明においてアルミニウム化合物に加えて少量のアルカリ金属、アルカリ土類金属並びにその化合物から選択される少なくとも1種を第2金属含有成分として共存させても良い。これらの金属を添加する事で、ポリブチレンテレフタレート樹脂の末端基を安定化させる事ができ、THF、BD発生量を抑制する効果がある。アルカリ金属、アルカリ土類金属、またはそれらの化合物を併用添加する場合、その残存量は、アルカリ金属原子、アルカリ土類金属原子として、50ppm以下が好ましい。 In the present invention, in addition to the aluminum compound, a small amount of alkali metal, alkaline earth metal and at least one selected from the compound may coexist as the second metal-containing component. By adding these metals, the terminal group of polybutylene terephthalate resin can be stabilized, and there is an effect of suppressing the generation amount of THF and BD. When an alkali metal, an alkaline earth metal, or a compound thereof is added in combination, the residual amount is preferably 50 ppm or less as an alkali metal atom or an alkaline earth metal atom.
 本発明のポリブチレンテレフタレート樹脂の固有粘度は0.5~1.3dL/gである事が必要である。固有粘度が0.5dL/g未満の場合は、成形品の機械的強度が不十分となる。1.3dL/gを超える場合は溶融粘度が高くなり、流動性が悪化して、成形性が悪化する傾向にある。固有粘度は、0.6~1.2dL/gが好ましく、0.7~1.15dL/gがより好ましく、0.8~1.1dL/gが更に好ましい。 The intrinsic viscosity of the polybutylene terephthalate resin of the present invention is required to be 0.5 to 1.3 dL / g. When the intrinsic viscosity is less than 0.5 dL / g, the mechanical strength of the molded product becomes insufficient. When it exceeds 1.3 dL / g, the melt viscosity increases, the fluidity deteriorates, and the moldability tends to deteriorate. The intrinsic viscosity is preferably 0.6 to 1.2 dL / g, more preferably 0.7 to 1.15 dL / g, and still more preferably 0.8 to 1.1 dL / g.
(ポリブチレンテレフタレート樹脂の重合方法)
 ポリブチレンテレフタレート樹脂の製造方法は、原料供給またはポリマーの追い出し形態から連続式と回分式とに分別される。本発明においては、生産性や製品品質の高い安定性から、連続的に原料を供給し、連続的にエステル化反応、さらにはそこから続く重縮合反応も連続的に行う連続式が望ましい。連続式反応装置とは、エステル化反応の反応容器と溶融重縮合反応容器を配管でつなぎ、それぞれの反応容器を空にさせる事なく連続的に原料投入、配管での溶融重縮合反応容器への移送、溶融重縮合反応容器からの樹脂の取り出しを行う方法である。
(Polybutylene terephthalate resin polymerization method)
The method for producing the polybutylene terephthalate resin is classified into a continuous type and a batch type from the raw material supply or polymer discharge mode. In the present invention, from the viewpoint of productivity and high product quality stability, it is desirable to use a continuous system in which raw materials are continuously supplied and an esterification reaction and a polycondensation reaction are continuously performed. Continuous reaction equipment is a reaction vessel for esterification and a melt polycondensation reaction vessel connected by piping, and the raw materials are continuously charged without emptying each reaction vessel. In this method, the resin is removed from the transfer and melt polycondensation reaction vessel.
 これらいずれの方式においても、エステル化反応は1段階で行っても良いし、また多段階に分けて行っても良い。溶融重縮合反応も1段階で行っても良いし、また多段階に分けて行っても良い。 In any of these methods, the esterification reaction may be performed in one stage or may be performed in multiple stages. The melt polycondensation reaction may be performed in one stage or may be performed in multiple stages.
 本発明のポリブチレンテレフタレート樹脂に係る重合法の一例は、次の通りである。すなわち、テレフタル酸を主成分とする前記ジカルボン酸成分と、BDを主成分とする前記ジオール成分とを原料混合槽で混合してスラリーとし、BDのTHFへの分子内脱水環化反応を抑制するため、好ましくは210~235℃の温度で、また通常10~133kPa(絶対圧力、以下同じ)、好ましくは20~110kPa、更に好ましくは40~105kPaの圧力下で、通常2~10時間、好ましくは2.5~8時間、更に好ましくは3~6時間連続的にエステル化反応させる。得られたエステル化反応生成物(以下、オリゴマーと称する場合もある)を重縮合反応槽に移送し、通常210~280℃、好ましくは220~270℃、さらに好ましくは230~260℃の温度で、また通常10kPa以下、好ましくは5kPa以下、更に好ましくは1kPa以下の減圧下で、攪拌下に、通常1~15時間、好ましくは2~10時間、更に好ましくは3~6時間で重縮合反応させる重合反応により得られたポリマーは、通常、重縮合反応槽の底部からポリマー抜き出しダイに移送されてストランド状に抜き出され、水冷されながら又は水冷後、カッターで切断され、ペレット状、チップ状などの粒状体とされる。 An example of the polymerization method according to the polybutylene terephthalate resin of the present invention is as follows. That is, the dicarboxylic acid component containing terephthalic acid as a main component and the diol component containing BD as a main component are mixed in a raw material mixing tank to form a slurry to suppress intramolecular dehydration cyclization reaction of BD to THF. Therefore, preferably at a temperature of 210 to 235 ° C. and usually 10 to 133 kPa (absolute pressure, the same shall apply hereinafter), preferably 20 to 110 kPa, more preferably 40 to 105 kPa, usually 2 to 10 hours, preferably The esterification is continuously carried out for 2.5 to 8 hours, more preferably 3 to 6 hours. The obtained esterification reaction product (hereinafter sometimes referred to as an oligomer) is transferred to a polycondensation reaction tank, and is usually 210 to 280 ° C., preferably 220 to 270 ° C., more preferably 230 to 260 ° C. In addition, the polycondensation reaction is usually performed for 1 to 15 hours, preferably 2 to 10 hours, more preferably 3 to 6 hours under stirring under a reduced pressure of 10 kPa or less, preferably 5 kPa or less, more preferably 1 kPa or less. The polymer obtained by the polymerization reaction is usually transferred from the bottom of the polycondensation reaction tank to a polymer extraction die and extracted in the form of a strand, while being cooled with water or after being cooled with water, cut with a cutter, pellets, chips, etc. It is made of granular material.
 更に、ポリブチレンテレフタレート樹脂の重縮合反応工程は、一旦、溶融重縮合で比較的分子量の小さい、例えば固有粘度0.1~1.1dL/g程度のポリブチレンテレフタレート樹脂を製造した後、引き続き、ポリブチレンテレフタレート樹脂の融点以下の温度、例えば180~220℃で固相重縮合(固相重合)させる事もできる。 Further, the polycondensation reaction step of the polybutylene terephthalate resin once produced a polybutylene terephthalate resin having a relatively small molecular weight, for example, an intrinsic viscosity of about 0.1 to 1.1 dL / g, by melt polycondensation. Solid phase polycondensation (solid phase polymerization) can also be performed at a temperature below the melting point of the polybutylene terephthalate resin, for example, 180 to 220 ° C.
 本発明で用いるポリブチレンテレフタレートの重合触媒は、重合反応の任意の段階で反応系に添加する事ができる。例えば、エステル化反応の開始前および反応途中の任意の段階、重縮合反応の開始直前、あるいは重縮合反応途中の任意の段階で、反応系へ添加する事ができる。特に、本発明においてはアルミニウム化合物およびリン化合物の添加は、重縮合反応の開始直前に添加する事が好ましい。 The polymerization catalyst for polybutylene terephthalate used in the present invention can be added to the reaction system at any stage of the polymerization reaction. For example, it can be added to the reaction system at any stage before the start of the esterification reaction and during the reaction, immediately before the start of the polycondensation reaction, or at any stage during the polycondensation reaction. In particular, in the present invention, it is preferable to add the aluminum compound and the phosphorus compound immediately before the start of the polycondensation reaction.
 本発明のポリブチレンテレフタレート樹脂を製造するにあたり、重縮合反応前のオリゴマーの末端組成を調整する事で、重縮合反応速度、及びポリブチレンテレフタレート樹脂から発生するTHF、BDの量を調整する事ができる。アルミニウム化合物、及びリン化合物を組み合わせる場合、重縮合反応前のオリゴマーの末端総数のうち、ヒドロキシル基の占める割合を50~90%とする事で、効率良く重縮合反応を進める事ができる。この際、ヒドロキシル基の割合が高い程、重縮合反応後のポリブチレンテレフタレートのヒドロキシル基の割合も高くなるため、結果、THF、BDの発生量も大きくなる。重縮合反応前のオリゴマーのヒドロキシル基の割合は、好ましくは55~85%、より好ましくは60~80%の範囲である。 In producing the polybutylene terephthalate resin of the present invention, the polycondensation reaction rate and the amount of THF and BD generated from the polybutylene terephthalate resin can be adjusted by adjusting the terminal composition of the oligomer before the polycondensation reaction. it can. When combining an aluminum compound and a phosphorus compound, the polycondensation reaction can be efficiently carried out by setting the proportion of hydroxyl groups to 50 to 90% of the total number of terminals of the oligomer before the polycondensation reaction. At this time, the higher the proportion of hydroxyl groups, the higher the proportion of hydroxyl groups in the polybutylene terephthalate after the polycondensation reaction, resulting in an increase in the amount of THF and BD generated. The proportion of hydroxyl groups in the oligomer before the polycondensation reaction is preferably in the range of 55 to 85%, more preferably 60 to 80%.
 背景技術でも述べたが、ポリブチレンテレフタレートは、テレフタル酸とBDを原料する直接エステル化法が好ましく、上記のオリゴマーを得るという点に関しても、ヒドロキシル基をコントロールしやすい直接エステル化法の方が好ましい。そのため、本発明のポリブチレンテレフタレート樹脂は、直接エステル化法を採用して得られたものである。ジメチルテレフタレートとBDのエステル交換反応により得られるオリゴマーは、ヒドロキシル基の割合が必然的に90%超となるため、重縮合反応後に得られるポリブチレンテレフタレートのヒドロキシル基の割合も高くなり、THF、BDの発生量が高くなる傾向にある。 As described in the background art, polybutylene terephthalate is preferably a direct esterification method using terephthalic acid and BD as raw materials, and also from the viewpoint of obtaining the above oligomer, a direct esterification method in which the hydroxyl group is easily controlled is more preferable. . Therefore, the polybutylene terephthalate resin of the present invention is obtained by employing a direct esterification method. The oligomer obtained by the transesterification reaction between dimethyl terephthalate and BD inevitably has a hydroxyl group ratio of more than 90%. Therefore, the ratio of the hydroxyl group of polybutylene terephthalate obtained after the polycondensation reaction also increases, and THF, BD The amount of generation tends to be high.
