WO2021221272A1 - 전고체 이차 전지 - Google Patents

전고체 이차 전지 Download PDF

Info

Publication number
WO2021221272A1
WO2021221272A1 PCT/KR2021/001147 KR2021001147W WO2021221272A1 WO 2021221272 A1 WO2021221272 A1 WO 2021221272A1 KR 2021001147 W KR2021001147 W KR 2021001147W WO 2021221272 A1 WO2021221272 A1 WO 2021221272A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
negative electrode
solid
secondary battery
state secondary
Prior art date
Application number
PCT/KR2021/001147
Other languages
English (en)
French (fr)
Inventor
스기모토토시노리
류새봄
구준환
김영일
Original Assignee
삼성에스디아이주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이주식회사 filed Critical 삼성에스디아이주식회사
Priority to JP2022566219A priority Critical patent/JP2023524057A/ja
Priority to EP21796748.8A priority patent/EP4145565A1/en
Priority to CN202180030580.7A priority patent/CN115443558A/zh
Publication of WO2021221272A1 publication Critical patent/WO2021221272A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the disclosed embodiments relate to a solid secondary battery.
  • an all-solid-state secondary battery using a solid electrolyte as an electrolyte is attracting attention.
  • lithium As an anode active material.
  • the capacity density (capacity per unit mass) of lithium is about 10 times that of graphite generally used as an anode active material. Therefore, it is possible to increase the output while reducing the thickness of the solid secondary battery by using lithium as an anode active material.
  • lithium metal lithium
  • lithium deposited on the negative electrode side may grow in a branched shape through the gap (interelectrode) of the solid electrolyte.
  • Lithium grown in a branch shape may be referred to as a lithium dendrite, and the grown lithium dendrite may cause a short circuit of the secondary battery. It may also cause a decrease in capacity.
  • an all-solid-state secondary battery using lithium as an anode active material there is provided an all-solid-state secondary battery using lithium as an anode active material.
  • An all-solid-state secondary battery includes: a positive electrode layer including a positive electrode active material; a negative electrode current collector and a negative electrode layer disposed on the negative electrode current collector, the negative electrode layer including a negative electrode active material layer including a negative electrode active material and amorphous carbon; and a solid electrolyte layer disposed between the positive electrode active material layer and the negative electrode active material layer, wherein a weight ratio of the negative active material and the amorphous carbon may be 1:3 to 1:1, and the negative electrode layer has a plate shape.
  • the negative electrode layer may have a surface resistance value of 0.5 m ⁇ cm or less.
  • the negative active material may be included in a ratio of 1 wt % to 50 wt %.
  • the negative active material is gold (Au), platinum (Pt), palladium (Pd), silicon (Si), silver (Ag), aluminum (Al), bismuth (Bi), tin (Sn), titanium (Ti) or zinc. It may include at least one or more of (Zn).
  • the amorphous carbon may include at least one of carbon black (CB), acetylene black (AB), furnace black (FB), Ketjen black (KB), and graphene.
  • CB carbon black
  • AB acetylene black
  • FB furnace black
  • graphene graphene
  • the negative active material layer may further include a binder.
  • the content of the binder may be 0.3 wt% to 15 wt% based on the total weight of the negative active material.
  • the thickness of the negative active material layer may be 1 ⁇ m ⁇ 20 ⁇ m.
  • the metal layer may include at least one of lithium or a lithium alloy.
  • the metal layer may be disposed between the negative electrode current collector and the negative electrode active material layer before the all-solid-state secondary battery is charged.
  • the metal layer may have a thickness of 1 ⁇ m to 200 ⁇ m.
  • a thin film including an element capable of forming an alloy with lithium may be further provided on the negative electrode current collector, and the thin film may be disposed between the negative electrode current collector and the negative electrode active material layer.
  • the thin film may have a thickness of 1 nm to 500 nm.
  • the negative electrode current collector, the negative electrode active material layer, and a region between them may be a Li-free region that does not contain lithium (Li) in an initial state or a post-discharge state of the all-solid-state secondary battery.
  • the all-solid-state secondary battery may be a lithium battery.
  • an all-solid-state secondary battery having an anode active material layer including a mixture of anode active material and amorphous carbon mixed in an appropriate mixing amount.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an all-solid-state secondary battery according to an embodiment.
  • FIG. 2 is a scanning electron microscope (SEM) photograph obtained by observing a cross section of the anode layer after overcharging the anode active material layer.
  • FIG. 3 is a schematic diagram showing an example of measuring the surface resistance of the negative electrode layer.
  • FIG. 4 is a cross-sectional view illustrating a modified example of an all-solid-state secondary battery.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of an all-solid-state secondary battery according to another embodiment.
  • 6A is a graph showing charge/discharge characteristics in the first cycle according to Examples 1, 2, Comparative Examples 1 and 2;
  • 6B is a graph showing discharge characteristics in the second cycle according to Examples 1, 2, Comparative Examples 1 and 2;
  • FIG. 1 is a cross-sectional view showing a schematic configuration of an all-solid-state secondary battery according to an embodiment.
  • FIG. 2 is a scanning electron microscope (SEM) photograph obtained by observing a cross section of the anode layer after overcharging the anode active material layer.
  • 3 is a schematic diagram showing an example of measuring the surface resistance of the negative electrode layer.
  • 4 is a cross-sectional view illustrating a modified example of an all-solid-state secondary battery.
  • an all-solid-state secondary battery 10 may include a positive electrode layer 100 , a negative electrode layer 200 , and a solid electrolyte layer 300 .
  • the positive electrode layer 100 may include a positive electrode current collector 101 and a positive electrode active material layer 102 .
  • the positive electrode current collector 101 may be provided in a plate shape or a thin thin film shape.
  • the positive electrode current collector 101 is, for example, indium (In), copper (Cu), magnesium (Mg), stainless steel, titanium (Ti), iron (Fe), cobalt (Co), nickel (Ni) ), zinc (Zn), aluminum (Al), germanium (Ge), lithium (Li), or an alloy thereof.
  • the positive electrode current collector 101 may be omitted if necessary.
  • the cathode active material layer 102 may include a cathode active material and a solid electrolyte material.
  • the solid electrolyte material included in the positive electrode active material layer 102 may be substantially the same as the solid electrolyte material included in the solid electrolyte layer 300 to be described later. For convenience of description, matters related to the solid electrolyte material will be described in detail in the solid electrolyte layer 300 .
  • the positive active material included in the positive active material layer 102 may reversibly occlude and release lithium ions.
  • the positive active material may be lithium cobalt oxide (hereinafter referred to as LCO), lithium nickel oxide, lithium nickel cobalt oxide, lithium nickel cobalt aluminum oxide (hereinafter referred to as NCA), or the like.
  • nickel cobalt lithium salts such as lithium manganate (hereinafter referred to as NCM), lithium manganate, lithium iron phosphate, nickel sulfide, copper sulfide, lithium sulfide sulfur, iron oxide, or vanadium oxide (vanadium oxide) may include one or more.
  • the positive active material may include a lithium salt of a transition metal oxide having a layered rock salt type structure among the lithium salts described above.
  • the "layered rock salt structure” may be a structure in which oxygen atomic layers and metal atomic layers are alternately arranged in the ⁇ 111> direction of the cubic rock salt structure, and as a result, each atomic layer forms a two-dimensional plane.
  • “cubic rock salt type structure” indicates a sodium chloride type structure, which is a kind of crystal structure.
  • the positive active material includes a lithium salt of a ternary transition metal oxide having a layered rock salt structure
  • the energy density and thermal stability of the all-solid-state secondary battery 10 according to an example can be improved.
  • the positive active material according to an example may be covered by a coating layer.
  • the coating layer of this embodiment may include Li 2 O—ZrO 2 .
  • the positive electrode active material layer 102 includes, for example, a conductive aid, a binder, a filler, a dispersant, as well as the above-described positive active material and solid electrolyte. It may also contain additives, such as an ion conductivity adjuvant.
  • the conductive support agent according to an example may include, for example, graphite, carbon black, acetylene black, Ketjen black, carbon fiber, metal powder, and the like.
  • the binder according to an example may include, for example, styrene butadiene rubber (SBR), polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, or the like.
  • SBR styrene butadiene rubber
  • the negative electrode layer 200 may include a negative electrode current collector 201 and a negative electrode active material layer 202 .
  • the negative electrode current collector 201 may include a material that does not react with lithium, that is, does not form both an alloy and a compound.
  • the negative electrode current collector 201 may include one or an alloy of two or more of copper (Cu), stainless steel, titanium (Ti), iron (Fe), cobalt (Co), and nickel (Ni).
  • the negative electrode current collector 201 according to an example may be provided in, for example, a plate shape or a thin thin film shape.
  • a thin film 204 may be formed on the surface of the negative electrode current collector 201 .
  • the thin film 204 may include an element capable of forming an alloy with lithium.
  • the element capable of forming an alloy with lithium may be, for example, gold, silver, zinc, tin, indium, silicon, aluminum, or bismuth.
  • the thin film 204 may be comprised by 1 type of these metals, and may be comprised by several types of alloys.
  • the thickness of the thin film 204 is not particularly limited, but may be about 1 nm to 500 nm. When the thickness of the thin film 204 is less than 1 nm, there is a possibility that the function of the thin film 204 cannot be sufficiently exhibited. When the thickness of the thin film 204 exceeds 500 nm, the thin film 204 itself occludes lithium, the amount of lithium precipitation from the negative electrode decreases, and there is a possibility that the characteristics of the all-solid-state secondary battery 10 may be deteriorated.
  • the thin film 204 may be formed on the negative electrode current collector 201 by, for example, a vacuum deposition method, a sputtering method, a plating method, or the like.
  • the negative active material layer 202 may include a negative active material that forms an alloy or compound with amorphous carbon and lithium.
  • the anode active material may include, for example, gold (Au), platinum (Pt), palladium (Pd), silicon (Si), silver (Ag), aluminum (Al), bismuth (Bi), or tin (Sn). ), titanium (Ti), and zinc (Zn).
  • the amorphous carbon according to an example is, for example, carbon black (CB), acetylene black (AB), furnace black (FB), ketjen black (ketjen black) ( KB) and graphene (graphene).
  • the negative active material layer 202 is a mixture containing amorphous carbon and at least one negative electrode active material selected from the group consisting of gold, platinum, palladium, silicon, silver, aluminum, bismuth, tin, titanium and zinc. can be formed.
  • the negative active material layer 202 may include a mixture of first particles formed of amorphous carbon and second particles formed of the negative electrode active material.
  • the mixing ratio (mass ratio) of the negative active material included in the second particle to the amorphous carbon included in the first particle may be, for example, 1:3 to 1:1.
  • the negative active material may be included in a ratio of 1 wt % to 50 wt % based on the total weight of the negative active material layer 202 .
  • the resistance value of the negative electrode layer 200 may be reduced.
  • the negative electrode active material layer 202 includes only amorphous carbon, for example, carbon black
  • the binding force between the negative electrode active material layer 202 and the negative electrode current collector 201 is reduced, and the surface of the negative electrode layer 200 is The sheet resistance may be increased.
  • the anode active material layer 202 includes only a cathode active material made of metal, for example, silver (Ag), insertion between silver (Ag) and lithium (Li) included in the anode active material layer 202 .
  • the reaction rate of charging and discharging may be reduced. Therefore, when the mixture made of the negative electrode active material and the amorphous carbon is mixed in an appropriate ratio as in the above-described embodiment, it is possible to increase the binding force between the negative electrode active material layer 202 and the negative electrode current collector 201 as well as the negative electrode. The sheet resistance of the layer 200 may be reduced. In addition, the charging/discharging reaction rate of the all-solid-state secondary battery 10 may be improved.
  • the sheet resistance value of the negative electrode layer 200 is It can be reduced to 0.5 m ⁇ cm or less.
  • the sheet resistance of the cathode layer 200 may be measured using a 4-point probe as shown in FIG. 3 .
  • the particle size (eg, average particle diameter) of the negative active material may be about 4 ⁇ m or less.
  • the particle diameter of the negative electrode active material may be, for example, a median diameter (so-called D50) measured using a laser particle size distribution meter.
  • the lower limit of the particle size according to an example is not particularly limited, but may be about 10 nm.
  • the anode active material layer 202 may include a binder.
  • the binder may include one or more of styrene butadiene rubber (SBR), polytetrafluoroethylene, polyvinylidene fluoride, and polyethylene.
  • SBR styrene butadiene rubber
  • a binder may be comprised by 1 type, or may be comprised by 2 or more types.
  • the negative active material layer 202 may be stabilized on the negative electrode current collector 201 by including a binder in the negative electrode active material layer 202 .
  • the anode active material layer 202 may be manufactured by applying a slurry in which a material constituting the anode active material layer 202 is dispersed on the anode current collector 201 and drying the slurry.
  • a binder may be included in the anode active material layer 202 to stably disperse the anode active material in the slurry.
  • the content of the binder may be about 0.3 to 15 wt % based on the total weight of the anode active material.
  • the content of the binder is less than 0.3% by weight, the strength of the film is not sufficient, the properties are deteriorated, and it may be difficult to process/handle. If the content of the binder exceeds 20% by weight, the properties of the all-solid-state secondary battery 10 may be deteriorated.
  • the lower limit of the content of the binder may be about 3% by weight.
  • the anode active material layer 202 may contain additives used in conventional solid secondary batteries, for example, a filler, a dispersant, an ion conductive agent, and the like, as appropriate.
