WO2021104445A1 - 一种显示装置 - Google Patents

一种显示装置 Download PDF

Info

Publication number
WO2021104445A1
WO2021104445A1 PCT/CN2020/132198 CN2020132198W WO2021104445A1 WO 2021104445 A1 WO2021104445 A1 WO 2021104445A1 CN 2020132198 W CN2020132198 W CN 2020132198W WO 2021104445 A1 WO2021104445 A1 WO 2021104445A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting diode
circuit board
light emitting
light
micro light
Prior art date
Application number
PCT/CN2020/132198
Other languages
English (en)
French (fr)
Inventor
李富琳
乔明胜
Original Assignee
海信视像科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201922112302.9U external-priority patent/CN210982990U/zh
Priority claimed from CN201911205501.2A external-priority patent/CN112882280A/zh
Priority claimed from CN201911205789.3A external-priority patent/CN112882283A/zh
Priority claimed from CN201922112301.4U external-priority patent/CN210982989U/zh
Application filed by 海信视像科技股份有限公司 filed Critical 海信视像科技股份有限公司
Publication of WO2021104445A1 publication Critical patent/WO2021104445A1/zh
Priority to US17/580,285 priority Critical patent/US11822115B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0083Details of electrical connections of light sources to drivers, circuit boards, or the like
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133613Direct backlight characterized by the sequence of light sources