 本発明のポリブチレンテレフタレート樹脂は、下記(1)、(2)を満足する。
(1)該ポリブチレンテレフタレート樹脂を265℃、10分、不活性ガス雰囲気下で加熱した際に発生するテトラヒドロフラン(THF)が50ppm以下
(2)該ポリブチレンテレフタレート樹脂を265℃、10分、不活性ガス雰囲気下で加熱した際に発生する1,4-ブタンジオール(BD)が10ppm以下
The polybutylene terephthalate resin of the present invention satisfies the following (1) and (2).
(1) Tetrahydrofuran (THF) generated when the polybutylene terephthalate resin is heated at 265 ° C. for 10 minutes in an inert gas atmosphere is 50 ppm or less. (2) The polybutylene terephthalate resin is heated at 265 ° C. for 10 minutes. 1,4-butanediol (BD) generated when heated in an active gas atmosphere is 10 ppm or less
 前記(1)、(2)は、後記する実施例の項に記載の(THF、BD発生量の測定方法)で詳述する方法により測定できる。具体的には、(株)島津製作所社製の加熱脱着装置(TD-20)/ガスクロマトグラフ質量分析計(QP-2010UItra)、カラムRxi-1ms(長さ60m、内径0.32mm、膜厚0.25μm)を使用して、ポリブチレンテレフタレート樹脂サンプルを265℃で10分間熱処理し、捕集した成分を分析することで測定できる。不活性ガスとしては、ヘリウムガスを用いることが好ましい。 The above (1) and (2) can be measured by the method described in detail in (Methods for measuring THF and BD generation) described in the Examples section below. Specifically, a thermal desorption apparatus (TD-20) / gas chromatograph mass spectrometer (QP-2010UItra) manufactured by Shimadzu Corporation, column Rxi-1 ms (length 60 m, inner diameter 0.32 mm, film thickness 0) .25 μm), a polybutylene terephthalate resin sample is heat-treated at 265 ° C. for 10 minutes, and the collected components are analyzed. As the inert gas, helium gas is preferably used.
 前記(1)、(2)を満足するポリブチレンテレフタレート樹脂は、上記で説明したように、アルミニウム化合物、及びリン化合物を重合触媒として用い、直接エステル化法を採用し、かつ重縮合反応前のオリゴマーの末端総数のうち、ヒドロキシル基の占める割合を特定の範囲とすることで、得ることができる。
 THFの発生量は、40ppm以下が好ましく、30ppm以下がより好ましく、20ppm以下が更に好ましい。BDの発生量は、5ppm以下が好ましい。
As described above, the polybutylene terephthalate resin satisfying the above (1) and (2) employs a direct esterification method using an aluminum compound and a phosphorus compound as a polymerization catalyst, and before the polycondensation reaction. It can obtain by making the ratio which a hydroxyl group occupies among the terminal total number of an oligomer into a specific range.
The amount of THF generated is preferably 40 ppm or less, more preferably 30 ppm or less, and still more preferably 20 ppm or less. The amount of BD generated is preferably 5 ppm or less.
 本発明のポリブチレンテレフタレート樹脂には、2,6-ジ-t-ブチル-4-オクチルフェノール、ペンタエリスリチル-テトラキス〔3-(3’,5’-t-ブチル-4’-ヒドロキシフェニル)プロピオネート〕等のフェノール化合物、ジラウリル-3,3’-チオジプロピオネート、ペンタエリスリチル-テトラキス(3-ラウリルチオジプロピオネート)等のチオエーテル化合物、トリフェニルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト等の燐化合物などの抗酸化剤、パラフィンワックス、マイクロクリスタリンワックス、ポリエチレンワックス、モンタン酸やモンタン酸エステルに代表される長鎖脂肪酸およびそのエステル、シリコーンオイル等の離型剤などを添加してもよい。 The polybutylene terephthalate resin of the present invention includes 2,6-di-tert-butyl-4-octylphenol, pentaerythrityl-tetrakis [3- (3 ′, 5′-tert-butyl-4′-hydroxyphenyl) propionate ], Phenol compounds such as dilauryl-3,3′-thiodipropionate, thioether compounds such as pentaerythrityl-tetrakis (3-laurylthiodipropionate), triphenyl phosphite, tris (nonylphenyl) phosphite, Antioxidants such as phosphorus compounds such as tris (2,4-di-t-butylphenyl) phosphite, paraffin wax, microcrystalline wax, polyethylene wax, long chain fatty acids represented by montanic acid and montanic acid ester, and the like Release of esters, silicone oil, etc. Or the like may be added.
 本発明のポリブチレンテレフタレート樹脂には、強化充填材を配合する事ができる。強化充填材としては、特に制限されないが、例えば、ガラス繊維、カーボン繊維、シリカ・アルミナ繊維、ジルコニア繊維、ホウ素繊維、窒化ホウ素繊維、窒化ケイ素チタン酸カリウム繊維、金属繊維などの無機繊維、芳香族ポリアミド繊維、フッ素樹脂繊維などの有機繊維などが挙げられる。これらの強化充填材は、2種以上を組み合わせて使用する事ができる。上記の強化充填材の中では、無機充填材、特にガラス繊維が好適に使用される。 A reinforcing filler can be blended in the polybutylene terephthalate resin of the present invention. The reinforcing filler is not particularly limited, but examples thereof include glass fibers, carbon fibers, silica / alumina fibers, zirconia fibers, boron fibers, boron nitride fibers, silicon nitride potassium titanate fibers, metal fibers and other inorganic fibers, aromatics Examples thereof include organic fibers such as polyamide fibers and fluororesin fibers. These reinforcing fillers can be used in combination of two or more. Among the above reinforcing fillers, inorganic fillers, particularly glass fibers, are preferably used.
 強化充填材が無機繊維または有機繊維である場合、その平均繊維径は、特に制限されないが、通常1~100μm、好ましくは2~50μm、更に好ましくは3~30μm、特に好ましくは5~20μmである。また、平均繊維長は、特に制限されないが、通常0.1~20mm、好ましくは1~10mmである。 When the reinforcing filler is an inorganic fiber or an organic fiber, the average fiber diameter is not particularly limited, but is usually 1 to 100 μm, preferably 2 to 50 μm, more preferably 3 to 30 μm, and particularly preferably 5 to 20 μm. . The average fiber length is not particularly limited, but is usually 0.1 to 20 mm, preferably 1 to 10 mm.
 強化充填材は、ポリブチレンテレフタレート樹脂との界面密着性を向上させるため、収束剤または表面処理剤で表面処理して使用する事が好ましい。収束剤または表面処理剤としては、例えば、エポキシ系化合物、アクリル系化合物、イソシアネート系化合物、シラン系化合物、チタネート系化合物などの官能性化合物が挙げられる。強化充填材は、収束剤または表面処理剤により予め表面処理しておく事ができ、または、ポリブチレンテレフタレート樹脂組成物の調製の際に、収束剤または表面処理剤を添加して表面処理する事もできる。強化充填材の添加量は、ポリブチレンテレフタレート樹脂100質量部に対し、通常150質量部以下、好ましくは5~100質量部である。 The reinforcing filler is preferably used after being surface-treated with a sizing agent or a surface treatment agent in order to improve interfacial adhesion with the polybutylene terephthalate resin. Examples of the sizing agent or surface treatment agent include functional compounds such as epoxy compounds, acrylic compounds, isocyanate compounds, silane compounds, and titanate compounds. The reinforcing filler can be surface-treated with a sizing agent or a surface treating agent in advance, or a surface treatment can be performed by adding a sizing agent or a surface treating agent when preparing the polybutylene terephthalate resin composition. You can also. The addition amount of the reinforcing filler is usually 150 parts by mass or less, preferably 5 to 100 parts by mass with respect to 100 parts by mass of the polybutylene terephthalate resin.
 本発明のポリブチレンテレフタレート樹脂には、強化充填材と共に他の充填材を配合する事ができる。配合する他の充填材としては、例えば、板状無機充填材、セラミックビーズ、アスベスト、ワラストナイト、タルク、クレー、マイカ、ゼオライト、カオリン、チタン酸カリウム、硫酸バリウム、酸化チタン、酸化ケイ素、酸化アルミニウム、水酸化マグネシウム等が挙げられる。板状無機充填材を配合する事により、成形品の異方性およびソリを低減する事ができる。板状無機充填材としては、例えば、ガラスフレーク、雲母、金属箔などを挙げる事ができる。これらの中ではガラスフレークが好適に使用される。 In the polybutylene terephthalate resin of the present invention, other fillers can be blended together with the reinforcing filler. Other fillers to be blended include, for example, plate-like inorganic fillers, ceramic beads, asbestos, wollastonite, talc, clay, mica, zeolite, kaolin, potassium titanate, barium sulfate, titanium oxide, silicon oxide, oxidation Aluminum, magnesium hydroxide, etc. are mentioned. By blending the plate-like inorganic filler, the anisotropy and warpage of the molded product can be reduced. Examples of the plate-like inorganic filler include glass flakes, mica, and metal foil. Among these, glass flakes are preferably used.
 本発明のポリブチレンテレフタレート樹脂には、難燃性を付与するために難燃剤を配合する事ができる。難燃剤としては、特に制限されず、例えば、有機ハロゲン化合物、アンチモン化合物、リン化合物、その他の有機難燃剤、無機難燃剤などが挙げられる。有機ハロゲン化合物としては、例えば、臭素化ポリカーボネート、臭素化エポキシ樹脂、臭素化フェノキシ樹脂、臭素化ポリフェニレンエーテル樹脂、臭素化ポリスチレン樹脂、臭素化ビスフェノールA、ポリペンタブロモベンジルアクリレート等が挙げられる。アンチモン化合物としては、例えば、三酸化アンチモン、五酸化アンチモン、アンチモン酸ソーダ等が挙げられる。リン化合物としては、例えば、リン酸エステル、ポリリン酸、ポリリン酸アンモニウム、赤リン等が挙げられる。その他の有機難燃剤としては、例えば、メラミン、シアヌール酸などの窒素化合物などが挙げられる。その他の無機難燃剤としては、例えば、水酸化アルミニウム、水酸化マグネシウム、ケイ素化合物、ホウ素化合物などが挙げられる。 In the polybutylene terephthalate resin of the present invention, a flame retardant can be blended to impart flame retardancy. The flame retardant is not particularly limited, and examples thereof include organic halogen compounds, antimony compounds, phosphorus compounds, other organic flame retardants, and inorganic flame retardants. Examples of the organic halogen compound include brominated polycarbonate, brominated epoxy resin, brominated phenoxy resin, brominated polyphenylene ether resin, brominated polystyrene resin, brominated bisphenol A, polypentabromobenzyl acrylate and the like. Examples of the antimony compound include antimony trioxide, antimony pentoxide, sodium antimonate, and the like. As a phosphorus compound, phosphate ester, polyphosphoric acid, ammonium polyphosphate, red phosphorus etc. are mentioned, for example. Examples of other organic flame retardants include nitrogen compounds such as melamine and cyanuric acid. Examples of other inorganic flame retardants include aluminum hydroxide, magnesium hydroxide, silicon compound, and boron compound.