  • the thickness of the anode active material layer 202 may be, for example, 1 ⁇ m to 20 ⁇ m. When the thickness of the anode active material layer 202 is less than 1 ⁇ m, the characteristics of the all-solid-state secondary battery 10 may not be sufficiently improved. When the thickness of the anode active material layer 202 exceeds 20 ⁇ m, the resistance value of the anode active material layer 202 is high, and as a result, the characteristics of the all-solid-state secondary battery 10 may not be sufficiently improved.
  • the solid electrolyte layer 300 may include a solid electrolyte material formed between the positive active material layer 102 and the negative active material layer 202 .
  • the solid electrolyte material may include, for example, a sulfide-based solid electrolyte material.
  • the sulfide-based solid electrolyte material is, for example, Li 2 SP 2 S 5 , Li 2 SP 2 S 5 -LiX (X is a halogen element, for example I, Cl), Li 2 SP 2 S 5 -Li 2 O , Li 2 SP 2 S 5 -Li 2 O-LiI, Li 2 S-SiS 2 , Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -LiBr, Li 2 S-SiS 2 -LiCl, Li 2 S-SiS 2 -B 2 S 3 -LiI, Li 2 S-SiS 2 -P 2 S 5 -LiI, Li 2 SB 2 S 3 , Li 2 SP 2 S 5 -Z m S n (m, n are positive number of, Z is one of Ge, Zn, or Ga), Li 2 S-GeS 2 , Li 2 S-SiS 2 -Li 3 PO 4 , Li 2 S-
  • the sulfide-based solid electrolyte material may be produced by processing a starting material (eg, Li 2 S, P 2 S 5, etc.) using a melt quenching method or a mechanical milling method.
  • a starting material eg, Li 2 S, P 2 S 5, etc.
  • heat treatment fixing to the sulfide-based solid electrolyte material may be performed.
  • the solid electrolyte according to an example may be amorphous or crystalline, and may be in a mixed state of amorphous and crystalline.
  • the solid electrolyte layer 300 may further include a binder.
  • the binder included in the solid electrolyte layer 300 may include, for example, styrene butadiene rubber (SBR), polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, etc. have.
  • SBR styrene butadiene rubber
  • the binder of the solid electrolyte layer 300 may be substantially the same as or different from the binder of the positive active material layer 102 and the negative active material layer 202 .
  • the all-solid-state secondary battery 10 may be charged in excess of the charging capacity of the negative active material layer 202 . That is, the negative active material layer 202 is overcharged. At the initial stage of charging, lithium is occluded in the anode active material layer 202 . When charging is performed in excess of the charging capacity of the negative active material layer 202 , as shown in FIG. 2 , lithium is disposed on the back side of the negative active material layer 202 , that is, between the negative electrode current collector 201 and the negative electrode active material layer 202 . The metal layer 203 is formed by the precipitated lithium.
  • lithium in the negative electrode active material layer 202 and the metal layer 203 is ionized, and the ionized lithium moves toward the positive electrode layer 100 . Accordingly, lithium may be used as an anode active material in the all-solid-state secondary battery 10 .
  • the anode active material layer 202 covers the metal layer 203 , it can serve as a protective layer for the metal layer 203 and suppress the precipitation growth of dendrites. This may suppress a short circuit and a decrease in capacity of the all-solid-state secondary battery 10 , and further improve the characteristics of the all-solid-state secondary battery 10 .
  • the metal layer 203 is not previously formed, the manufacturing cost of the all-solid-state secondary battery 10 can be reduced.
  • the negative electrode current collector 201, the negative electrode active material layer 202, and the region (interface) between them are Li- that does not contain lithium (Li) in the initial state or post-discharge state of the all-solid-state secondary battery 10 . It may be a free area.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of an all-solid-state secondary battery according to another embodiment.
  • an all-solid-state secondary battery 11 may include a positive electrode layer 100 , a negative electrode layer 210 , and a solid electrolyte layer 300 . Matters related to the positive electrode layer 100 and the solid electrolyte layer 300 are substantially the same as the positive electrode layer 100 and the solid electrolyte layer 300 shown in FIG. 1 , and thus descriptions thereof will be omitted.
  • the negative electrode layer 210 may include a negative electrode current collector 211 , an anode active material layer 212 , and a metal layer 213 . That is, in the embodiment shown in FIG. 1 , the metal layer 203 may be formed between the anode current collector 201 and the anode active material layer 202 by overcharging the anode active material layer 202 . However, in another embodiment, the metal layer 213 may be formed between the negative electrode current collector 211 and the negative electrode active material layer 212 in advance (ie, before the initial charging).
  • the configuration of the anode current collector 211 and the anode active material layer 212 is the same as that of the anode current collector 201 and the anode active material layer 202 illustrated in FIG. 1 .
  • the metal layer 213 may include lithium or a lithium alloy. That is, the metal layer 213 may function as a lithium reservoir. Examples of the lithium alloy include a Li-Al alloy, a Li-Sn alloy, a Li-In alloy, a Li-Ag alloy, a Li-Au alloy, a Li-Zn alloy, a Li-Ge alloy, and a Li-Si alloy. can be heard The metal layer 213 may be composed of one of these alloys, lithium, or several types of alloys. In another embodiment, since the metal layer 213 serves as a lithium reservoir, characteristics of the all-solid-state secondary battery 11 may be further improved.
  • the thickness of the metal layer 213 is not particularly limited, but may be, for example, about 1 ⁇ m to 200 ⁇ m. When the thickness of the metal layer 213 is less than 1 ⁇ m, the reservoir function by the metal layer 213 may not be sufficiently exhibited. When the thickness of the metal layer 213 exceeds 200 ⁇ m, the mass and volume of the all-solid-state secondary battery 11 may increase, and properties may rather deteriorate.
  • the metal layer 213 may be formed of, for example, a metal foil having a thickness in the above-described range.
  • 6A is a graph showing charge/discharge characteristics in the first cycle according to Examples 1, 2, Comparative Examples 1 and 2; 6B is a graph showing discharge characteristics in the second cycle according to Examples 1, 2, Comparative Examples 1 and 2;
  • the positive active material included in the positive electrode layer 100 according to Example 1 may include LiNi 0.9 Co 0.07 Mn 0.03 O 2 (NCM).
  • NCM LiNi 0.9 Co 0.07 Mn 0.03 O 2
  • LiCl-Li 2 S-Li 3 PS 4 which is an Argyrodite-type crystal may be included as a solid electrolyte.
  • polytetrafluoroethylene Teflon binder manufactured by DuPont
  • carbon nanofibers CNF
  • CNF carbon nanofibers
  • the positive electrode layer can be produced by pressing the positive electrode sheet to the positive electrode current collector made of 18 ⁇ m thick aluminum foil.
  • the negative electrode layer 200 may include a negative electrode current collector in the form of a Ni thin film having a thickness of 10 ⁇ m.
  • the anode active material layer 202 may use a mixture of silver (Ag) as an anode active material and carbon black as amorphous carbon.
  • the mixing ratio (mass ratio) of silver (Ag) as the negative electrode active material and carbon black as amorphous carbon may be 1:3.
  • 2 g of FB-A is placed in a container, and a N-methyl-pyrrolidone (NMP) solution containing a binder (#9300, Kureha Co., Ltd.) is added thereto (the binder is 6.5% by mass relative to the negative electrode layer).
  • NMP N-methyl-pyrrolidone
  • the solid electrolyte layer 300 according to Example 1 may include the LiCl-Li 2 S-Li 3 PS 4 solid electrolyte and an acrylic binder.
  • solid electrolyte: acrylic binder 98.5: may be mixed in a weight ratio of 1.5.
  • a slurry is prepared by stirring while adding xylene and diethylbenzene to the above-mentioned mixture. This slurry is applied on the nonwoven fabric using a blade coater, and dried in air at a temperature of 40°C. The laminate thus obtained is vacuum dried at 40°C for 12 hours.
  • a solid electrolyte layer can be produced by the above process.
  • the above-described positive electrode layer 100, solid electrolyte layer 300, and negative electrode layer 200 are sequentially stacked, and sealed in a laminating film in a vacuum to manufacture an all-solid-state secondary battery 10 according to the first embodiment.
  • each part of the positive current collector and the negative current collector is protruded out of the laminate film so as not to break the vacuum of the battery.
  • These protrusions may be anode layer and cathode layer terminals.
  • the all-solid-state secondary battery 10 according to the first embodiment is subjected to water pressure treatment at 500 MPa and 85 o C for 30 minutes.
  • Example 2 except that the mixing ratio (mass ratio) of silver (Ag) as an anode active material included in the anode active material layer 202 and carbon black as amorphous carbon is 1:1. Same as 1
  • the negative electrode active material layer 202 is the same as in Example 1 except that only carbon black is included as amorphous carbon without a separate negative electrode active material.
  • Comparative Example 3 as the negative active material included in the negative active material layer 202, the mixing ratio (mass ratio) of silver (Ag) and graphite (graphite) is 1:3, except that the other matters are the same as in Example 1.
  • the charge/discharge characteristics of the all-solid-state secondary batteries manufactured according to Examples 1 to 2 and Comparative Examples 1 to 3 may be evaluated by the following charge/discharge test.
  • the charge/discharge test may be performed by putting the all-solid-state secondary battery in a thermostat at 60°C. In the first cycle, the battery was charged with a constant current of 0.62 mA/cm 2 until the battery voltage reached 4.25 V, and the battery was charged with a constant voltage of 4.25 V until the current was 0.31 mA/cm 2 . After that, discharge was performed at a constant current of 0.62 mA/cm 2 until the battery voltage reached 2.5 V.
  • the battery was charged with a constant current of 0.62 mA/cm 2 until the battery voltage reached 4.25 V, and the battery was charged with a constant voltage of 4.25 V until the current was 0.31 mA/cm 2 . After that, the battery was discharged with a constant current of 6.2 mA/cm 2 until the voltage reached 2.5 V.
  • Example 1 Example 2 Comparative Example 1 Comparative Example 2 Comparative Example 3 surface resistance m ⁇ cm 0.23 0.21 4.09 0.58 6.39 Constant current charge capacity of 0.62 mA/cm 2 one time (Q 1 ) mAh/g 222.6 218.9 216.8 222.3 221.4 Constant current discharge capacity of 0.62 mA/cm 2 one time (Q 2 ) mAh/g 196.9 191.9 186.3 202.8 166.8 Q 2 / Q 1 % 88.5 87.7 85.9 91.2 75.3 4.25V constant voltage resistor ⁇ 10.0 12.5 15.0 10.4 11.9 2 times a constant current discharge capacity of 6.2 mA/cm 2 (Q 3 ) mAh/g 172.6 136.0 96.7 142.6 10.5 Q 3 / Q 1 % 87.7 70.9 51.9 70.3 6.3
  • Example 1 Comparative Example 1, and Comparative Example 3, in Example 1 in which silver (Ag) as an anode active material and carbon black as amorphous carbon were mixed, carbon black as amorphous carbon It can be seen that the surface resistance of the negative electrode layer is reduced compared to Comparative Example 1 including only or Comparative Example 3 in which silver (Ag) and graphite are mixed as the negative electrode active material.
  • Table 2 in which a peel test was performed between the negative electrode active material layer and the negative electrode current collector of Example 1 and Comparative Example 1,
  • Example 1 Comparative Example 1 peel strength mN/mm 55.4 0.698
  • the binding force between the anode active material layer and the anode current collector of Example 1 is 50 times stronger than the binding force between the anode active material layer and the anode current collector of Comparative Example 1.
  • silver as the anode active material When referring to Examples 1 and 2 and Comparative Example 2, in which the mixing ratio of (Ag) and carbon black as amorphous carbon is different, the ratio of silver (Ag) as an anode active material in the anode active material layer increases In the case of one time, it can be seen that the constant current discharge capacity (Q 3 / Q 1 ) of two cycles for the constant current charge capacity of 0.62 mA/cm 2 decreases.
  • the anode active material layer when only amorphous carbon is included in the anode active material layer, it can be seen that not only the binding force between the anode active material layer and the anode current collector is weakened, but also the discharge capacity is reduced. Therefore, a mixture of silver (Ag) as an anode active material and carbon black as amorphous carbon should be included in the anode active material layer, but the anode active material has a certain level, that is, the ratio of silver (Ag) as the anode active material is 50% or more When increasing, it can be seen that the discharge capacity is reduced. Accordingly, according to the present disclosure, it is possible to provide an all-solid-state secondary battery capable of increasing the discharge capacity while enhancing peel strength by confirming an appropriate ratio of the negative active material and the amorphous carbon included in the negative active material layer.
  • silver (Ag) was included as an anode active material included in the anode active material layer, but as described above, the anode active material was gold (Au), platinum (Pt), palladium (Pd), and silicon. It may include at least one of (Si), aluminum (Al), bismuth (Bi), tin (Sn), titanium (Ti), or zinc (Zn).
  • the mixing ratio (mass ratio) of silicon (Si) as an anode active material included in the anode active material layer 202 and carbon black as amorphous carbon is 1:3.
  • the details are the same as in Example 1.
  • the mixing ratio (mass ratio) of zinc (Zn) as an anode active material included in the anode active material layer 202 and carbon black as amorphous carbon is 1:3, everything else is Example Same as 1
  • the mixing ratio (mass ratio) of titanium (Ti) as an anode active material included in the anode active material layer 202 and carbon black as amorphous carbon is 1:3, everything else is Example Same as 1
  • Example 3 Example 4 Example 5 surface resistance m ⁇ cm 0.26 0.22 0.18 Constant current charge capacity of 0.62 mA/cm 2 one time (Q 1 ) mAh/g 222.5 225.1 220.2 Constant current discharge capacity of 0.62 mA/cm 2 one time (Q 2 ) mAh/g 199.1 203.8 186.4 Q 2 / Q 1 % 89.5 90.5 84.7 4.25V constant voltage resistor ⁇ 10.1 9.86 10.7 2 times a constant current discharge capacity of 6.2 mA/cm 2 (Q 3 ) mAh/g 173.5 175.5 153.1 Q 3 / Q 1 % 87.1 86.1 82.1
  • Table 3 may be used to refer to the charging/discharging results of Examples 3 to 5 including materials other than silver (Ag) as the negative electrode active material.
  • the surface resistance of the negative electrode layer was 0.5 m ⁇ compared to Example 1 in which silver (Ag) as the negative electrode active material and carbon black as amorphous carbon were mixed in a ratio of 1:3 cm or less, and the ratio of Q 3 / Q 1 is maintained at 80% or more , confirming the characteristic that the discharge capacity (Q 3 ) does not decrease.
  • all-solid-state secondary battery and the charging method thereof described with reference to the drawings may be variously changed.
  • a partial solid secondary battery other than an all-solid-state secondary battery may be configured, or a secondary battery using a liquid electrolyte may be partially configured, and the spirit and principles of the present disclosure may be applied to other batteries other than lithium batteries. you will know Therefore, the scope of the invention should not be determined by the described embodiments, but should be determined by the technical idea described in the claims.