Definitions

  • This application relates to the field of display technology, and in particular to a display device.
  • liquid crystal display technology is widely used in the display field.
  • the liquid crystal display panel itself cannot emit light, and a backlight module is required to provide the brightness required for its display.
  • a backlight module is required to provide the brightness required for its display.
  • the backlight of different regions can be controlled separately. Then, the brightness of the backlight corresponding to the highlighted part of the displayed image can reach the maximum, and the brightness of the image can be maximized.
  • the backlight corresponding to the dark part can reduce the brightness, so that the displayed image can achieve better contrast.
  • Mini Light Emitting Diode As a backlight has become a hot spot in liquid crystal display technology. It is different from the traditional liquid crystal display which adopts the side-lit backlight scheme of the light guide plate, which uses a huge amount of Mini LED as the backlight.
  • the source can not only realize the thinning of the backlight, but also realize more refined dynamic control and improve the display effect.
  • the present application provides a display device to solve the problem of poor welding of the miniature light-emitting diode.
  • This application provides a display device, including:
  • Backlight module used to provide backlight
  • the display panel is located on the light emitting side of the backlight module and is used for image display;
  • the backlight module includes a miniature light-emitting diode lamp panel as a backlight source;
  • the micro light emitting diode light board includes:
  • the circuit board has a bearing and supporting function, and is used to provide power; the circuit board includes a plurality of bonding pads for welding miniature light-emitting diodes;
  • the size of the opening window is larger than the size of the micro light emitting diode, and the size of the opening window meets the requirement of welding the micro light emitting diode after the circuit board expands and shrinks.
  • the circuit board and the micro light emitting diode are both rectangular;
  • the long side of the micro light emitting diode is parallel to the short side of the circuit board.
  • the window of the reflective coating is rectangular
  • the long side of the window is parallel to the long side of the micro light emitting diode.
  • the size of the long side of the circuit board, the size of the short side of the window, and the size of the short side of the micro light emitting diode satisfy the following relationship:
  • Py represents the length of the short side of the window
  • Cy represents the length of the short side of the micro light emitting diode
  • Ly represents the length of the long side of the circuit board.
  • the size of the long side of the micro light emitting diode and the size of the long side of the window satisfy the following relationship:
  • Cx represents the length of the long side of the micro light-emitting diode
  • Px represents the length of the long side of the window
  • d represents the electrode of the micro light-emitting diode in a direction parallel to the long side of the micro light-emitting diode length.
  • the backlight module includes a plurality of miniature light-emitting diode lamp panels, and the circuit board of each miniature light-emitting diode lamp panel is parallel to the circuit board. Arrange in the direction of the short side.
  • the size of the micro light emitting diode is 50 ⁇ m-300 ⁇ m.
  • the length of the circuit board is 200 mm-800 mm, and the width of the circuit board is 100 mm-500 mm.
  • the backlight module further includes:
  • the protective layer covers the reflective coating and the surface of the micro light emitting diode on the side away from the circuit board.
  • the backlight module further includes:
  • a transparent substrate located on the side of the protective layer away from the circuit board;
  • a diffuser plate located on the side of the transparent substrate away from the protective layer;
  • the optical film is located on the side of the diffusion plate away from the transparent substrate.
  • the display device provided by the present application includes: a backlight module for providing backlight; a display panel located on the light-exit side of the backlight module for image display; the backlight module includes: a miniature light-emitting diode lamp panel as a backlight; a miniature
  • the light-emitting diode lamp board includes: a circuit board, which has a bearing and supporting function, and is used to provide power; the circuit board includes a plurality of pads for welding miniature light-emitting diodes; a reflective coating that covers the circuit board; the reflective coating includes multiple A window that exposes the pad; the miniature light-emitting diode is welded to the pad inside the window; the size of the window is larger than the size of the miniature light-emitting diode, and the size of the window meets the requirements for welding the miniature light-emitting diode after the circuit board shrinks and shrinks.
  • the size of the designed window is larger than the size of the miniature light-emitting diode, so that when the miniature light-emitting diode is transferred to the top of the corresponding window, it can smoothly contact and weld with the pads in the window. Since the circuit board usually has the problem of expansion and contraction, the size of the window can be designed to increase the distance that the circuit board will move when the circuit board expands and shrinks on the basis of the size of the miniature light-emitting diode, so that even if the circuit board expands or shrinks, the window opens.
  • the position of the pad is shifted, and the micro light emitting diode can still be in contact with the pad in the window when it is transferred to the original position, so as to realize the electrical connection between the electrode of the micro light emitting diode and the pad of the circuit board.
  • the present application also provides a display device, which is used to increase the light emission range of the Mini LED and to solve the problem of uneven brightness of the backlight module.
  • This application provides a display device, including:
  • Backlight module used to provide backlight
  • the display panel is located on the light emitting side of the backlight module and is used for image display;
  • the backlight module includes:
  • Miniature light-emitting diode light board as the backlight source
  • the micro light emitting diode light board includes:
  • the circuit board has a bearing and supporting function and is used to provide electricity
  • Miniature light-emitting diodes located on the circuit board
  • the backlight module further includes:
  • a transparent substrate located on the side of the protective layer away from the micro light emitting diode
  • the laminating layer is located between the protective layer and the transparent substrate, and is used for laminating the protective layer and the transparent substrate; the refractive index of the laminating layer is greater than the refractive index of the transparent substrate.
  • the refractive index of the laminating layer is greater than or equal to the refractive index of the protective layer.
  • the refractive index of the protective layer is 1.4-1.6.
  • the refractive index of the transparent substrate is 1.4-1.5.
  • the thickness of the bonding layer is less than 0.1 mm.
  • the thickness of the transparent substrate satisfies the light mixing distance of the micro light emitting diode.
  • the thickness of the transparent substrate is 1 mm to 3 mm.
  • the micro light emitting diode light board further includes:
  • the reflective coating is located on the side of the circuit board close to the micro light emitting diode; the reflective coating includes an opening for exposing the micro light emitting diode.
  • the size of the micro light emitting diode is 50 ⁇ m to 300 ⁇ m.
  • the backlight module further includes:
  • a diffuser plate located on the side of the transparent substrate away from the protective layer;
  • the optical film is located on the side of the diffusion plate away from the transparent substrate.
  • the display device includes: a backlight module for providing backlight; a display panel located on the light-exit side of the backlight module for image display; the backlight module includes a miniature light-emitting diode lamp panel as a backlight source;
  • the diode light board includes a circuit board, which has the function of carrying and supporting, and is used to provide power; the micro light emitting diode is located on the circuit board; the protective layer covers the micro light emitting diode and the circuit board, which is used to package and protect the micro light emitting diode; Including a transparent substrate, located on the side of the protective layer away from the micro light emitting diode; and a bonding layer, located between the protective layer and the transparent substrate, for bonding the protective layer and the transparent substrate; the refractive index of the bonding layer is greater than that of the transparent substrate rate.
  • the protective layer and the transparent substrate are closely adhered with the laminating layer, there is no air layer between the protective layer and the transparent substrate. Since the refractive index of the laminating layer is greater than that of the transparent substrate, light is incident from the laminating layer to the transparent The emergence angle of the substrate will increase, so that the coverage of the emergent light will increase. As a result, the light emitted by the Mini LED can be diffused to the junction between the adjacent Mini LEDs, so that the light emission brightness directly above the Mini LED is closer to the light emission brightness at the junction, and the uneven brightness of the backlight module is improved. problem.
  • FIG. 1 is a schematic diagram of a cross-sectional structure of a display device provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of a cross-sectional structure of a Mini LED light board provided by an embodiment of the application;
  • FIG. 3 is a schematic diagram of a top view structure of a Mini LED light board provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of the top view relationship between the window opening and the micro light emitting diode provided by the embodiment of the application;
  • FIG. 5 is a schematic diagram of the side view relationship between the window opening and the micro light emitting diode provided by the embodiment of the application;
  • Fig. 6 is a schematic top view of a plurality of Mini LED light boards provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of a cross-sectional structure of a backlight module provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of a cross-sectional structure of a display device provided by an embodiment of the application.
  • FIG. 9 is one of the schematic cross-sectional structure diagrams of the backlight module provided by the embodiment of the application.
  • FIG. 10 is one of the exit light path diagrams of the backlight module provided by the embodiment of the application.
  • FIG. 11 is the second diagram of the exit light path of the backlight module provided by the embodiment of the application.
  • FIG. 12 is the third diagram of the exit light path of the backlight module provided by the embodiment of the application.
  • FIG. 13 is the fourth diagram of the exit light path of the backlight module provided by the embodiment of the application.
  • FIG. 14 is a second schematic diagram of a cross-sectional structure of a backlight module provided by an embodiment of the application.
  • 15 is a schematic top view of the structure of a backlight module provided by an embodiment of the application.
  • FIG. 16 is the third schematic diagram of the cross-sectional structure of the backlight module provided by the embodiment of the application.
  • the Mini LED In the MiniLED production process, the Mini LED needs to be soldered on the circuit by die bonding to prepare a Mini LED light board.
  • the circuit board has to go through multiple production processes and transportation, etc., and there will be expansion and contraction phenomena, which can avoid the offset of the pads on the circuit board.
  • the size of the Mini LED is small, and the offset of the pad can already cause the Mini LED to be unable to be accurately soldered to the corresponding pad, resulting in poor soldering of the Mini LED.
  • FIG. 1 is a schematic structural diagram of a display device provided in an embodiment of the application. As shown in FIG. 1, the display device provided in an embodiment of the application includes:
  • the backlight module 100 is used to provide backlight; the backlight module 100 can uniformly emit light in the entire light emitting surface, and is used to provide the display panel with sufficient and uniformly distributed light, so that the display panel can display images normally.
  • the display panel 200 is located on the light emitting side of the backlight module 100 and is used for image display.
  • the display panel 200 has a plurality of pixel units arranged in an array, and each pixel unit can independently control the light transmittance and color of the backlight module 100 incident on the pixel unit, so that the light transmitted by all the pixel units constitutes The displayed image.
  • the above-mentioned display device provided by the embodiment of the present application may be a display device such as a liquid crystal display, a liquid crystal display, and a liquid crystal television, or may be a mobile terminal such as a mobile phone, a tablet computer, and a smart photo album.
  • the display device adopts a backlight module to provide backlight, and the display panel modulates the light emitted by the backlight module to realize image display.
  • the backlight module provided by the embodiments of the application can use Mini LED lamp panels as the light source.
  • the size of Mini LEDs is smaller than that of traditional LEDs, and a huge number of Mini LEDs are used as backlight sources, which can achieve more refined dynamic control and improve liquid crystal display.
  • the dynamic contrast of the display is provided by the embodiment of the present application.
  • the above-mentioned backlight module 100 provided by the embodiment of the present application includes a Mini LED light board (Mini LED light board) as a backlight source.
  • a Mini LED light board (Mini LED light board) as a backlight source.
  • FIG. 2 is a schematic cross-sectional structure diagram of a Mini LED light board provided by an embodiment of the application.
  • the Mini LED light board includes: a circuit board 11, a reflective coating 12, and a micro light emitting diode 13;
  • the circuit board 11 has a bearing and supporting function, and is used to provide power.
  • the circuit board 11 is used to provide driving electrical signals for the micro light emitting diode 13.
  • the micro light emitting diode 13 and the circuit board 11 are manufactured separately.
  • the surface of the circuit board 11 includes a plurality of pads p for welding the micro light emitting diode. After the micro light emitting diode 12 is finished, the micro light emitting diode 13 is transferred to the circuit board. Above the pad 11, the micro light emitting diode 13 is soldered on the circuit board 11 through a process such as reflow soldering, so that the input signal of the control circuit board 11 can be used to drive the micro light emitting diode 13 to emit light.
  • the circuit board 11 may be a printed circuit board (Printed Circuit Board, PCB for short).
  • the PCB includes an electronic circuit and an insulating layer.
  • the insulating layer exposes the soldering pads of the micro light emitting diode 12 in the electronic circuit and exposes the rest. cover.
  • the circuit board 11 may also be an array substrate formed by fabricating a thin film transistor drive circuit on a base substrate, and the surface of the array substrate has connection electrodes connected to the thin film transistor drive circuit (that is, the above-mentioned pads in the window).
  • the electrodes of the micro light emitting diode 12 are welded in a one-to-one correspondence with each connecting electrode.
  • the substrate or base substrate of the above circuit board 11 may be made of flexible materials to form a flexible display device.
  • the circuit board 11 is plate-shaped, and the whole is rectangular or square.
  • the length of the circuit board 11 is 200mm-800mm, and the width is 100mm-500mm.
  • the backlight module may include a plurality of circuit boards 11, and the circuit boards 11 are spliced to provide backlight.
  • the seams between adjacent circuit boards 11 should be as small as possible, and even seamless splicing can be realized.
  • the reflective coating 12 covers the circuit board 11.
  • the reflective coating 12 can be a protective layer located above the circuit board 11.
  • the protective layer also has a reflective effect, which can reduce the incident light on the circuit board 11 side. The light is reflected back, thereby improving the efficiency of light utilization.
  • the reflective coating 12 may be made of materials such as white oil.
  • FIG. 3 is a schematic top view of the Mini LED light board provided by the embodiments of the application.
  • a reflective coating 12 is coated on the surface of the circuit board after wiring, and it will be used for welding through etching and other processes.
  • the position of the pad p of the micro light emitting diode is exposed, forming an opening 121 as shown in FIG. 3.
  • the micro light emitting diode 13 is welded on the corresponding pad p of the circuit board, so that the micro light emitting diode 13 is welded on the circuit board 11.
  • the miniature light-emitting diode 13 is soldered on the pad p in the window 121.
  • the miniature light-emitting diode 13 is different from ordinary light-emitting diodes, and specifically refers to a miniature light-emitting diode chip. Since the size of the micro light-emitting diode 13 is small, the light-emitting chip is beneficial to control the dynamic light emission to a smaller subarea, which is beneficial to improve the contrast of the picture.
  • the micro light emitting diode 13 may be a monochromatic micro light emitting diode with a size between 50 ⁇ m and 300 ⁇ m.
  • the micro light emitting diode 13 usually includes two electrodes, which need to be welded to the two adjacent pads p on the circuit board 11 respectively. Before welding, the micro light emitting diode 13 can be moved to its corresponding welding by means of mechanical transfer. Above the disk. The robot arm that transfers the micro LED 12 will transfer the micro LED 13 to the corresponding position above the circuit board 11 according to the nominal value of the window opening on the circuit board 11. However, the substrate of the circuit board 11 usually uses resin material on the circuit board. 11 After various process steps and transportation, the problem of expansion and contraction is prone to occur. Then the window on the reflective coating will shift with the expansion and contraction of the circuit board, and the miniature light-emitting diode 13 will still follow the standard circuit board.