 本発明のポリブチレンテレフタレート樹脂には、必要に応じ、慣用の添加剤などを配合する事ができる。斯かる添加剤としては、特に制限されず、例えば、酸化防止剤、耐熱安定剤などの安定剤の他、滑剤、離型剤、触媒失活剤、結晶核剤、結晶化促進剤などが挙げられる。これらの添加剤は、重合途中または重合後に添加する事ができる。更に、ポリブチレンテレフタレート樹脂に、所望の性能を付与するため、紫外線吸収剤、耐候安定剤などの安定剤、染顔料などの着色剤、帯電防止剤、発泡剤、可塑剤、耐衝撃性改良剤などを配合する事ができる。 The polybutylene terephthalate resin of the present invention can be blended with conventional additives as required. Such additives are not particularly limited and include, for example, stabilizers such as antioxidants and heat stabilizers, lubricants, mold release agents, catalyst deactivators, crystal nucleating agents, crystallization accelerators, and the like. It is done. These additives can be added during the polymerization or after the polymerization. Furthermore, in order to impart desired performance to the polybutylene terephthalate resin, stabilizers such as UV absorbers and weathering stabilizers, colorants such as dyes and pigments, antistatic agents, foaming agents, plasticizers, impact modifiers. Etc. can be blended.
 本発明のポリブチレンテレフタレート樹脂には、必要に応じて、ポリエチレン、ポリプロピレン、ポリスチレン、ポリアクリロニトリル、ポリメタクリル酸エステル、ABS樹脂、ポリカーボネート、ポリアミド、ポリフェニレンサルファイド、ポリエチレンテレフタレート、液晶ポリエステル、ポリアセタール、ポリフェニレンオキサイド等の熱可塑性樹脂、フェノール樹脂、メラミン樹脂、シリコーン樹脂、エポキシ樹脂などの熱硬化性樹脂を配合する事ができる。これらの熱可塑性樹脂および熱硬化性樹脂は、2種以上を組み合わせて使用する事もできる。 The polybutylene terephthalate resin of the present invention includes polyethylene, polypropylene, polystyrene, polyacrylonitrile, polymethacrylic acid ester, ABS resin, polycarbonate, polyamide, polyphenylene sulfide, polyethylene terephthalate, liquid crystal polyester, polyacetal, polyphenylene oxide, etc. Thermosetting resins such as thermoplastic resins, phenol resins, melamine resins, silicone resins, and epoxy resins can be blended. These thermoplastic resins and thermosetting resins can be used in combination of two or more.
 前記の種々の添加剤や樹脂の配合方法は、特に制限されないが、ベント口から脱揮できる設備を有する1軸または2軸の押出機を混練機として使用する方法が好ましい。各成分は、付加的成分を含めて、混練機に一括して供給する事ができ、あるいは、順次供給する事もできる。また、付加的成分を含めて、各成分から選ばれた2種以上の成分を予め混合しておく事もできる。 The method of blending the various additives and resins is not particularly limited, but a method of using a single or twin screw extruder having equipment capable of devolatilization from the vent port as a kneader is preferable. Each component including an additional component can be supplied to the kneader in a lump or can be supplied sequentially. In addition, two or more kinds of components selected from each component including an additional component can be mixed in advance.
 本発明のポリブチレンテレフタレート樹脂の成形加工方法は、特に制限されず、熱可塑性樹脂について一般に使用されている成形法、すなわち、射出成形、中空成形、押し出し成形、プレス成形などの成形法を適用する事ができる。その際、本発明のポリブチレンテレフタレート樹脂は成形加工時に発生するTHF、BDを低減する事ができるため、成形加工時の金型汚染の頻度を低減する事ができる。その結果、生産効率も向上し、且つ熱安定性、色調、耐加水分解性、透明性、成形性に優れたフィルム、モノフィラメント、繊維、電気電子部品、自動車部品として提供する事ができる。 The method for molding the polybutylene terephthalate resin of the present invention is not particularly limited, and molding methods generally used for thermoplastic resins, that is, molding methods such as injection molding, hollow molding, extrusion molding, and press molding are applied. I can do things. At that time, since the polybutylene terephthalate resin of the present invention can reduce THF and BD generated during the molding process, the frequency of mold contamination during the molding process can be reduced. As a result, the production efficiency can be improved, and the film, monofilament, fiber, electric / electronic component, and automobile component can be provided with excellent thermal stability, color tone, hydrolysis resistance, transparency, and moldability.
 以下に、実施例を示して本発明を具体的に説明するが、本発明は実施例に限定されるものではない。なお、各実施例および比較例において用いた評価方法を以下に説明する。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the examples. In addition, the evaluation method used in each Example and the comparative example is demonstrated below.
(オリゴマーのカルボキシ基の測定)
 オリゴマーを0.2g精秤し、20mLのクロロホルムに溶解し、0.1N-水酸化カリウム-エタノール溶液で、フェノールフタレインを指示薬として滴定し、樹脂1t当たりの当量(単位;eq/ton)を求めた。
(Measurement of carboxy group of oligomer)
0.2 g of the oligomer is precisely weighed, dissolved in 20 mL of chloroform, and titrated with 0.1N-potassium hydroxide-ethanol solution using phenolphthalein as an indicator, and the equivalent (unit: eq / ton) per 1 t of resin is determined. Asked.
(オリゴマーのヒドロキシル基の測定)
 オリゴマー0.5gを精秤し、アセチル化剤(無水酢酸ピリジン溶液0.5モル/L)10mLを加え、95℃以上の水槽に90分間浸漬した。水槽から取り出した直後、純水10mLを添加し室温まで放冷した。フェノールフタレインを指示薬として、0.2N-水酸化ナトリウム-メタノール溶液で滴定した。常法に従い、上記カルボキシ基の値を使いヒドロキシル基を算出した(単位;eq/ton)。
(Measurement of hydroxyl group of oligomer)
0.5 g of the oligomer was precisely weighed, 10 mL of an acetylating agent (acetic anhydride pyridine solution 0.5 mol / L) was added, and immersed in a water bath at 95 ° C. or higher for 90 minutes. Immediately after taking out from a water tank, 10 mL of pure water was added and it stood to cool to room temperature. Titration was performed with 0.2N-sodium hydroxide-methanol solution using phenolphthalein as an indicator. According to a conventional method, a hydroxyl group was calculated using the value of the carboxy group (unit: eq / ton).
(オリゴマーのヒドロキシル基の割合算出)
 ヒドロキシル基の割合は、上記方法で求めたカルボキシ基とヒドロキシル基より、下記式に従って算出した。オリゴマー末端総数をヒドロキシル基とカルボキシ基の合計値としている。
ヒドロキシル基の割合(%)={ヒドロキシル基/(ヒドロキシル基+カルボキシ基)}×100
(Calculation of oligomer hydroxyl group ratio)
The proportion of hydroxyl groups was calculated from the carboxy group and hydroxyl group determined by the above method according to the following formula. The total number of oligomer ends is taken as the total value of hydroxyl group and carboxy group.
Ratio of hydroxyl group (%) = {hydroxyl group / (hydroxyl group + carboxy group)} × 100
(固有粘度の測定方法)
 130℃で16時間乾燥したポリブチレンテレフタレート樹脂サンプル0.1gを精秤し、25mLのフェノール/テトラクロロエタン(3/2(質量比))の混合溶媒に溶解し、オストワルド粘度計を用いて30℃で固有粘度を測定した。
(Measurement method of intrinsic viscosity)
A polybutylene terephthalate resin sample (0.1 g) dried at 130 ° C. for 16 hours is precisely weighed, dissolved in 25 mL of a mixed solvent of phenol / tetrachloroethane (3/2 (mass ratio)), and 30 ° C. using an Ostwald viscometer. The intrinsic viscosity was measured at
(ペレット色調(b値)の測定方法)
 日本電色(株)製の測色色差計(ZE2000)を使用し、色の基本的刺激量を表現している三刺激値XYZから色座標b値を測定した。値が低いほど、黄ばみが少なく色調が良好である事を示す。
(Measurement method of pellet color tone (b value))
Using a colorimetric color difference meter (ZE2000) manufactured by Nippon Denshoku Co., Ltd., the color coordinate b value was measured from the tristimulus values XYZ expressing the basic stimulus amount of the color. The lower the value, the less yellowing and the better the color tone.
(アルミニウム、チタン、マグネシウム、カルシウム残存量の測定方法)
 ポリブチレンテレフタレート樹脂サンプルに塩酸(6N)を3mL、フッ化水素酸を3滴添加し、100℃で分解させた後、残渣を塩酸(1.2N)20mLに溶解させ、SUPECTRO社の誘導結合プラズマ(以下、ICPと示す)発光分光分析装置を用いて各金属濃度を測定した。
(Measurement method of remaining amount of aluminum, titanium, magnesium and calcium)
After adding 3 mL of hydrochloric acid (6N) and 3 drops of hydrofluoric acid to a polybutylene terephthalate resin sample and decomposing it at 100 ° C., the residue is dissolved in 20 mL of hydrochloric acid (1.2N), and inductively coupled plasma of SUPECTRO Each metal concentration was measured using an emission spectroscopic analyzer (hereinafter referred to as ICP).
(リン残存量の測定方法)
 ポリブチレンテレフタレートサンプルに硝酸イットリウム水和物水溶液(5%)を5mL添加し、100℃で分解させた後、残渣を塩酸(1.2N)20mLに溶解させ、SUPECTRO社のICP発光分光分析装置を用いてリン濃度を測定した。
(Measurement method of phosphorus remaining amount)
After adding 5 mL of an aqueous solution of yttrium nitrate hydrate (5%) to a polybutylene terephthalate sample and decomposing it at 100 ° C., the residue was dissolved in 20 mL of hydrochloric acid (1.2 N), and an ICP emission spectroscopic analyzer manufactured by SUPECTRO was used. Was used to measure the phosphorus concentration.
(THF、BD発生量の測定方法)
 (株)島津製作所社製の加熱脱着装置(TD-20)/ガスクロマトグラフ質量分析計(QP-2010UItra)、カラムRxi-1ms(長さ60m、内径0.32mm、膜厚0.25μm)を使用した。130℃で16時間乾燥したポリブチレンテレフタレート樹脂サンプルを0.005g秤量し、サンプル管に入れ、ヘリウム50mL/minの気流下、265℃で10分間熱処理し、-20℃に冷却した2次トラップ管(Tenax-TA)で発生成分を捕集した。2次トラップ管を280℃で再加熱し、捕集した成分をガスクロマトグラフ質量分析機(以下GC-MSと示す)へと導入して、得られたクロマトグラムから、THF及びBDを定量した。GC-MSの条件としては、オーブン温度(50℃で2分保持後、20℃/分の速度で320℃まで昇温)、MS測定モードSCAN(イオンの質量=35~550)にて行った。なお、定量はトルエンをメタノールで希釈した濃度既知の標準溶液を用いて、トルエン質量換算にて行った。
(Measurement method of THF and BD generation amount)