Abstract

일 측면에 따른 전고체 이차 전지는 양극 활물질을 포함하는 양극층, 음극 집전체와, 상기 음극 집전체 상에 배치되고, 음극 활물질과 비정질 탄소를 포함하는 음극 활물질층을 포함하는 음극층 및 상기 양극 활물질층과 상기 음극 활물질층 사이에 배치된 고체 전해질층을 포함하며, 상기 음극 활물질과 상기 비정질 탄소의 중량비는 1:3 내지 1:1일 수 있다.

Description

전고체 이차 전지
개시된 실시예들은 고체 이차 전지에 관한 것이다.
최근 전해질로서 고체 전해질을 이용한 전고체 이차 전지가 주목 받고 있다. 이러한 고체 이차 전지의 에너지(energy) 밀도를 높이기 위해 음극 활물질로 리튬(lithium)을 사용하는 것이 제안되어 있다. 예를 들어, 리튬의 용량 밀도(단위 질량 당 용량)는 음극 활물질로서 일반적으로 사용되는 흑연의 용량 밀도의 10배 정도 인 것으로 알려져 있다. 따라서 음극 활물질로 리튬을 사용하여 고체 이차 전지를 박형화하면서 출력을 높일 수 있다.
리튬을 음극 활물질로 사용하는 경우, 충전시에 음극 측에 리튬(금속 리튬)이 석출될 수 있다. 전고체 이차 전지의 충방전을 반복함에 따라, 음극 측에 석출된 리튬은 고체 전해질의 틈새(극간)를 통해서 가지 모양으로 성장할 수 있다. 가지 모양으로 성장한 리튬은 리튬 덴드라이트(dendrite)라 지칭될 수 있으며, 성장한 리튬 덴드라이트(dendrite)는 이차 전지의 단락의 원인이 될 수 있다. 또한 용량 저하의 원인이 될 수 있다.
본 개시의 일 측면에 따르면, 리튬을 음극 활물질로 사용하는 전고체 이차 전지를 제공한다.
일 측면(aspect)에 따른 전고체 이차 전지는,양극 활물질을 포함하는 양극층; 음극 집전체와, 상기 음극 집전체 상에 배치되고, 음극 활물질과 비정질 탄소를 포함하는 음극 활물질층을 포함하는 음극층; 및 상기 양극 활물질층과 상기 음극 활물질층 사이에 배치된 고체 전해질층;을 포함하며, 상기 음극 활물질과 상기 비정질 탄소의 중량비는 1:3 내지 1:1일 수 있고, 상기 음극층은 판상 형상으로 마련되며 상기 음극층의 표면 저항값이 0.5mΩ cm 이하일 수 있다.
상기 음극 활물질층의 전체 중량을 기준으로 상기 음극 활물질은 1 wt % 내지 50 wt %의 비율로 포함될 수 있다.
상기 음극 활물질은 금(Au), 백금(Pt), 팔라듐(Pd), 실리콘(Si), 은(Ag), 알루미늄(Al), 비스무스(Bi), 주석(Sn), 티타늄(Ti) 또는 아연(Zn)중 적어도 하나 이상을 포함할 수 있다.
상기 비정질 탄소는 카본 블랙 (CB), 아세틸렌 블랙 (AB), 퍼니스 블랙 (FB), 케첸 블랙 (KB), 그래핀 중 하나 이상을 포함할 수 있다.
상기 음극 활물질층은 바인더(binder)를 더 포함할 수 있다.
상기 바인더의 함량은 상기 음극 활물질의 총 중량을 기초로 0.3 중량 % 내지 15 중량 % 일 수 있다.
상기 음극 활물질층의 두께는 1㎛ ~ 20㎛ 일 수 있다.
상기 음극 집전체와 상기 음극 활물질층 사이에 배치된 금속층을 더 포함하고, 상기 금속층은 리튬 또는 리튬 합금 중 적어도 하나를 포함할 수 있다.
상기 금속층은 전고체 이차 전지가 충전되기 전에 상기 음극 집전체와 상기 음극 활물질층 사이에 배치될 수 있다.
상기 금속층의 두께는 1㎛ ~ 200㎛ 일 수 있다.
상기 음극 집전체 상에 리튬과 합금을 형성할 수 있는 원소를 포함하는 박막이 더 구비되고, 상기 박막은 상기 음극 집전체와 상기 음극 활물질층 사이에 배치될 수 있다.
상기 박막의 두께는 1nm ~ 500nm 일 수 있다.
상기 음극 집전체와 상기 음극 활물질층 및 이들 사이의 영역은 상기 전고체 이차 전지의 초기 상태 또는 방전후 상태에서 리튬(Li)을 포함하지 않는 Li-프리(free) 영역일 수 있다.
상기 전고체 이차 전지는 리튬 전지일 수 있다.
또한 개시된 실시예에 따르면, 적정 혼합량으로 혼합된 음극 활물질과 비정질 탄소의 혼합물을 포함하는 음극 활물질층을 구비하는 전고체 이차 전지를 제공할 수 있다.
또한 개시된 실시예에 따르면, 음극 활물질층과 음극 집전체 사이의 결착력이 강화되는 전고체 이차 전지를 제공할 수 있다.
또한 개시된 실시예에 따르면, 방전 용량이 증가된 전고체 이차 전지를 제공할 수 있다.
도 1은 일 실시예에 따른 전고체 이차 전지의 개략적인 구성을 보여주는 단면도이다.
도 2는 음극 활물질층을 과충전 후, 음극층의 단면을 관찰하여 얻은 SEM(scanning electron microscope) 사진이다.
도 3은 음극층의 표면 저항을 측정하는 예시를 보여주는 개략도이다.
도 4는 전고체 이차 전지의 변형예를 보여주는 단면도이다.
도 5는 다른 실시예에 따른 전고체 이차 전지의 개략적인 구성을 보여주는 단면도이다.
도 6a는 실시예 1, 실시예 2, 비교예 1 및 비교예 2에 따른 제1 사이클에서의 충방전 특성을 보여주는 그래프이다.
도 6b는 실시예 1, 실시예 2, 비교예 1 및 비교예 2에 따른 제2 사이클에서의 방전 특성을 보여주는 그래프이다.
이하, 실시예들에 따른 전고체 이차 전지를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면에 도시된 층이나 영역들의 폭 및 두께는 명세서의 명확성 및 설명의 편의성을 위해 다소 과장되어 있을 수 있다. 상세한 설명 전체에 걸쳐 동일한 참조번호는 동일한 구성요소를 나타낸다.
도 1은 일 실시예에 따른 전고체 이차 전지의 개략적인 구성을 보여주는 단면도이다. 도 2는 음극 활물질층을 과충전 후, 음극층의 단면을 관찰하여 얻은 SEM(scanning electron microscope) 사진이다. 도 3은 음극층의 표면 저항을 측정하는 예시를 보여주는 개략도이다. 도 4는 전고체 이차 전지의 변형예를 보여주는 단면도이다.
도 1을 참조하면, 일 실시예에 따른 전고체 이차 전지(10)는 양극층(100), 음극층(200) 및 고체 전해질층(300)을 포함할 수 있다. 일 예시에 따른 양극층(100)은 양극 집전체(101) 및 양극 활물질층(102)을 포함할 수 있다.
양극 집전체(101)는 판상 형상 또는 얇은 박막 형상으로 마련될 수 있다. 또한, 양극 집전체(101)는, 예를 들어, 인듐(In), 구리(Cu), 마그네슘(Mg), 스테인레스 스틸, 티타늄(Ti), 철(Fe), 코발트(Co), 니켈(Ni), 아연(Zn), 알루미늄(Al), 게르마늄(Ge), 리튬(Li) 또는 이들의 합금을 포함할 수 있다. 일 예시에 따르면 양극 집전체(101)는 필요에 따라 생략할 수도 있다.
양극 활물질층(102)은 양극 활물질 및 고체 전해질 물질을 포함할 수 있다. 양극 활물질층(102)에 포함된 고체 전해질 물질은 후술하게 될 고체 전해질층(300)에 포함되는 고체 전해질 물질과 실질적으로 동일할 수 있다. 설명의 편의상 고체 전해질 물질과 관련된 사항은 고체 전해질층(300)에서 자세히 서술한다.
양극 활물질층(102)에 포함되는 양극 활물질은 리튬 이온을 가역적으로 흡장 및 방출할 수 있다. 예를 들어, 양극 활물질은 리튬 코발트 산화물(이하, LCO 라 칭함), 니켈 산 리튬(Lithium nickel oxide), 니켈 코발트 산 리튬(lithium nickel cobalt oxide), 니켈 코발트 알루미늄 산 리튬(이하, NCA 라 칭함), 니켈 코발트 망간 산 리튬(이하, NCM이라 칭함), 망간 산 리튬(lithium manganate), 인산 철 리튬(lithium iron phosphate) 등의 리튬 염, 황화 니켈, 황화 구리, 황화 리튬 유황, 산화철, 또는 산화 바나듐(vanadium oxide) 중 하나 이상을 포함할 수 있다.
또한, 양극 활물질은 상술한 리튬 염 중 층상 암염 형 구조를 갖는 전이 금속 산화물의 리튬 염을 포함할 수 있다. 여기에서 "층상 암염 형 구조"는 입방정 암염 형 구조의 <111> 방향으로 산소 원자층과 금속 원자층이 교대로 규칙 배열하고, 그 결과 각각의 원자층이 이차원 평면을 형성하고 있는 구조일 수 있다. 또한 "입방정 암염 형 구조"는 결정 구조의 일종인 염화나트륨 형 구조를 나타낸다. 일 예시에 따른 층상 암염 형 구조를 갖는 전이 금속 산화물의 리튬 염은, 예를 들어, LiNi xCo yAl zO 2 (NCA) 또는 LiNi xCo yMn zO 2 (NCM) (단, 0 < x < 1, 0 < y < 1, 0 < z < 1, 한편 x + y + z = 1) 등의 삼원계 전이 금속 산화물의 리튬 염을 포함할 수 있다. 상술한 바와 같이 양극 활물질이 층상 암염 형 구조를 갖는 삼원계 전이 금속 산화물의 리튬 염을 포함하는 경우, 일 예시에 따른 전고체 이차 전지(10)의 에너지(energy) 밀도 및 열안정성을 향상시킬 수 있다. 또한, 일 예시에 따른 양극 활물질은 피복층에 의해 덮여 있을 수도 있다. 일 예로서, 본 실시예의 피복층은 Li 2O-ZrO 2 을 포함할 수 있다.