  • micro light emitting diode 13 Since the size of the micro light emitting diode 13 is on the order of micrometers, a small deviation of the opening on the circuit board 11 will cause the micro light emitting diode 13 to fail to align with the pads in the opening. This will cause poor soldering of the miniature light-emitting diodes.
  • the size of the window 121 on the reflective coating 12 can be appropriately enlarged, so that the size of the window 121 is larger than that of the micro light emitting diode 13.
  • the size, and the size of the window 121 meets the requirements for welding the miniature light-emitting diodes after the circuit board 11 expands and shrinks.
  • the size of the opening 121 can be designed to be larger than the size of the micro light emitting diode 13, so as to ensure that the micro light emitting diode can be smoothly contacted with the pad p in the opening 121 when it is transferred to the top of the corresponding opening 121 And welding.
  • the size of the window 121 can be designed to increase the distance that the circuit board 11 will move when the circuit board 11 expands and shrinks on the basis of the size of the micro light-emitting diode 13, so that even if the circuit board 11 expands When shrinking, the position of the window and the bonding pad is shifted, and the micro light emitting diode can still contact the bonding pad p in the window when it is transferred to the original position, so as to realize the electrical connection between the electrode of the micro light emitting diode and the bonding pad of the circuit board.
  • the circuit board 11 and the micro light emitting diode 13 are usually designed into a regular rectangle.
  • Micro LEDs are welded on the circuit board to form a micro LED light board, and the display devices currently used, whether it is a computer screen, a TV or a mobile phone, are generally rectangular, so the micro LED light board is used as a backlight source.
  • the circuit board will also be made into a rectangle.
  • the miniature light-emitting diodes are not individually formed one by one during production, but are cut after growing an epitaxial layer and other structures on the substrate.
  • the accuracy of the cutting will directly affect the accuracy of the miniature light-emitting diode, so in order to simplify The process will cut the miniature light-emitting diodes into rectangles.
  • the expansion and contraction of the circuit board is affected by the materials used, and the general expansion and contraction ratio is Within the range, and the degree of expansion and contraction is positively correlated with the length in this direction.
  • the expansion and contraction of the circuit board 11 in the length direction may reach 80 ⁇ m to 200 ⁇ m
  • the expansion and contraction in the width direction may reach 40 ⁇ m to 100 ⁇ m. That is to say, the offset of the opening of the circuit board 11 in the length direction of the circuit board will be greater than the offset in the width direction.
  • the long side of the micro light emitting diode 13 is set to be parallel to the short side of the circuit board 11.
  • the expansion and contraction of the circuit board 11 in the direction of the long side is relatively large, the opening of the window will have a larger offset in the direction of the long side of the circuit board, and the offset of the opening is greater than that of the short side of the micro light emitting diode 13 Compared with the long side, the impact is relatively small.
  • the short side of the miniature light-emitting diode can be located within the window, so that it will not affect the electrode of the miniature light-emitting diode
  • the contact with the pad in the window can improve the problem of poor soldering of the miniature light-emitting diode.
  • the window opening of the window 121 of the reflective coating 12 can also be set to be rectangular accordingly.
  • the long side of the opening window 121 is parallel to the long side of the micro light emitting diode 13.
  • the size of the window 121 is equal to the size of the micro light-emitting diode 13, so that the electrode of the micro light-emitting diode 13 is connected to the pad p in the window 121, and considering the expansion and contraction of the circuit board 11 and the transfer process For problems such as errors, the size of the opening window 121 can be expanded correspondingly on the basis of the size of the micro light emitting diode 13. Even if the above problems occur, it can be ensured that the micro light emitting diode 13 can be arranged inside the opening window 121.
  • the dimensions of the micro light emitting diode 13 and the opening window 121 are both in the order of micrometers, the long side of the opening 121 is parallel to the long side of the micro light emitting diode 13, and the short side of the opening 121 is parallel to the short side of the micro light emitting diode 13, so that
  • the size of the window 121 adapts to the shape of the miniature light-emitting diode, and does not cause a waste of occupied space, and more miniature light-emitting diodes can be arranged on the circuit board.
  • FIG. 4 is a schematic diagram of the top view relationship between the window opening and the micro light emitting diode according to the embodiment of the present application.
  • FIGS. 2 and 3 show the size relationship of the circuit board 11, the window 121 and the micro light emitting diode 13.
  • the length of the long side of the circuit board 11 is Ly, and the length of the short side of the circuit board is Lx;
  • the length of the long side of the window 121 is Px, and the length of the short side of the window 121 is Py;
  • the length of the long side of the micro light emitting diode 13 is Cx, and the length of the short side of the micro light emitting diode 13 is Cy.
  • the size of the long side of the circuit board 11 the size of the short side of the window 121, and the size of the short side of the micro light emitting diode 13
  • the size of the long side of the circuit board 11 the size of the short side of the window 121, and the size of the short side of the micro light emitting diode 13
  • Py represents the length of the short side of the window
  • Cy represents the length of the short side of the micro light emitting diode
  • Ly represents the length of the long side of the circuit board.
  • the amount of expansion and contraction of the circuit board 11 in the longitudinal direction is related to the length of the longitudinal direction. Due to the different materials used in the circuit board 11, the degree of expansion and contraction is also different. If the expansion and contraction ratio of the circuit board material is Then the offset of the opening 121 on the circuit board in the direction of the long side of the circuit board can reach If you want to shift the opening of the window, the micro light-emitting diode 13 can still be located in the corresponding opening 121 after transferring according to the original position, and contacting the pad in the opening 121, then the opening of the window 121
  • the length of the short side should increase the offset in the long side direction of the circuit board 11 on the basis of the length of the short side of the micro light emitting diode 13, so the short side size of the micro light emitting diode 13 and the short side size of the window 121 should be set to meet The above relationship can ensure that when the window 121 is shifted, the corresponding micro light emitting diode 13 can still be transferred into the window 121.
  • the size of the long side of the micro light emitting diode 13 and the size of the long side of the window 121 may satisfy the following relationship:
  • Cx represents the length of the long side of the micro light emitting diode
  • Px represents the length of the long side of the window
  • d represents the length of the electrode of the micro light emitting diode in a direction parallel to the long side of the micro light emitting diode.
  • the micro light emitting diode 13 includes two electrodes, which are respectively welded to the two pads p in the corresponding opening 121.
  • FIG. 5 is a schematic diagram of the side view relationship between the opening and the micro light emitting diode provided in an embodiment of the application, as shown in FIG. As shown, there is a certain gap between the two pads p in the window 121.
  • the window 121 of the circuit board also has an offset along the short side of the circuit board 11.
  • the two electrodes of the micro light emitting diode 13 can be connected to the two pads p in the corresponding opening 121.
  • the length Px of the long side of the opening window 121 is greater than the length Cx of the long side of the micro light emitting diode 13.
  • the length d of the electrode of the micro light emitting diode 13 along the long side of the micro light emitting diode is about one third of the long side of the micro light emitting diode, and the electrode length d can already meet the offset of the window 121, so it can be set
  • the length Px of the long side of the window 121 satisfies Cx ⁇ Px ⁇ Cx+d.
  • the size of the micro LED light board is not too large, so the micro LED needs to be transferred to the circuit board after the production is completed, and then soldered.
  • the yield of the micro LED light board depends on the miniature of the light board. The yield rate of light-emitting diodes, so the larger the size of the light board, the lower the production yield rate. Therefore, the backlight modules currently used in large-size display devices can be arranged in a manner in which multiple Mini LED light panels are spliced with each other.
  • FIG. 6 is a schematic top view of the structure of a plurality of Mini LED lamp panels provided by an embodiment of the application.
  • the backlight module provided by the embodiment of the application includes a plurality of miniature LED lamp panels, and each of the miniature LED lamp panels
  • the circuit boards 11 are arranged in a direction parallel to the short side of the circuit board.
  • the conventional display screen size is 16:9, and the range of Mini LED die-bonding equipment and the size of the display are inconvenient to splice with square light boards. Therefore, the circuit board 11 can be designed to be rectangular, with long sides and The ratio of the short sides is close to 2:1. When the size of the circuit board 11 is smaller than the size of the required lighting range, the number of arranged circuit boards 11 can be increased along the short side direction of the circuit board 11.
  • the foregoing Mini LED provided by the embodiment of the present application further includes:
  • the protective layer 14 covers the reflective coating 12 and the surface of the micro light emitting diode 13 away from the circuit board 11.
  • the function of the protective layer 14 is to encapsulate the micro light emitting diode 13 so as to effectively prevent the occurrence of unfavorable conditions such as falling off and moisture of the micro light emitting diode.
  • the material used for the protective layer 14 includes silica gel, epoxy resin or other colloidal materials with higher transmittance. In practical applications, it can be formed on the surface of the micro light emitting diode 13 by spraying or dot coating.
  • the backlight module shown in FIG. 2 adopts a whole-surface spraying method to make the protective layer 14, and the whole-surface spraying manufacturing method has higher production efficiency.
  • the dot-coating and packaging method can save colloid materials and can flexibly control the amount of glue applied. Stronger.
  • FIG. 7 is a schematic cross-sectional structure diagram of a backlight module provided by an embodiment of the application. As shown in FIG. 7, the above-mentioned backlight module provided by an embodiment of the application further includes a transparent substrate 15, a diffusion plate 16 and an optical film 17.
  • the transparent substrate 15 is located on the side of the protective layer 14 away from the circuit board 11.
  • the transparent substrate 15 can transmit light from the micro light emitting diode 13 and is used to support the diffusion plate 16.
  • the material of the transparent substrate 15 can be selected from polymethyl methacrylate or polycarbonate.
  • the transparent substrate 15 serves as a support structure of the diffuser plate 16 so that the light emitted by the micro light emitting diode 13 can be mixed sufficiently before reaching the diffuser plate 16.
  • the thickness of the transparent substrate 15 satisfies the light mixing distance of the micro light emitting diode 13 to ensure the backlight effect.
  • the thickness of the transparent substrate 15 is not greater than 10 mm.
  • the diffusion plate 16 is located on the side of the transparent substrate 15 away from the protective layer 14.
  • the diffuser plate 16 is usually provided with a scattering particle material. After the light enters the diffuser plate 16, the scattering material continuously refracts and reflects the light, so as to achieve the effect of dispersing the light, thereby achieving the effect of uniform light.
  • the material used for the diffusion plate is generally selected from at least one of polymethyl methacrylate PMMA, polycarbonate PC, polystyrene-based material PS, and polypropylene PP, which is not limited here.
  • the optical film 17 is located on the side of the diffuser 16 away from the transparent substrate 15.
  • the optical film set 17 may include one or more of prism films, quantum dot films, reflective polarizers, etc.
  • the purpose of adding these films to the backlight module is to adapt the backlight module to a variety of Practical application.
  • the prism sheet can change the exit angle of light, thereby changing the viewing angle of the display device.
  • the quantum dot film can provide quantum dots with higher monochromatic light emission, which can be applied to quantum dot TVs to improve the display color gamut of TVs.
  • the reflective polarizer can improve the utilization rate of light, and at the same time make the emitted light have the property of polarization, omitting the use of the polarizer under the liquid crystal display panel.
  • the display device includes: a backlight module for providing backlight; a display panel located on the light-exit side of the backlight module for image display; the backlight module includes: a miniature light-emitting diode lamp panel as a backlight source ;
  • the miniature light-emitting diode lamp board includes: a circuit board, which has a bearing and supporting function, and is used to provide power; the circuit board includes a plurality of pads for welding miniature light-emitting diodes; a reflective coating, covering the circuit board; a reflective coating Including multiple open windows with exposed pads; miniature light-emitting diodes, soldered on the pads in the window; wherein the size of the window is larger than the size of the miniature light-emitting diode, and the size of the window meets the requirements for welding the miniature light-emitting diode after the circuit board expands and shrinks Diode requirements.
  • the size of the designed window is larger than the size of the miniature light-emitting diode, so that when the miniature light-emitting diode is transferred to the top of the corresponding window, it can smoothly contact and weld with the pads in the window. Since the circuit board usually has the problem of expansion and contraction, the size of the window can be designed to increase the distance that the circuit board will move when the circuit board expands and shrinks on the basis of the size of the miniature light-emitting diode, so that even if the circuit board expands or shrinks, the window opens.
  • the position of the pad is shifted, and the micro light emitting diode can still be in contact with the pad in the window when it is transferred to the original position, so as to realize the electrical connection between the electrode of the micro light emitting diode and the pad of the circuit board.
  • the Mini LED light board can drive the Mini LED to emit light through the circuit board after each Mini LED chip is welded.
  • the light emitted by the Mini LED will first enter the air gap and then enter the optical film layer such as the diffuser. Because the refractive index of the air medium is small, when it enters the diffuser, the light output will be reduced due to the refraction of the light. , So that the range of the light spot finally irradiated on the diffuser is small, which leads to the problem of uneven brightness of the backlight module above the Mini LED and dark at the junction of the two Mini LEDs.
  • the present application provides a display device.
  • FIG. 8 is a schematic structural diagram of a display device provided in an embodiment of the application. As shown in FIG. 8, the display device provided in an embodiment of the application includes:
  • the backlight module 100 is used to provide backlight; the backlight module 100 can uniformly emit light in the entire light emitting surface, and is used to provide the display panel with sufficient and uniformly distributed light, so that the display panel can display images normally.
  • the display panel 200 is located on the light emitting side of the backlight module 100 and is used for image display.
  • the display panel 200 has a plurality of pixel units arranged in an array, and each pixel unit can independently control the light transmittance and color of the backlight module 100 incident on the pixel unit, so that the light transmitted by all the pixel units constitutes The displayed image.
  • the above-mentioned display device provided by the embodiment of the present application may be a display device such as a liquid crystal display, a liquid crystal display, and a liquid crystal television, or may be a mobile terminal such as a mobile phone, a tablet computer, and a smart photo album.
  • the display device adopts a backlight module to provide backlight, and the display panel modulates the light emitted by the backlight module to realize image display.
  • the backlight module provided by the embodiments of this application can use Mini LED lamp panels as the light source.
  • the size of Mini LEDs is smaller than that of traditional LEDs, and a huge number of Mini LEDs are used as backlight sources, which can achieve more refined dynamic control and improve liquid crystal display.
  • the dynamic contrast of the display is provided by the embodiment of the present application.
  • FIG. 9 is one of the schematic cross-sectional structure diagrams of the backlight module provided by the embodiment of the application. As shown in FIG. Layer 25.
  • the micro light emitting diode light board 20 includes a circuit board 21, a micro light emitting diode 22 and a protective layer 23.
  • the circuit board 21 has a bearing and supporting function, and is used to provide power.
  • the circuit board 21 is used to provide driving electrical signals for the micro light emitting diode 22.
  • the micro light emitting diode 22 and the circuit board 21 are manufactured separately.
  • the surface of the circuit board 21 includes a plurality of openings for welding the micro light emitting diodes.
  • the openings include two soldering pads for welding the electrodes of the micro light emitting diodes.