Heat desorption device (TD-20) / gas chromatograph mass spectrometer (QP-2010UItra), column Rxi-1ms (length 60 m, inner diameter 0.32 mm, film thickness 0.25 μm) manufactured by Shimadzu Corporation did. A 0.005 g sample of polybutylene terephthalate resin dried at 130 ° C. for 16 hours, weighed in a sample tube, heat-treated at 265 ° C. for 10 minutes in an air stream of helium at 50 mL / min, and cooled to −20 ° C. The generated components were collected with (Tenax-TA). The secondary trap tube was reheated at 280 ° C., the collected components were introduced into a gas chromatograph mass spectrometer (hereinafter referred to as GC-MS), and THF and BD were quantified from the obtained chromatogram. The GC-MS conditions were as follows: oven temperature (held at 50 ° C. for 2 minutes, then increased to 320 ° C. at a rate of 20 ° C./minute), MS measurement mode SCAN (ion mass = 35 to 550). . In addition, fixed_quantity | quantitative_assay was performed in toluene mass conversion using the standard solution with a known density | concentration which diluted toluene with methanol.
(金型汚れ性評価)
 射出成形機EC100N(東芝機械社製)を用い、金型として、連続成形評価型(外径30mm、内径20mm、厚み3mmのキャビティを有し、流動末端は凹部でガス抜きはない。)を用い、ゲート部反対側の凹部にポリブチレンテレフタレート分解物などの含有物が蓄積しやすいようにショートショット法で連続成形し、金型汚れを観察した。成形時のシリンダー温度は、260℃で、金型温度60℃、サイクルタイム40秒で成形し、20ショット後の金型汚れにて評価した。評価は、目視により、下記の基準で行った。
○:汚れがほとんど認められない。
△:ゲート部反対側の凹部付近の中心に汚れがぼんやりと認められる。
×:ゲート部反対側の凹部付近の中心の汚れがはっきりとした輪郭で黒く目立つ。
(Evaluation of mold contamination)
Using an injection molding machine EC100N (manufactured by Toshiba Machine Co., Ltd.), as a mold, a continuous molding evaluation mold (having a cavity with an outer diameter of 30 mm, an inner diameter of 20 mm and a thickness of 3 mm, the flow end is a concave portion and no gas venting) is used. The mold was continuously molded by a short shot method so that inclusions such as polybutylene terephthalate decomposition products were likely to accumulate in the concave portion on the opposite side of the gate portion, and mold contamination was observed. The cylinder temperature at the time of molding was 260 ° C., the mold temperature was 60 ° C., the cycle time was 40 seconds, and the mold contamination after 20 shots was evaluated. The evaluation was performed visually according to the following criteria.
○: Dirt is hardly recognized.
Δ: Dirt is gently recognized in the center near the concave portion on the opposite side of the gate portion.
X: Dirt in the center near the recess on the opposite side of the gate portion is conspicuous in black with a clear outline.
(アルミニウム化合物の水溶液の調製)
 冷却管を備えたフラスコに、常温常圧下、純水5.0Lを加えた後、200rpmで攪拌しながら、塩基性酢酸アルミニウム200gを純水とのスラリーとして加えた。さらに全体として10.0Lとなるよう純水を追加して常温常圧で12時間攪拌した。その後、ジャケット温度の設定を100.5℃に変更して昇温し、内温が95℃以上になった時点から3時間還流下で攪拌した。攪拌を止め、室温まで放冷し水溶液を得た。
(Preparation of aqueous solution of aluminum compound)
After adding 5.0 L of pure water to a flask equipped with a cooling tube under normal temperature and normal pressure, 200 g of basic aluminum acetate was added as a slurry with pure water while stirring at 200 rpm. Furthermore, pure water was added so that it might become 10.0L as a whole, and it stirred at normal temperature normal pressure for 12 hours. Thereafter, the jacket temperature was changed to 100.5 ° C., the temperature was raised, and the mixture was stirred under reflux for 3 hours from the time when the internal temperature reached 95 ° C. or higher. Stirring was stopped and the mixture was allowed to cool to room temperature to obtain an aqueous solution.
(アルミニウム化合物のBD溶液の調製)
 上記方法で得たアルミニウム化合物水溶液に等容量のBDを加え、室温で30分間攪拌した後、内温80~90℃にコントロールし、徐々に減圧して、到達2.7kPaとして、数時間攪拌しながら系から水を留去し、20g/Lのアルミニウム化合物のBD溶液を得た。
(Preparation of BD solution of aluminum compound)
Add an equal volume of BD to the aqueous aluminum compound solution obtained by the above method and stir at room temperature for 30 minutes, then control the internal temperature to 80-90 ° C, gradually reduce the pressure to reach 2.7 kPa, and stir for several hours. While removing water from the system, a 20 g / L BD solution of an aluminum compound was obtained.
(リン化合物1のBD溶液の調製)
 窒素導入管、冷却管を備えたフラスコに、常温常圧下、BD2.0Lを加えた後、窒素雰囲気下200rpmで攪拌しながら、リン化合物としてIrgamod295(ビーエーエスエフ社製)を200g加えた。さらに2.0LのBDを追加した後、ジャケット温度の設定を196℃に変更して昇温し、内温が185℃以上になった時点から60分間還流下で攪拌した。その後加熱を止め、直ちに溶液を熱源から取り去り、窒素雰囲気下を保ったまま、30分以内に120℃以下まで冷却し、リン化合物1のBD溶液を得た。
(Preparation of Phosphorus Compound 1 BD Solution)
To a flask equipped with a nitrogen introduction tube and a cooling tube, 2.0 g of BD was added at room temperature and normal pressure, and then 200 g of Irgamod 295 (manufactured by BASF) was added as a phosphorus compound while stirring at 200 rpm in a nitrogen atmosphere. Further, 2.0 L of BD was added, the jacket temperature was changed to 196 ° C., the temperature was raised, and the mixture was stirred under reflux for 60 minutes from the time when the internal temperature became 185 ° C. or higher. Thereafter, the heating was stopped, the solution was immediately removed from the heat source, and the solution was cooled to 120 ° C. or lower within 30 minutes while maintaining a nitrogen atmosphere, whereby a BD solution of phosphorus compound 1 was obtained.
(リン化合物2のBD溶液の調製)
 窒素導入管、冷却管を備えたフラスコに、常温常圧下、BD2.0Lを加えた後、窒素雰囲気下200rpmで攪拌しながら、リン化合物としてIrganox1425(ビーエーエスエフ社製)を200g加えた。さらに2.0LのBDを追加した後、ジャケット温度の設定を196℃に変更して昇温し、内温が185℃以上になった時点から60分間還流下で攪拌した。その後加熱を止め、直ちに溶液を熱源から取り去り、窒素雰囲気下を保ったまま、30分以内に120℃以下まで冷却し、リン化合物2のBD溶液を得た。
(Preparation of BD solution of phosphorus compound 2)
After adding 2.0 L of BD to a flask equipped with a nitrogen introduction tube and a cooling tube under normal temperature and normal pressure, 200 g of Irganox 1425 (manufactured by BASF) was added as a phosphorus compound while stirring at 200 rpm in a nitrogen atmosphere. Further, 2.0 L of BD was added, the jacket temperature was changed to 196 ° C., the temperature was raised, and the mixture was stirred under reflux for 60 minutes from the time when the internal temperature became 185 ° C. or higher. Thereafter, the heating was stopped, the solution was immediately removed from the heat source, and the solution was cooled to 120 ° C. or lower within 30 minutes while maintaining the nitrogen atmosphere, whereby a BD solution of phosphorus compound 2 was obtained.
(ポリブチレンテレフタレート樹脂の製造方法)
(実施例1)
 撹拌機、蒸留塔、圧力調整器を備えたステンレス製オートクレーブにテレフタル酸、BD(BD/テレフタル酸=4.5/1(モル比))を加えて215℃、101kPaで、エステル化反応で生成する水とTHFを逐次除去しながら4時間エステル化反応を行った。続いて、10分間で系の温度を230℃まで昇温して、この間に系の圧力を徐々に減じて50kPaとし、エステル化反応で生成する水やTHF、未反応のBDを逐次除去しながら2時間エステル化反応を行った。エステル化反応が終了し、重縮合反応前のオリゴマーの末端総数の70%は、ヒドロキシル基であった。続いて、上記方法で調整したアルミニウム化合物のBD溶液、およびリン化合物1のBD溶液をそれぞれ得られるポリブチレンテレフタレート樹脂の質量に対し、アルミニウム原子、リン原子として40ppmおよび70ppm残存するように添加し、1時間で系の温度を250℃まで昇温して、この間に系の圧力を徐々に減じて0.15kPaとし、この条件下で1.5時間重縮合反応を行い、固有粘度0.61dL/gのポリブチレンテレフタレート樹脂のペレットを得た。
(Method for producing polybutylene terephthalate resin)
Example 1
Terephthalic acid and BD (BD / terephthalic acid = 4.5 / 1 (molar ratio)) were added to a stainless steel autoclave equipped with a stirrer, distillation tower and pressure regulator, and produced by esterification reaction at 215 ° C. and 101 kPa. The esterification reaction was performed for 4 hours while sequentially removing water and THF. Subsequently, the temperature of the system is raised to 230 ° C. in 10 minutes, and during this time, the pressure of the system is gradually reduced to 50 kPa, and water, THF, and unreacted BD generated in the esterification reaction are sequentially removed. The esterification reaction was performed for 2 hours. The esterification reaction was completed, and 70% of the total number of oligomer ends before the polycondensation reaction was a hydroxyl group. Subsequently, with respect to the mass of the polybutylene terephthalate resin obtained, the BD solution of the aluminum compound prepared by the above method and the BD solution of the phosphorus compound 1, respectively, were added so that 40 ppm and 70 ppm remain as aluminum atoms and phosphorus atoms, The temperature of the system was raised to 250 ° C. in 1 hour, and the pressure of the system was gradually reduced to 0.15 kPa during this time, and a polycondensation reaction was performed for 1.5 hours under these conditions, and an intrinsic viscosity of 0.61 dL / g of polybutylene terephthalate resin pellets were obtained.
(実施例2)
 実施例1において、重縮合反応を2.5時間に変更した以外は、実施例1と同様に行い、固有粘度0.81dL/gのポリブチレンテレフタレート樹脂を得た。
(Example 2)
A polybutylene terephthalate resin having an intrinsic viscosity of 0.81 dL / g was obtained in the same manner as in Example 1 except that the polycondensation reaction was changed to 2.5 hours.
(実施例3)
 実施例1において、重縮合反応を4時間に変更した以外は、実施例1と同様に行い、固有粘度1.20dL/gのポリブチレンテレフタレート樹脂を得た。