본 개시가 이에 제한되는 것은 아니며, 일 예시에 따른 양극 활물질층(102)은 상술한 양극 활물질 및 고체 전해질뿐만 아니라, 예를 들면, 도전 조제(導電 助), 바인더, 필러(filler), 분산제, 이온 전도성 보조제 등의 첨가제를 포함할 수도 있다. 일 예시에 따른 도전 조제는, 예를 들어 흑연, 카본 블랙, 아세틸렌 블랙, 켓젠(Ketjen) 블랙, 탄소 섬유, 금속 분말 등을 포함할 수 있다. 또한 일 예시에 따른 바인더는, 예를 들어 스티렌 부타디엔 고무(SBR), 폴리 테트라 플루오로 에틸렌(polytetrafluoroethylene), 폴리 불화 비닐 리덴(polyvinylidene fluoride), 폴리에틸렌(polyethylene) 등을 포함할 수 있다.
일 예시에 따른 음극층(200)은 음극 집전체(201) 및 음극 활물질층(202)을 포함할 수 있다. 음극 집전체(201)은 리튬과 반응하지 않는, 즉, 합금 및 화합물을 모두 형성하지 않는 물질을 포함할 수 있다. 예를 들어 음극 집전체(201)는 구리(Cu), 스테인리스 스틸, 티타늄(Ti), 철(Fe), 코발트(Co) 및 니켈(Ni) 중 하나 또는 2종 이상의 합금을 포함할 수 있다. 일 예시에 따른 음극 집전체(201)는, 예를 들면, 판상 형상 또는 얇은 박막 형상으로 마련될 수 있다.
여기서, 도 4에 나타낸 바와 같이, 음극 집전체(201)의 표면에 박막(204)이 형성될 수 있다. 박막(204)은 리튬과 합금을 형성할 수 있는 원소를 포함할 수 있다. 리튬과 합금을 형성할 수 있는 원소로는, 예를 들면, 금, 은, 아연, 주석, 인듐, 규소, 알루미늄, 비스무스일 수 있다. 박막(204)은 이들 금속 중 1 종으로 구성되어 있어도 좋고, 여러 종류의 합금으로 구성되어 있어도 좋다. 박막(204)이 존재함으로써, 금속층(203)의 석출 형태가 더 평탄화 될 수 있고, 전고체 이차 전지(10)의 특성이 더욱 향상될 수 있다.
여기서, 박막(204)의 두께는 특별히 제한되지 않지만, 1nm ~ 500nm 정도일 수 있다. 박막(204)의 두께가 1nm 미만이 되는 경우 박막(204)에 의한 기능을 충분히 발휘하지 못할 가능성이 있다. 박막(204)의 두께가 500nm를 초과하면, 박막(204) 자신이 리튬을 흡장하여 음극에서 리튬의 석출량이 감소하고, 전고체 이차 전지(10)의 특성이 저하될 가능성이 있다. 박막(204)은, 예를 들면, 진공 증착법, 스퍼터링 법, 도금법 등에 의해 음극 집전체(201) 상에 형성될 수 있다.
음극 활물질층(202)은 비정질 탄소와 리튬과 합금 또는 화합물을 형성하는 음극 활물질을 포함할 수 있다. 일 예시에 따른 음극 활물질은, 예를 들어, 금(Au), 백금(Pt), 팔라듐(Pd), 실리콘(Si), 은(Ag), 알루미늄(Al), 비스무스(Bi), 주석(Sn), 티타늄(Ti) 및 아연(Zn) 중 하나 이상을 포함할 수 있다. 또한, 일 예시에 따른 비정질 탄소는, 예를 들어 카본 블랙(carbon black)(CB), 아세틸렌 블랙(acetylene black)(AB), 퍼니스 블랙(furnace black)(FB), 켓젠 블랙(ketjen black)(KB), 그래핀(graphene) 중 하나 이상을 포함할 수 있다.
일 예로서, 음극 활물질층(202)은 비정질 탄소와 금, 백금, 팔라듐, 실리콘, 은, 알루미늄, 비스무스, 주석, 티타늄 및 아연으로 이루어진 군에서 선택되는 어느 1 종 이상의 음극 활물질을 포함하는 혼합물로 형성될 수 있다. 일 예로서, 음극 활물질층(202)은 비정질 탄소로 형성된 제1 파티클(particles) 및 음극 활물질로 형성된 제2 파티클(particles)의 혼합물을 포함할 수 있다. 이때, 제2 파티클에 포함된 음극 활물질과 제1 파티클에 포함된 비정질 탄소의 혼합비(질량비)는 예를 들어 1:3 내지 1:1 일 수 있다. 또한, 이때 음극 활물질은 음극 활물질층(202)의 전체 중량을 기준으로 1 wt % 내지 50 wt %의 비율로 포함될 수 있다.
상술한 바와 같이 음극 활물질층(202)이 음극 활물질과 비정질 탄소를 적정 비율로 혼합한 혼합물을 포함함에 따라 음극층(200)의 저항값이 감소될 수 있다. 일 예로서, 음극 활물질층(202)이 비정질 탄소, 예를 들어 카본 블랙만을 포함하는 경우 음극 활물질층(202)과 음극 집전체(201) 사이의 결착력이 저하되며, 음극층(200)의 표면 저항값(sheet resistance)이 증가될 수 있다. 또한, 음극 활물질층(202)이 금속으로 이루어진 음극 활물질, 예를 들어 은(Ag)만을 포함하는 경우, 음극 활물질층(202)에 포함된 은(Ag)과 리튬(Li) 사이의 삽입(insertion)량이 증가되어 충방전의 반응 속도가 저하될 수 있다. 따라서, 상술한 실시예에서와 같이 음극 활물질과 비정질 탄소로 이루어진 혼합물이 적정 비율로 혼합되는 경우, 음극 활물질층(202)과 음극 집전체(201) 사이의 결착력을 증가시킬 수 있을 뿐만 아니라, 음극층(200)의 표면 저항값(sheet resistance)이 감소될 수 있다. 또한, 전고체 이차 전지(10)의 충방전 반응속도를 향상시킬 수 있다.
일 예로서, 판상 형상 또는 얇은 박막 형상으로 마련된 음극 집전체(201) 상에 음극 활물질과 비정질 탄소로 이루어진 혼합물을 포함한 음극 활물질층(202)이 배치되는 경우 음극층(200)의 시트 저항값은 0.5mΩ cm 이하로 감소될 수 있다. 이때, 음극층(200)의 표면 저항값(sheet resistance)은 도 3에 도시된 바와 같은 4-포인트 프로브를 이용하여 측정될 수 있다.
여기서, 음극 활물질로 금, 백금, 팔라듐, 실리콘, 은, 알루미늄, 비스무스, 주석, 티타늄 및 아연 중 하나 이상을 사용하는 경우, 음극 활물질의 입자 크기(예컨대, 평균 입경)는 약 4㎛ 이하일 수 있다. 여기서, 음극 활물질의 입경은, 예를 들어, 레이저 식 입도 분포계를 사용하여 측정한 메디안(median) 직경(소위 D50)을 사용할 수 있다. 일 예시에 따른 입경의 하한은 특별히 제한되지 않지만, 약 10nm 일 수 있다.
또한, 일 예시에 따른 음극 활물질층(202)은 바인더를 포함할 수 있다. 일 예로서 바인더는, 스티렌 부타디엔 고무(SBR), 폴리 테트라 플루오로 에틸렌(polytetrafluoroethylene), 폴리 불화 비닐 리덴(polyvinylidene fluoride), 폴리에틸렌(polyethylene) 중 하나 이상을 포함할 수 있다. 바인더는 이러한 1 종으로 구성되어 있어도, 2 종 이상으로 구성되어 있어도 좋다.
음극 활물질층(202)에 바인더를 포함하여 음극 활물질층(202)을 음극 집전체(201) 상에 안정화시킬 수 있다. 예를 들어, 음극 활물질층(202)은 음극 활물질층(202)을 구성하는 재료가 분산된 슬러리를 음극 집전체(201) 상에 도포하고, 건조하여 제작될 수 있다. 바인더를 음극 활물질층(202)에 포함시켜 슬러리 중에 음극 활물질을 안정적으로 분산시킬 수 있다. 이 결과, 예를 들면, 스크린 인쇄법으로 슬러리를 음극 집전체(201) 상에 도포하는 경우, 스크린의 막힘(예를 들어, 음극 활물질의 응집체에 의한 막힘)을 억제할 수 있다.
일 예로서, 음극 활물질층(202)에 바인더를 포함시키는 경우, 바인더의 함량은 음극 활물질의 총 중량을 기준으로 0.3 내지 15 중량 % 정도일 수 있다. 바인더의 함량이 0.3 중량 % 미만이 되는 경우, 막의 강도가 충분하지 않고, 특성이 저하될 뿐만 아니라 처리/취급하기 어려울 수 있다. 바인더의 함량이 20 중량 %를 초과하면, 전고체 이차 전지(10)의 특성이 저하 될 수 있다. 바인더의 함유량의 하한치는 약 3 중량 % 정도일 수 있다. 또한 음극 활물질층(202)에는 종래의 고체 이차 전지에 사용되는 첨가제, 예를 들면, 필러, 분산제, 이온 도전제 등이 적절하게 배합되어 포함될 수 있다.
또한 음극 활물질층(202)의 두께는 예를 들어 1㎛ ~ 20㎛ 일 수 있다. 음극 활물질층(202)의 두께가 1㎛ 미만이 되는 경우, 전고체 이차 전지(10)의 특성이 충분히 개선되지 않을 수 있다. 음극 활물질층(202)의 두께가 20㎛를 초과 할 경우, 음극 활물질층(202)의 저항 값이 높아 결과적으로 전고체 이차 전지(10)의 특성이 충분히 개선되지 않을 수 있다.
