WO2021129593A1 - 一种多元铁基形状记忆合金及其制备方法 - Google Patents

一种多元铁基形状记忆合金及其制备方法 Download PDF

Info

Publication number
WO2021129593A1
WO2021129593A1 PCT/CN2020/138223 CN2020138223W WO2021129593A1 WO 2021129593 A1 WO2021129593 A1 WO 2021129593A1 CN 2020138223 W CN2020138223 W CN 2020138223W WO 2021129593 A1 WO2021129593 A1 WO 2021129593A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
shape memory
rare earth
composite rare
present
Prior art date
Application number
PCT/CN2020/138223
Other languages
English (en)
French (fr)
Inventor
刘光磊
李绍鸣
司乃潮
李守祥
万浩
Original Assignee
南京龙浩新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京龙浩新材料科技有限公司 filed Critical 南京龙浩新材料科技有限公司
Publication of WO2021129593A1 publication Critical patent/WO2021129593A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/01Shape memory effect

Definitions

  • the invention relates to the technical field of shape memory alloys, in particular to a multi-element iron-based shape memory alloy and a preparation method thereof.
  • Shape memory alloy is a new type of functional material with the ability of "shape memory", which is called the shape memory effect.
  • shape memory alloys there are three main types of shape memory alloys developed: NiTi-based, Cu-based and Fe-based shape memory alloys.
  • NiTi-based shape memory alloys have the characteristics of stable shape memory effect, high strength, good plasticity, and excellent biocompatibility.
  • Ni and Ti are expensive, and the manufacturing and processing costs are higher; Cu-based shape memory alloys are more expensive than NiTi-based shapes.
  • Memory alloy is much lower, but due to the prone to "martensite stabilization" problem, it can only be used as a substitute for NiTi-based shape memory alloy in some areas where the accuracy of the memory effect is not high; Fe-based shape memory alloy is superior Discovered in the late 1970s, its price is lower, about half that of Cu-based shape memory alloy, and it is recognized as the most widely used memory alloy.
  • Iron-based shape memory alloys mainly include: Fe-Mn-Co-Ti series, Fe-Pt series, Fe-Pd series, Fe-Mn-Si series and Fe-Ni-C series, of which Fe-Mn-Si series alloys It has good shape memory effect and good processing performance, and has the best application prospects.
  • the shape memory effect of iron-based shape memory alloys is caused by stress-induced martensitic transformation, that is, ⁇ (fcc) ⁇ (hcp) phase transformation and ⁇ (hcp) ⁇ (fcc) reverse phase transformation.
  • ⁇ transformation is also prone to occur.
  • This ⁇ is also a kind of martensite, but this ⁇ martensite will not reversely transform during the heating process.
  • the mother phase ⁇ makes the memory effect greatly reduced.
  • the purpose of the present invention is to provide a multi-element iron-based shape memory alloy.
  • the multi-element iron-based shape memory alloy provided by the present invention has an excellent shape memory effect.
  • the present invention provides a multi-element iron-based shape memory alloy.
  • the chemical composition according to the mass content is: Mn 18-24%, Si 5-7%, Ni 5-7%, Cr 2-4%, Ti 1-2 %, Mg 0.5 ⁇ 0.8%, B 0.5 ⁇ 0.8%, composite rare earth 0.2 ⁇ 0.5%, C 0.15 ⁇ 0.25%, the balance is Fe;
  • the chemical composition of the composite rare earth by mass content is: La 36-41%, Ce 34-39%, Y 1.5-3.5%, Nd 1.5-3.5%, Pr+
  • the total amount of Yb+Dy+Sm is 0.5 to 1.5%, and the balance is Fe.
  • the chemical composition is: Mn 20-22%, Si 5.5-6.5%, Ni 5.5-6.5%, Cr 2.5-3.5%, Ti 1.4-1.6%, Mg 0.6-0.7%, B 0.6 ⁇ 0.7%, composite rare earth 0.3 ⁇ 0.4%, C 0.18 ⁇ 0.22%, the balance is Fe;
  • the chemical composition of the composite rare earth by mass content is: La 38 ⁇ 39%, Ce 37 ⁇ 38%, Y 2 ⁇ 3%, Nd 2 ⁇ 3%, Pr+
  • the total amount of Yb+Dy+Sm is 0.8-1.2%, and the balance is Fe.
  • the chemical composition is: Mn 21%, Si 6%, Ni 6%, Cr 3%, Ti 1.5%, Mg 0.65%, B 0.65%, composite rare earth 0.25%, C 0.2%, and more
  • the amount is Fe;
  • the chemical composition of the composite rare earth by mass content is: La 38.5%, Ce 37.5%, Y 2.5%, Nd 2.5%, and the total amount of Pr+Yb+Dy+Sm is 1.0%, the balance is Fe.
  • the present invention provides a method for preparing the multi-element iron-based shape memory alloy described in the above technical solution, which includes the following steps:
  • step (3) Forging the homogenized alloy blank described in step (2) to obtain a multi-element iron-based shape memory alloy.
  • the temperature of the vacuum induction melting in step (1) is 1560 to 1590° C., and the vacuum degree is 0.1 Pa or less.
  • the vacuum induction melting time in step (1) is 2 to 4 hours.
  • the pouring temperature of step (1) is 1500-1530°C.
  • the annealing temperature in step (2) is 1100 to 1150° C., and the time is 22 to 24 h.
  • the annealing in step (2) is performed under an inert gas atmosphere.
  • the temperature of forging in step (3) is 1000-1200°C.
  • the deformation of the forging in step (3) is less than 2%.
  • the present invention provides a multi-element iron-based shape memory alloy.
  • the chemical composition according to the mass content is: Mn 18-24%, Si 5-7%, Ni 5-7%, Cr 2-4%, Ti 1-2 %, Mg 0.5 ⁇ 0.8%, B 0.5 ⁇ 0.8%, composite rare earth 0.2 ⁇ 0.5%, C 0.15 ⁇ 0.25%, the balance is Fe; based on the mass of composite rare earth as 100%, the chemical composition of the composite rare earth, Calculated by mass content: La 36-41%, Ce 34-39%, Y 1.5-3.5%, Nd 1.5-3.5%, the total amount of Pr+Yb+Dy+Sm is 0.5-1.5%, and the balance is Fe.
  • the invention can significantly improve the shape memory effect of the multi-element iron-based alloy by strictly controlling the types and contents of elements.
  • the composite rare earth can limit the growth of ⁇ phase grains on the one hand, so that the driving force for the growth of ⁇ phase grains is increased, thereby inhibiting the occurrence of ⁇ phase transformation, which is conducive to the occurrence of reverse martensite transformation.
  • the stacking fault energy is effectively reduced, and the martensite reverse phase transformation is more likely to occur, and the shape memory effect of the alloy is significantly improved;
  • the composite rare earth used in the present invention can also purify the grain boundary and refine
  • the effect of crystal grains can help improve the thermoplasticity of the alloy, thereby improving the brittleness and processing performance of the alloy;
  • Mn and Ni can expand the austenite zone, reduce the martensite transformation point, and improve the memory effect of the alloy ;
  • Si can reduce stacking fault energy, which is beneficial to improve the memory effect of the alloy;
  • Cr and Ti can improve the corrosion resistance of the alloy, and at the same time improve the comprehensive mechanical properties of the alloy; in addition, Ti and B also have a certain effect on grain refinement ;
  • Mg can improve the plasticity of the alloy, reduce the brittleness, and improve the processing performance.
  • the results of the examples show that the recovery rate of the multi-element iron-based shape memory alloy provided by the present invention is 76-80%, and has an excellent shape memory effect.
  • Figure 1 is a schematic diagram of the bending deformation method for measuring the shape memory effect.
  • the present invention provides a multi-element iron-based shape memory alloy.
  • the chemical composition according to the mass content is: Mn 18-24%, Si 5-7%, Ni 5-7%, Cr 2-4%, Ti 1-2 %, Mg 0.5 ⁇ 0.8%, B 0.5 ⁇ 0.8%, composite rare earth 0.2 ⁇ 0.5%, C 0.15 ⁇ 0.25%, the balance is Fe; based on the mass of composite rare earth as 100%, the chemical composition of the composite rare earth, Calculated by mass content: La 36-41%, Ce 34-39%, Y 1.5-3.5%, Nd 1.5-3.5%, the total amount of Pr+Yb+Dy+Sm is 0.5-1.5%, and the balance is Fe.