(Example 3)
A polybutylene terephthalate resin having an intrinsic viscosity of 1.20 dL / g was obtained in the same manner as in Example 1 except that the polycondensation reaction was changed to 4 hours.
(実施例4)
 実施例1で得られたポリブチレンテレフタレート樹脂を、バッチ式の固相重合装置を使用し、200℃にて、減圧下、24時間固相重合し、固有粘度0.83dL/gのポリブチレンテレフタレート樹脂を得た。
Example 4
The polybutylene terephthalate resin obtained in Example 1 was subjected to solid-phase polymerization for 24 hours under reduced pressure at 200 ° C. using a batch type solid-phase polymerization apparatus, and polybutylene terephthalate having an intrinsic viscosity of 0.83 dL / g. A resin was obtained.
(実施例5)
 実施例2で得られたポリブチレンテレフタレート樹脂を、バッチ式の固相重合装置を使用し、200℃にて、減圧下、24時間固相重合し、固有粘度1.01dL/gのポリブチレンテレフタレート樹脂を得た。
(Example 5)
The polybutylene terephthalate resin obtained in Example 2 was subjected to solid phase polymerization at 200 ° C. under reduced pressure for 24 hours using a batch type solid phase polymerization apparatus, and polybutylene terephthalate having an intrinsic viscosity of 1.01 dL / g. A resin was obtained.
 各実施例で得たポリブチレンテレフタレート樹脂の物性を評価した結果を表1に示す。 The results of evaluating the physical properties of the polybutylene terephthalate resin obtained in each example are shown in Table 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1で、※「≦2.5ppm」は、BDの発生量の検出限界を表す。 * In Table 1, * “≦ 2.5 ppm” represents the detection limit of the amount of BD generated.
(比較例1)
 撹拌機、蒸留塔、圧力調整器を備えたステンレス製オートクレーブにテレフタル酸、BD(BD/テレフタル酸=2/1(モル比))、得られるポリブチレンテレフタレート樹脂の質量に対し、チタン原子として70ppm残存するようにテトラブチルチタネートを加えて215℃、101kPaで、エステル化反応で生成する水やTHFを逐次除去しながら4時間エステル化反応を行った。エステル化反応が終了し、重縮合反応前のオリゴマーの末端総数の97%は、ヒドロキシル基であった。続いて、1時間で系の温度を250℃まで昇温して、この間に系の圧力を徐々に減じて0.15kPaとし、この条件下で1.5時間重縮合反応を行い、固有粘度0.83dL/gのポリブチレンテレフタレート樹脂のペレットを得た。
(Comparative Example 1)
A stainless steel autoclave equipped with a stirrer, a distillation column, and a pressure regulator is terephthalic acid, BD (BD / terephthalic acid = 2/1 (molar ratio)), and 70 ppm as titanium atoms with respect to the mass of the resulting polybutylene terephthalate resin. Tetrabutyl titanate was added so as to remain, and the esterification reaction was performed at 215 ° C. and 101 kPa for 4 hours while sequentially removing water and THF produced by the esterification reaction. The esterification reaction was completed, and 97% of the total number of oligomer ends before the polycondensation reaction was a hydroxyl group. Subsequently, the temperature of the system is raised to 250 ° C. in 1 hour, and the pressure of the system is gradually reduced to 0.15 kPa during this time, and a polycondensation reaction is carried out for 1.5 hours under these conditions. A pellet of polybutylene terephthalate resin of .83 dL / g was obtained.
(比較例2)
 比較例1において、重縮合反応を2時間に変更した以外は比較例1と同様に行い、固有粘度1.07dL/gのポリブチレンテレフタレート樹脂を得た。
(Comparative Example 2)
In Comparative Example 1, a polybutylene terephthalate resin having an intrinsic viscosity of 1.07 dL / g was obtained in the same manner as in Comparative Example 1 except that the polycondensation reaction was changed to 2 hours.
(比較例3)
 比較例2において、得られるポリブチレンテレフタレート樹脂の質量に対し、チタン原子として40ppm残存するようにテトラブチルチタネートの量を変更した以外は比較例2と同様に行い、固有粘度0.83dL/gのポリブチレンテレフタレート樹脂を得た。
(Comparative Example 3)
In Comparative Example 2, the same procedure as in Comparative Example 2 was carried out except that the amount of tetrabutyl titanate was changed so that 40 ppm of titanium atoms remained with respect to the mass of the resulting polybutylene terephthalate resin, and the intrinsic viscosity was 0.83 dL / g. A polybutylene terephthalate resin was obtained.
(比較例4)
 比較例3において、テトラブチルチタネートの添加と同じタイミングで、得られるポリブチレンテレフタレート樹脂の質量に対し、マグネシウム原子として40ppm残存するように酢酸マグネシウム・4水和物を加えた以外は、比較例3と同様に行い、固有粘度0.84dL/gのポリブチレンテレフタレート樹脂を得た。
(Comparative Example 4)
Comparative Example 3 was the same as Comparative Example 3 except that magnesium acetate tetrahydrate was added so that 40 ppm of magnesium atoms remained with respect to the mass of the resulting polybutylene terephthalate resin at the same timing as the addition of tetrabutyl titanate. And a polybutylene terephthalate resin having an intrinsic viscosity of 0.84 dL / g was obtained.
(比較例5)
 比較例4において、重縮合反応時間を3時間に変更した以外は比較例4と同様に行い、固有粘度1.04dL/gのポリブチレンテレフタレート樹脂を得た。
(Comparative Example 5)
In Comparative Example 4, a polybutylene terephthalate resin having an intrinsic viscosity of 1.04 dL / g was obtained in the same manner as in Comparative Example 4 except that the polycondensation reaction time was changed to 3 hours.
(比較例6)
 比較例1で得られたポリブチレンテレフタレート樹脂を、バッチ式の固相重合装置を使用し、200℃にて、減圧下、6時間固相重合し、固有粘度1.04dL/gのポリブチレンテレフタレート樹脂を得た。
(Comparative Example 6)
The polybutylene terephthalate resin obtained in Comparative Example 1 was subjected to solid-phase polymerization at 200 ° C. under reduced pressure for 6 hours using a batch type solid-phase polymerization apparatus, and an intrinsic viscosity of 1.04 dL / g was obtained. A resin was obtained.
(比較例7)
 撹拌機、蒸留塔、圧力調整器を備えたステンレス製オートクレーブにテレフタル酸、BD(BD/テレフタル酸=2/1(モル比))、得られるポリブチレンテレフタレート樹脂の質量に対し、チタン原子として70ppmとなるようにテトラブチルチタネートを加えて215℃、101kPaで、エステル化反応で生成する水やTHFを逐次除去しながら4時間エステル化反応を行った。エステル化反応が終了し、重縮合反応前のオリゴマーの末端総数の97%は、ヒドロキシル基であった。続いて、上記方法で調整したリン化合物1のBD溶液を得られるポリブチレンテレフタレート樹脂の質量に対し、リン原子として70ppm残存するように添加し、1時間で系の温度を250℃まで昇温して、この間に系の圧力を徐々に減じて0.15kPaとし、この条件下で3時間重縮合反応を行い、固有粘度0.98dL/gのポリブチレンテレフタレート樹脂のペレットを得た。
(Comparative Example 7)
A stainless steel autoclave equipped with a stirrer, a distillation column, and a pressure regulator is terephthalic acid, BD (BD / terephthalic acid = 2/1 (molar ratio)), and 70 ppm as titanium atoms with respect to the mass of the resulting polybutylene terephthalate resin. Then, tetrabutyl titanate was added so that the water and THF produced by the esterification reaction were sequentially removed at 215 ° C. and 101 kPa for 4 hours. The esterification reaction was completed, and 97% of the total number of oligomer ends before the polycondensation reaction was a hydroxyl group. Subsequently, with respect to the mass of the polybutylene terephthalate resin from which the BD solution of phosphorus compound 1 prepared by the above method is obtained, 70 ppm is added as phosphorus atoms, and the temperature of the system is raised to 250 ° C. over 1 hour. During this period, the pressure of the system was gradually reduced to 0.15 kPa, and a polycondensation reaction was carried out for 3 hours under these conditions to obtain polybutylene terephthalate resin pellets having an intrinsic viscosity of 0.98 dL / g.
(比較例8)
 撹拌機、蒸留塔、圧力調整器を備えたステンレス製オートクレーブにジメチルテレフタレート、BD(BD/ジメチルテレフタレート=1.4/1(モル比))、得られるポリブチレンテレフタレート樹脂の質量に対し、チタン原子として40ppm、マグネシウム原子として40ppm残存するように、テトラブチルチタネート、酢酸マグネシウム・4水和物をそれぞれ加えて215℃、101kPaで、エステル交換反応で生成するメタノールやTHFを逐次除去しながら4時間エステル交換反応を行った。エステル交換反応が終了し、重縮合反応前のオリゴマーの末端総数の98%は、ヒドロキシル基であった。続いて、1時間で系の温度を250℃まで昇温して、この間に系の圧力を徐々に減じて0.15kPaとし、この条件下で1.5時間重縮合反応を行い、固有粘度0.80dL/gのポリブチレンテレフタレート樹脂のペレットを得た。
(Comparative Example 8)
In a stainless steel autoclave equipped with a stirrer, a distillation column, and a pressure regulator, dimethyl terephthalate, BD (BD / dimethyl terephthalate = 1.4 / 1 (molar ratio)), and the mass of the resulting polybutylene terephthalate resin is a titanium atom. For 40 hours and 40 ppm for magnesium atoms, tetrabutyl titanate and magnesium acetate tetrahydrate were added respectively, and at 215 ° C and 101 kPa, the methanol and THF produced in the transesterification reaction were removed successively for 4 hours. An exchange reaction was performed. The transesterification reaction was completed, and 98% of the total number of terminals of the oligomer before the polycondensation reaction was a hydroxyl group. Subsequently, the temperature of the system is raised to 250 ° C. in 1 hour, and the pressure of the system is gradually reduced to 0.15 kPa during this time, and a polycondensation reaction is carried out for 1.5 hours under these conditions. A pellet of polybutylene terephthalate resin of .80 dL / g was obtained.
(比較例9)
 撹拌機、蒸留塔、圧力調整器を備えたステンレス製オートクレーブにジメチルテレフタレート、BD(BD/ジメチルテレフタレート=1.4/1(モル比))、上記方法で調整したアルミニウム化合物のBD溶液、およびリン化合物2のBD溶液をそれぞれ、得られるポリブチレンテレフタレート樹脂の質量に対し、アルミニウム原子、リン原子、カルシウム原子として40ppm、70ppm、35ppm残存するように加えて215℃、101kPaで、エステル交換反応で生成するメタノールやTHFを逐次除去しながら4時間エステル交換反応を行った。エステル交換反応が終了し、重縮合反応前のオリゴマーの末端総数の96%は、ヒドロキシル基であった。続いて、1時間で系の温度を250℃まで昇温して、この間に系の圧力を徐々に減じて0.15kPaとし、この条件下で2時間重縮合反応を行い、固有粘度1.09dL/gのポリブチレンテレフタレート樹脂のペレットを得た。
(Comparative Example 9)