일 예시에 따른 고체 전해질층(300)은 양극 활물질층(102) 및 음극 활물질층(202) 사이에 형성된 고체 전해질 물질을 포함할 수 있다. 고체 전해질 물질은, 예를 들어, 황화물계 고체 전해질 물질을 포함할 수 있다. 황화물계 고체 전해질 물질은, 예를 들면, Li 2S-P 2S 5, Li 2S-P 2S 5-LiX (X는 할로겐 원소, 예를 들면 I, Cl), Li 2S-P 2S 5-Li 2O, Li 2S-P 2S 5-Li 2O-LiI, Li 2S-SiS 2, Li 2S-SiS 2-LiI, Li 2S-SiS 2-LiBr, Li 2S-SiS 2-LiCl, Li 2S-SiS 2-B 2S 3-LiI, Li 2S-SiS 2-P 2S 5-LiI, Li 2S-B 2S 3, Li 2S-P 2S 5-Z mS n (m, n은 양의 수, Z는 Ge, Zn 또는 Ga 중 하나), Li 2S-GeS 2, Li 2S-SiS 2-Li 3PO 4, Li 2S-SiS 2-Li pMO q (p, q는 양의 수, M은 P, Si, Ge, B, Al, Ga In 중 하나) 등을 포함할 수 있다. 여기서, 황화물계 고체 전해질 물질은 출발 원료(예를 들어, Li 2S, P 2S 5 등)를 용융 급냉법이나 기계적 밀링(mechanical milling) 법을 이용하여 가공함으로써 제작할 수 있다. 또한, 상술한 가공 공정 후, 황화물계 고체 전해질 물질에 대한 열처리 고정이 수행될 수 있다. 일 예시에 따른 고체 전해질은 비정질 또는 결정질일 수 있으며, 비정질과 결정질이 혼합된 상태일 수도 있다. 일 예로서, 고체 전해질 물질에 포함된 황화물계 고체 전해질 물질이 Li 2S-P 2S 5를 포함하는 경우, Li 2S와 P 2S 5의 혼합 몰비는, 예를 들어, Li 2S : P 2S 5 = 50 : 50 내지 90 : 10 정도의 범위로 선택될 수 있다.
또한 일 예시에 따른 고체 전해질층(300)은 바인더를 더 포함할 수도 있다. 고체 전해질층(300)에 포함되는 바인더는, 예를 들면, 스티렌 부타디엔 고무(SBR), 폴리 테트라 플루오로 에틸렌(polytetrafluoroethylene), 폴리 불화 비닐 리덴(polyvinylidene fluoride), 폴리에틸렌 (polyethylene) 등을 포함할 수 있다. 고체 전해질층(300)의 바인더는 양극 활물질층(102)과 음극 활물질층(202)의 바인더와 실질적으로 동일하거나 상이할 수도 있다.
일 실시예에 따른 전고체 이차 전지(10)는 음극 활물질층(202)의 충전 용량을 초과하여 충전할 수 있다. 즉, 음극 활물질층(202)을 과충전한다. 충전 초기에는 음극 활물질층(202)에 리튬이 흡장된다. 음극 활물질층(202)의 충전 용량을 초과하여 충전을 하는 경우, 도 2와 같이, 음극 활물질층(202)의 뒷면, 즉, 음극 집전체(201)와 음극 활물질층(202) 사이에 리튬이 석출되고, 석출된 리튬 의해 금속층(203)이 형성된다. 방전시에는 음극 활물질층(202) 및 금속층(203)의 리튬이 이온화되고, 이온화된 리튬이 양극층(100) 쪽으로 이동한다. 따라서 전고체 이차 전지(10)에서 리튬을 음극 활물질로 사용할 수 있다. 또한, 음극 활물질층(202)은 금속층(203)을 피복하기 때문에, 금속층(203)의 보호층 역할을 하는 동시에, 덴드라이트(dendrite)의 석출 성장을 억제할 수 있다. 이는 전고체 이차 전지(10)의 단락 및 용량 저하를 억제하고, 나아가 전고체 이차 전지(10)의 특성을 향상시킬 수 있다. 또한, 일 실시예에서는, 금속층(203)이 미리 형성되어 있지 않기 때문에, 전고체 이차 전지(10)의 제조 비용을 줄일 수 있다. 이 경우, 음극 집전체(201)와 음극 활물질층(202) 및 이들 사이의 영역(계면)은 전고체 이차 전지(10)의 초기 상태 또는 방전후 상태에서 리튬(Li)을 포함하지 않는 Li-프리(free) 영역일 수 있다.
도 5는 다른 실시예에 따른 전고체 이차 전지의 개략적인 구성을 보여주는 단면도이다.
도 5를 참조하면, 다른 실시예에 따른 전고체 이차 전지(11)는 양극층(100), 음극층(210) 및 고체 전해질층(300)을 포함할 수 있다. 양극층(100) 및 고체 전해질층(300)과 관련된 사항은 도 1에 도시된 양극층(100) 및 고체 전해질층(300)과 실질적으로 동일하므로 여기서는 서술을 생략한다.
다른 실시예에 따른 음극층(210)은 음극 집전체(211), 음극 활물질층(212) 및 금속층(213)을 포함할 수 있다. 즉, 도 1에 도시된 일 실시예에서는 음극 활물질층(202)의 과충전에 의해 음극 집전체(201)과 음극 활물질층(202) 사이에 금속층(203)이 형성될 수 있다. 그러나 다른 실시예에서는 이러한 금속층(213)이 미리(즉, 최초의 충전 전에) 음극 집전체(211)과 음극 활물질층(212) 사이에 형성될 수 있다.
음극 집전체(211) 및 음극 활물질층(212)의 구성은 도 1에 도시된 음극 집전체(201) 및 음극 활물질층(202)의 구성과 동일하다. 다른 실시예에 따른 금속층(213)은 리튬 또는 리튬 합금을 포함할 수 있다. 즉, 금속층(213)은 리튬 리저버(reservoir)로서 기능할 수 있다. 리튬 합금으로는, 예를 들어, Li-Al 합금, Li-Sn 합금, Li-In 합금, Li-Ag 합금, Li-Au 합금, Li-Zn 합금, Li-Ge 합금, Li-Si 합금 등을 들 수 있다. 금속층(213)은 이들의 합금 중 1 종 또는 리튬으로 구성되거나, 여러 종류의 합금으로 구성될 수 있다. 다른 실시예에서, 금속층(213)이 리튬 리저버(reservoir)가 되므로, 전고체 이차 전지(11)의 특성이 더욱 향상될 수 있다.
여기서, 금속층(213)의 두께는 특별히 제한되지 않지만, 예를 들어, 약 1㎛ ~ 200㎛ 정도일 수 있다. 금속층(213)의 두께가 1㎛ 미만이 되는 경우, 금속층(213)에 의한 리저버(reservoir) 기능을 충분히 발휘하지 못할 수 있다. 금속층(213)의 두께가 200㎛를 초과하는 경우, 전고체 이차 전지(11)의 질량 및 부피가 증가하고 특성이 오히려 저하될 수 있다. 금속층(213)은, 예를 들어, 상기한 범위의 두께를 갖는 금속 호일(foil)로 구성될 수 있다.
도 6a는 실시예 1, 실시예 2, 비교예 1 및 비교예 2에 따른 제1 사이클에서의 충방전 특성을 보여주는 그래프이다. 도 6b는 실시예 1, 실시예 2, 비교예 1 및 비교예 2에 따른 제2 사이클에서의 방전 특성을 보여주는 그래프이다.
하기에서는 실시예와 비교예에 대해 서술한다.
- 실시예 1
실시예 1에 따른 양극층(100)에포함된 양극 활물질은 LiNi 0.9Co 0.07Mn 0.03O 2 (NCM)를 포함할 수 있다. 또한, 고체 전해질로서 Argyrodite 형 결정체인 LiCl-Li 2S-Li 3PS 4를 포함할 수 있다. 또한, 바인더로서 폴리 테트라 플루오르 에틸렌(듀폰 사의 테프론 바인더)를 포함할 수 있다. 또한, 도전 조제로서 탄소 나노 섬유(CNF)를 포함할 수 있다. 실시예 1에 따르면 양극 활물질 : 고체 전해질 : 도전 조제 : 바인더 = 83.8 : 14.8 : 0.2: 1.2의 중량비로 혼합하여 혼합물을 시트 형태로 크게 성형하여 양극 시트를 제작할 수 있다. 또한, 이 양극 시트를 18㎛ 두께의 알루미늄 호일의 양극 집전체에 압착하여 양극층을 제작할 수 있다.
실시예 1에 따른 음극층(200)은 두께 10㎛의 Ni 박막 형태의 음극 집전체를 포함할 수 있다. 또한, 음극 활물질층(202)은 음극 활물질로서 은(Ag)과 비정질 탄소로서 카본 블랙(carbon black)의 혼합물을 사용할 수 있다. 이때 음극 활물질로서 은(Ag)과 비정질 탄소로서 카본 블랙(carbon black)의 혼합비(질량비)는 1:3일 수 있다. 이어, 2g의 FB-A를 용기에 넣고, 거기에 바인더(쿠레하 社의 # 9300) 를 포함하는 N-methyl-pyrrolidone (NMP) 용액을 (음극층에 대해 바인더가 6.5 질량 %) 추가한다. 이어, 상기 혼합 용액을 교반하여 슬러리를 제조하였다. 이 슬러리를 Ni 호일에 블레이드 코터(blade coater)를 이용하여 도포하고, 공기 중에서 80℃ 온도로 20분간 건조시켰다. 이에 따라 얻어진 적층체를 100℃에서 12 시간 진공 건조했다. 이상의 공정에 의해 음극층을 제작 한다.