  • the multi-element iron-based shape memory alloy provided by the present invention includes 18-24% Mn, preferably 20-22%, and more preferably 21% Mn by mass content.
  • the multi-element iron-based shape memory alloy provided by the present invention includes Ni 5-7% by mass content, preferably 5.5-6.5% Ni, and more preferably 6%.
  • Mn and Ni can expand the austenite zone, reduce the martensite transformation point, and improve the memory effect of the alloy.
  • the multi-element iron-based shape memory alloy provided by the present invention includes Si 5-7% by mass content, preferably 5.5-6.5%, more preferably 6%.
  • Si can reduce stacking fault energy, which is beneficial to improve the memory effect of the alloy.
  • the multi-element iron-based shape memory alloy provided by the present invention includes 2 to 4% Cr, preferably 2.5 to 3.5%, more preferably 3% by mass content.
  • the multi-element iron-based shape memory alloy provided by the present invention includes 1 to 2% Ti, preferably 1.4 to 1.6%, more preferably 1.5% by mass content.
  • Cr and Ti can improve the corrosion resistance of the alloy and at the same time improve the comprehensive mechanical properties of the alloy.
  • the multi-element iron-based shape memory alloy provided by the present invention contains 0.5-0.8% of B, preferably 0.6-0.7%, more preferably 0.65% by mass content.
  • Ti and B can refine the alloy grains and improve the overall properties of the alloy.
  • the multi-element iron-based shape memory alloy provided by the present invention includes 0.5-0.8% of Mg, preferably 0.6-0.7%, more preferably 0.65% by mass content.
  • Mg can improve the plasticity of the alloy, reduce the brittleness, and improve the processing performance.
  • the present invention limits the content of elements in the multi-element iron-based shape memory alloy to ensure stable austenite phase and inhibit the generation of alpha martensite, which is beneficial to the progress of martensite reverse phase transformation, thereby effectively improving the shape memory effect of the alloy.
  • the multi-element iron-based shape memory alloy provided by the present invention includes 0.2-0.5%, preferably 0.3-0.4%, and more preferably 0.25% of the composite rare earth in terms of mass content.
  • the chemical composition of the composite rare earth by mass content is: La 36-41%, Ce 34-39%, Y 1.5-3.5%, Nd 1.5-3.5%, the total amount of Pr+Yb+Dy+Sm is 0.5-1.5%, and the balance is Fe.
  • the composite rare earth provided by the present invention includes 36-41% La, preferably 38-39%, and more preferably 38.5% by mass content.
  • the composite rare earth provided by the present invention includes Ce 34-39% by mass content, preferably 37-38%, more preferably 37.5%.
  • the composite rare earth provided by the present invention includes Y 1.5 to 3.5% by mass content, preferably 2 to 3%, and more preferably 2.5%.
  • the composite rare earth provided by the present invention includes Nd 1.5-3.5% by mass content, preferably 2-3%, more preferably 2.5%.
  • the composite rare earth provided by the present invention includes 0.5 to 1.5% of the total amount of Pr+Yb+Dy+Sm, preferably 0.8 to 1.2%, more preferably 1.0% by mass content.
  • the composite rare earth provided by the present invention preferably includes the total amount of inevitable impurity elements ⁇ 0.30% by mass content, wherein the content of a single impurity element is preferably less than 0.05%; the inevitable impurity elements preferably include Si, Fe, O, One or more of S and P.
  • the composite rare earth provided by the present invention in terms of mass content, includes the balance Fe in addition to the above-mentioned elements.
  • the composite rare earth can limit the growth of ⁇ phase grains on the one hand, so that the driving force for the growth of ⁇ phase grains is increased, thereby inhibiting the occurrence of ⁇ phase transformation, which is conducive to the occurrence of reverse martensite transformation.
  • the stacking fault energy is effectively reduced, and the martensite reverse phase transformation is more likely to occur, and the shape memory effect of the alloy is significantly improved;
  • the composite rare earth used in the present invention can also purify the grain boundary and refine The effect of crystal grains can help improve the thermoplasticity of the alloy, thereby improving the brittleness and processing properties of the alloy.
  • the multi-element iron-based shape memory alloy provided by the present invention includes C0.15-0.25%, preferably 0.18-0.22%, more preferably 0.2% by mass content.
  • C can effectively strengthen the austenite phase and improve the overall properties of the alloy.
  • the multi-element iron-based shape memory alloy provided by the present invention preferably includes the total amount of inevitable impurity elements ⁇ 0.35% by mass content, wherein the content of a single impurity element is less than 0.05%; the inevitable impurity elements preferably include Si, Fe One or more of, Sn, Pb, O, S and P.
  • the multi-element iron-based shape memory alloy provided by the present invention in terms of mass content, includes the balance Fe in addition to the above-mentioned elements.
  • the present invention provides a method for preparing the multi-element iron-based shape memory alloy described in the above technical solution, which includes the following steps:
  • step (3) Forging the homogenized alloy blank described in step (2) to obtain a multi-element iron-based shape memory alloy.
  • the alloy raw materials are sequentially subjected to vacuum induction melting and pouring to obtain an ingot.
  • the present invention does not specifically limit the types of the alloy raw materials, and the alloy raw materials well known to those skilled in the art are used to obtain the multi-element iron-based shape memory alloy with the target composition as the standard.
  • the alloy raw materials preferably include low carbon steel, electrolytic manganese, crystalline silicon, industrial pure Ni, sponge Ti, industrial pure Mg, Fe-12Cr-B master alloy and composite rare earth master alloy; in terms of mass content,
  • the chemical composition of the composite rare earth master alloy is La 38.5%, Ce 37.5%, Y 2.5%, Nd 2.5%, the total amount of Pr+Yb+Dy+Sm is 1.0%, and the balance is Fe.
  • the present invention does not specifically limit the ratio of the various alloy raw materials, as long as the final alloy composition can meet the requirements.
  • the temperature of the vacuum induction melting is preferably 1560 to 1590°C, more preferably 1580°C; the time of the vacuum induction melting is preferably 2 to 4 hours, more preferably 3 hours; the degree of vacuum is preferably below 0.1 Pa .
  • the vacuum induction melting is performed under a protective atmosphere, and the protective atmosphere is preferably provided by argon.
  • the vacuum induction smelting is performed in a vacuum induction smelting furnace. In the present invention, it is preferable to first pump the vacuum in the furnace cavity to below 0.1 Pa, and then pass argon gas to make the pressure of the smelting furnace reach Standard atmospheric pressure. In the present invention, the effect of vacuuming first and then argon gas is to ensure that the smelting is in an atmosphere protected by inert gas.
  • an alloy melt is obtained.
  • the alloy melt is poured to obtain an ingot.
  • the casting temperature is preferably 1500 to 1530°C, more preferably 1520°C.
  • the casting mold for pouring is preferably a cylindrical shape made of graphite, and the size of the casting mold is preferably ⁇ 50 ⁇ 150 mm.
  • the ingot obtained by the present invention is preferably cylindrical, and the present invention can facilitate subsequent forging by casting into a cylindrical shape.
  • the pouring is performed in a vacuum induction melting furnace.