In a stainless steel autoclave equipped with a stirrer, distillation tower, pressure regulator, dimethyl terephthalate, BD (BD / dimethyl terephthalate = 1.4 / 1 (molar ratio)), BD solution of aluminum compound prepared by the above method, and phosphorus The BD solution of Compound 2 was produced by transesterification at 215 ° C. and 101 kPa in addition to the aluminum atoms, phosphorus atoms, and calcium atoms remaining at 40 ppm, 70 ppm, and 35 ppm with respect to the mass of the resulting polybutylene terephthalate resin. The transesterification was carried out for 4 hours while sequentially removing methanol and THF. The transesterification reaction was completed, and 96% of the total number of oligomer ends before the polycondensation reaction was a hydroxyl group. Subsequently, the temperature of the system is raised to 250 ° C. in 1 hour, and the pressure of the system is gradually reduced to 0.15 kPa during this time, and a polycondensation reaction is performed for 2 hours under these conditions, and an intrinsic viscosity of 1.09 dL. / G of polybutylene terephthalate resin pellets were obtained.
(比較例10)
 撹拌機、蒸留塔、圧力調整器を備えたステンレス製オートクレーブにテレフタル酸、BD(BD/テレフタル酸=3/1(モル比))を加えて215℃、101kPaで、エステル化反応で生成する水とTHFを逐次除去しながら4時間エステル化反応を行った。続いて、10分間で系の温度を230℃まで昇温して、この間に系の圧力を徐々に減じて50kPaとし、エステル化反応で生成する水やTHF、未反応のBDを逐次除去しながら2時間エステル化反応を行った。エステル化反応が終了し、重縮合反応前のオリゴマーの末端総数の45%は、ヒドロキシル基であった。続いて、上記方法で調整したアルミニウム化合物のBD溶液、およびリン化合物1のBD溶液をそれぞれ得られるポリブチレンテレフタレート樹脂の質量に対し、アルミニウム原子、リン原子として40ppmおよび70ppm残存するように添加し、1時間で系の温度を250℃まで昇温して、この間に系の圧力を徐々に減じて0.15kPaとし、この条件下で4時間重縮合反応を行ったが、固有粘度0.5dL/g以上のポリブチレンテレフタレート樹脂は得られなかった。得られたポリブチレンテレフタレート樹脂の固有粘度は0.44dL/gであったが、ペレット化が困難であったため、各種の評価は実施しなかった。
(Comparative Example 10)
Water produced by esterification at 215 ° C. and 101 kPa by adding terephthalic acid and BD (BD / terephthalic acid = 3/1 (molar ratio)) to a stainless steel autoclave equipped with a stirrer, distillation tower and pressure regulator And THF were removed sequentially for 4 hours. Subsequently, the temperature of the system is raised to 230 ° C. in 10 minutes, and during this time, the pressure of the system is gradually reduced to 50 kPa, and water, THF, and unreacted BD generated in the esterification reaction are sequentially removed. The esterification reaction was performed for 2 hours. The esterification reaction was completed, and 45% of the total number of oligomer ends before the polycondensation reaction was a hydroxyl group. Subsequently, with respect to the mass of the polybutylene terephthalate resin obtained, the BD solution of the aluminum compound prepared by the above method and the BD solution of the phosphorus compound 1, respectively, were added so that 40 ppm and 70 ppm remain as aluminum atoms and phosphorus atoms, The temperature of the system was raised to 250 ° C. in 1 hour, and the pressure of the system was gradually reduced to 0.15 kPa during this time, and a polycondensation reaction was performed for 4 hours under these conditions. g or more of polybutylene terephthalate resin was not obtained. The resulting polybutylene terephthalate resin had an intrinsic viscosity of 0.44 dL / g. However, since pelletization was difficult, various evaluations were not performed.
(比較例11)
 撹拌機、蒸留塔、圧力調整器を備えたステンレス製オートクレーブにテレフタル酸、BD(BD/テレフタル酸=6/1(モル比))を加えて215℃、101kPaで、エステル化反応で生成する水とTHFを逐次除去しながら4時間エステル化反応を行った。エステル化反応が終了し、重縮合反応前のオリゴマーの末端総数の92%は、ヒドロキシル基であった。続いて、上記方法で調整したアルミニウム化合物のBD溶液、およびリン化合物1のBD溶液をそれぞれ得られるポリブチレンテレフタレート樹脂の質量に対し、アルミニウム原子、リン原子として40ppmおよび70ppm残存するように添加し、1時間で系の温度を250℃まで昇温して、この間に系の圧力を徐々に減じて0.15kPaとし、この条件下で4時間重縮合反応を行ったが、固有粘度0.5dL/g以上のポリブチレンテレフタレート樹脂は得られなかった。得られたポリブチレンテレフタレート樹脂の固有粘度は0.46dL/gであったが、ペレット化が困難であったため、各種の評価は実施しなかった。
(Comparative Example 11)
Water produced by esterification at 215 ° C. and 101 kPa by adding terephthalic acid and BD (BD / terephthalic acid = 6/1 (molar ratio)) to a stainless steel autoclave equipped with a stirrer, a distillation column and a pressure regulator. And THF were removed sequentially for 4 hours. The esterification reaction was completed, and 92% of the total number of oligomer ends before the polycondensation reaction was a hydroxyl group. Subsequently, with respect to the mass of the polybutylene terephthalate resin obtained, the BD solution of the aluminum compound prepared by the above method and the BD solution of the phosphorus compound 1, respectively, were added so that 40 ppm and 70 ppm remain as aluminum atoms and phosphorus atoms, The temperature of the system was raised to 250 ° C. in 1 hour, and the pressure of the system was gradually reduced to 0.15 kPa during this time, and a polycondensation reaction was performed for 4 hours under these conditions. g or more of polybutylene terephthalate resin was not obtained. The resulting polybutylene terephthalate resin had an intrinsic viscosity of 0.46 dL / g, but since pelletization was difficult, various evaluations were not performed.
(比較例12)
 撹拌機、蒸留塔、圧力調整器を備えたステンレス製オートクレーブにテレフタル酸、BD(BD/テレフタル酸=4.5/1(モル比))を加えて215℃、101kPaで、エステル化反応で生成する水とTHFを逐次除去しながら4時間エステル化反応を行った。続いて、10分間で系の温度を230℃まで昇温して、この間に系の圧力を徐々に減じて50kPaとし、エステル化反応で生成する水やTHF、未反応のBDを逐次除去しながら2時間エステル化反応を行った。エステル化反応が終了し、重縮合反応前のオリゴマーの末端総数の70%は、ヒドロキシル基であった。続いて、得られるポリブチレンテレフタレート樹脂の質量に対し、チタン原子として70ppm残存するようにテトラブチルチタネートを添加し、1時間で系の温度を250℃まで昇温して、この間に系の圧力を徐々に減じて0.15kPaとし、この条件下で1.5時間重縮合反応を行い、固有粘度0.84dL/gのポリブチレンテレフタレート樹脂のペレットを得た。
(Comparative Example 12)
Terephthalic acid and BD (BD / terephthalic acid = 4.5 / 1 (molar ratio)) were added to a stainless steel autoclave equipped with a stirrer, distillation tower and pressure regulator, and produced by esterification reaction at 215 ° C. and 101 kPa. The esterification reaction was performed for 4 hours while sequentially removing water and THF. Subsequently, the temperature of the system is raised to 230 ° C. in 10 minutes, and during this time, the pressure of the system is gradually reduced to 50 kPa, and water, THF, and unreacted BD generated in the esterification reaction are sequentially removed. The esterification reaction was performed for 2 hours. The esterification reaction was completed, and 70% of the total number of oligomer ends before the polycondensation reaction was a hydroxyl group. Subsequently, tetrabutyl titanate was added to the mass of the resulting polybutylene terephthalate resin so that 70 ppm remained as titanium atoms, and the system temperature was raised to 250 ° C. over 1 hour. The pressure was gradually reduced to 0.15 kPa, and a polycondensation reaction was carried out under these conditions for 1.5 hours to obtain polybutylene terephthalate resin pellets having an intrinsic viscosity of 0.84 dL / g.
 比較例で得たポリブチレンテレフタレート樹脂の物性を評価した結果を表2に示す。比較例10、11は、物性の評価が出来なかった。 Table 2 shows the results of evaluating the physical properties of the polybutylene terephthalate resin obtained in the comparative example. In Comparative Examples 10 and 11, the physical properties could not be evaluated.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例のポリブチレンテレフタレート樹脂は、比較例(チタン触媒を使用する系、ジメチルテレフタレートを原料とする系、重縮合反応前のオリゴマーの末端組成が特定の範囲でない系)に比べて、成形時のTHF、BD発生量を低減可能である事を確認できた。これは、上述したように、THFやBDを発生させる分解反応を顕著に促進してしまうチタン触媒を使用しない事と、リン化合物中のヒンダードフェノール部分によりポリブチレンテレフタレートの熱分解を抑制した事と、更に重縮合反応前のオリゴマーのヒドロキシル基の割合がチタン触媒を使用する系、ジメチルテレフタレートを原料とする系よりも少なく、かつ該割合を特定の範囲とした事が相乗効果となり、THF、BDの発生量を低減できたと考えられる。 The polybutylene terephthalate resin of the example is compared with the comparative example (a system using a titanium catalyst, a system using dimethyl terephthalate as a raw material, a system where the terminal composition of the oligomer before the polycondensation reaction is not in a specific range). It was confirmed that the generation amount of THF and BD can be reduced. This is because, as described above, the titanium catalyst that significantly accelerates the decomposition reaction that generates THF and BD is not used, and the thermal decomposition of polybutylene terephthalate is suppressed by the hindered phenol part in the phosphorus compound. Further, the proportion of the hydroxyl group of the oligomer before the polycondensation reaction is less than the system using a titanium catalyst, the system using dimethyl terephthalate as a raw material, and the ratio is in a specific range, THF, It is considered that the amount of BD generated can be reduced.
 本発明のポリブチレンテレフタレート樹脂は、特に制限されず、熱可塑性樹脂について一般に使用されている成形法、すなわち、射出成形、中空成形、押し出し成形、プレス成形などの成形法を適用する事ができ、その際に発生するTHF、BDを低減する事ができるため、成形加工時の金型汚染の頻度を低減する事ができる。その結果、生産効率も向上し、且つ熱安定性、色調、耐加水分解性、透明性、成形性に優れたフィルム、モノフィラメント、繊維、電気電子部品、自動車部品として提供する事ができる。
 