  • the micro light emitting diode 22 is transferred to the open window of the circuit board 21, and the micro light emitting diode 22 is soldered on the circuit board 21 through a process such as reflow soldering, so that the control circuit board 21
  • the input signal drives the micro light emitting diode 22 to emit light.
  • the circuit board 21 may be a printed circuit board (Printed Circuit Board, PCB for short).
  • the PCB includes an electronic circuit and an insulating layer.
  • the insulating layer exposes the soldering pad of the miniature light-emitting diode 22 in the electronic circuit and exposes the rest. cover.
  • the circuit board 21 may also be an array substrate formed by fabricating a thin film transistor drive circuit on a base substrate, and the surface of the array substrate has connection electrodes connected to the thin film transistor drive circuit (that is, the above-mentioned pads in the window).
  • the electrodes of the micro light emitting diode 22 are welded in a one-to-one correspondence with each connecting electrode.
  • the substrate or base substrate of the above circuit board 21 may be made of flexible materials to form a flexible display device.
  • the circuit board 21 is plate-shaped, and the whole is rectangular or square.
  • the length of the circuit board 21 is 200mm-800mm, and the width is 100mm-500mm.
  • the display device may include a plurality of circuit boards 21, and the circuit boards 21 are spliced together to provide backlight.
  • the seams between adjacent circuit boards 21 should be as small as possible, and even seamless splicing can be realized.
  • the miniature light emitting diode 22 is located on the circuit board 21.
  • the micro light emitting diode 22 is welded to the pad of the circuit board 21.
  • the micro light emitting diode 22 is different from the ordinary light emitting diode, and specifically refers to the micro light emitting diode chip. Since the size of the micro light-emitting diode 22 is small, the light-emitting chip is beneficial to control the dynamic light emission to a smaller subarea, which is beneficial to improve the contrast of the picture.
  • the micro light emitting diode 22 may be a monochromatic micro light emitting diode with a size between 50 ⁇ m and 300 ⁇ m.
  • the protective layer 23 covers the micro light emitting diode 22 and the circuit board 21.
  • the protective layer 23 functions to encapsulate the micro light emitting diode 22 so as to effectively prevent the micro light emitting diode from falling off and moisture.
  • the material used for the protective layer 23 includes silica gel, epoxy resin or other colloidal materials with higher transmittance. In practical applications, it can be formed on the surface of the micro light emitting diode 22 by spraying or dot coating.
  • the entire protective layer 23 is formed on the surface of the circuit board 21 and the micro light emitting diode 22 by a whole layer spraying method.
  • This manufacturing method can effectively improve the production efficiency, and the packaging of the micro light emitting diode 22 The effect is better.
  • the transparent substrate 24 is located on the side of the protective layer 23 away from the micro light emitting diode 22.
  • the transparent substrate in the embodiment of the present application is made of high light-transmitting materials.
  • the transparent substrate can transmit light from the micro light emitting diode 22 and is used to support the diffuser plate.
  • the material of the transparent substrate 24 can be selected from at least one of polymethyl methacrylate or polycarbonate, but is not limited to this.
  • the transparent substrate 24 can also be made of other materials with high reflectivity and low light absorption. This is because light is reflected multiple times inside the transparent substrate 24.
  • the use of materials with high reflectivity and low absorbance can minimize the attenuation of light as it propagates in the transparent substrate 24, thereby improving the light utilization rate of the backlight module. , Reduce power consumption.
  • the transparent substrate 24 serves as a support structure of the diffuser, so that the light emitted by the micro light emitting diode 22 can be fully mixed before reaching the diffuser.
  • the thickness of the transparent substrate 24 satisfies the light mixing distance of the micro light emitting diode 22, so that the light emitted by the micro light emitting diode can be fully mixed when reaching the diffuser, and the backlight effect is ensured.
  • the thickness of the transparent substrate 24 is not greater than 10 mm.
  • an acrylic plate in order to limit the overall thickness of the backlight module, can be used to make a transparent substrate with a thickness of 1mm-3mm.
  • the size of the micro light emitting diode 22 is smaller, and compared with the traditional light emitting diode, the distance between the micro light emitting diode 22 can be made smaller, so the miniature light emitting diode 22 can be made smaller.
  • the light mixing distance of the light-emitting diode 22 can be much smaller than that of traditional light-emitting diodes.
  • the transparent substrate 24 can be set in the range of 1mm-3mm to meet the light-mixing requirements of the micro-light-emitting diode 22, and it can reduce the amount of light mixing by the transparent substrate. 24 to reduce the effect of light.
  • the distance between the micro light emitting diodes 22 is relatively small, and it is impossible to provide a bracket in the array of the micro light emitting diodes 22 to support the diffuser.
  • the transparent substrate is arranged on the side of the protective layer 23 facing away from the micro light emitting diodes 22. As a support for the diffuser, the diffuser is directly placed on the transparent substrate 24 to overcome the above-mentioned problems.
  • FIG. 10 is one of the exit light path diagrams of the backlight module provided by the embodiment of the application.
  • a transparent substrate 24 can be placed directly above the protective layer 23 to meet the use requirements, but There will be a gap between the protective layer 23 and the transparent substrate 24, and the optical film layer in the backlight module is an optically dense medium relative to the air medium.
  • the light with the exit angle ⁇ 1 from the micro light emitting diode 22 first enters In the medium of the protective layer 23, the incident angle of the light when it enters the interface between the protective layer 23 and the air layer is ⁇ 1, and the refraction angle of the light exiting the air through the interface is ⁇ 2.
  • the refractive index of the protective layer 23 is n1, and the refractive index of air is n0.
  • n1sin ⁇ 1 n0sin ⁇ 2; and the refractive index n1 of the protective layer 23 is greater than the refractive index n0 of the air medium, so the light passes through
  • the refraction angle ⁇ 2 when the protective layer 23 is incident into the air is greater than the incident angle ⁇ 1, that is, the exit angle when the light enters the air medium is larger. If the light incident in the air directly enters the position of the diffuser, the diffuser is The radius of the light coverage is d1.
  • the refraction angle of the light exiting the transparent substrate 24 through the interface is ⁇ 3, and the refractive index of the transparent substrate 24 is n2.
  • the refractive index n2 of the transparent substrate 24 is greater than the refractive index n0 of the air medium, so the refraction angle ⁇ 3 when the light enters the transparent substrate 24 through the air layer is smaller than the incident angle ⁇ 2, that is, the exit angle of the light after entering the transparent substrate 24 becomes smaller.
  • the radius of the final coverage area of the light on the diffuser is d2.
  • the backlight module is also provided with: a bonding layer 25, located between the protective layer 23 and the transparent substrate 24, for bonding the protective layer 23 and Transparent substrate 24. That is to say, in the embodiment of the present application, the original air gap between the protective layer 23 and the transparent substrate 24 is filled with the bonding material, thereby reducing the gap between the refractive index of the gap position and the refractive index of the transparent substrate 24.
  • the refractive index of the bonding layer 25 may be greater than the refractive index of the transparent substrate 24.
  • FIG. 11 is the second light path diagram of the backlight module provided by the embodiment of the application.
  • the light with the same exit angle ⁇ 1 emitted by the micro light emitting diode 22 is incident on the medium of the protective layer 23, then The incident angle of light when it enters the interface between the protective layer 23 and the bonding layer 25 is ⁇ 1, and the refraction angle of the light exiting the bonding layer 25 through the interface is ⁇ 2'.
  • the refractive index of the protective layer 23 is n1
  • the refractive index of the bonding layer 25 is n3.
  • n1sin ⁇ 1 n3sin ⁇ 2'; and the refractive index between the protective layer 23 and the bonding layer 25 is The difference is much smaller than the difference in refractive index between the protective layer 23 and the air medium. Therefore, the refraction angle ⁇ 2' when the light enters the laminating layer 25 through the protective layer 23 is not much different from the incident angle ⁇ 1, that is, When light enters the bonding layer 25, the exit angle does not change much.
  • n3sin ⁇ 2' n2sin ⁇ 3'.
  • the refractive index n2 of the transparent substrate 24 is greater than the refractive index n3 of the laminating layer 25, so the refraction angle ⁇ 3' when the light enters the transparent substrate 24 through the laminating layer 25 is smaller than the incident angle ⁇ 2', that is, the light enters the transparent substrate 24 After the emergence angle becomes larger, after passing through the transparent substrate 24, the radius of the final coverage area of the light on the diffuser is d3.
  • the embodiment of the present application sets the refractive index n3 of the laminating layer 25 to be greater than or equal to the refractive index n1 of the protective layer 23.
  • the total reflection of light in each layer of the backlight module may limit the exit angle of the light.
  • the transparent substrate 24 is placed directly above the protective layer 23, there will be an air gap between the protective layer 23 and the transparent substrate 24, forming an air layer.
  • the air medium is a light-thin medium. Therefore, when light enters the air from the optical film layer of the backlight module, the phenomenon of total light reflection cannot be avoided.
  • the transparent substrate 24 is directly placed on the protective layer 23, the large-angle light emitted by the micro light emitting diode 22 First, it enters the protective layer 23.
  • the refractive index n1 of the protective layer 23 is greater than the refractive index n0 of the air layer.
  • the exit angle ⁇ 1 of the light is also the incident angle of the light incident on the interface between the protective layer 23 and the air layer, it is greater than At the critical angle of the interface, the light cannot enter the air layer, and all the light is reflected back to the protective layer 23.
  • the critical angle for total reflection is 44 degrees, that is, the light emitted by the micro light emitting diode 22 Among them, only the light whose exit angle is less than 44 degrees can be incident into the air, and then used as the backlight provided by the backlight module, and the utilization rate of the light source is low.
  • FIG. 13 is the fourth diagram of the exit light path of the backlight module provided by the embodiment of the application, as shown in FIG. 13.
  • the refractive index of the laminating layer 25 can be set close to that of the protective layer 23, so as to ensure that the light can be smoothly incident from the protective layer 23 to the laminating layer 25 without changing the light too much.
  • the refractive index n3 of the laminating layer 25 is greater than the refractive index n2 of the transparent substrate 24. Therefore, the exit angle of light from the laminating layer 25 to the transparent substrate 24 will be further increased, so that the exit angle of the Mini LED light is not affected. If the influence is too large, the emitted light can cover the junction between the Mini LEDs, and the difference between the brightness of the light directly above the Mini LED and the junction can be reduced, thereby effectively improving the problem of uneven brightness.
  • the protective layer 23 can usually be made of colloidal materials such as silica gel and epoxy resin, and the refractive index can be between 1.4-1.6;
  • the transparent substrate 24 can be made of plastic, such as polymethylmethacrylate PMMA or polymethylpentene. Alkene copolymer TPX, etc., the refractive index can be between 1.4-1.5;
  • the laminating layer 25 can be made of colloidal materials such as silica gel, epoxy resin, etc., or a transparent double-sided adhesive layer, and the refractive index can be between 1.4-1.6 .
  • the refractive index difference between the three can be smaller, and at the same time, the refractive index of the bonding layer 25 can be greater than or equal to the protection
  • the refractive index of the layer 23, and the refractive index of the laminating layer 25 is greater than the refractive index of the transparent substrate 24, which can effectively prevent the light emitted by the micro light emitting diode 22 from being emitted at a large angle at the interface of the three film layers.
  • the reflection phenomenon can also expand the exit angle of light when it is incident on the transparent substrate 24 and the film layer above it.
  • the exit angle when the light is transmitted to the transparent substrate 24 can be calculated to obtain the exit angle of the 60-degree light emitted by the micro light-emitting diode when it enters the transparent substrate 24, which is 60.45 degrees, which is compared with the exit angle of the backlight module in the prior art. Much larger. As a result, the problem of uneven brightness of the backlight module is effectively improved.
  • the thickness of the bonding layer 25 is much smaller than the thickness of the transparent substrate 24.
  • the thickness of the bonding layer 25 can be set to be less than 0.1 mm. The smaller the thickness of the bonding layer 25, the smaller the influence on the light offset position. Therefore, when the layout design of the micro light emitting diode 22, the influence of the bonding layer 25 on the position of the emitted light can be ignored, simplifying the design procedure .
  • the Mini LED light board provided by the embodiment of the application further includes a reflective coating 26, which is located on the circuit board 21 near the micro light emitting device.
  • the diode 22 side. 15 is a schematic top view of the structure of the backlight module shown in FIG. 14. As shown in FIG. 15, the reflective coating 26 includes an opening 261 for exposing the micro light emitting diode 22.
  • the reflective coating 26 is located on the surface of the circuit board 21 facing the micro light emitting diode 22.
  • the reflective coating 26 can be a protective layer located above the circuit board.
  • the protective layer also has a reflective effect, which can reflect the light incident on the side of the circuit board 21 back, thereby improving the efficiency of light utilization.
  • the reflective coating 26 may be made of materials such as white oil.
  • the above-mentioned reflective protective layer is called a reflective coating.
  • the reflective coating 26 has an opening 261 for exposing the bonding pad p of the micro light-emitting diode.
  • the micro light emitting diode 22 will be soldered on the corresponding pad of the circuit board, so that the micro light emitting diode 22 is located in the corresponding opening 261.
  • FIG. 16 is the third cross-sectional structure diagram of the backlight module provided by the embodiment of the application. As shown in FIG. 16, the backlight module provided by the embodiment of the application further includes a diffuser plate 27 and an optical film 28.
  • the diffusion plate 27 is located on the side of the transparent substrate 24 away from the protective layer 23.
  • the scattering material in the diffuser can continuously refract and reflect the light passing through, so as to achieve the effect of dispersing the light, and then realize the effect of uniform light.
  • the material used for the diffusion plate is generally selected from at least one of polymethyl methacrylate PMMA, polycarbonate PC, polystyrene-based material PS, and polypropylene PP.
  • the optical film 28 is located on the side of the diffuser plate 27 away from the transparent substrate 24.
  • the optical film set 28 may include one or more of prism films, quantum dot films, diffusers, reflective polarizers, etc.
  • the purpose of adding these films to the backlight module is to adapt the backlight module to many A variety of practical applications.
  • the prism sheet can change the exit angle of light, thereby changing the viewing angle of the display device.
  • the quantum dot film can provide quantum dots with higher monochromatic light emission, which can be applied to quantum dot TVs to improve the display color gamut of TVs.
  • the reflective polarizer can improve the utilization rate of light, and at the same time make the emitted light have the property of polarization, omitting the use of the polarizer under the liquid crystal display panel.
  • the display device includes: a backlight module for providing backlight; a display panel located on the light-emitting side of the backlight module for image display; the backlight module includes a miniature light-emitting diode lamp panel as a backlight source; Micro LED lamp board: circuit board, which has the function of carrying and supporting, used to provide power; micro light emitting diode, located on the circuit board; protective layer, covering the micro light emitting diode and circuit board, used to encapsulate and protect the micro light emitting diode; backlight mold
  • the group also includes a transparent substrate, located on the side of the protective layer away from the micro light emitting diode; and a bonding layer, located between the protective layer and the transparent substrate, for bonding the protective layer and the transparent substrate; the refractive index of the bonding layer is greater than that of the transparent substrate The refractive index.
  • the protective layer and the transparent substrate are closely adhered with the laminating layer, there is no air layer between the protective layer and the transparent substrate. Since the refractive index of the laminating layer is greater than that of the transparent substrate, light is incident from the laminating layer to the transparent The emergence angle of the substrate will increase, so that the coverage of the emergent light will increase. As a result, the light emitted by the Mini LED can be diffused to the junction between the adjacent Mini LEDs, so that the light emission brightness directly above the Mini LED is closer to the light emission brightness at the junction, and the uneven brightness of the backlight module is improved. problem.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Planar Illumination Modules (AREA)
  • Liquid Crystal (AREA)
  • Led Device Packages (AREA)