  • the present invention performs annealing treatment on the ingot to obtain a homogenized alloy billet.
  • the annealing temperature is preferably 1100-1150°C, more preferably 1120°C; the time is preferably 22-24h, more preferably 24h.
  • the annealing is preferably performed under an inert gas atmosphere. The present invention can eliminate the internal stress generated during the solidification of the ingot and improve the homogeneity of the alloy through the annealing treatment.
  • the present invention performs forging and hammering of the homogenized alloy blank to obtain a multi-element iron-based shape memory alloy.
  • the temperature of the forging is preferably 1000 to 1200°C, more preferably 1100°C; the amount of deformation of the forging is preferably 2% or less, more preferably 2%.
  • the invention can prepare profiles of various shapes, and no cracks are generated in the process, and the structure will be refined but not changed during the forging process, mainly austenite.
  • the surface oxide scale of the homogenizing alloy is preferably removed before the forging is performed.
  • the process of removing the coarse oxide scale is preferably performed on a grinding wheel, and the thickness of the oxide scale is preferably 1 to 2 mm.
  • the material is cast iron alloy, and the chemical composition is calculated by mass percentage, specifically: Mn 18%, Si 5%, Ni 5%, Cr 2%, Ti 1%, Mg 0.5%, B 0.5%, composite rare earth 0.2%, C 0.15 %, the unavoidable impurity element is individual ⁇ 0.05%, the total amount is ⁇ 0.35%, and the balance is Fe; among them, based on the mass of the composite rare earth as 100%, the chemical composition of the composite rare earth is: La 36%, Ce 34% , Y 1.5%, Nd 1.5%, Pr+Yb+Dy+Sm is 0.5%, the unavoidable impurity element is less than 0.05%, the total amount is ⁇ 0.30%, and the balance is Fe.
  • the above alloy composition ratio weigh low carbon steel, electrolytic manganese, crystalline silicon, industrial pure Ni, sponge Ti, industrial pure Mg, Fe-12Cr-B master alloy and composite rare earth master alloy (by mass content, specific chemical
  • the composition is La 36%, Ce 34%, Y 1.5%, Nd 1.5%, Pr+Yb+Dy+Sm is 0.5%, the unavoidable impurity element is less than 0.05%, the total amount is ⁇ 0.30%, and the balance is Fe.)
  • Annealing the ingot to obtain a homogenized alloy billet is 1120°C and the time is 24h;
  • the obtained homogenized alloy billet is polished on a grinder to remove the oxide scale on the surface to remove the thickness of 1 to 2 mm, and then forged at 1100° C.
  • the forging deformation cannot exceed 2% to obtain a multi-element iron-based shape memory alloy.
  • the material is cast iron alloy, and the chemical composition is calculated by mass percentage, specifically: Mn 24%, Si 7%, Ni 7%, Cr4%, Ti 2%, Mg 0.8%, B 0.8%, composite rare earth 0.5%, C 0.25% ,
  • the unavoidable impurity elements are individually ⁇ 0.05%, the total amount is ⁇ 0.35%, and the balance is Fe; among them, based on the mass of the composite rare earth as 100%, the chemical composition of the composite rare earth is: La 41%, Ce 39%, Y 3.5%, Nd 3.5%, Pr+Yb+Dy+Sm is 1.5%, the unavoidable impurity element is individual ⁇ 0.05%, the total amount is ⁇ 0.30%, and the balance is Fe.
  • the above alloy composition ratio weigh low carbon steel, electrolytic manganese, crystalline silicon, industrial pure Ni, sponge Ti, industrial pure Mg, Fe-12Cr-B master alloy and composite rare earth master alloy (by mass content, specific chemical
  • the composition is La 41%, Ce 39%, Y 3.5%, Nd 3.5%, Pr+Yb+Dy+Sm is 1.5%, the unavoidable impurity element is less than 0.05%, the total amount is ⁇ 0.30%, and the balance is Fe)
  • Put it in a vacuum melting furnace then close the furnace, all raw materials are heated with the furnace, the melting temperature is 1580°C, the vacuum degree is pumped to below 0.1Pa and argon gas is used for protection; after the melting is completed, it is directly poured in the vacuum furnace into a cast The ingot, the pouring temperature is 1520°C, and the mold is a ⁇ 50 ⁇ 150mm graphite cylinder model. After the alloy is completely solidified, open the vacuum melting furnace to take out the ingot;
  • Annealing the ingot to obtain a homogenized alloy billet is 1120°C and the time is 24h;
  • the obtained homogenized alloy billet is polished on a grinder to remove the oxide scale on the surface to remove the thickness of 1 to 2 mm, and then forged at 1100° C.
  • the forging deformation cannot exceed 2% to obtain a multi-element iron-based shape memory alloy.
  • the material is cast iron alloy, and the chemical composition is calculated by mass percentage, specifically: Mn 21%, Si 6%, Ni 6%, Cr 3%, Ti 1.5%, Mg 0.65%, B 0.65%, composite rare earth 0.35%, C 0.2 %, the unavoidable impurity element is individual ⁇ 0.05%, the total amount is ⁇ 0.35%, and the balance is Fe; among them, based on the mass of the composite rare earth as 100%, the chemical composition of the composite rare earth is: La 38.5%, Ce 37.5% , Y2.5%, Nd 2.5%, Pr+Yb+Dy+Sm is 1.0%, the unavoidable impurity element is individual ⁇ 0.05%, the total amount is ⁇ 0.30%, and the balance is Fe.
  • the above alloy composition ratio weigh low carbon steel, electrolytic manganese, crystalline silicon, industrial pure Ni, sponge Ti, industrial pure Mg, Fe-12Cr-B master alloy and composite rare earth master alloy (by mass content, specific chemical
  • the composition is La 38.5%, Ce 37.5%, Y 2.5%, Nd 2.5%, Pr+Yb+Dy+Sm is 1.0%, the unavoidable impurity element is less than 0.05%, the total amount is ⁇ 0.30%, and the balance is Fe.)
  • Annealing the ingot to obtain a homogenized alloy billet is 1120°C and the time is 24h;
  • the obtained homogenized alloy billet is polished on a grinder to remove the oxide scale on the surface to remove the thickness of 1 to 2 mm, and then forged at 1100° C.
  • the forging deformation cannot exceed 2% to obtain a multi-element iron-based shape memory alloy.
  • the material is cast iron alloy, and the chemical composition is calculated by mass percentage, specifically: Mn 22-28%, Si 5-7%, Ni 1-6%, Ti 0-1%, the rest is iron; the raw materials are all with purity greater than 99% According to the above-mentioned alloy composition ratio, a vacuum melting furnace is used, and the vacuum chamber is evacuated to 4.0 ⁇ 10 -3 Pa, and then the inert gas argon is filled into the vacuum chamber; in order to ensure the uniform composition, repeat the smelting 4 times and pour into a cylinder Shaped ingot.
  • Examples 1 to 3 and Comparative Example 1 were measured by the bending deformation method, as shown in FIG. 1.
  • the tested memory alloy uses wire cutting to cut a sample with a length and thickness corresponding to 100mm ⁇ 10mm ⁇ 1mm, and the average of the three test results is used as the final result.
  • the specific method is: First, wrap the sample around the diameter
  • the cylindrical rod with a d of 10mm is bent 180° (that is, bent from the initial position 0 to position 1) and held for 2 seconds; then, the external force is removed to make the sample recover autonomously, that is, the position 2 is reached, and the size of ⁇ e is measured with a protractor and recorded; , Heat the sample to 600 ⁇ 650°C to complete the martensite reverse phase transformation. At this time, the sample automatically returns to position 3, and the size of ⁇ m is measured with a protractor and recorded.
  • Example 1 Numbering Response rate Example 1 76%
  • Example 2 77.5%
  • Example 3 80% Comparative example 1 55 ⁇ 65%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种多元铁基形状记忆合金及其制备方法,涉及形状记忆合金技术领域。多元铁基形状记忆合金,按质量含量计,化学成分为:Mn 18~24%,Si 5~7%,Ni 5~7%,Cr 2~4%,Ti 1~2%,Mg 0.5~0.8%,B 0.5~0.8%,复合稀土0.2~0.5%,C 0.15~0.25%,余量为Fe;以复合稀土的质量为100%计,所述复合稀土的化学成分,按质量含量计为:La 36~41%,Ce 34~39%,Y 1.5~3.5%,Nd 1.5~3.5%,Pr+Yb+Dy+Sm总量为0.5~1.5%,余量为Fe。严格控制合金的组成和各元素的含量,提高了合金的形状记忆效应。