The polybutylene terephthalate resin of the present invention is not particularly limited, and molding methods generally used for thermoplastic resins, that is, injection molding, hollow molding, extrusion molding, press molding, and other molding methods can be applied, Since THF and BD generated at that time can be reduced, the frequency of mold contamination during molding can be reduced. As a result, the production efficiency can be improved, and the film, monofilament, fiber, electric / electronic component, and automobile component can be provided with excellent thermal stability, color tone, hydrolysis resistance, transparency, and moldability.

Claims (2)

  1.  重合触媒成分としてアルミニウム化合物及びリン化合物を含有するポリブチレンテレフタレート樹脂であって、固有粘度が0.5~1.3dL/gであり、下記(1)、(2)を満足する事を特徴とするポリブチレンテレフタレート樹脂。
    (1)該ポリブチレンテレフタレート樹脂を265℃、10分、不活性ガス雰囲気下で加熱した際に発生するテトラヒドロフランが50ppm以下
    (2)該ポリブチレンテレフタレート樹脂を265℃、10分、不活性ガス雰囲気下で加熱した際に発生する1,4-ブタンジオールが10ppm以下
    A polybutylene terephthalate resin containing an aluminum compound and a phosphorus compound as a polymerization catalyst component, characterized by an intrinsic viscosity of 0.5 to 1.3 dL / g and satisfying the following (1) and (2): Polybutylene terephthalate resin.
    (1) Tetrahydrofuran generated when the polybutylene terephthalate resin is heated at 265 ° C. for 10 minutes in an inert gas atmosphere is 50 ppm or less. (2) The polybutylene terephthalate resin is at 265 ° C. for 10 minutes for an inert gas atmosphere. 1,4-butanediol generated when heated under 10ppm or less
  2.  ポリブチレンテレフタレート樹脂の質量に対してアルミニウム化合物をアルミニウム原子として10~50ppm、リン化合物をリン原子として20~150ppm含有する請求項1に記載のポリブチレンテレフタレート樹脂。
     