Abstract

本申请公开了一种显示装置,包括背光模组和显示面板,背光模组包括微型发光二极管,解决了微型发光二极管焊接不良的问题以及改变背光模组亮度不均的问题,增大Mini LED的出光照射范围。

Description

一种显示装置
相关申请交叉引用
本申请要求于2019年11月29日提交中国专利局、申请号为201911205501.2、申请名称为“一种显示装置”的中国专利申请、于2019年11月29日提交中国专利局、申请号为201922112301.4、申请名称为“一种显示装置”的中国专利申请、于2019年11月29日提交中国专利局、申请号为201911205789.3、申请名称为“一种显示装置”的中国专利申请以及于2019年11月29日提交中国专利局、申请号为201922112302.9、申请名称为“一种显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种显示装置。
背景技术
随着显示技术的发展,液晶显示技术在显示领域被广泛应用。液晶显示面板本身并不能发光,需要背光模组提供其显示所需要亮度。而由于液晶面板本身特性的限制,不同程度地存在漏光的现象,对比度的提升存在瓶颈。由此提出一种对背光模组进行区域调光(local dimming)的方案,可以对不同区域的背光单独控制,那么当显示图像中高亮部分所对应的背光亮度可以达到最大,而在图像中的黑暗部分所对应的背光可以降低亮度,从而可以使显示图像达到更佳的对比度。
微型发光二极管(Mini Light Emitting Diode,简称Mini LED)作为背光在液晶显示技术中已经成为了当前的热点,不同于传统液晶显示采取导光板侧入式的背光方案,其采用巨量Mini LED作为背光源,不仅可以实现背光的薄形化,还可以实现更为精细化的动态控制,提升显示效果。
但是,微型发光二极管在实际应用过程中,还存在一些工艺、光学等方面的问题需要解决。
发明内容
本申请提供了一种显示装置,用以解决微型发光二极管焊接不良的问题。
本申请提供一种显示装置,包括:
背光模组,用于提供背光;
显示面板,位于所述背光模组的出光侧,用于图像显示;
所述背光模组包括微型发光二极管灯板,作为背光源;
所述微型发光二极管灯板包括:
电路板,具有承载和支撑作用,用于提供电力;所述电路板包括多个用于焊接微型发光二极管的焊盘;
反射涂层,覆盖于所述电路板上;所述反射涂层包括多个暴露所述焊盘的开窗;
微型发光二极管,焊接在所述开窗内的焊盘上;
其中,所述开窗的尺寸大于所述微型发光二极管的尺寸,所述开窗的尺寸满足所述电路板涨缩后焊接所述微型发光二极管的要求。
在本申请某些实施例中,在本申请提供的上述显示装置中,所述电路板和所述微型发光二极管均为矩形;
所述微型发光二极管的长边与所述电路板的短边平行。
在本申请某些实施例中,在本申请提供的上述显示装置中,所述反射涂层的开窗为矩形;
所述开窗的长边与所述微型发光二极管的长边平行。
在本申请某些实施例中,在本申请提供的上述显示装置中,所述电路板的长边尺寸、所述开窗的短边的尺寸及所述微型发光二极管的短边的尺寸满足以下关系:
Figure PCTCN2020132198-appb-000001
其中,Py表示所述开窗的短边的长度,Cy表示所述微型发光二极管的短边的长度,Ly表示所述电路板的长边的长度。
在本申请某些实施例中,在本申请提供的上述显示装置中,所述微型发光二极管的长边的尺寸与所述开窗的长边的尺寸满足以下关系:
Cx<Px≤Cx+d;
其中,Cx表示所述微型发光二极管的长边的长度,Px表示所述开窗的长边的长度,d表示所述微型发光二极管的电极在平行于所述微型发光二极管的长边的方向的长度。
在本申请某些实施例中,在本申请提供的上述显示装置中,所述背光模组包括多个微型发光二极管灯板,各微型发光二极管灯板的电路板沿平行于所述电路板的短边的方向进行排列。
在本申请某些实施例中,在本申请提供的上述显示装置中,所述微型发光二极管的尺寸为50μm-300μm。
在本申请某些实施例中,在本申请提供的上述显示装置中,所述电路板的长度为200mm-800mm,所述电路板的宽度为100mm-500mm。
在本申请某些实施例中,在本申请提供的上述显示装置中,所述背光模组还包括:
保护层,覆盖于所述反射涂层和所述微型发光二极管背离所述电路板一侧的表面。
在本申请某些实施例中,在本申请提供的上述显示装置中,所述背光模组还包括:
透明基板,位于所述保护层背离所述电路板的一侧;
扩散板,位于所述透明基板背离所述保护层的一侧;
光学膜片,位于所述扩散板背离所述透明基板的一侧。
本申请提供的显示装置,包括:背光模组,用于提供背光;显示面板,位于背光模组的出光侧,用于图像显示;背光模组包括:微型发光二极管灯板,作为背光源;微型发光二极管灯板包括:电路板,具有承载和支撑作用, 用于提供电力;电路板包括多个用于焊接微型发光二极管的焊盘;反射涂层,覆盖于电路板上;反射涂层包括多个暴露焊盘的开窗;微型发光二极管,焊接在开窗内的焊盘上;其中,开窗的尺寸大于微型发光二极管的尺寸,开窗的尺寸满足电路板涨缩后焊接微型发光二极管的要求。设计开窗的尺寸大于微型发光二极管的尺寸,这样可以保证微型发光二极管转移至对应的开窗的上方时,可以顺利地与开窗内的焊盘接触和焊接。而由于电路板通常存在涨缩的问题,因此可以设计开窗的尺寸在微型发光二极管的尺寸的基础上增加出电路板发生涨缩时会移动的距离,这样即使电路板发生涨缩,开窗和焊盘的位置发生偏移,微型发光二极管在转移至原定位置时仍可以与开窗内焊盘相接触,实现微型发光二极管电极和电路板的焊盘的电连接。
本申请还提供了一种显示装置,用以增大Mini LED的出光照射范围,改变背光模组亮度不均的问题。
本申请提供一种显示装置,包括:
背光模组,用于提供背光;
显示面板,位于所述背光模组的出光侧,用于图像显示;
所述背光模组包括:
微型发光二极管灯板,作为背光源;
所述微型发光二极管灯板包括:
电路板,具有承载和支撑作用,用于提供电力;
微型发光二极管,位于所述电路板上;
保护层,覆盖所述微型发光二极管和所述电路板,用于封装保护所述微型发光二极管;
所述背光模组还包括:
透明基板,位于所述保护层背离所述微型发光二极管的一侧;
贴合层,位于所述保护层和所述透明基板之间,用于贴合所述保护层和所述透明基板;所述贴合层的折射率大于所述透明基板的折射率。
在本申请某些实施例中,在本申请提供的上述显示装置中,所述贴合层 的折射率大于或等于所述保护层的折射率。
在本申请某些实施例中,在本申请提供的上述显示装置中,所述保护层的折射率为1.4~1.6。
在本申请某些实施例中,在本申请提供的上述显示装置中,所述透明基板的折射率为1.4~1.5。
在本申请某些实施例中,在本申请提供的上述显示装置中,所述贴合层的厚度小于0.1mm。
在本申请某些实施例中,在本申请提供的上述显示装置中,所述透明基板的厚度满足所述微型发光二极管的混光距离。
在本申请某些实施例中,在本申请提供的上述显示装置中,所述透明基板的厚度为1mm~3mm。
在本申请某些实施例中,在本申请提供的上述显示装置中,所述微型发光二极管灯板还包括:
反射涂层,位于所述电路板靠近所述微型发光二极管一侧;所述反射涂层包括用于暴露所述微型发光二极管的开窗。
在本申请某些实施例中,在本申请提供的上述显示装置中,所述微型发光二极管的尺寸为50μm~300μm。
在本申请某些实施例中,在本申请提供的上述显示装置中,所述背光模组还包括:
扩散板,位于所述透明基板背离所述保护层的一侧;
光学膜片,位于所述扩散板背离所述透明基板的一侧。
本申请有益效果如下:
本申请提供的显示装置,包括:背光模组,用于提供背光;显示面板,位于背光模组的出光侧,用于图像显示;背光模组包括微型发光二极管灯板,作为背光源;微型发光二极管灯板包括电路板,具有承载和支撑作用,用于提供电力;微型发光二极管,位于电路板上;保护层,覆盖微型发光二极管和电路板,用于封装保护微型发光二极管;背光模组还包括透明基板,位于保 护层背离微型发光二极管的一侧;以及贴合层,位于保护层和透明基板之间,用于贴合保护层和透明基板;贴合层的折射率大于透明基板的折射率。将保护层和透明基板采用贴合层紧密贴合之后,保护层与透明基板之间不存在空气层,由于贴合层的折射率大于透明基板的折射率,因此光线由贴合层入射到透明基板时的出射角度会增大,使得出射光线覆盖范围增大。由此可以使Mini LED出射的光线向相邻的Mini LED之间的交界位置扩散,从而使Mini LED正上方的光出射亮度与交界位置的光出射亮度更加接近,改善背光模组亮度不均的问题。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所介绍的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的显示装置的截面结构示意图;
图2为本申请实施例提供的Mini LED灯板的截面结构示意图;
图3为本申请实施例提供的Mini LED灯板的俯视结构示意图;
图4为本申请实施例提供的开窗及微型发光二极管的俯视关系示意图;
图5为本申请实施例提供的开窗及微型发光二极管的侧视关系示意图;
图6为本申请实施例提供的多个Mini LED灯板的俯视结构示意图;
图7为本申请实施例提供的背光模组的截面结构示意图;
图8为本申请实施例提供的显示装置的截面结构示意图;
图9为本申请实施例提供的背光模组的截面结构示意图之一;
图10为本申请实施例提供的背光模组的出射光路图之一;
图11为本申请实施例提供的背光模组的出射光路图之二;
图12为本申请实施例提供的背光模组的出射光路图之三;
图13为本申请实施例提供的背光模组的出射光路图之四;
图14为本申请实施例提供的背光模组的截面结构示意图之二;
图15为本申请实施例提供的背光模组的俯视结构示意图;
图16为本申请实施例提供的背光模组的截面结构示意图之三。
具体实施方式
为使本申请的上述目的、特征和优点能够更为明显易懂,下面将结合附图和实施例对本申请做进一步说明。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本申请更全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。本申请中所描述的表达位置与方向的词,均是以附图为例进行的说明,但根据需要也可以做出改变,所做改变均包含在本申请保护范围内。本申请的附图仅用于示意相对位置关系不代表真实比例。
在MiniLED制作过程中,Mini LED需要先通过固晶的方式,焊接在电路子上,制备成Mini LED灯板。电路板要经过多道生产工序以及运输等,会有涨缩现象,导致电路板上的焊盘可避免出现偏移。而Mini LED的尺寸较小,焊盘的偏移量已经可以造成Mini LED不能准确地焊接到相应的焊盘上,致使Mini LED焊接不良。
图1为本申请实施例提供的显示装置的结构示意图,如图1所示,本申请实施例提供的显示装置包括:
背光模组100,用于提供背光;背光模组100可以在整个出光面内均匀的发出光线,用于为显示面板提供亮度充足且分布均匀的光线,以使显示面板可以正常显示影像。
显示面板200,位于背光模组100的出光侧,用于图像显示。显示面板200具有多个呈阵列排布的像素单元,每个像素单元都可以独立的控制背光模组100入射到该像素单元的光线透过率和色彩,以使全部像素单元透过的光线构成显示的图像。
本申请实施例提供的上述显示装置可为液晶显示屏、液晶显示器、液晶电视等显示设备,也可以为手机、平板电脑、智能相册等移动终端。显示装置中采用背光模组提供背光,由显示面板对背光模组出射的光线进行调制,实现图像显示。本申请实施例提供的背光模组可以采用Mini LED灯板作为光源,Mini LED的尺寸相对于传统LED更小,采用巨量Mini LED作为背光源,可以实现更为精细化的动态控制,提升液晶显示的动态对比度。
本申请实施例提供的上述背光模组100包括微型发光二极管灯板(Mini LED灯板),作为背光源。
图2为本申请实施例提供的Mini LED灯板的截面结构示意图,如图2所示,Mini LED灯板包括:电路板11、反射涂层12及微型发光二极管13;
其中,电路板11,具有承载和支撑作用,用于提供电力。在本申请实施例中,电路板11用于为微型发光二极管13提供驱动电信号。微型发光二极管13与电路板11分别单独制作,电路板11的表面包括多个用于焊接微型发光二极管的焊盘p,微型发光二极管12在制作完成后,再将微型发光二极管13转移至电路板11的焊盘上方,通过回流焊等工艺将微型发光二极管13焊接在电路板11上,从而可以通过控制电路板11的输入信号,驱动微型发光二极管13发光。
在具体实施时,电路板11可以是印刷电路板(Printed Circuit Board,简称PCB),PCB包括电子线路和绝缘层,绝缘层将电子线路中焊接微型发光二极管12的焊盘裸露在外而将其余部分覆盖。
或者,电路板11也可以是在衬底基板上制作薄膜晶体管驱动电路形成的阵列基板,阵列基板的表面具有连接至薄膜晶体管驱动电路的连接电极(即上述的开窗内的焊盘),各微型发光二极管12的电极与各连接电极一一对应焊接。以上电路板11的衬底或衬底基板可以采用柔性材料来制作以形成柔性显示装置。
在本申请实施例中,电路板11为板状,整体呈长方形或正方形。电路板11的长度在200mm-800mm,宽度在100mm-500mm。根据显示装置的尺寸, 背光模组可以包括多个电路板11,电路板11之间通过拼接方式提供背光。为了避免电路板11拼接带来的光学问题,相邻电路板11之间的拼缝尽量做到较小,甚至实现无缝拼接。
反射涂层12,覆盖于电路板11上。反射涂层12可以为位于电路板11上方的保护层,当采用具有反射性质的材料涂覆在电路板11的表面时,该保护层同时具有反射作用,可以将向电路板11一侧入射的光线反射回去,从而提高光线的利用效率。在本申请实施例中,反射涂层12可以采用白油等材料。
图3为本申请实施例提供的Mini LED灯板的俯视结构示意图,如图3所示,在电路板布线之后在其表面涂覆一层反射涂层12,通过刻蚀等工艺将用于焊接微型发光二极管的焊盘p所在的位置暴露出来,形成如图3所示的开窗121。在形成开窗121之后,将微型发光二极管13焊接在电路板对应的焊盘p上,从而使得微型发光二极管13焊接于电路板11上。
微型发光二极管13,焊接在开窗121内的焊盘p上。微型发光二极管13不同于普通的发光二极管,其具体指的是微型发光二极管芯片。由于微型发光二极管13的尺寸很小,因此发光芯片有利于将动态发光控制到更小的分区,有利于提高画面的对比度。在本申请实施例中,微型发光二极管13可为单色微型发光二极管,尺寸在50μm-300μm之间。
微型发光二极管13通常包括两个电极,需要分别焊接在电路板11上相邻的两个焊盘p上,在进行焊接之前,可以利用机械转移的方式将微型发光二极管13移动至其对应的焊盘的上方。转移微型发光二极管12的机械臂会按照电路板11上开窗的标称值将微型发光二极管13转移至电路板11上方的对应位置,然而电路板11的基板通常采用的树脂材料,在电路板11经过各工艺步骤以及运输等处理之后,容易发生涨缩的问题,那么反射涂层上的开窗会随着电路板的涨缩发生偏移,而微型发光二极管13仍然会按照标准的电路板上的开窗位置进行移动,由于微型发光二极管13的尺寸在微米量级,电路板11上的开窗发生很小的偏移就会造成微型发光二极管13无法与开窗内的焊盘对准的问题,由此会造成微型发光二极管焊接不良。
为了克服上述问题,在本申请实施例中,如图2和图3所示,可以将反射涂层12上的开窗121的尺寸适当扩大,从而使开窗121的尺寸大于微型发光二极管13的尺寸,且开窗121的尺寸满足电路板11涨缩后焊接微型发光二极管的要求。
在具体实施时,可以设计开窗121的尺寸大于微型发光二极管13的尺寸,这样可以保证微型发光二极管转移至对应的开窗121的上方时,可以顺利地与开窗121内的焊盘p接触和焊接。而由于电路板11通常存在涨缩的问题,可以设计开窗121的尺寸在微型发光二极管13的尺寸的基础上增加出电路板11发生涨缩时会移动的距离,这样即使电路板11发生涨缩,开窗和焊盘的位置发生偏移,微型发光二极管在转移至原定位置时仍可以与开窗内焊盘p相接触,实现微型发光二极管电极和电路板的焊盘的电连接。
在制作过程中,考虑到工艺的难易程度,以及产品的形状要求,如图3所示,通常会将电路板11以及微型发光二极管13均设计成规则的矩形。
电路板上焊接微型发光二极管即形成微型发光二极管灯板,而目前所使用的显示设备,无论是电脑显示屏、电视还是手机等一般均为矩形,因此作为背光源的微型发光二极管灯板的驱动电路板也会制作成矩形。
而微型发光二极管在进行制作时并不是一粒一粒单独形成的,而是在衬底上生长外延层等结构之后切割而成,切割的精度直接会影响到微型发光二极管的精度,因此为了简化工艺,会将微型发光二极管切割为矩形。
电路板的涨缩受采用的材料影响,一般涨缩的比例在
Figure PCTCN2020132198-appb-000002
的范围内,且涨缩的程度与该方向的长度成正相关。以长度方向为400mm,宽度方向为200mm的电路板为例,电路板11在长度方向的涨缩可能达到80μm~200μm,而在宽度方向的涨缩可能达到40μm~100μm。也就是说电路板11的开窗在电路板长度方向上的偏移量将大于其在宽度方向上的偏移量。
为了保证微型发光二极管的焊接良率,设置微型发光二极管13的长边与电路板11的短边平行。电路板11在长边的方向上的涨缩量比较大,开窗会在电路板长边的方向上具有较大的偏移量,而开窗的偏移量对于微型发光二 极管13的短边相较于长边来说影响相对较小,这是因为即使开窗偏移较大的距离也可以使微型发光二极管的短边可以位于开窗之内,这样就不会影响微型发光二极管的电极与开窗内的焊盘的接触,可以改善微型发光二极管焊接不良的问题。
如图3所示,为了适应微型发光二极管13的形状,反射涂层12的开窗121的开窗也可以相应地设置为矩形。并且设置开窗121的长边与微型发光二极管13的长边平行。
在理论上开窗121的尺寸与微型发光二极管13的尺寸相等,使得微型发光二极管13的电极与开窗121内的焊盘p连接,而考虑到电路板11的涨缩以及转移过程中产生的误差等问题,可以设置开窗121的尺寸在微型发光二极管13的尺寸的基础上相应地扩大,即使发生上述问题也可以保证微型发光二极管13可以设置在开窗121的内部。微型发光二极管13与开窗121的尺寸都在微米量级,开窗121的长边与微型发光二极管13的长边平行,开窗121的短边与微型发光二极管13的短边平行,可以使开窗121的尺寸适应微型发光二极管的形状,且不会造成占用空间的浪费,可以在电路板上设置更多个微型发光二极管。
图4本申请实施例提供的开窗与微型发光二极管的俯视关系示意图,图2和图3示出了电路板11、开窗121和微型发光地二极管13三者的尺寸关系。如图2所示,电路板11的长边的长度为Ly,电路板短边的长度为Lx;开窗121的长边的长度为Px,开窗121的短边的长度为Py;如图3所示,微型发光二极管13的长边的长度为Cx,微型发光二极管13的短边的长度为Cy。
考虑到由于电路板的涨缩造成的开窗偏移的问题,在本申请实施例中,电路板11的长边尺寸、开窗121的短边的尺寸及微型发光二极管13的短边的尺寸可以满足以下关系:
Figure PCTCN2020132198-appb-000003
其中,Py表示开窗的短边的长度,Cy表示微型发光二极管的短边的长度,Ly表示电路板的长边的长度。
电路板11在长边方向的涨缩量与长边方向的长度相关,由于电路板11所采用的材料的不同,其涨缩程度也有所不同,如果电路板材料的涨缩比例为
Figure PCTCN2020132198-appb-000004
那么电路板上的开窗121在电路板长边方向上的偏移量可以达到
Figure PCTCN2020132198-appb-000005
Figure PCTCN2020132198-appb-000006
如果想要在开窗产生偏移的情况下,微型发光二极管13按照原定的位置转移后仍然可以位于对应的开窗121内,与开窗121中的焊盘相接触,那么开窗121的短边的长度应该在微型发光二极管13的短边长度的基础上增加在电路板11长边方向上的偏移量,因此设置微型发光二极管13的短边尺寸和开窗121的短边尺寸满足上述关系,可以保证开窗121发生偏移时,其对应的微型发光二极管13仍然可以被转移至开窗121内。
微型发光二极管13的长边的尺寸与开窗121的长边的尺寸可以满足以下关系:
Cx<Px≤Cx+d;
其中,Cx表示微型发光二极管的长边的长度,Px表示开窗的长边的长度,d表示微型发光二极管的电极在平行于微型发光二极管的长边的方向的长度。
微型发光二极管13包括两个电极,分别与对应的开窗121内的两个焊盘p相互焊接,图5为本申请实施例提供的开窗及微型发光二极管的侧视关系示意图,如图5所示,开窗121内的两个焊盘p之间存在一定的间隙,这是因为微型发光二极管13的两个电极之间也存在着间隙,且该间隙沿微型发光二极管13长边方向的长度占长边的三分之一左右,那么在制作电路板11时,因此使连接同一个微型发光二极管的两个焊盘之间的间隙与微型发光二极管两个电极之间的间隙相适应。而电路板的开窗121沿着电路板11的短边方向上也存在偏移的现象,因此需要考虑微型发光二极管13和开窗121长边方向的尺寸,以及开窗121产生偏移的情况下,微型发光二极管13的两个电极可以连接至对应的开窗121内的两个焊盘p上。