Description

一种多元铁基形状记忆合金及其制备方法
本申请要求于2019年12月25日提交中国专利局、申请号为CN201911357953.2、发明名称为“一种多元铁基形状记忆合金及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及形状记忆合金技术领域,具体涉及一种多元铁基形状记忆合金及其制备方法。
背景技术
形状记忆合金是一种新型功能材料,具有“形状记忆”的能力,称之为形状记忆效应。目前,开发出的形状记忆合金主要有三大类:NiTi基、Cu基和Fe基形状记忆合金。NiTi基形状记忆合金具有形状记忆效应稳定、强度高、塑性好、生物相容性优异等特点,但Ni和Ti的价格昂贵,制造加工的成本较高;Cu基形状记忆合金价格较NiTi基形状记忆合金低很多,但由于容易出现“马氏体稳定化”的问题,导致只能在一些记忆效应精度要求不高的领域作为NiTi基形状记忆合金的替代品应用;Fe基形状记忆合金是上世纪70年代后期发现的,其价格更为低廉,大概仅为Cu基形状记忆合金的一半,公认为应用前景最为广泛的记忆合金。
铁基形状记忆合金主要包括:Fe-Mn-Co-Ti系、Fe-Pt系、Fe-Pd系、Fe-Mn-Si系和Fe-Ni-C系,其中,Fe-Mn-Si系合金具有较好的形状记忆效应和良好的加工性能,应用前景最好。铁基形状记忆合金具有形状记忆效是由于应力诱发马氏体相变产生的,即发生γ(fcc)→ε(hcp)相变和ε(hcp)→γ(fcc)逆相变。但是,在应力诱发马氏体相变过程中,还容易发生γ→α相变,这种α也是一种马氏体,但是这种α马氏体在升温过程中却不会逆相变成母相γ,使得记忆效应大幅下降。
发明内容
本发明的目的在于提供一种多元铁基形状记忆合金,本发明提供的多元铁基形状记忆合金具有优异的形状记忆效应。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种多元铁基形状记忆合金,按质量含量计,化学成分为:Mn 18~24%,Si 5~7%,Ni 5~7%,Cr 2~4%,Ti 1~2%,Mg 0.5~0.8%,B 0.5~0.8%,复合稀土0.2~0.5%,C 0.15~0.25%,余量为Fe;
以复合稀土的质量为100%计,所述复合稀土的化学成分,按质量含量计为:La 36~41%,Ce 34~39%,Y 1.5~3.5%,Nd 1.5~3.5%,Pr+Yb+Dy+Sm总量为0.5~1.5%,余量为Fe。
优选地,按质量含量计,化学成分为:Mn 20~22%,Si 5.5~6.5%,Ni 5.5~6.5%,Cr 2.5~3.5%,Ti 1.4~1.6%,Mg 0.6~0.7%,B 0.6~0.7%,复合稀土0.3~0.4%,C 0.18~0.22%,余量为Fe;
以复合稀土的质量为100%计,所述复合稀土的化学成分,按质量含量计为:La 38~39%,Ce 37~38%,Y 2~3%,Nd 2~3%,Pr+Yb+Dy+Sm总量为0.8~1.2%,余量为Fe。
优选地,按质量含量计,化学成分为:Mn 21%,Si 6%,Ni 6%,Cr 3%,Ti 1.5%,Mg 0.65%,B 0.65%,复合稀土0.25%,C 0.2%,余量为Fe;
以复合稀土的质量为100%计,所述复合稀土的化学成分,按质量含量计为:La 38.5%,Ce 37.5%,Y 2.5%,Nd 2.5%,Pr+Yb+Dy+Sm总量为1.0%,余量为Fe。
本发明提供了上述技术方案所述多元铁基形状记忆合金的制备方法,包括以下步骤:
(1)将合金原料依次进行真空感应熔炼和浇注,得到铸锭;
(2)将步骤(1)所述铸锭进行退火处理,得到均匀化合金坯;
(3)将步骤(2)所述均匀化合金坯进行锻打,得到多元铁基形状记忆合金。
优选地,步骤(1)所述真空感应熔炼的温度为1560~1590℃,真空度为0.1Pa以下。
优选地,步骤(1)所述真空感应熔炼的时间为2~4h。
优选地,步骤(1)所述浇注的温度为1500~1530℃。
优选地,步骤(2)所述退火的温度为1100~1150℃,时间为22~24h。
优选地,步骤(2)所述退火在惰性气体气氛条件下进行。
优选地,步骤(3)所述锻打的温度为1000~1200℃。
优选地,步骤(3)所述锻打的变形量在2%以下。
本发明提供了一种多元铁基形状记忆合金,按质量含量计,化学成分为:Mn 18~24%,Si 5~7%,Ni 5~7%,Cr 2~4%,Ti 1~2%,Mg 0.5~0.8%,B 0.5~0.8%,复合稀土0.2~0.5%,C 0.15~0.25%,余量为Fe;以复合稀土的质量为100%计,所述复合稀土的化学成分,按质量含量计为:La 36~41%,Ce 34~39%,Y 1.5~3.5%,Nd 1.5~3.5%,Pr+Yb+Dy+Sm总量为0.5~1.5%,余量为Fe。本发明通过对元素种类和含量的严格控制,能够显著提高多元铁基合金的形状记忆效应。在本发明中,复合稀土一方面可以限制γ相晶粒长大,使得γ相晶粒长大的驱动力增大,从而抑制γ→α相变的发生,利于马氏体逆相变的发生;另一方面有效降低了层错能,也使得马氏体逆相变转变更加容易发生,显著改善合金的形状记忆效应;另外,本发明采用的复合稀土还可以起到净化晶界、细化晶粒的作用,能够有利于提高合金的热塑性,从而改善合金的脆性和加工性能;在本发明中,Mn和Ni可以扩大奥氏体区,降低马氏体相变点,提高合金的记忆效应;Si可以降低层错能,有利于提高合金的记忆效应;Cr和Ti可以改善合金的耐蚀性,同时提高合金的综合力学性能;另外,Ti和B还具有一定的细化晶粒的作用;Mg能改善合金的塑性,降低脆性,改善加工性能。
实施例结果表明,本发明提供的多元铁基形状记忆合金的回复率为76~80%,具有优异的形状记忆效应。
说明书附图
图1为弯曲变形法测量形状记忆效应的示意图。
具体实施方式
本发明提供了一种多元铁基形状记忆合金,按质量含量计,化学成分为:Mn 18~24%,Si 5~7%,Ni 5~7%,Cr 2~4%,Ti 1~2%,Mg 0.5~0.8%,B 0.5~0.8%,复合稀土0.2~0.5%,C 0.15~0.25%,余量为Fe;以复合稀土的质量为100%计,所述复合稀土的化学成分,按质量含量计为:La 36~41%,Ce 34~39%,Y 1.5~3.5%,Nd 1.5~3.5%,Pr+Yb+Dy+Sm总量为 0.5~1.5%,余量为Fe。