실시예 1에 따른 고체 전해질층(300)은 상기 LiCl-Li 2S-Li 3PS 4 고체 전해질과 아크릴계 바인더를 포함할 수 있다. 실시예 1에 따르면 고체 전해질 : 아크릴계 바인더 = 98.5 : 1.5의 중량비로 혼합될 수 있다. 상술한 혼합물에 크실렌(Xylene)과 디에칠벤젠(diethylbenzene)을 가하면서 교반하여 슬러리를 제조한다. 이 슬러리를 부직포 위에 블레이드 코터(blade coater)를 이용하여 도포하고, 공기 중에서 40℃ 온도로 건조시킨다. 이에 따라 얻어진 적층체를 40℃에서 12 시간 진공 건조헌다. 이상의 공정에 의해 고체 전해질층을 제작할 수 있다.
상술한 양극층(100), 고체 전해질층(300) 및 음극층(200)을 순차적으로 적층하고, 진공 상태에서 라미네이팅 필름에 봉인하여 제1 실시예에 따른 전고체 이차 전지(10)를 제작한다. 여기서 양극 집전체와 음극 집전체의 각 부분을 배터리의 진공을 깨지 않도록 라미네이트 필름에서 밖으로 돌출시킨다. 이러한 돌출부를 양극층 및 음극층 단자일 수 있다. 또한, 제1 실시예에 따른 전고체 이차 전지(10)를 500 MPa, 85 oC 에서 30분간 수압 처리한다.
- 실시예 2
실시예 2의 경우, 음극 활물질층(202)에 포함된 음극 활물질로서 은(Ag)과 비정질 탄소로서 카본 블랙(carbon black)의 혼합비(질량비)가 1:1이라는 점을 제외한 나머지 사항은 실시예 1과 동일하다.
- 비교예 1
비교예 1의 경우, 음극 활물질층(202)에 별도의 음극 활물질 없이 비정질 탄소로서 카본 블랙(carbon black)만이 포함되는 점을 제외한 나머지 사항은 실시예 1과 동일하다.
- 비교예 2
비교예 2의 경우, 음극 활물질층(202)에 포함된 음극 활물질로서 은(Ag)과 비정질 탄소로서 카본 블랙(carbon black)의 혼합비(질량비)가 25:1이라는 점을 제외한 나머지 사항은 실시예 1과 동일하다.
- 비교예 3
비교예 3의 경우, 음극 활물질층(202)에 포함된 음극 활물질로서 은(Ag)과 흑연(graphite)의 혼합비(질량비)가 1:3이라는 점을 제외한 나머지 사항은 실시예 1과 동일하다.
- 충방전 특성 비교
제1 실시예 내지 제2 실시예 및 비교예 1 내지 비교예 3에 따라 제작된 전고체 이차 전지의 충방전 특성을 다음의 충방전 시험에 의해 평가할 수 있다. 충방전 시험은 전고체 이차 전지를 60℃의 항온조에 넣어서 수행할 수 있다. 제 1 사이클은 배터리 전압이 4.25V가 될 때까지 0.62 mA/cm 2의 정전류로 충전하고, 전류가 0.31 mA/cm 2 때까지 4.25V의 정전압 충전을 실시했다. 그 후 배터리 전압이 2.5V가 될 때까지 0.62 mA/cm 2의 정전류로 방전을 실시했다. 제 2 사이클은 배터리 전압이 4.25V가 될 때까지 0.62 mA/cm 2의 정전류로 충전하고, 전류가 0.31 mA/cm 2 때까지 4.25V의 정전압 충전을 실시했다. 그 후 배터리 전압이 2.5V가 될 때까지 6.2 mA/cm 2의 정전류로 방전을 실시했다.
실시예 1 실시예 2 비교예 1 비교예 2 비교예 3
표면저항 mΩ cm 0.23 0.21 4.09 0.58 6.39
1회 0.62 mA/cm 2의 정전류 충전 용량(Q 1) mAh / g 222.6 218.9 216.8 222.3 221.4
1회 0.62 mA/cm 2의 정전류 방전 용량(Q 2) mAh / g 196.9 191.9 186.3 202.8 166.8
Q 2/ Q 1 % 88.5 87.7 85.9 91.2 75.3
4.25V 정전압 저항 Ω 10.0 12.5 15.0 10.4 11.9
2회 6.2 mA/cm 2의 정전류 방전 용량(Q 3) mAh / g 172.6 136.0 96.7 142.6 10.5
Q 3/ Q 1 % 87.7 70.9 51.9 70.3 6.3
제1 실시예 내지 제2 실시예 및 비교예 1 내지 비교예 3의 충방전 특성 결과가 표 1과 도 6a 및 도 6b에 도시된다. 실시예 1, 비교예 1 및 비교예 3을 참조할 경우, 음극 활물질로서 은(Ag)과 비정질 탄소로서 카본 블랙(carbon black)을 혼합한 실시예 1에서, 비정질 탄소로서 카본 블랙(carbon black)만을 포함한 비교예 1 또는 음극 활물질로서 은(Ag)과 흑연(graphite)을 혼합한 비교예 3보다 음극층의 표면 저항이 감소하는 것을 확인할 수 있다. 또한, 실시예 1과 비교예 1의 음극 활물질층과 음극 집전체 사이의 박리 시험(peel test)를 진행한 표 2를 참조하면,
실시예 1 비교예 1
박리 강도 mN/mm 55.4 0.698
실시예 1의 음극 활물질층과 음극 집전체 사이의 결착력이 비교예 1의 음극 활물질층과 음극 집전체 사이의 결착력 보다 50배 이상 강함을 확인할 수 있다.다시 표 1을 참조하면, 음극 활물질로서 은(Ag)과 비정질 탄소로서 카본 블랙(carbon black)의 혼합 비율이 상이한 실시예 1, 실시예 2와 비교예 2를 참조할 경우, 음극 활물질층에 음극 활물질로서 은(Ag)의 비율이 증가하는 경우 1회 0.62 mA/cm 2의 정전류 충전 용량에 대한 2회 사이클의 정전류 방전 용량(Q 3/ Q 1)이 감소하는 것을 확인할 수 있다.
상술한 바와 같이 음극 활물질층에 비정질 탄소만이 포함될 경우 음극 활물질층과 음극 집전체 사이의 결착력이 약화될 뿐만 아니라 방전 용량 또한 감소함을 확인할 수 있다. 따라서, 음극 활물질층에 음극 활물질로서 은(Ag)과 비정질 탄소로서 카본 블랙(carbon black)의 혼합물이 포함되어야 하지만, 음극 활물질이 일정 수준 즉, 음극 활물질로서 은(Ag)의 비율이 50%이상 증가하는 경우 방전 용량이 감소됨을 확인할 수 있다. 따라서, 본 개시에 따르면 음극 활물질층에 포함되는 음극 활물질과 비정질 탄소의 적정 비율을 확인하여 박리 강도를 강화시키면서도 방전 용량을 증가시킬 수 있는 전고체 이차 전지를 제공할 수 있다.
상술한 실시예 1 및 실시예 2에서는 음극 활물질층에 포함되는 음극 활물질로서 은(Ag)을 포함하였으나, 상술한 바와 같이 음극 활물질은 금(Au), 백금(Pt), 팔라듐(Pd), 실리콘(Si), 알루미늄(Al), 비스무스(Bi), 주석(Sn), 티타늄(Ti) 또는 아연(Zn)중 적어도 하나 이상을 포함할 수 있다.
일 예로서, 실시예 3의 경우, 음극 활물질층(202)에 포함된 음극 활물질로서 실리콘(Si)과 비정질 탄소로서 카본 블랙(carbon black)의 혼합비(질량비)가 1:3이라는 점을 제외한 나머지 사항은 실시예 1과 동일하다. 실시예 4의 경우, 음극 활물질층(202)에 포함된 음극 활물질로서 아연(Zn)과 비정질 탄소로서 카본 블랙(carbon black)의 혼합비(질량비)가 1:3이라는 점을 제외한 나머지 사항은 실시예 1과 동일하다. 실시예 5의 경우, 음극 활물질층(202)에 포함된 음극 활물질로서 티타늄(Ti)과 비정질 탄소로서 카본 블랙(carbon black)의 혼합비(질량비)가 1:3이라는 점을 제외한 나머지 사항은 실시예 1과 동일하다.
실시예 3 실시예 4 실시예5
표면저항 mΩ cm 0.26 0.22 0.18
1회 0.62 mA/cm 2의 정전류 충전 용량(Q 1) mAh / g 222.5 225.1 220.2
1회 0.62 mA/cm 2의 정전류 방전 용량(Q 2) mAh / g 199.1 203.8 186.4
Q 2/ Q 1 % 89.5 90.5 84.7
4.25V 정전압 저항 Ω 10.1 9.86 10.7
2회 6.2 mA/cm 2의 정전류 방전 용량(Q 3) mAh / g 173.5 175.5 153.1
Q 3/ Q 1 % 87.1 86.1 82.1
표 3을 이용하여 음극 활물질로서, 은(Ag)이 아닌 다른 물질을 포함한 실시예 3 내지 실시예 5의 충방전 결과를 참조할 수 있다. 실시예 3 내지 실시예 5의 경우, 음극 활물질로서 은(Ag)과 비정질 탄소로서 카본 블랙(carbon black)을 1:3의 비율로 혼합한 실시예 1과 비교하여 음극층의 표면 저항은 0.5 mΩ cm 이하이며, Q 3/ Q 1의 비율이 80%이상 유지되어 방전 용량 (Q 3)이 감소하지 않는 특성을 확인할 수 있다.상기한 설명에서 많은 사항이 구체적으로 기재되어 있으나, 그들은 발명의 범위를 한정하는 것이라기보다, 구체적인 실시예의 예시로서 해석되어야 한다. 예들 들어, 해당 기술 분야에서 통상의 지식을 가진 자라면, 도면을 참조하여 설명한 전고체 이차 전지 및 그 충전 방법은 다양하게 변화될 수 있음을 알 수 있을 것이다. 구체적인 예로, 전고체 이차 전지가 아닌 부분 고체 이차 전지를 구성하거나, 부분적으로 액체 전해질을 사용하는 이차 전지를 구성할 수 있고, 리튬 전지가 아닌 다른 전지에도 본원의 사상 및 원리를 적용할 수 있음을 알 수 있을 것이다. 때문에 발명의 범위는 설명된 실시예에 의하여 정하여 질 것이 아니고 특허 청구범위에 기재된 기술적 사상에 의해 정하여져야 한다.