在本申请实施例中,设置开窗121的长边的长度Px大于微型发光二极管13的长边的长度Cx。另外,微型发光二极管13的电极沿微型发光二极管长边方向的长度d为微型发光二极管长边的三分之一左右,而该电极长度d已 经可以满足开窗121的偏移量,因此可以设置开窗121的长边的长度Px满足Cx<Px≤Cx+d。
在具体应用中,微型发光二极管灯板的尺寸都不会太大,因此微型发光二极管需要在制作完成之后转移到电路板,再进行焊接,微型发光二极管灯板的良率取决于灯板上微型发光二极管的良率,因此灯板的尺寸越大,其生产良率越低。因此目前应用在大尺寸显示装置中的背光模组可以采用多块Mini LED灯板相互拼接的方式进行设置。
图6为本申请实施例提供的多个Mini LED灯板的俯视结构示意图,如图6所示,本申请实施例提供的背光模组包括多个微型发光二极管灯板,各微型发光二极管灯板的电路板11沿平行于所述电路板的短边的方向进行排列。
在具体实施时,常规的显示屏尺寸为16:9,而Mini LED固晶设备的量程以及显示器的尺寸,均不便用正方形的灯板拼接,因此可将电路板11设计成矩形,长边和短边的比例接近2:1。在电路板11的尺寸小于所需要的照明范围的尺寸时,可以沿着电路板11的短边方向增加排列电路板11的数量。
在本申请实施例提供的上述显示装置中,如图2所示,本申请实施例提供的上述Mini LED还包括:
保护层14,覆盖于反射涂层12和微型发光二极管13背离电路板11一侧的表面。
保护层14的作用是对微型发光二极管13进行封装,从而有效的防止了微型发光二极管的脱落、潮湿等不利情况的发生。保护层14所用材料包括硅胶、环氧树脂或其它具有较高透过率的胶体材料。在实际应用中,可以采用喷涂或点涂的方式形成在微型发光二极管13的表面。图2所示的背光模组,采用整面喷涂的方式制作上述保护层14,整面喷涂的制作方法生产效率更高。而在实际应用中,也可以采用在微型发光二极管13上方点涂胶体材料,对微型发光二极管13进行封装的方式,点涂封装的方式可以节省胶体材料,且可以灵活控制涂胶量,适用性更强。
图7为本申请实施例提供的背光模组的截面结构示意图,如图7所示, 本申请实施例提供的上述背光模组还包括:透明基板15、扩散板16和光学膜片17。
透明基板15,位于保护层14背离电路板11的一侧。透明基板15,能够使来自微型发光二极管13的光线透过且用于支撑扩散板16。透明基板15的材料可选自聚甲基丙烯酸甲酯或聚碳酸酯等。透明基板15作为扩散板16的支撑结构,使微型发光二极管13发出的光在到达扩散板16前充分地混光。在本申请实施例中,透明基板15的厚度满足微型发光二极管13的混光距离,保证背光效果。在具体实施时,透明基板15的厚度不大于10mm。
扩散板16,位于透明基板15背离保护层14的一侧。扩散板16中通常设置有散射粒子材料,光线入射到扩散板16之后,散射材料使光线不断发生折射与反射,从而达到将光线打散的效果,进而实现匀光的作用。扩散板所用材质一般选自聚甲基丙烯酸甲酯PMMA、聚碳酸酯PC、聚苯乙烯系材料PS、聚丙烯PP中的至少一种,在此不做限定。
光学膜片17,位于扩散板16背离透明基板15的一侧。光学膜片组17可以包括棱镜片、量子点膜片、反射式偏光片等中的一种或者多种,在背光模组中添加这些膜片的目的,是为了使背光模组适应多种多样的实际应用。例如,棱镜片可以改变光线的出射角度,从而改变显示装置的可观看角度。量子点膜可以提供单色性更高的量子点发光,应用于量子点电视,提高电视的显示色域。反射式偏光片可以提高光线的利用率,同时使出射光线具有偏振的性质,省略液晶显示面板下偏光片的使用。
本申请实施例提供的显示装置,包括:背光模组,用于提供背光;显示面板,位于背光模组的出光侧,用于图像显示;背光模组包括:微型发光二极管灯板,作为背光源;微型发光二极管灯板包括:电路板,具有承载和支撑作用,用于提供电力;电路板包括多个用于焊接微型发光二极管的焊盘;反射涂层,覆盖于电路板上;反射涂层包括多个暴露焊盘的开窗;微型发光二极管,焊接在开窗内的焊盘上;其中,开窗的尺寸大于微型发光二极管的尺寸,开窗的尺寸满足电路板涨缩后焊接微型发光二极管的要求。设计开窗 的尺寸大于微型发光二极管的尺寸,这样可以保证微型发光二极管转移至对应的开窗的上方时,可以顺利地与开窗内的焊盘接触和焊接。而由于电路板通常存在涨缩的问题,因此可以设计开窗的尺寸在微型发光二极管的尺寸的基础上增加出电路板发生涨缩时会移动的距离,这样即使电路板发生涨缩,开窗和焊盘的位置发生偏移,微型发光二极管在转移至原定位置时仍可以与开窗内焊盘相接触,实现微型发光二极管电极和电路板的焊盘的电连接。
Mini LED灯板在焊接各Mini LED芯片之后,可以通过电路板驱动Mini LED发光。Mini LED出射的光线会先入射到空气间隙后再入射到扩散板等光学膜层,由于空气介质的折射率小,在入射到扩散层时,由于光线的折射作用,光线的出射小会减小,使得最终照射在扩散板上的光斑范围较小,从而导致背光模组在Mini LED上方偏亮,在两个Mini LED交界位置偏暗的亮度不均的问题。
基于此,本申请又提供了一种显示装置。
图8为本申请实施例提供的显示装置的结构示意图,如图8所示,本申请实施例提供的显示装置包括:
背光模组100,用于提供背光;背光模组100可以在整个出光面内均匀的发出光线,用于为显示面板提供亮度充足且分布均匀的光线,以使显示面板可以正常显示影像。
显示面板200,位于背光模组100的出光侧,用于图像显示。显示面板200具有多个呈阵列排布的像素单元,每个像素单元都可以独立的控制背光模组100入射到该像素单元的光线透过率和色彩,以使全部像素单元透过的光线构成显示的图像。
本申请实施例提供的上述显示装置可为液晶显示屏、液晶显示器、液晶电视等显示设备,也可以为手机、平板电脑、智能相册等移动终端。显示装置中采用背光模组提供背光,由显示面板对背光模组出射的光线进行调制,实现图像显示。本申请实施例提供的背光模组可以采用Mini LED灯板作为光源,Mini LED的尺寸相对于传统LED更小,采用巨量Mini LED作为背光源, 可以实现更为精细化的动态控制,提升液晶显示的动态对比度。
图9为本申请实施例提供的背光模组的截面结构示意图之一,如图9所示,本申请实施例提供的上述背光模组100包括微型发光二极管灯板20、透明基板24和贴合层25。
微型发光二极管灯板20包括电路板21、微型发光二极管22、保护层23。
其中,电路板21,具有承载和支撑作用,用于提供电力。在本申请实施例中,电路板21用于为微型发光二极管22提供驱动电信号。微型发光二极管22与电路板21分别单独制作,电路板21的表面包括多个用于焊接微型发光二极管的开窗,开窗内包括两个用于分别焊接微型发光二极管电极的焊盘,微型发光二极管22在制作完成后,再将微型发光二极管22转移至电路板21的焊盘开窗上方,通过回流焊等工艺将微型发光二极管22焊接在电路板21上,从而可以通过控制电路板21的输入信号,驱动微型发光二极管22发光。
在具体实施时,电路板21可以是印刷电路板(Printed Circuit Board,简称PCB),PCB包括电子线路和绝缘层,绝缘层将电子线路中焊接微型发光二极管22的焊盘裸露在外而将其余部分覆盖。
或者,电路板21也可以是在衬底基板上制作薄膜晶体管驱动电路形成的阵列基板,阵列基板的表面具有连接至薄膜晶体管驱动电路的连接电极(即上述的开窗内的焊盘),各微型发光二极管22的电极与各连接电极一一对应焊接。以上电路板21的衬底或衬底基板可以采用柔性材料来制作以形成柔性显示装置。
在本申请实施例中,电路板21为板状,整体呈长方形或正方形。电路板21的长度在200mm-800mm,宽度在100mm-500mm。根据显示装置的尺寸,在本申请实施例中,显示装置可以包括多个电路板21,电路板21之间通过拼接方式共同提供背光。为了避免电路板21拼接带来的光学问题,相邻电路板21之间的拼缝尽量做到较小,甚至实现无缝拼接。
微型发光二极管22,位于电路板21上。微型发光二极管22焊接于电路板21的焊盘上,微型发光二极管22不同于普通的发光二极管,其具体指的 是微型发光二极管芯片。由于微型发光二极管22的尺寸很小,因此发光芯片有利于将动态发光控制到更小的分区,有利于提高画面的对比度。在本申请实施例中,微型发光二极管22可为单色微型发光二极管,尺寸在50μm-300μm之间。
保护层23,覆盖微型发光二极管22和电路板21,保护层23的作用是对微型发光二极管22进行封装,从而有效的防止了微型发光二极管的脱落、潮湿等不利情况的发生。保护层23所用材料包括硅胶、环氧树脂或其它具有较高透过率的胶体材料。在实际应用中,可以采用喷涂或点涂的方式形成在微型发光二极管22的表面。
在本申请实施例中,采用整层喷涂的方式在电路板21和微型发光二极管22的表面形成整层的保护层23,这样的制作方法可以有效提高生产效率,且对微型发光二极管22的封装效果较佳。
透明基板24,位于保护层23背离微型发光二极管22的一侧。本申请实施例中的透明基板,采用高透光材料进行制作。透明基板能够使来自微型发光二极管22的光线透过且用于支撑扩散板。透明基板24的材料可选自聚甲基丙烯酸甲酯或聚碳酸酯中的至少一个,但是也不限于此,透明基板24还可使用其它高反射率,低吸光率的材料制作。这是由于光线在透明基板24内部发生多次的反射,采用高反射率,低吸光率的材料可以尽可能的降低光线在透明基板24内传播时的衰减,从而提高背光模组的光利用率,降低功耗。透明基板24作为扩散板的支撑结构,使微型发光二极管22发出的光在到达扩散板前充分地混光。
在本申请实施例中,透明基板24的厚度满足微型发光二极管22的混光距离,从而使微型发光二极管的出射光线在到达扩散板时可以充分混光,保证背光效果。在本申请实施例中,透明基板24的厚度不大于10mm。
在具体实施时,为了限制背光模组的整机厚度,可以采用亚克力板制作透明基板,厚度为1mm-3mm。透明基板24的厚度越大,对出射光线的削减作用越强,而微型发光二极管22的尺寸较小,且相比于传统的发光二极管, 微型发光二极管22的间距可以做得更小,因此微型发光二极管22的混光距离相比于传统发光二极管可以小得多,那么透明基板24设置在1mm-3mm的范围内,就可以满足微型发光二极管22的混光要求,同时可以减小由透明基板24对光线的削减作用。
微型发光二极管22的间距比较小,无法在微型发光二极管22的阵列中设置支架以支撑扩散板,本申请实施例中,将透明基板设置在保护层23背离微型发光二极管22的一侧,还可以作为扩散板的支架,直接将扩散板放置在透明基板24上,以克服上述问题。
图10为本申请实施例提供的背光模组的出射光路图之一,如图10所示,在实际应用中,可以在保护层23的上方直接放置透明基板24就可以满足使用要求,但是在保护层23和透明基板24之间会存在空间隙,而背光模组中的光学膜层相对于空气介质来说均属于光密介质,由微型发光二极管22出射角为θ1的光线首先入射到保护层23的介质中,那么光线在入射到保护层23和空气层的交界面时的入射角为θ1,光线穿过该交界面出射到空气中的折射角为θ2。如图10所示,保护层23的折射率为n1,空气的折射率为n0,根据折射定律有:n1sinθ1=n0sinθ2;而保护层23的折射率n1大于空气介质的折射率n0,因此光线经保护层23入射到空气中时的折射角θ2大于入射角θ1,即光线入射到空气介质中时的出射角度更大,如果入射到空气中的光线直接入射到扩散板的位置,则扩散板被光线覆盖范围的半径为d1。
然而,光线在入射到空气层中之后还需要再入射到透明基板24,光线穿过该交界面出射到透明基板24中的折射角为θ3,透明基板24的折射率为n2,根据折射定律有:n0sinθ2=n2sinθ3。而透明基板24的折射率n2大于空气介质的折射率n0,因此光线经空气层入射到透明基板24中时的折射角θ3小于入射角θ2,即光线入射到透明基板24之后的出射角度变小,那么经过透明基板24之后,最终光线在扩散板上覆盖范围的半径为d2。
由图10可以看出,透明基板24的作用使得扩散板上光线覆盖范围变小,这就会造成在Mini LED上方的亮度大,而在Mini LED之间交界位置的亮度 小的亮度不均的问题。
为了克服上述问题,在本申请实施例中,如图9所示,在背光模组中还设置:贴合层25,位于保护层23和透明基板24之间,用于贴合保护层23和透明基板24。也就是说,本申请实施例将原本保护层23和透明基板24之间的空气间隙中填充满贴合材料,从而缩小间隙位置的折射率和透明基板24的折射率之间的差距。在具体实施时,贴合层25的折射率可以大于透明基板24的折射率。这样可以使光线经由贴合层25入射到透明基板24时,光线的出射角度增大,从而增大光线入射到扩散板时的覆盖面积,增大光线在Mini LED的交界位置的分布密度,由此改善背光亮度不均的问题。
图11为本申请实施例提供的背光模组的出射光路图之二,如图11所示,由微型发光二极管22出射的同样出射角θ1的光线在入射到保护层23的介质中,那么光线在入射到保护层23和贴合层25的交界面时的入射角为θ1,光线穿过该交界面出射到贴合层25中的折射角为θ2’。如图11所示,保护层23的折射率为n1,贴合层25的折射率为n3,根据折射定律有:n1sinθ1=n3sinθ2’;而保护层23与贴合层25之间的折射率的差距相比于保护层23与空气介质之间的折射率的差距要小得多,因此光线经保护层23入射到贴合层25中时的折射角θ2’与入射角θ1相差不大,即光线入射到贴合层25中时的出射角度变化不大。
接着,光线在入射到贴合层25中之后还需要再入射到透明基板24,光线穿过该交界面出射到透明基板24中的折射角为θ3’,透明基板24的折射率为n2,根据折射定律有:n3sinθ2’=n2sinθ3’。而透明基板24的折射率n2大于贴合层25的折射率n3,因此光线经贴合层25入射到透明基板24中时的折射角θ3’小于入射角θ2’,即光线入射到透明基板24之后的出射角度变大,那么经过透明基板24之后,最终光线在扩散板上覆盖范围的半径为d3。
对比图10和图11可以看出,将保护层23和透明基板24采用贴合层25紧密贴合之后,光线经过透明基板24后的出射角由原来的θ3增大到现在的θ3’,那么光线覆盖范围半径也有原来的d2增大到现在的d3。由此可以使Mini  LED出射的光线向相邻的Mini LED之间的交界位置扩散,从而使得Mini LED正上方的光出射亮度与交界位置的光出射亮度更加接近,从而改善亮度不均的问题。
考虑到光线在入射到两种折射率不同的介质时存在的全反射问题,本申请实施例设置贴合层25的折射率n3大于或等于保护层23的折射率n1。
光线由光密介质向光疏介质入射时可能发生全反射现象,因此光的全反射在背光模组的各膜层中可能会限制光线的出射角度。如图10所示,如果在保护层23的上方直接放置透明基板24,则保护层23和透明基板24之间会存在空气间隙,形成空气层。而空气介质相对于背光模组中的光学膜层介质来说均属于光疏介质,因此光线由背光模组的光学膜层向空气中入射时均不能避免发生光的全反射现象。
图12为本申请实施例提供的背光模组的出射光路图之三,如图12所示,如果将透明基板24直接放置在保护层23之上,由微型发光二极管22出射的大角度光线首先入射到保护层23中,保护层23的折射率n1大于空气层的折射率n0,则当光线的出射角α1,也是光线入射到保护层23和空气层的交界面的入射角,在大于该交界面的临界角时,光线无法入射到空气层中,全部被反射回保护层23。
为了克服上述全反射问题,需要采用较低折射率的材料来制作保护层23,当保护层的折射率n1为1.41时,产生全反射的临界角为44度,即微型发光二极管22出射的光线中只有出射角度小于44度的光线可以入射到空气中,进而作为背光模组所提供的背光,光源的利用率较低。
在本申请实施例中,在保护层23和透明基板24之间采用贴合层25进行贴合之后,可以有效地改善上述问题。图13为本申请实施例提供的背光模组的出射光路图之四,如图13所示。当采用贴合层25将保护层23和透明基板24紧密贴合之后,微型发光二极管22出射的相同角度α1的光线首先入射到保护层23中,而贴合层25的折射率n3大于或等于保护层23的折射率n1,光线经保护层23向贴合层25入射时,属于由光疏介质向光密介质入射,不 会发生光的全反射现象,因此无论光线的入射角度多大,光线都可以由保护层23入射到贴合层25中。
在实际应用中,可以设置贴合层25的折射率与保护层23的折射率接近,这样既可以保证光线可以由保护层23顺利地向贴合层25入射,又不会过多地改变光线向贴合层25出射时的出射角度。而贴合层25的折射率n3又大于透明基板24的折射率n2,因此光线由贴合层25向透明基板24出射时的出射角度会进一步增大,从而使得Mini LED光线的出射角度不受太大影响,可以使出射的光线覆盖到Mini LED之间的交界位置,缩小Mini LED正上方和交界位置处的出光亮度的差异,由此有效改善亮度不均的问题。
在具体实施时,保护层23通常可以采用硅胶、环氧树脂等胶体材料,折射率可为1.4-1.6之间;透明基板24可以采塑料,如聚甲基丙烯酸甲酯PMMA或聚甲基戊烯共聚物TPX等,折射率可为1.4-1.5之间;贴合层25可采用硅胶、环氧树脂等胶体材料,也可以采用透明的双面胶层,折射率可为1.4-1.6之间。
通过合理地选择保护层23、透明基板24和贴合层25所使用的材料,以使三者之间的折射率的差距较小,同时又可以满足贴合层25的折射率大于或等于保护层23的折射率,且贴合层25的折射率大于透明基板24的折射率,这样可以有效地避免微型发光二极管22出射的光线在上述三个膜层的交界面发生大角度出射光的全反射现象,同时又可以扩大光线入射到透明基板24及其上方膜层时的出射角度。
举例来说,当保护层23的折射率为1.54,透明基板的折射率为1.45时,微型发光二极管22出射的60度的出射光线根据折射定律满足:1.54×sin60°=1.45×sinθ;θ为光线透射到透明基板24时的出射角,可以计算得到微型发光二极管出射的60度的光线入射到透明基板24时的出射角为60.45度,相比于现有技术中的背光模组的出射角度要大得多。由此,有效改善了背光模组出光亮度不均的问题。
在本申请实施例中,贴合层25的厚度远小于透明基板24的厚度,通常 情况下可以将贴合层25的厚度设置得小于0.1mm。贴合层25的厚度越小,其对光线偏移位置的影响也就越小,因此在进行微型发光二极管22的布局设计时,可以忽略贴合层25对出射光位置的影响,简化设计程序。
图14为本申请实施例提供的背光模组的截面结构示意图之二,如图14所示,本申请实施例提供的Mini LED灯板还包括:反射涂层26,位于电路板21靠近微型发光二极管22一侧。图15为图14所示的背光模组的俯视结构示意图,如图15所示,反射涂层26包括用于暴露微型发光二极管22的开窗261。
反射涂层26,位于电路板21面向微型发光二极管22一侧的表面,反射涂层26可以为位于电路板上方的保护层,当采用具有反射性质的材料涂覆在电路板21的表面时,该保护层同时具有反射作用,可以将向电路板21一侧入射的光线反射回去,从而提高光线的利用效率。在本申请实施例中,反射涂层26可以采用白油等材料。
在电路板布线之后在其表面涂覆一层白油材料,通过刻蚀等工艺将用于焊接微型发光二极管22的焊盘p所在的位置暴露出来。在本申请实施例中,将上述具有反射作用的保护层称之为反射涂层,如图15所示,反射涂层26具有用于暴露焊接微型发光二极管的焊盘p的开窗261,在之后的制作工艺中,会将微型发光二极管22焊接在电路板对应的焊盘之上,从而使得微型发光二极管22位于对应的开窗261内。
图16为本申请实施例提供的背光模组的截面结构示意图之三,如图16所示,本申请实施例提供的背光模组还包括:扩散板27和光学膜片28。
扩散板27,位于透明基板24背离保护层23的一侧。扩散板中的散射材料可以对通过的光线不断发生折射与反射作用,从而达到将光线打散的效果,进而实现匀光的作用。扩散板所用材质一般选自聚甲基丙烯酸甲酯PMMA、聚碳酸酯PC、聚苯乙烯系材料PS、聚丙烯PP中的至少一种。
光学膜片28,位于扩散板27背离透明基板24的一侧。光学膜片组28可以包括棱镜片、量子点膜、扩散片、反射式偏光片等中的一种或者多种,在背光模组中添加这些膜片的目的,是为了使背光模组适应多种多样的实际应 用。例如,棱镜片可以改变光线的出射角度,从而改变显示装置的可观看角度。量子点膜可以提供单色性更高的量子点发光,应用于量子点电视,提高电视的显示色域。反射式偏光片可以提高光线的利用率,同时使出射光线具有偏振的性质,省略液晶显示面板下偏光片的使用。
本申请实施例提供的显示装置,包括:背光模组,用于提供背光;显示面板,位于背光模组的出光侧,用于图像显示;背光模组包括微型发光二极管灯板,作为背光源;微型发光二极管灯板:电路板,具有承载和支撑作用,用于提供电力;微型发光二极管,位于电路板上;保护层,覆盖微型发光二极管和电路板,用于封装保护微型发光二极管;背光模组还包括透明基板,位于保护层背离微型发光二极管的一侧;以及贴合层,位于保护层和透明基板之间,用于贴合保护层和透明基板;贴合层的折射率大于透明基板的折射率。将保护层和透明基板采用贴合层紧密贴合之后,保护层与透明基板之间不存在空气层,由于贴合层的折射率大于透明基板的折射率,因此光线由贴合层入射到透明基板时的出射角度会增大,使得出射光线覆盖范围增大。由此可以使Mini LED出射的光线向相邻的Mini LED之间的交界位置扩散,从而使Mini LED正上方的光出射亮度与交界位置的光出射亮度更加接近,改善背光模组亮度不均的问题。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (12)