本发明提供的多元铁基形状记忆合金,按质量含量计,包括Mn18~24%,优选为20~22%,,更优选为21%。
本发明提供的多元铁基形状记忆合金,按质量含量计,包括Ni 5~7%,优选为Ni 5.5~6.5%,更优选为6%。
在本发明中,Mn和Ni可以扩大奥氏体区,降低马氏体相变点,提高合金的记忆效应。
本发明提供的多元铁基形状记忆合金,按质量含量计,包括Si 5~7%,优选为5.5~6.5%,更优选为6%。在本发明中,Si可以降低层错能,有利于提高合金的记忆效应。
本发明提供的多元铁基形状记忆合金,按质量含量计,包括Cr 2~4%,优选为2.5~3.5%,更优选为3%。
本发明提供的多元铁基形状记忆合金,按质量含量计,包括Ti 1~2%,优选为1.4~1.6%,更优选为1.5%。
在本发明中,Cr和Ti可以改善合金的耐蚀性,同时提高合金的综合力学性能。
本发明提供的多元铁基形状记忆合金,按质量含量计,包括B0.5~0.8%,优选为0.6~0.7%,更优选为0.65%。
在本发明中,Ti和B能够细化合金晶粒,改善合金的综合性能。
本发明提供的多元铁基形状记忆合金,按质量含量计,包括Mg0.5~0.8%,优选为0.6~0.7%,更优选为0.65%。
在本发明中,Mg能够改善合金的塑性,降低脆性,改善加工性能。
本发明限定多元铁基形状记忆合金中元素的含量能够确保稳定奥氏体相,且抑制α马氏体的产生,有利于马氏体逆相变的进行,从而有效提高合金的形状记忆效应。
本发明提供的多元铁基形状记忆合金,按质量含量计,包括复合稀土0.2~0.5%,优选为0.3~0.4%,更优选为0.25%。在本发明中,以所述复合稀土的质量为100%计,按质量含量计,所述复合稀土的化学成分为:La 36~41%,Ce 34~39%,Y 1.5~3.5%,Nd 1.5~3.5%,Pr+Yb+Dy+Sm总量为0.5~1.5%,余量为Fe。
本发明提供的复合稀土,按质量含量计,包括La 36~41%,优选为38~39%,更优选为38.5%。
本发明提供的复合稀土,按质量含量计,包括Ce 34~39%,优选为37~38%,更优选为37.5%。
本发明提供的复合稀土,按质量含量计,包括Y 1.5~3.5%,优选为2~3%,更优选为2.5%。
本发明提供的复合稀土,按质量含量计,包括Nd 1.5~3.5%,优选为2~3%,更优选为2.5%。
本发明提供的复合稀土,按质量含量计,包括Pr+Yb+Dy+Sm总量0.5~1.5%,优选为0.8~1.2%,更优选为1.0%。
本发明提供的复合稀土,按质量含量计,优选包括不可避免杂质元素总量≤0.30%,其中单个杂质元素的含量优选小于0.05%;所述不可避免的杂质元素优选包括Si、Fe、O、S和P中的一种或几种。本发明提供的复合稀土,按质量含量计,除上述元素外,包括余量的Fe。
在本发明中,复合稀土一方面可以限制γ相晶粒长大,使得γ相晶粒长大的驱动力增大,从而抑制γ→α相变的发生,利于马氏体逆相变的发生;另一方面有效降低了层错能,也使得马氏体逆相变转变更加容易发生,显著改善合金的形状记忆效应;另外,本发明采用的复合稀土还可以起到净化晶界、细化晶粒的作用,能够有利于提高合金的热塑性,从而改善合金的脆性和加工性能。
本发明提供的多元铁基形状记忆合金,按质量含量计,包括C0.15~0.25%,优选为0.18~0.22%,更优选为0.2%。C作为固溶元素,能够有效强化奥氏体相,提高合金的综合性能。
本发明提供的多元铁基形状记忆合金,按质量含量计,优选包括不可避免杂质元素总量≤0.35%,其中单个杂质元素的含量小于0.05%;所述不可避免的杂质元素优选包括Si、Fe、Sn、Pb、O、S和P中的一种或几种。
本发明提供的多元铁基形状记忆合金,按质量含量计,除上述元素外,包括余量的Fe。
本发明提供了上述技术方案所述多元铁基形状记忆合金的制备方法, 包括以下步骤:
(1)将合金原料依次进行真空感应熔炼和浇注,得到铸锭;
(2)将步骤(1)所述铸锭进行退火处理,得到均匀化合金坯;
(3)将步骤(2)所述均匀化合金坯进行锻打,得到多元铁基形状记忆合金。
本发明将合金原料依次进行真空感应熔炼和浇注,得到铸锭。本发明对所述合金原料的种类没有特殊的限定,采用本领域技术人员所熟知的合金原料以能得到目标组分的多元铁基形状记忆合金为准。在本发明中,所述合金原料优选包括低碳钢、电解锰、结晶硅、工业纯Ni、海绵Ti、工业纯Mg、Fe-12Cr-B中间合金和复合稀土中间合金;按质量含量计,所述复合稀土中间合金的化学成分为La 38.5%,Ce 37.5%,Y 2.5%,Nd 2.5%,Pr+Yb+Dy+Sm总量为1.0%,余量为Fe。本发明对所述各种合金原料的比例没有特殊的限定,能够使最终合金成分满足要求即可。
在本发明中,所述真空感应熔炼的温度优选为1560~1590℃,更优选为1580℃;所述真空感应熔炼的时间优选为2~4h,更优选为3h;真空度优选为0.1Pa以下。在本发明中,所述真空感应熔炼在保护气氛下进行,所述保护气氛优选由氩气提供。在本发明的实施例中,所述真空感应熔炼在真空感应熔炼炉中进行,本发明优选先将炉腔内真空度抽至0.1Pa以下,再通入氩气气体,使熔炼炉的气压达到标准大气压。本发明采用先抽真空再通入氩气的作用是确保熔炼处于惰性气体保护的氛围下。
所述真空感应熔炼后,得到合金熔体,本发明将所述合金熔体进行浇注,得到铸锭。在本发明中,所述浇注的温度优选为1500~1530℃,更优选为1520℃。在本发明中,所述浇注用铸型优选为石墨制圆柱体造型,所述铸型的尺寸优选为Φ50×150mm。本发明得到的铸锭优选为圆柱状,本发明通过浇注成圆柱状能够便于后续锻打。在本发明的实施例中,所述浇注在真空感应熔炼炉中进行。
得到铸锭后,本发明将所述铸锭进行退火处理,得到均匀化合金坯。在本发明中,所述退火的温度优选为1100~1150℃,更优选为1120℃;时间优选为22~24h,更优选为24h。在本发明中,所述退火优选在惰性气体气氛条件下进行。本发明通过退火处理能够消除铸锭凝固过程中产生的 内应力,提高合金的均一化。
得到均匀化合金坯后,本发明将所述均匀化合金坯进行锻打,得到多元铁基形状记忆合金。在本发明中,所述锻打的温度优选为1000~1200℃,更优选为1100℃;所述锻打的变形量优选为2%以下,更优选为2%。本发明通过锻打,能够制备各种形状的型材,且在此过程中不会产生裂纹,而且在锻打过程中,组织会细化但没有变化,以奥氏体为主。