    The polybutylene terephthalate resin according to claim 1, which contains 10 to 50 ppm of an aluminum compound as an aluminum atom and 20 to 150 ppm of a phosphorus compound as a phosphorus atom with respect to the mass of the polybutylene terephthalate resin.
PCT/JP2017/015096 2016-04-20 2017-04-13 Polybutylene terephthalate resin WO2017183550A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017543398A JPWO2017183550A1 (en) 2016-04-20 2017-04-13 Polybutylene terephthalate resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016084496 2016-04-20
JP2016-084496 2016-04-20

Publications (1)

Publication Number Publication Date
WO2017183550A1 true WO2017183550A1 (en) 2017-10-26

Family

ID=60116799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/015096 WO2017183550A1 (en) 2016-04-20 2017-04-13 Polybutylene terephthalate resin

Country Status (3)

Country Link
JP (1) JPWO2017183550A1 (en)
TW (1) TW201807009A (en)
WO (1) WO2017183550A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020158747A (en) * 2018-09-28 2020-10-01 日本エステル株式会社 Polyester resins
WO2022054670A1 (en) * 2020-09-11 2022-03-17 東洋紡株式会社 Polyester resin composition, method for manufacturing same, and polyester film using same
WO2022059511A1 (en) * 2020-09-17 2022-03-24 東洋紡株式会社 Polyester resin, blow-molded object therefrom, and production methods therefor
WO2024070038A1 (en) * 2022-09-30 2024-04-04 東洋紡エムシー株式会社 Co-polyester resin

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241481A (en) * 2001-02-21 2002-08-28 Toyobo Co Ltd Polybutylene terephthalate and production method of polybutylene terephthalate
JP2002322254A (en) * 2001-02-20 2002-11-08 Toyobo Co Ltd Polyester and method for producing the same
JP2002363274A (en) * 2001-04-03 2002-12-18 Toyobo Co Ltd Polyester and method for manufacturing the same
JP2005112873A (en) * 2003-10-02 2005-04-28 Toyobo Co Ltd Polyester and method for producing polyester
WO2005075539A1 (en) * 2004-02-10 2005-08-18 Toyo Boseki Kabushiki Kaisha Polyester polymerization catalyst, polyester produced therewith and process for producing the polyester
JP2006282800A (en) * 2005-03-31 2006-10-19 Toyobo Co Ltd Polyester film
JP2008081576A (en) * 2006-09-27 2008-04-10 Toyobo Co Ltd Method for producing polyester resin and the resultant polyester resin

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322254A (en) * 2001-02-20 2002-11-08 Toyobo Co Ltd Polyester and method for producing the same
JP2002241481A (en) * 2001-02-21 2002-08-28 Toyobo Co Ltd Polybutylene terephthalate and production method of polybutylene terephthalate
JP2002363274A (en) * 2001-04-03 2002-12-18 Toyobo Co Ltd Polyester and method for manufacturing the same
JP2005112873A (en) * 2003-10-02 2005-04-28 Toyobo Co Ltd Polyester and method for producing polyester
WO2005075539A1 (en) * 2004-02-10 2005-08-18 Toyo Boseki Kabushiki Kaisha Polyester polymerization catalyst, polyester produced therewith and process for producing the polyester
JP2006282800A (en) * 2005-03-31 2006-10-19 Toyobo Co Ltd Polyester film
JP2008081576A (en) * 2006-09-27 2008-04-10 Toyobo Co Ltd Method for producing polyester resin and the resultant polyester resin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020158747A (en) * 2018-09-28 2020-10-01 日本エステル株式会社 Polyester resins
WO2022054670A1 (en) * 2020-09-11 2022-03-17 東洋紡株式会社 Polyester resin composition, method for manufacturing same, and polyester film using same
WO2022059511A1 (en) * 2020-09-17 2022-03-24 東洋紡株式会社 Polyester resin, blow-molded object therefrom, and production methods therefor
WO2024070038A1 (en) * 2022-09-30 2024-04-04 東洋紡エムシー株式会社 Co-polyester resin

Also Published As

Publication number Publication date
TW201807009A (en) 2018-03-01
JPWO2017183550A1 (en) 2019-02-21

Similar Documents

Publication Publication Date Title
JP5121125B2 (en) Polybutylene terephthalate
WO2017183550A1 (en) Polybutylene terephthalate resin
WO2006001475A1 (en) Flame retardant polybutylene terephthalate composition and molded product
JP5079226B2 (en) Polybutylene terephthalate
TWI424000B (en) Process for producing polybutylene terephthalate
JP2004277720A (en) Polybutylene terephthalate and polybutylene terephthalate composition
WO2005108462A1 (en) Process for producing polybutylene terephthalate
JP3911251B2 (en) Method for producing polybutylene terephthalate resin
JP4329567B2 (en) Polybutylene terephthalate and polybutylene terephthalate composition
JP2004143210A (en) Polybutylene terephthalate resin composition and molded product
JP2003012781A (en) Polybutylene terephthalate resin and molded article
JP4993537B2 (en) Polybutylene terephthalate and polybutylene terephthalate composition
JP2006045525A (en) Flame-retardant polybutylene terephthalate composition and molded product
JP2004143208A (en) Polybutylene terephthalate resin composition and molded product
JP4591187B2 (en) Method for producing polybutylene terephthalate
JP2004323837A (en) Polybutylene terephthalate
JP2004075756A (en) Polybutylene terephthalate resin composition and molded article
JP5691832B2 (en) Method for producing polybutylene terephthalate
JP4725029B2 (en) Polybutylene terephthalate
JP2004143209A (en) Polybutylene terephthalate resin composition and molded product
JP4544228B2 (en) Method for producing polybutylene terephthalate
JP2004323836A (en) Polybutylene terephthalate
JP2002322352A (en) Polybutyleneterephthalate resin composition and its molding
JP4544127B2 (en) Polybutylene terephthalate and method for producing the same
JP4635481B2 (en) Polybutylene terephthalate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017543398

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785889

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785889

Country of ref document: EP

Kind code of ref document: A1