  1. 一种显示装置,其特征在于,包括:
    背光模组,用于提供背光;
    显示面板,位于所述背光模组的出光侧,用于图像显示;
    所述背光模组包括微型发光二极管灯板,作为背光源;
    所述微型发光二极管灯板包括:
    电路板,具有承载和支撑作用,用于提供电力;所述电路板包括多个用于焊接微型发光二极管的焊盘;
    反射涂层,覆盖于所述电路板上;所述反射涂层包括多个暴露所述焊盘的开窗;
    微型发光二极管,焊接在所述开窗内的焊盘上;
    其中,所述开窗的尺寸大于所述微型发光二极管的尺寸,所述开窗的尺寸满足所述电路板涨缩后焊接所述微型发光二极管的要求。
  2. 如权利要求1所述的显示装置,其特征在于,所述电路板和所述微型发光二极管均为矩形;
    所述微型发光二极管的长边与所述电路板的短边平行。
  3. 如权利要求2所述的显示装置,其特征在于,所述反射涂层的开窗为矩形;
    所述开窗的长边与所述微型发光二极管的长边平行。
  4. 如权利要求3所述的显示装置,其特征在于,所述电路板的长边尺寸、所述开窗的短边的尺寸及所述微型发光二极管的短边的尺寸满足以下关系:
    Figure PCTCN2020132198-appb-100001
    其中,Py表示所述开窗的短边的长度,Cy表示所述微型发光二极管的短边的长度,Ly表示所述电路板的长边的长度。
  5. 如权利要求3所述的显示装置,其特征在于,所述微型发光二极管的长边的尺寸与所述开窗的长边的尺寸满足以下关系:
    Cx<Px≤Cx+d;
    其中,Cx表示所述微型发光二极管的长边的长度,Px表示所述开窗的长边的长度,d表示所述微型发光二极管的电极在平行于所述微型发光二极管的长边的方向的长度。
  6. 如权利要求2所述的显示装置,其特征在于,所述背光模组包括多个微型发光二极管灯板,各微型发光二极管灯板的电路板沿平行于所述电路板的短边的方向进行排列。
  7. 如权利要求1-6任一项所述的显示装置,其特征在于,所述微型发光二极管的尺寸为50μm-300μm。
  8. 如权利要求1-6任一项所述的显示装置,其特征在于,所述电路板的长度为200mm-800mm,所述电路板的宽度为100mm-500mm。
  9. 如权利要求1-6任一项所述的显示装置,其特征在于,所述背光模组还包括:
    保护层,覆盖于所述反射涂层和所述微型发光二极管背离所述电路板一侧的表面。
  10. 如权利要求9所述的显示装置,其特征在于,所述背光模组还包括:
    透明基板,位于所述保护层背离所述电路板的一侧;
    扩散板,位于所述透明基板背离所述保护层的一侧;
    光学膜片,位于所述扩散板背离所述透明基板的一侧。
  11. 一种显示装置,其特征在于,包括:
    背光模组,用于提供背光;
    显示面板,位于所述背光模组的出光侧,用于图像显示;
    所述背光模组包括:
    微型发光二极管灯板,作为背光源;
    所述微型发光二极管灯板包括:
    电路板,具有承载和支撑作用,用于提供电力;
    微型发光二极管,位于所述电路板上;
    保护层,覆盖所述微型发光二极管和所述电路板,用于封装保护所述微型发光二极管;
    所述背光模组还包括:
    透明基板,位于所述保护层背离所述微型发光二极管的一侧;
    贴合层,位于所述保护层和所述透明基板之间,用于贴合所述保护层和所述透明基板;所述贴合层的折射率大于所述透明基板的折射率。
  12. 如权利要求11所述的显示装置,其特征在于,所述贴合层的折射率大于或等于所述保护层的折射率,其中,所述保护层的折射率为1.4~1.6,所述透明基板的折射率为1.4~1.5,所述贴合层的厚度小于0.1mm,所述透明基板的厚度为1mm~3mm。
PCT/CN2020/132198 2019-11-29 2020-11-27 一种显示装置 WO2021104445A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/580,285 US11822115B2 (en) 2019-11-29 2022-01-20 Display apparatus