本发明在进行所述锻打之前,优选先去除所述均匀化合金的表面氧化皮,所述去粗氧化皮的过程优选在砂轮上进行,去除氧化皮的厚度优选为1~2mm。
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
材料为铸造铁合金,化学成分按质量百分比计算,具体为:Mn 18%,Si 5%,Ni 5%,Cr 2%,Ti 1%,Mg 0.5%,B 0.5%,复合稀土0.2%,C 0.15%,不可避免杂质元素单个<0.05%,总量≤0.35%,余量为Fe;其中,以复合稀土的质量为100%计,所述复合稀土的化学成分为:La 36%,Ce 34%,Y 1.5%,Nd 1.5%,Pr+Yb+Dy+Sm为0.5%,不可避免杂质元素单个<0.05%,总量≤0.30%,余量为Fe。
按照上述合金成分配比,称取低碳钢、电解锰、结晶硅、工业纯Ni、海绵Ti、工业纯Mg、Fe-12Cr-B中间合金和复合稀土中间合金(按质量含量计,具体化学成分为La 36%,Ce 34%,Y 1.5%,Nd 1.5%,Pr+Yb+Dy+Sm为0.5%,不可避免杂质元素单个<0.05%,总量≤0.30%,余量为Fe。),置于真空熔炼炉中,然后关闭炉子,所有原材料随炉加热,熔炼温度为1580℃,真空度抽到在0.1Pa以下并通氩气进行保护;熔炼完成后直接在在真空炉中浇注成铸锭,浇注温度为1520℃,铸型为Φ50×150mm石墨制圆柱体模型,待合金完全凝固后,打开真空熔炼炉取出铸锭;
对铸锭进行退火处理,得到均匀化合金坯;所述退火的温度为 1120℃,时间为24h;
然后将得到的均匀化合金坯在砂轮机上打磨去除表面的氧化皮,去除厚度1~2mm,再在1100℃条件下锻打,锻打变形量不能超过2%,得到多元铁基形状记忆合金。
实施例2
材料为铸造铁合金,化学成分按质量百分比计算,具体为:Mn 24%,Si 7%,Ni 7%,Cr4%,Ti 2%,Mg 0.8%,B 0.8%,复合稀土0.5%,C 0.25%,不可避免杂质元素单个<0.05%,总量≤0.35%,余量为Fe;其中,以复合稀土的质量为100%计,所述复合稀土的化学成分为:La 41%,Ce 39%,Y 3.5%,Nd 3.5%,Pr+Yb+Dy+Sm为1.5%,不可避免杂质元素单个<0.05%,总量≤0.30%,余量为Fe。
按照上述合金成分配比,称取低碳钢、电解锰、结晶硅、工业纯Ni、海绵Ti、工业纯Mg、Fe-12Cr-B中间合金和复合稀土中间合金(按质量含量计,具体化学成分为La 41%,Ce 39%,Y 3.5%,Nd 3.5%,Pr+Yb+Dy+Sm为1.5%,不可避免杂质元素单个<0.05%,总量≤0.30%,余量为Fe),置于真空熔炼炉中,然后关闭炉子,所有原材料随炉加热,熔炼温度为1580℃,真空度抽到在0.1Pa以下并通氩气进行保护;熔炼完成后直接在在真空炉中浇注成铸锭,浇注温度为1520℃,铸型为Φ50×150mm石墨制圆柱体模型,待合金完全凝固后,打开真空熔炼炉取出铸锭;
对铸锭进行退火处理,得到均匀化合金坯;所述退火的温度为1120℃,时间为24h;
然后将得到的均匀化合金坯在砂轮机上打磨去除表面的氧化皮,去除厚度1~2mm,再在1100℃条件下锻打,锻打变形量不能超过2%,得到多元铁基形状记忆合金。
实施例3
材料为铸造铁合金,化学成分按质量百分比计算,具体为:Mn 21%,Si 6%,Ni 6%,Cr 3%,Ti 1.5%,Mg 0.65%,B 0.65%,复合稀土0.35%,C 0.2%,不可避免杂质元素单个<0.05%,总量≤0.35%,余量为Fe;其中,以复合稀土的质量为100%计,所述复合稀土的化学成分为:La 38.5%, Ce 37.5%,Y2.5%,Nd 2.5%,Pr+Yb+Dy+Sm为1.0%,不可避免杂质元素单个<0.05%,总量≤0.30%,余量为Fe。
按照上述合金成分配比,称取低碳钢、电解锰、结晶硅、工业纯Ni、海绵Ti、工业纯Mg、Fe-12Cr-B中间合金和复合稀土中间合金(按质量含量计,具体化学成分为La 38.5%,Ce 37.5%,Y 2.5%,Nd 2.5%,Pr+Yb+Dy+Sm为1.0%,不可避免杂质元素单个<0.05%,总量≤0.30%,余量为Fe。),置于真空熔炼炉中,然后关闭炉子,所有原材料随炉加热,熔炼温度为1580℃,真空度抽到在0.1Pa以下并通氩气进行保护;熔炼完成后直接在在真空炉中浇注成铸锭,浇注温度为1520℃,铸型为Φ50×150mm石墨制圆柱体模型,待合金完全凝固后,打开真空熔炼炉取出铸锭;
对铸锭进行退火处理,得到均匀化合金坯;所述退火的温度为1120℃,时间为24h;
然后将得到的均匀化合金坯在砂轮机上打磨去除表面的氧化皮,去除厚度1~2mm,再在1100℃条件下锻打,锻打变形量不能超过2%,得到多元铁基形状记忆合金。
对比例1
材料为铸造铁合金,化学成分按质量百分比计算,具体为:Mn 22~28%,Si 5~7%,Ni 1~6%,Ti 0~1%,余为铁;原材料均为纯度大于99%的单质,按照上述合金成分配比,采用真空熔炼炉,抽真空至4.0×10 -3Pa后,向真空室内充入惰性气体氩气;为确保成分均匀,如此反复熔炼4次,浇注成圆柱形铸锭。
采用弯曲变形法对实施例1~3和对比例1的形状记忆效应进行测量,如图1所示。为确保结果准确性,被测试记忆合金采用线切割的方式切割成长宽厚相应为100mm×10mm×1mm的试样,测试三次结果的平均值作为最终结果,具体方法为:首先,将试样绕直径d为10mm的圆柱棒弯曲180°(即由初始位置0弯曲至位置1)并保持2s;然后,去除外力使得试样自主恢复,即达到位置2,用量角器测量θ e的大小并记录;最后,加热试样至600~650℃使其完成马氏体逆相变,此时试样自主恢复至位置3,用量角器测量θ m的大小并记录。
记忆效应大小用变形回复率表示,具体为:η=θ m/(180-θ e)×100%,将测试结果带入该公式进行计算即可,所得测试结果如表1所示。
表1形状记忆效应测试结果
编号 回复率
实施例1 76%
实施例2 77.5%
实施例3 80%
对比例1 55~65%
由表1可知,本发明提供的多元铁基形状记忆合金具有优良的形状记忆效应。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (11)