Claims (14)

  1. 양극 활물질을 포함하는 양극층;
    음극 집전체와, 상기 음극 집전체 상에 배치되고, 음극 활물질과 비정질 탄소를 포함하는 음극 활물질층을 포함하는 음극층; 및
    상기 양극 활물질층과 상기 음극 활물질층 사이에 배치된 고체 전해질층;을 포함하며,
    상기 음극 활물질과 상기 비정질 탄소의 중량비는 1:3 내지 1:1이고, 상기 음극층의 표면 저항값이 0.5mΩ cm 이하인,
    전고체 이차 전지.
  2. 제1 항에 있어서,
    상기 음극 활물질층의 전체 중량을 기준으로 상기 음극 활물질은 1 wt % 내지 50 wt %의 비율로 포함되는,
    전고체 이차 전지.
  3. 제1 항에 있어서,
    상기 음극 활물질은 금(Au), 백금(Pt), 팔라듐(Pd), 실리콘(Si), 은(Ag), 알루미늄(Al), 비스무스(Bi), 주석(Sn), 티타늄(Ti) 또는 아연(Zn)중 적어도 하나 이상을 포함하는,
    전고체 이차 전지.
  4. 제1 항에 있어서,
    상기 비정질 탄소는 카본 블랙 (CB), 아세틸렌 블랙 (AB), 퍼니스 블랙 (FB), 케첸 블랙 (KB), 그래핀 중 하나 이상을 포함하는,
    전고체 이차 전지.
  5. 제 1 항에 있어서,
    상기 음극 활물질층은 바인더(binder)를 더 포함하는
    전고체 이차 전지.
  6. 제 6 항에 있어서,
    상기 바인더의 함량은 상기 음극 활물질의 총 중량을 기초로 0.3 중량 % 내지 15 중량 % 인
    전고체 이차 전지.
  7. 제 1 항에 있어서,
    상기 음극 활물질층의 두께는 1㎛ ~ 20㎛ 인
    전고체 이차 전지.
  8. 제 1 항에 있어서,
    상기 음극 집전체와 상기 음극 활물질층 사이에 배치된 금속층을 더 포함하고, 상기 금속층은 리튬 또는 리튬 합금 중 적어도 하나를 포함하는
    전고체 이차 전지.
  9. 제 8 항에 있어서,
    상기 금속층은 전고체 이차 전지가 충전되기 전에 상기 음극 집전체와 상기 음극 활물질층 사이에 배치되는
    전고체 이차 전지.
  10. 제 9 항에 있어서,
    상기 금속층의 두께는 1㎛ ~ 200㎛ 인
    전고체 이차 전지.
  11. 제 1 항에 있어서,
    상기 음극 집전체 상에 리튬과 합금을 형성할 수 있는 원소를 포함하는 박막이 더 구비되고,
    상기 박막은 상기 음극 집전체와 상기 음극 활물질층 사이에 배치되는
    전고체 이차 전지.
  12. 제 11 항에 있어서,
    상기 박막의 두께는 1nm ~ 500nm 인
    전고체 이차 전지.
  13. 제 1 항에 있어서,
    상기 음극 집전체와 상기 음극 활물질층 및 이들 사이의 영역은 상기 전고체 이차 전지의 초기 상태 또는 방전후 상태에서 리튬(Li)을 포함하지 않는 Li-프리(free) 영역인
    전고체 이차 전지.
  14. 제 1 항에 있어서,
    상기 전고체 이차 전지는 리튬 전지인
    전고체 이차 전지.
PCT/KR2021/001147 2020-04-28 2021-01-28 전고체 이차 전지 WO2021221272A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022566219A JP2023524057A (ja) 2020-04-28 2021-01-28 全固体二次電池
EP21796748.8A EP4145565A1 (en) 2020-04-28 2021-01-28 All-solid-state secondary battery
CN202180030580.7A CN115443558A (zh) 2020-04-28 2021-01-28 全固态二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200051825A KR20210133085A (ko) 2020-04-28 2020-04-28 전고체 이차 전지
KR10-2020-0051825 2020-04-28