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201911205789.3 2019-11-29
CN201922112302.9U CN210982990U (zh) 2019-11-29 2019-11-29 一种显示装置
CN201911205501.2A CN112882280A (zh) 2019-11-29 2019-11-29 一种显示装置
CN201922112301.4 2019-11-29
CN201911205789.3A CN112882283A (zh) 2019-11-29 2019-11-29 一种显示装置
CN201922112301.4U CN210982989U (zh) 2019-11-29 2019-11-29 一种显示装置
CN201911205501.2 2019-11-29
CN201922112302.9 2019-11-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/580,285 Continuation US11822115B2 (en) 2019-11-29 2022-01-20 Display apparatus

Publications (1)

Publication Number Publication Date
WO2021104445A1 true WO2021104445A1 (zh) 2021-06-03

Family

ID=76129174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132198 WO2021104445A1 (zh) 2019-11-29 2020-11-27 一种显示装置

Country Status (2)

Country Link
US (1) US11822115B2 (zh)
WO (1) WO2021104445A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115167035A (zh) * 2022-09-08 2022-10-11 惠科股份有限公司 背光模组和显示装置
US20230161196A1 (en) * 2021-11-19 2023-05-25 Epistar Corporation Led display device
US11871518B1 (en) 2023-06-19 2024-01-09 HKC Corporation Limited Backlight module and display device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230019404A (ko) * 2020-06-03 2023-02-08 니치아 카가쿠 고교 가부시키가이샤 면상 광원 및 그 제조 방법
WO2023249823A1 (en) * 2022-06-23 2023-12-28 Corning Incorporated Displays with reduced edge light leakage

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110082743A (ko) * 2010-01-12 2011-07-20 주식회사 루멘스 백라이트용 발광 다이오드 모듈 및 그 제조 방법
US20150060905A1 (en) * 2013-08-28 2015-03-05 Seoul Semiconductor Co., Ltd. Light source module and manufacturing method thereof, and backlight unit
CN108803149A (zh) * 2018-07-20 2018-11-13 京东方科技集团股份有限公司 面光源及其制作方法以及液晶显示装置
CN109459886A (zh) * 2018-10-31 2019-03-12 厦门天马微电子有限公司 一种背光模组、制作方法及显示装置
CN109709722A (zh) * 2019-03-12 2019-05-03 合肥京东方光电科技有限公司 直下式背光源及制备方法、背光模组以及显示装置
CN110398857A (zh) * 2019-07-15 2019-11-01 青岛海信电器股份有限公司 微型发光二极管灯板、其制作方法、背光模组及显示装置
CN110456574A (zh) * 2019-09-20 2019-11-15 青岛海信电器股份有限公司 一种显示装置及背光模组
CN110727145A (zh) * 2019-10-28 2020-01-24 京东方科技集团股份有限公司 背光源及制作方法、背光模组、显示面板、显示装置
CN210982990U (zh) * 2019-11-29 2020-07-10 海信视像科技股份有限公司 一种显示装置
CN210982989U (zh) * 2019-11-29 2020-07-10 海信视像科技股份有限公司 一种显示装置
CN111505868A (zh) * 2020-05-11 2020-08-07 Tcl华星光电技术有限公司 背光模组和显示面板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101035502B1 (ko) * 2004-11-16 2011-05-20 엘지디스플레이 주식회사 발광다이오드를 이용한 액정표시장치모듈
KR102203950B1 (ko) * 2014-02-05 2021-01-19 삼성디스플레이 주식회사 광원 모듈, 이를 포함하는 백라이트 어셈블리 및 표시 장치
CN105258027B (zh) * 2015-10-30 2018-11-27 北京京东方茶谷电子有限公司 背光模组及显示装置
CN107271450A (zh) 2017-06-20 2017-10-20 深圳市华星光电技术有限公司 一种聚酰胺/氮化硅膜致密性的检测方法
CN111812885A (zh) * 2019-04-10 2020-10-23 展晶科技(深圳)有限公司 光学透镜、背光模组和显示装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110082743A (ko) * 2010-01-12 2011-07-20 주식회사 루멘스 백라이트용 발광 다이오드 모듈 및 그 제조 방법
US20150060905A1 (en) * 2013-08-28 2015-03-05 Seoul Semiconductor Co., Ltd. Light source module and manufacturing method thereof, and backlight unit
CN108803149A (zh) * 2018-07-20 2018-11-13 京东方科技集团股份有限公司 面光源及其制作方法以及液晶显示装置
CN109459886A (zh) * 2018-10-31 2019-03-12 厦门天马微电子有限公司 一种背光模组、制作方法及显示装置
CN109709722A (zh) * 2019-03-12 2019-05-03 合肥京东方光电科技有限公司 直下式背光源及制备方法、背光模组以及显示装置
CN110398857A (zh) * 2019-07-15 2019-11-01 青岛海信电器股份有限公司 微型发光二极管灯板、其制作方法、背光模组及显示装置
CN110456574A (zh) * 2019-09-20 2019-11-15 青岛海信电器股份有限公司 一种显示装置及背光模组
CN110727145A (zh) * 2019-10-28 2020-01-24 京东方科技集团股份有限公司 背光源及制作方法、背光模组、显示面板、显示装置
CN210982990U (zh) * 2019-11-29 2020-07-10 海信视像科技股份有限公司 一种显示装置
CN210982989U (zh) * 2019-11-29 2020-07-10 海信视像科技股份有限公司 一种显示装置
CN111505868A (zh) * 2020-05-11 2020-08-07 Tcl华星光电技术有限公司 背光模组和显示面板

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230161196A1 (en) * 2021-11-19 2023-05-25 Epistar Corporation Led display device
US12007646B2 (en) * 2021-11-19 2024-06-11 Epistar Corporation LED display device
CN115167035A (zh) * 2022-09-08 2022-10-11 惠科股份有限公司 背光模组和显示装置
US11871518B1 (en) 2023-06-19 2024-01-09 HKC Corporation Limited Backlight module and display device

Also Published As

Publication number Publication date
US20220146744A1 (en) 2022-05-12
US11822115B2 (en) 2023-11-21

Similar Documents

Publication Publication Date Title
WO2021104445A1 (zh) 一种显示装置
CN111399280B (zh) 一种显示装置
CN210982989U (zh) 一种显示装置
CN210982990U (zh) 一种显示装置
WO2021051787A1 (zh) 一种显示装置及背光模组
CN210982988U (zh) 一种显示装置
CN113126363A (zh) 一种显示装置
CN113777826B (zh) 一种显示装置
CN112882282A (zh) 一种显示装置
CN211786492U (zh) 一种显示装置
CN214098031U (zh) 一种显示装置
CN213399142U (zh) 一种显示装置
US11320696B2 (en) Backlight module, display, and mobile terminal
CN109445180B (zh) 一种背光模组及显示装置
WO2021190414A1 (zh) 一种显示装置
CN113093434A (zh) 一种显示装置
CN113777825A (zh) 一种显示装置
KR20150041324A (ko) 도광판 및 이를 구비한 백라이트 어셈블리
CN112882280A (zh) 一种显示装置
CN112882281A (zh) 一种显示装置
WO2021190399A1 (zh) 一种显示装置
CN113820886B (zh) 一种显示装置
CN113534536A (zh) 背光模组及其制备方法、显示装置
WO2022247941A1 (zh) 一种显示装置
US20240053635A1 (en) Display panel and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20894557

Country of ref document: EP

Kind code of ref document: A1