  1. 一种多元铁基形状记忆合金,其特征在于,按质量含量计,化学成分为:Mn 18~24%,Si 5~7%,Ni 5~7%,Cr 2~4%,Ti 1~2%,Mg 0.5~0.8%,B 0.5~0.8%,复合稀土0.2~0.5%,C 0.15~0.25%,余量为Fe;
    以复合稀土的质量为100%计,所述复合稀土的化学成分,按质量含量计为:La 36~41%,Ce 34~39%,Y 1.5~3.5%,Nd 1.5~3.5%,Pr+Yb+Dy+Sm总量为0.5~1.5%,余量为Fe。
  2. 根据权利要求1所述的多元铁基形状记忆合金,其特征在于,按质量含量计,化学成分为:Mn 20~22%,Si 5.5~6.5%,Ni 5.5~6.5%,Cr 2.5~3.5%,Ti 1.4~1.6%,Mg 0.6~0.7%,B 0.6~0.7%,复合稀土0.3~0.4%,C 0.18~0.22%,余量为Fe;
    以复合稀土的质量为100%计,所述复合稀土的化学成分,按质量含量计为:La 38~39%,Ce 37~38%,Y 2~3%,Nd 2~3%,Pr+Yb+Dy+Sm总量为0.8~1.2%,余量为Fe。
  3. 根据权利要求1或2所述的多元铁基形状记忆合金,其特征在于,按质量含量计,化学成分为:Mn 21%,Si 6%,Ni 6%,Cr 3%,Ti 1.5%,Mg 0.65%,B 0.65%,复合稀土0.25%,C 0.2%,余量为Fe;
    以复合稀土的质量为100%计,所述复合稀土的化学成分,按质量含量计为:La 38.5%,Ce 37.5%,Y 2.5%,Nd 2.5%,Pr+Yb+Dy+Sm总量为1.0%,余量为Fe。
  4. 权利要求1~3任一项所述多元铁基形状记忆合金的制备方法,其特征在于,包括以下步骤:
    (1)将合金原料依次进行真空感应熔炼和浇注,得到铸锭;
    (2)将步骤(1)所述铸锭进行退火处理,得到均匀化合金坯;
    (3)将步骤(2)所述均匀化合金坯进行锻打,得到多元铁基形状记忆合金。
  5. 根据权利要求4所述的制备方法,其特征在于,步骤(1)所述真空感应熔炼的温度为1560~1590℃,真空度为0.1Pa以下。
  6. 根据权利要求4或5所述的制备方法,其特征在于,步骤(1)所 述真空感应熔炼的时间为2~4h。
  7. 根据权利要求4所述的制备方法,其特征在于,步骤(1)所述浇注的温度为1500~1530℃。
  8. 根据权利要求4所述的制备方法,其特征在于,步骤(2)所述退火的温度为1100~1150℃,时间为22~24h。
  9. 根据权利要求4或8所述的制备方法,其特征在于,步骤(2)所述退火在惰性气体气氛条件下进行。
  10. 根据权利要求4所述的制备方法,其特征在于,步骤(3)所述锻打的温度为1000~1200℃。
  11. 根据权利要求4或10所述的制备方法,其特征在于,步骤(3)所述锻打的变形量在2%以下。
PCT/CN2020/138223 2019-12-25 2020-12-22 一种多元铁基形状记忆合金及其制备方法 WO2021129593A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911357953.2A CN111041387B (zh) 2019-12-25 2019-12-25 一种多元铁基形状记忆合金及其制备方法
CN201911357953.2 2019-12-25