Publications (1)

Publication Number Publication Date
WO2021221272A1 true WO2021221272A1 (ko) 2021-11-04

Family

ID=78222833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/001147 WO2021221272A1 (ko) 2020-04-28 2021-01-28 전고체 이차 전지

Country Status (6)

Country Link
US (1) US20210336269A1 (ko)
EP (1) EP4145565A1 (ko)
JP (1) JP2023524057A (ko)
KR (1) KR20210133085A (ko)
CN (1) CN115443558A (ko)
WO (1) WO2021221272A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024063014A1 (ja) * 2022-09-22 2024-03-28 国立研究開発法人物質・材料研究機構 全固体リチウムイオン二次電池およびその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102449415B1 (ko) * 2022-02-04 2022-10-11 (주)바이오제네시스 하이브리드 그래핀을 포함하는 리튬이온전지용 음극
WO2024024302A1 (ja) * 2022-07-28 2024-02-01 株式会社村田製作所 負極及び二次電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002065A (ja) * 2013-06-14 2015-01-05 ソニー株式会社 二次電池用電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2017103065A (ja) * 2015-11-30 2017-06-08 トヨタ自動車株式会社 全固体電池システム
JP2017147205A (ja) * 2016-02-19 2017-08-24 富士通株式会社 全固体電池
JP2019096610A (ja) * 2017-11-21 2019-06-20 三星電子株式会社Samsung Electronics Co.,Ltd. 全固体二次電池およびその充電方法
KR20200134126A (ko) * 2019-05-21 2020-12-01 삼성전자주식회사 전고체 리튬이차전지 및 이의 충전방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100778450B1 (ko) * 2006-11-22 2007-11-28 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를포함하는 리튬 이차 전지
WO2012161479A2 (ko) * 2011-05-23 2012-11-29 주식회사 엘지화학 출력 밀도 특성이 향상된 고출력의 리튬 이차전지
WO2012161476A2 (ko) * 2011-05-23 2012-11-29 주식회사 엘지화학 에너지 밀도 특성이 향상된 고에너지 밀도의 리튬 이차전지
KR101452029B1 (ko) * 2011-09-20 2014-10-23 주식회사 엘지화학 고용량 양극활물질 및 이를 포함하는 리튬이차전지
DE102012022969A1 (de) * 2012-11-23 2014-05-28 Li-Tec Battery Gmbh Elektrochemische Zelle
US10355310B2 (en) * 2015-05-28 2019-07-16 Shenzhen Capchem Technology Co., Ltd. Electrolyte compositions for electrochemical devices
US10886515B2 (en) * 2017-05-30 2021-01-05 Samsung Electronics Co., Ltd. All-solid secondary battery and method of preparing the same
JP6834921B2 (ja) * 2017-11-28 2021-02-24 トヨタ自動車株式会社 硫化物固体電池の製造方法及び硫化物固体電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002065A (ja) * 2013-06-14 2015-01-05 ソニー株式会社 二次電池用電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP2017103065A (ja) * 2015-11-30 2017-06-08 トヨタ自動車株式会社 全固体電池システム
JP2017147205A (ja) * 2016-02-19 2017-08-24 富士通株式会社 全固体電池
JP2019096610A (ja) * 2017-11-21 2019-06-20 三星電子株式会社Samsung Electronics Co.,Ltd. 全固体二次電池およびその充電方法
KR20200134126A (ko) * 2019-05-21 2020-12-01 삼성전자주식회사 전고체 리튬이차전지 및 이의 충전방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE YONG-GUN; FUJIKI SATOSHI; JUNG CHANGHOON; SUZUKI NAOKI; YASHIRO NOBUYOSHI; OMODA RYO; KO DONG-SU; SHIRATSUCHI TOMOYUKI; SUGIMO: "High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes", NATURE ENERGY, NATURE PUBLISHING GROUP UK, LONDON, vol. 5, no. 4, 9 March 2020 (2020-03-09), London , pages 299 - 308, XP037096134, DOI: 10.1038/s41560-020-0575-z *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024063014A1 (ja) * 2022-09-22 2024-03-28 国立研究開発法人物質・材料研究機構 全固体リチウムイオン二次電池およびその製造方法

Also Published As

Publication number Publication date
JP2023524057A (ja) 2023-06-08
US20210336269A1 (en) 2021-10-28
EP4145565A1 (en) 2023-03-08
KR20210133085A (ko) 2021-11-05
CN115443558A (zh) 2022-12-06

Similar Documents

Publication Publication Date Title
WO2021221272A1 (ko) 전고체 이차 전지
WO2014109523A1 (ko) 리튬-황 전지용 양극 활물질 및 이의 제조방법
WO2019172661A1 (ko) 음극의 제조 방법
WO2015102139A1 (ko) 이차전지용 음극 및 이를 포함하는 리튬 이차전지
US11888153B2 (en) Method for preparing positive electrode active material for secondary battery, positive electrode active material thus prepared and lithium secondary battery including the same
WO2013115473A1 (ko) 이차 전지용 음극 활물질 및 이를 포함하는 이차 전지
WO2015102140A1 (ko) 이차전지용 음극 및 이를 포함하는 리튬 이차전지
CN114242942B (zh) 一种具有稳定负极界面的复合缓冲层及其固态锂金属电池
WO2021006704A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
CN110783529B (zh) 一种二次电池用金属锂负极及其制备和应用
WO2014010854A1 (ko) 고전압용 양극 활물질 및 이를 포함하는 리튬 이차전지
US20230275261A1 (en) All-solid-state secondary battery and manufacturing method therefor
WO2020091345A1 (ko) 음극 활물질 및 이를 포함하는 리튬 이차전지
KR20200056136A (ko) 전고체 이차전지 및 이의 제작방법
WO2020013667A1 (ko) 무기 전해액을 포함하는 리튬 이차전지
WO2019066497A2 (ko) 전극 합제의 제조 방법 및 전극 합제
US20200161710A1 (en) All-solid lithium secondary battery, and deterioration determination method of all-solid lithium secondary battery
WO2020091199A1 (ko) 실리카-금속 복합체를 포함하는 리튬 이차전지용 음극활물질의 제조 방법 및 이를 이용하여 제조되는 음극활물질
WO2022014736A1 (ko) 저온 소결공정을 위한 산화물계 고체전해질을 포함하는 전고체전지 및 이의 제조방법
WO2020214008A1 (ko) 전고체 전지용 전해질막 및 이를 포함하는 전고체 전지
KR20030028241A (ko) 리튬 이차 전지용 음극 활물질 및 그 제조 방법
WO2021225304A1 (en) Secondary battery and method of preparing the same
WO2021133127A1 (ko) 수계 양극용 슬러리, 양극 조성물 및 이 양극 조성물을 포함하는 리튬 이온 이차전지, 그리고 이들의 제조 방법
WO2019103498A1 (ko) 실리콘계 입자-고분자 복합체, 및 이를 포함하는 음극 활물질
WO2017082680A1 (ko) 음극 활물질 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21796748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022566219

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021796748

Country of ref document: EP

Effective date: 20221128