Publications (1)

Publication Number Publication Date
WO2021129593A1 true WO2021129593A1 (zh) 2021-07-01

Family

ID=70239668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138223 WO2021129593A1 (zh) 2019-12-25 2020-12-22 一种多元铁基形状记忆合金及其制备方法

Country Status (2)

Country Link
CN (1) CN111041387B (zh)
WO (1) WO2021129593A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111041387B (zh) * 2019-12-25 2020-10-27 南京龙浩新材料科技有限公司 一种多元铁基形状记忆合金及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170457A (ja) * 1986-01-23 1987-07-27 Nippon Steel Corp 鉄基形状記憶合金
CN1079997A (zh) * 1993-06-07 1993-12-29 北京科技大学 高热塑性铁基形状记忆合金
JP2003268501A (ja) * 2002-03-13 2003-09-25 Kiyohito Ishida Fe基形状記憶合金及びその製造方法
CN1563662A (zh) * 2004-04-13 2005-01-12 刘文西 铁基形状记忆合金修补油井套管的装置和方法
CN102796951A (zh) * 2012-09-10 2012-11-28 镇江忆诺唯记忆合金有限公司 一种高锰铁基形状记忆合金
US20160145708A1 (en) * 2013-07-10 2016-05-26 Thyssenkrupp Steel Europe Ag Method for producing a flat product from an iron-based shape memory alloy
CN107699667A (zh) * 2017-09-21 2018-02-16 四川大学 一种制备磁性铁锰硅基形状记忆合金的方法
CN111041387A (zh) * 2019-12-25 2020-04-21 南京龙浩新材料科技有限公司 一种多元铁基形状记忆合金及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002981A (ja) * 2002-03-27 2004-01-08 Kurimoto Ltd 鉄系形状記憶合金管およびその製造方法
CN1521286A (zh) * 2003-01-29 2004-08-18 上海交通大学 稀土改性的FeMnSiCr形状记忆合金及其制备方法
CN104342538A (zh) * 2013-08-09 2015-02-11 镇江忆诺唯记忆合金有限公司 一种提高高锰铁基合金记忆性能的淬火工艺方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170457A (ja) * 1986-01-23 1987-07-27 Nippon Steel Corp 鉄基形状記憶合金
CN1079997A (zh) * 1993-06-07 1993-12-29 北京科技大学 高热塑性铁基形状记忆合金
JP2003268501A (ja) * 2002-03-13 2003-09-25 Kiyohito Ishida Fe基形状記憶合金及びその製造方法
CN1563662A (zh) * 2004-04-13 2005-01-12 刘文西 铁基形状记忆合金修补油井套管的装置和方法
CN102796951A (zh) * 2012-09-10 2012-11-28 镇江忆诺唯记忆合金有限公司 一种高锰铁基形状记忆合金
US20160145708A1 (en) * 2013-07-10 2016-05-26 Thyssenkrupp Steel Europe Ag Method for producing a flat product from an iron-based shape memory alloy
CN107699667A (zh) * 2017-09-21 2018-02-16 四川大学 一种制备磁性铁锰硅基形状记忆合金的方法
CN111041387A (zh) * 2019-12-25 2020-04-21 南京龙浩新材料科技有限公司 一种多元铁基形状记忆合金及其制备方法

Also Published As

Publication number Publication date
CN111041387A (zh) 2020-04-21
CN111041387B (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
CN111500917B (zh) 一种高强韧性中熵高温合金及其制备方法
CN109136653B (zh) 用于核电设备的镍基合金及其热轧板的制造方法
CN110106428B (zh) 一种具有带状析出相高熵合金及其制备方法
CN111826573B (zh) 一种无σ相析出倾向的沉淀强化型高熵合金及其制备方法
CN110983163B (zh) 一种提高多元铁基形状记忆合金双程形状记忆效应的方法
RU2012129346A (ru) Высокопрочная нетекстурированная электротехническая сталь с высокой магнитной индукцией и способ ее производства
CN113122763B (zh) 一种高强韧性高熵合金制备方法
CN110284042B (zh) 超塑性高熵合金、板材及其制备方法
CN113637885B (zh) 一种多组元FeNiCoAlTiZr超弹性合金及其制备方法
CN111996397A (zh) 一种调控CoNiV中熵合金抗氢脆和腐蚀性能的方法
CN114182153A (zh) 一种镍基合金及其制备方法与应用
CN111850375B (zh) 一种纳米析出强化型高强高塑性多元合金及其制备方法
US11767581B2 (en) High nitrogen steel with high strength, low yield ratio and high corrosion resistance for ocean engineering and preparation method therefor
WO2021129593A1 (zh) 一种多元铁基形状记忆合金及其制备方法
CN114231765A (zh) 一种高温合金棒材的制备方法与应用
CN114622120A (zh) 一种TRIP辅助AlFeMnCoCr三相异质高熵合金及其制备方法
CN107779705B (zh) 一种铝锂合金及轧制方法
CN101311277A (zh) 一种高温合金钢锭均匀化处理方法
CN116287931A (zh) 一种显著提高VCoNi中熵合金强度及硬度的方法
KR20130053621A (ko) 극후물 오스테나이트계 스테인리스강 및 그의 제조방법
AU2021102124A4 (en) Multi-element iron-based shape memory alloy and fabrication method thereof
CN111235491B (zh) 一种高强度高塑性的形状记忆钢及其制备方法
CN116356190B (zh) 一种高强度高塑性高裂纹容限高熵合金及其制备方法
CN114941107B (zh) 630℃超超临界汽轮机叶片用奥氏体不锈钢材料的制备方法
CN110819898B (zh) 一种高强度耐腐蚀含锆不锈钢及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904656

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904656

Country of ref document: EP

Kind code of ref document: A1